7 Series FPGAs
Integrated Block for
PCI Express v1.7

Product Guide

PGO054 October 16, 2012

& XILINX.

& XILINX.

Table of Contents

SECTION I: SUMMARY
IP Facts

Chapter 1: Overview

Feature SUMMaArY. . ..ottt ittt iennnessesaossssssssssasananssnsnsssananans 9
N e o] 1T 1 T 4 T3 10
Licensing and Ordering Information. ittt iiiiiineenannnnnannns 10

Chapter 2: Product Specification

Standards Compliance. oottt it et it ittt it et et et 12
Resource Utilization.coiiiiiii ittt ittt tiiiata e tatstnensenensnsasannsnas 12
Minimum Device Requirementso ittt iiiiiit it iteitenetenarenaesnnesnnesnns 13
Available Integrated Blocks for PCle.ottt ittt it it tneenennnannnennnns 14
Core INterfaces. .. oo vv ittt it ittt ittt it e e e e et 15
Transaction Interface.ottt ittt ittt ittt ttsenatnatanssessesnsannanss 18
PCl Configuration SPaceiciiiiiiiiiie it iienneeareaeeesnennsansansaanananns 43

Chapter 3: Designing with the Core

General Design Guidelines ittt iinetineernneraatsanrsannsennnas 49
01 o ol (1 - 182
=T 185
Protocol Layers. . ..o i i i ii ittt ettt tiae et aate et ae e e e e 186
FPGA Configurationiiitiiiiiiii ittt it tenrenennrnesneensansansnnnnnans 188

SECTION II: VIVADO DESIGN SUITE

Chapter 4: Customizing and Generating the Core

Graphical UserInterface (GUI)ciiiiiiiiiiii ittt ittt itenesasasnsnsnsanansans 197
Output Generation. ittt i iie ittt iietnentonosonasonassnssssnsssnnssnness 224
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 2

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 5: Constraining the Core

Required Constraint Modifications. ittt it iieienrnnnnnnns 226
Device, Package, and Speed Grade Selections.t iininnnnnnnn 227
Core 1/O ASSIgNMENTES . ..t i ittt ittt ittt teteeeeneneeneneaeasasesneesesenennans 228
Core Physical Constraintscciiiiiiiiineiineinneeeneesnnesenesonnssnnsaness 228
Core TimMIiNg Constraintscciiiiiiiiiiinrineeennerooetoessonnsonnsennssnnsss 229
Relocating the Integrated Block Core. ittt ittt ettt ittt teneeennennnnnns 229
Supported Core PinoUtS. oot iiii it ittt iietieeernarsnesssnnsanasenassnnssanns 230

Chapter 6: Getting Started Example Design

Directoryand FileContents.oiiiiiiiiiiii ittt teineennernnesaaesannnans 233
EXample DesigNnc ittt i ettt it et e e et e e e a e 237
Generating the Core.t i ittt ittt it it tiietenaeeeaeseaeseaneeansenasnaness 240
Implementation.ttt it et iieetenatenasennesonesanssannnans 246
L] 1410 T o 247

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Programmed Input/Output: Endpoint Example Designcovtiiiinenrenenennnnns 249
Root Port Model Test BenchforEndpointciiiiiiiii i iintrennrenneennnns 264

Chapter 8: Example Design and Model Test Bench for Root Port Configuration

Configurator EXample Design iiiiiii ittt ieneteeaereaeeeoneennsennsenness 280
Endpoint Model Test BenchforRoot Port...........ciiiiiiiiiiiiiiiininernennnannnns 286

Chapter 9: PIPE Mode Simulations

SECTION Ill: ISE DESIGN SUITE

Chapter 10: Customizing and Generating the Core

Chapter 11: Constraining the Core

Required Constraint Modifications. ittt iieienrnnnnnnns 318
Device, Package, and Speed Grade Selections.ciiiiiiiiiiiiiiiiienneennnnns 319
COre 1/O ASSIZNMENTS .« ot ittt tit ittt ee e taeeeenreeensoeenearenensoeensaeensannnns 320
Core Physical Constraintsiiitiiiiniininneeeeneenennenneansasaneaennnns 320
Core Timing Constraintsc.iitiiiiiiiiiiiiiiiieiieetneeronnrennsannsenness 321
Relocating the Integrated Block Core. ..ottt ittt ittt teerennannnnnns 321
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 3

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Supported Core PINOULS.ttt ittt ittt it tie e eeeenenasaasanaannaennanans 322

Chapter 12: Getting Started Example Design

Directoryand File Contents.itiitintinint i ieetenrnerneeneaneansassnennnans 326
EXampPle Design .. cv ittt ittt it ittt et et ettt et e s e e 332
Generatingthe Core. iii ittt it i it it tiietenatsaaesanesaassaansannssaness 335
Implementationttt ittt it ettt it tentanrenrasensansaneansnnnnnans 338
L] 14T 5T 339

Chapter 13: Example Design and Model Test Bench for Endpoint Configuration

Programmed Input/Output: Endpoint EXample Designcoviiiiinnnrnrnenenens 341
Root Port Model Test BenchforEndpoint.ttt innrnennennnnn 356

Chapter 14: Example Design and Model Test Bench for Root Port Configuration

Configurator ExXample Designottt it iieieeeneeneaneansananennennens 372
Endpoint Model Test BenchforRoot Port.ciiiiiiiiiiiiiininernennennnnns 378

Chapter 15: PIPE Mode Simulations

SECTION IV: APPENDICES

Appendix A: Migrating
Migration Considerationsc. ittt ii ittt iie e rneeneenransansnennnans 383
TRN to AXI Migration Considerations.ciiiiiiiiiieiinriernennsenrasseonananss 386

Appendix B: Debugging

Finding Help on XilinX.comttt it ittt it iiatneteeennansnnsasennans 395
Contacting Xilinx Technical Support. ... ittt it it i et iiettennrenarannnss 396
DEbUE TOOIS ..ottt i i ittt it ittt e et et a et e e e 397
Hardware Debugciiiiiiii ittt i it ittt taateseasansansassasansans 400
Simulation Debug.ttt i i i i e i e it e it et a st 411

Appendix C: Managing Receive-Buffer Space for Inbound Completions

General Considerations and Conceptso ittt iiintiieetieernnnrennsenasannsss 416
Methods of Managing Completion Spaceiiiiiiiinrnernernennrenennnnnnns 418

Appendix D: PCIE_2_1 Port Descriptions

Clockand Reset Interfacecoviiiiiiiiinintnrnenenennsnsasososssssssanensans 423
Transaction LayerInterface.ooiiiiiiiiiii it ittt it tietieneenasansnasaannns 424
BIOCK RAM INterfaceoviiiiiiiiiiieie ittt itenenennnasasosssosssasensnsasannnns 428
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 4

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

GTX TransceiverInterfaceviiiiiiiiiiie i ininenenesasasasosnssessasensass 429
Configuration ManagementInterface ..ottt it iieerennrennrenneennens 436
Dynamic Reconfiguration PortInterfaceottt iiiiiiinienrnennnnns 467
Debug Interface Portsciitiiiiiiii i ittt e tea e rneeneanransansanannans 467
QLI I 2 1 =T 4 £ T T o o 468

Appendix E: Additional Resources

XiliNX RESOUICES .« o v vttt ittt ittt ttite e te e teessasassnsasasasasosnssnsssassnsnsass 470
Ko LT T3 TN =T =T 470
3 S =T =T 4T T 470
Technical SUPPOIt ... ittt ittt ettt ttneeeeoeeenasenasenaeeanssaassennnens 471
ReVISION HIiStOryottt it ittt it ittt et tiettennsenasenassanssannsannnans 472
Notice of Disclaimer.o iti ittt ittt ittt isinasasasosnsssssesensnsasannnns 472
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 5

PG054 October 16, 2012

http://www.xilinx.com

& XILINX.

SECTION I. SUMMARY

IP Facts
Overview
Product Specification

Designing with the Core

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.

IP Facts

Introduction

The LogiCORE™ IP 7 Series FPGAs Integrated
Block for PCI Express® core is a scalable,
high-bandwidth, and reliable serial interconnect
building block for use with Xilinx® Zynqg-7000 All
Programmable SoC (System on a Chip), and

7 series FPGA families. The Integrated Block for
PCI Express (PCle®) solution supports 1-lane,
2-lane, 4-lane, and 8-lane Endpoint and Root Port
configurations at up to 5 Gb/s (Gen2) speeds, all
of which are compliant with the PC/ Express Base
Specification, rev. 2.1. This solution supports the
AMBA® AXI4-Stream interface for the customer
user interface.

With higher bandwidth per pin, low overhead, low
latency, reduced signal integrity issues, and CDR
architecture, the Integrated Block for PCle sets
the industry standard for a high-performance,
cost-efficient, third-generation I/0O solution.

The Integrated Block for PCI Express solution is
compatible with industry-standard application
form factors such as the PC/I Express Card
Electromechanical (CEM) v2.0 and the PC/
Industrial Computer Manufacturers Group (PICMG)
3.4 specifications.

Features

« High-performance, highly flexible, scalable,
and reliable, general-purpose I/O core

- Compliant with the PCI Express Base
Specification, rev. 2.1

- Compatible with conventional PCI
software model

+ Incorporates Xilinx Smart-IP technology to
guarantee critical timing

e Uses GTXE2 or GTPE2 transceivers for 7 series
FPGA families
o 2.5GT/s and 5.0 GT/s line speeds

- Supports 1-lane, 2-lane, 4-lane, and
8-lane operation

o Elastic buffers and clock compensation
- Automatic clock data recovery

LogiCORE IP Facts Table

Core Specifics

Supported
Device Zyng-7000), Virtex®-7, Kintex™-7, Artix™-7
Family@)
supported AXI4-Stream
User Interfaces
Resources See Table 2-2.
Provided with Core
ISE: Verilog/VHDL®) RTL Source and Simulation
Design Files Models
Vivado: Encrypted RTL
Example .
Design Verilog, VHDL
Test Bench Verilog, VHDL
Constraints ISE: UCF
File Vivado: XDC
Simulation .
Model Verilog, VHDL
Supported
S/W Driver N/A

Tested Design Flows(4)

ISE® Design Suite v14.3

Design Entry Vivado™ Design Suite v2012.30)

Cadence Incisive Enterprise Simulator (IES)
Synopsys VCS and VCS MX

Simulation Mentor Graphics ModelSim
Xilinx ISim

Vivado Simulator

Synthesis Xilinx Synthesis Technology (XST)

Vivado Synthesis

Support

Provided by Xilinx @ www.xilinx.com/support

Notes:

1. For a complete listing of supported devices, see the release
notes for this core.

2. Support for Zyng-7000 devices is not available in Vivado Design
Suite 2012.3.

3. RTL source for the GTX wrapper is Verilog only. VHDL projects
require mixed language mode simulators.

4. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

5. Supports only 7 series devices.

7 Series Integrated Block for PCle (v1.7)

www.xilinx.com 7

PG054 October 16, 2012

Product Specification

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/irn.pdf
http://www.xilinx.com

& XILINX

Features (Continued)

« Supports Endpoint and Root Port configurations
« 8B/10B encode and decode
« Supports Lane Reversal and Lane Polarity Inversion per PCI Express specification requirements
« Standardized user interface
o Supports AXI4-Stream interface
- Easy-to-use packet-based protocol
o Full-duplex communication
- Back-to-back transactions enable greater link bandwidth utilization

o Supports flow control of data and discontinuation of an in-process transaction in transmit
direction

o Supports flow control of data in receive direction
« Compliant with PCI/PCI Express power management functions
« Supports a maximum transaction payload of up to 1024 bytes
« Supports Multi-Vector MSI for up to 32 vectors and MSI-X
« Up-configure capability enables application driven bandwidth scalability

« Compliant with PCI Express transaction ordering rules

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 8
PGO054 October 16, 2012 Product Specification

http://www.xilinx.com

& XILINX.
Chapter 1

Overview

Xilinx® 7 series FPGAs include three unified FPGA families that are all designed for lowest
power to enable a common design to scale across families for optimal power, performance,
and cost. The Artix™-7 family is optimized for lowest cost and absolute power for the
highest volume applications. The Virtex®-7 family is optimized for highest system
performance and capacity. The Kintex™-7 family is an innovative class of FPGAs optimized
for the best price to performance. This document describes the function and operation of
the 7 Series FPGAs Integrated Block for PCI Express®, including how to design, customize,
and implement it.

The LogiCORE™ IP 7 Series FPGAs Integrated Block v1.7 for PCI Express core is a reliable,
high-bandwidth, scalable serial interconnect building block. The core instantiates the

7 Series FPGA Integrated Block for PCI Express found in the 7 series FPGAs, and supports
both Verilog and VHDL. This Integrated Block for PCle simplifies the design process and
reduces time to market. It is configurable for Endpoint and Root Port applications. This
solution can be used in communication, multimedia, server and mobile platforms and
enables applications such as high-end medical imaging, graphics intensive video games,
DVD quality streaming video on the desktop, and 10 Gigabit Ethernet interface cards.

Although the 7 Series FPGAs Integrated Block for PCI Express core is a fully verified
solution, the challenge associated with implementing a complete design varies depending
on the configuration and functionality of the application.

O RECOMMENDED: For the best results, previous experience building high-performance, pipelined FPGA
designs using Xilinx implementation software and constraints files is recommended.

Feature Summary

The 7 Series FPGAs Integrated Block for PCI Express follows the PCI Express Base
Specification, rev. 2.1 [Ref 2] layering model, which consists of the Physical, Data Link, and
Transaction Layers. The protocol uses packets to exchange information between layers.
Packets are formed in the Transaction and Data Link Layers to carry information from the
transmitting component to the receiving component. Necessary information is added to
the packet being transmitted, which is required to handle the packet at specific layers.

The functions of the protocol layers include:

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 9
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 1: Overview

« Generating and processing of TLPs

* Flow-control management

« Initialization and power management functions
» Data protection

e Error checking and retry functions

« Physical link interface initialization

+ Maintenance and status tracking

« Serialization, deserialization, and other circuitry for interface operation

Applications

The Xilinx 7 series FPGAs Integrated Block for PCI Express architecture enables a broad
range of computing and communications target applications, emphasizing performance,
cost, scalability, feature extensibility and mission-critical reliability. Typical applications
include:

« Data communications networks

« Telecommunications networks

« Broadband wired and wireless applications
» Cross-connects

« Network interface cards

« Chip-to-chip and backplane interconnect

» Crossbar switches

* Wireless base stations

Licensing and Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado™
Design Suite and ISE® Design Suite tools under the terms of the Xilinx End User License.
Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information about pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

For more information, visit the 7 Series FPGAs Integrated Block for PCI Express product
page.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 10
PGO054 October 16, 2012

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
www.xilinx.com/products/ipcenter/7_SERIES_PCI_Express_Block.htm
www.xilinx.com/products/ipcenter/7_SERIES_PCI_Express_Block.htm
http://www.xilinx.com

& XILINX.
Chapter 2

Product Specification

The Xilinx® 7 Series FPGAs Integrated Block for PCI Express® contains full support for
2.5 Gb/s and 5.0 Gb/s PCI Express Endpoint and Root Port configurations. For 8.0 Gb/s
(Gen3) support, see Virtex-7 FPGA Gen3 Integrated Block for PCIl Express Product Guide
[Ref 3], for device support and information on the Virtex®-7 FPGA Gen3 Integrated Block
for PCI Express.

Table 2-1 defines the Integrated Block for PCle® solutions.

Table 2-1: Product Overview

Product Name User Interface Width Supported Lane Widths
1-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1
2-lane at 2.5 Gb/s, 5.0 Gb/s 64 x1, x2@
4-lane at 2.5 Gb/s, 5.0 Gb/s 64,128 x1, x2, x41.(2)
8-lane at 2.5 Gb/s, 5.0 Gb/s 64, 128 x1, x2, x4, xg1:3)

Notes:

1. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components, page 146 for additional information.
2. The x4 at 2.5 Gb/s option in the CORE Generator™ tool provides only the 64-bit width interface.
3. x8 at 5.0 Gb/s only available in the 128-bit width.

The LogiCORE™ IP 7 Series FPGAs Integrated Block for PCI Express core internally
instantiates the 7 Series FPGAs Integrated Block for PCI Express (PCIE_2_1). The integrated
block follows the PCI Express Base Specification layering model, which consists of the
Physical, Data Link, and Transaction layers. The integrated block is compliant with the

PCI Express Base Specification, rev. 2.1 [Ref 2].

Figure 2-1 illustrates these interfaces to the 7 Series FPGAs Integrated Block for PCI Express
core:

« System (SYS) interface

« PCI Express (PCI_EXP) interface

« Configuration (CFG) interface

« Transaction interface (AXI4-Stream)

« Physical Layer Control and Status (PL) interface

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 11
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

The core uses packets to exchange information between the various modules. Packets are
formed in the Transaction and Data Link Layers to carry information from the transmitting
component to the receiving component. Necessary information is added to the packet
being transmitted, which is required to handle the packet at those layers. At the receiving
end, each layer of the receiving element processes the incoming packet, strips the relevant
information and forwards the packet to the next layer.

As a result, the received packets are transformed from their Physical Layer representation to
their Data Link Layer representation and the Transaction Layer representation.

LogiCORE IP 7 Series FPGAs
Integrated Block for PCI Express

X RX
Block RAM Block RAM

I U

User / iasteam

LOg ic Interface

Physical Layer P“(fﬂ?a' > 7 Series FPGAs <::> Transceivers

=

/I_ PCI
PCI Express
pci Exp)) Express

<

Fabric
Control and Status Integrated Block for

PCI Express

(PCIE_2_1)
Host Configuration Optional Debug) User Logic
Interface (CFG

Clock
System
(SYS) and
Reset

User
Logic

Optional Debug
(DRP)

W

Figure 2-1: Top-Level Functional Blocks and Interfaces

Standards Compliance

The 7 Series FPGAs Integrated Block for PCI Express is compliant with the PC/ Express Base
Specification, rev. 2.1 [Ref 2].

Resource Utilization

Table 2-2 shows the resources for the 7 series FPGAs Integrated Block for PCI Express core
for ISE® Design Suite implementations.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 12
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-2: Resources Used
(2)
Interface (1) (1) RX Buffers | TX Buffers CMPS Block Clock
Product Width GTXEL | LUT FF Size (kB) | Size (KB) | (Bytes) | RAM MMCMs | gufers
1-lane Genl .
o / 64-bit 400 | 575
Gen2
2-lane Genl/ 64-bit 525 | 750
Gen2
4-lane Genl 64-bit 4 800 1100
8 or 16 4-32 128-1024 | 2-16 5
4-lane Gen2 64-bit,
128-bit 4 800 1300
8-lane, Genl 64-bit,
128-bit 1350 | 2275
8-lane, Gen?2 128-bit 1450 | 2600

Notes:

1. Numbers are for the default core configuration. Actual LUT and FF utilization values vary based on specific configurations.
2. Capability Maximum Payload Size (CMPS).
3. Genl speeds are 2.5 Gb/s. Gen2 speeds are 5.0 Gb/s.

Minimum Device Requirements

Table 2-3 lists the minimum device requirements for 7 series FPGAs Integrated Block for PCI
Express configurations.

Table 2-3: 7 Series FPGAs Integrated Block for PCI Express Configurations
A"""(71) Kintex-7 FPGAs Virtex-7 FPGAs Zyng®
FPGAs
XC7K480T
XC7K420
XCTAL00T XC7K410T
3)
XC7A200T XC7K355T XC7VX485T XC7V585T XC7V2000T
XC7K325T
XcK7160T(2)
xc7k70T(2)
Number of Integrated Blocks for 1 1 4 3 4 1
PCle (see Table 2-4)
Genl (2.5 Gby/s) 1-4 1-8 1-8 1-8 1-8 1-4 or 1-8®
Lanes Gen2 (5.0 Gby/s) 1-4 1-8 1-8 1-8 1-8 1-4 or 1-8®
Gen3 (8.0 Gb/s)™ — — — — — —
-1, -2, -3,
x1-x4 Genl Sl -1,-2,-3,-2L | -1,-2,-3,-2L | -1,-2,-3,-2L -1, -2, -2L -1, -2, -3, -2L
Speed Grade x8 Genl NA -1,-2,-3,-2L | -1,-2,-3,-2L | -1,-2,-3,-2L -1, -2, -2L -1, -2, -3, -2L
x1-x4 Gen2 -2, -3 -1,-2,-3,-2L | -1,-2,-3,-2L | -1,-2,-3,-2L -1, -2, -2L -1, -2, -3, -2L
x8 Gen2 NA -2,-3,-2L(1V) | -2,-3,-2L (V) | -2, -3, -2L(1V) | -2, -2L(1V) | -2,-3,-2L(1V)

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

13

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-3: 7 Series FPGAs Integrated Block for PCI Express Configurations (Cont’d)
A"""(71) Kintex-7 FPGAs Virtex-7 FPGAs Zyng®
FPGAs
XC7KA480T
XC7K420
XC7K410T
;E;ﬁ%gg; XC7K355T XC7VX485T XC7V585T XCc7v2000T3)
XC7K325T
XcK7160T(2
xc7k70T(2)
1024
Genl 1024 1024 1024 1024 1024
Maximum 1024
Payload Size x1-x4 Gen2 1024 1024 1024 1024 1024 1024
MPS (Bytes)
512 (-3) 512 (-3) 512 (-3) 512 (-3) 512 (-3)
X8 Gen2 NA 256 (-2, -2L) | 256 (-2,-2L) | 256 (-2,-2L) | 256 (-2, -2L) | 256 (-2, -2L)

Notes:

1. Artix-7 devices only support x1, x2, and x4 operation.

2. Kintex-7 FPGA FBG484 packages only support x1, x2, and x4 operation.

3. XC7V2000T is available in the Vivado tool flow, but not available in the ISE tool flow.

4. The 7 Series FPGAs Integrated Block for PCI Express does not support Gen3 operation. See Virtex-7 FPGA Gen3
Integrated Block for PCI Express Product Guide [Ref 3], for device support and information on the Virtex-7 FPGA
Gen3 Integrated Block for PCI Express.

v

Zyng-7000 devices are support in the ISE Design Suite flow only.

6. 1-4 integrated blocks for 7030 devices, and 1-8 integrated blocks for 7045 devices.

Available Integrated Blocks for PCle

Table 2-4 lists which 7 series Integrated Blocks are available for use in FPGAs containing
multiple blocks. In some cases, not all blocks can be targeted due to lack of bonded
transceiver sites adjacent to the Integrated Block.

Table 2-4: Available Integrated Blocks for PCle
Device Selection Integrated Block for PCle Location
Device Package X0YO0 Xoy1 X0Y2 X1Y0 X1Y1

FFG1157
FFG1761 v v

XC7VX485T FFG1930
FFG1158
FFG1927 v v v v
FFG1157 v v

XC7V585T
FFG1761 v v v
FHG1761 v v v

XC7V2000T
FLG1926 v v

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

14

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Core Interfaces

The 7 Series FPGAs Integrated Block for PCI Express core includes top-level signal interfaces
that have sub-groups for the receive direction, transmit direction, and signals common to
both directions.

System Interface

The System (SYS) interface consists of the system reset signal (sys_reset) and the system
clock signal (sys_c1k), as described in Table 2-5.

Table 2-5: System Interface Signals

Function Signal Name Direction Description

System Reset sys_reset Input Asynchronous signal. sys_reset must be
asserted for at least 1500 ns during power
on and warm reset operations.

System Clock sys_clk Input Reference clock: Selectable frequency
100 MHz, 125 MHz, or 250 MHz.

Some 7 series devices do not have 3.3 V1/Os available. Therefore the appropriate level shift
is required to operate with these devices that contain only 1.8 V banks.

The system reset signal is an asynchronous input. The assertion of sys_reset causes a
hard reset of the entire core. The reset provided by the PCI Express system is typically
active-Low (for example, PERST#) and needs to be inverted before connecting to the
sys_reset signal. The system reset signal is a 3.3 V signal.

The system input clock must be 100 MHz, 125 MHz, or 250 MHz, as selected in the
CORE Generator™ tool GUI Clock and Reference signals.

PCI Express Interface

The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs
organized in multiple lanes. A PCI Express lane consists of a pair of transmit differential
signals (pci_exp_txp, pci_exp_txn) and a pair of receive differential signals
{pci_exp_rxp, pci_exp_rxn}. The 1-lane core supports only Lane 0, the 2-lane core
supports lanes 0-1, the 4-lane core supports lanes 0-3, and the 8-lane core supports lanes
0-7. Transmit and receive signals of the PCI_EXP interface are defined in Table 2-6.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 15
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores

Nt?:I:er Name Direction Description
1-Lane Cores

0 pci_exp_txp0 Output | PCI Express Transmit Positive: Serial Differential Output 0 (+)
pci_exp_txn0 Output | PCI Express Transmit Negative: Serial Differential Output 0 (-)
pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

2-Lane Cores

0 pci_exp_txp0 Output | PCI Express Transmit Positive: Serial Differential Output 0 (+)
pci_exp_txn0 Output | PCI Express Transmit Negative: Serial Differential Output 0 (-)
pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

1 pci_exp_txpl Output | PCI Express Transmit Positive: Serial Differential Output 1 (+)
pci_exp_txnl Output | PCI Express Transmit Negative: Serial Differential Output 1 (-)
pci_exp_rxpl Input PCI Express Receive Positive: Serial Differential Input 1 (+)
pci_exp_rxnl Input PCI Express Receive Negative: Serial Differential Input 1 (-)

4-Lane Cores

0 pci_exp_txp0 Output | PCI Express Transmit Positive: Serial Differential Output 0 (+)
pci_exp_txn0 Output | PCI Express Transmit Negative: Serial Differential Output 0 (-)
pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

1 pci_exp_txpl Output | PCI Express Transmit Positive: Serial Differential Output 1 (+)
pci_exp_txnl Output | PCI Express Transmit Negative: Serial Differential Output 1 (-)
pci_exp_rxpl Input PCI Express Receive Positive: Serial Differential Input 1 (+)
pci_exp_rxnl Input PCI Express Receive Negative: Serial Differential Input 1 (-)

2 pci_exp_txp2 Output | PCI Express Transmit Positive: Serial Differential Output 2 (+)
pci_exp_txn2 Output | PCI Express Transmit Negative: Serial Differential Output 2 (-)
pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)
pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (-)

3 pci_exp_txp3 Output | PCI Express Transmit Positive: Serial Differential Output 3 (+)
pci_exp_txn3 Output | PCI Express Transmit Negative: Serial Differential Output 3 (-)
pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)
pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (-)

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 16

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-6: PCI Express Interface Signals for 1-, 2-, 4- and 8-Lane Cores (Cont’d)

Nt?rrn‘lfer Name Direction Description
8-Lane Cores

0 pci_exp_txp0 Output | PCI Express Transmit Positive: Serial Differential Output 0 (+)
pci_exp_txn0 Output | PCI Express Transmit Negative: Serial Differential Output 0 (-)
pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential Input 0 (+)
pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential Input 0 (-)

1 pci_exp_txpl Output | PCI Express Transmit Positive: Serial Differential Output 1 (+)
pci_exp_txnl Output | PCI Express Transmit Negative: Serial Differential Output 1 (-)
pci_exp_rxpl Input PCI Express Receive Positive: Serial Differential Input 1 (+)
pci_exp_rxnl Input PCI Express Receive Negative: Serial Differential Input 1 (-)

2 pci_exp_txp2 Output | PCI Express Transmit Positive: Serial Differential Output 2 (+)
pci_exp_txn2 Output | PCI Express Transmit Negative: Serial Differential Output 2 (-)
pci_exp_rxp2 Input PCI Express Receive Positive: Serial Differential Input 2 (+)
pci_exp_rxn2 Input PCI Express Receive Negative: Serial Differential Input 2 (-)

3 pci_exp_txp3 Output | PCI Express Transmit Positive: Serial Differential Output 3 (+)
pci_exp_txn3 Output | PCI Express Transmit Negative: Serial Differential Output 3 (-)
pci_exp_rxp3 Input PCI Express Receive Positive: Serial Differential Input 3 (+)
pci_exp_rxn3 Input PCI Express Receive Negative: Serial Differential Input 3 (-)

4 pci_exp_txp4 Output | PCI Express Transmit Positive: Serial Differential Output 4 (+)
pci_exp_txn4 Output | PCI Express Transmit Negative: Serial Differential Output 4 (-)
pci_exp_rxp4 Input PCI Express Receive Positive: Serial Differential Input 4 (+)
pci_exp_rxn4 Input PCI Express Receive Negative: Serial Differential Input 4 (-)

5 pci_exp_txp5 Output | PCI Express Transmit Positive: Serial Differential Output 5 (+)
pci_exp_txn5 Output | PCI Express Transmit Negative: Serial Differential Output 5 (-)
pci_exp_rxp5 Input PCI Express Receive Positive: Serial Differential Input 5 (+)
pci_exp_rxn5 Input PCI Express Receive Negative: Serial Differential Input 5 (-)

6 pci_exp_txp6 Output | PCI Express Transmit Positive: Serial Differential Output 6 (+)
pci_exp_txn6 Output | PCI Express Transmit Negative: Serial Differential Output 6 (-)
pci_exp_rxp6 Input PCI Express Receive Positive: Serial Differential Input 6 (+)
pci_exp_rxn6 Input PCI Express Receive Negative: Serial Differential Input 6 (-)

7 pci_exp_txp7 Output | PCI Express Transmit Positive: Serial Differential Output 7 (+)
pci_exp_txn7 Output | PCI Express Transmit Negative: Serial Differential Output 7 ()
pci_exp_rxp7 Input PCI Express Receive Positive: Serial Differential Input 7 (+)
pci_exp_rxn7 Input PCI Express Receive Negative: Serial Differential Input 7 (-)

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 17

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Transaction Interface

The Transaction interface provides a mechanism for the user design to generate and
consume TLPs. The signal names and signal descriptions for this interface are shown in
Table 2-7, Table 2-9, and Table 2-10.

Common Interface

Table 2-7 describes the common interface signals.

Table 2-7: Common Transaction Interface Signals

Name

Direction

Description

user_clk_out

Output

Transaction Clock: Transaction, Configuration, and Physical Layer
Control and Status Interface operations are referenced to and
synchronous with the rising edge of this clock. This signal is active
after power-on, and sys_reset has no effect on it. This signal is
guaranteed to be stable at the selected operating frequency only
after user_reset_out is deasserted. The user_clk_out clock output
is a fixed frequency configured in the CORE Generator tool. This
signal does not change frequencies in case of link recovery or
training down.

See Table 2-8 for recommended and optional frequencies.

user_reset_out

Output

Transaction Reset: User logic interacting with the Transaction and
Configuration interfaces must use user_reset_out to return to its
quiescent state. This signal is deasserted synchronously with respect
to user_clk_out, and is deasserted and asserted asynchronously
with sys_reset assertion. This signal is asserted for core in-band
reset events such as Hot Reset or Link Disable.

user_Ink_up

Output

Transaction Link Up: Transaction link-up is asserted when the core
and the connected upstream link partner port are ready and able to
exchange data packets. Transaction link-up is deasserted when the
core and link partner are attempting to establish communication, or
when communication with the link partner is lost due to errors on
the transmission channel. This signal is also deasserted when the
core is driven to Hot Reset or Link Disable state by the link partner,
and all TLPs stored in the core are lost. This signal is not deasserted
while in the Recovery state, but is deasserted if Recovery fails.

fc_ph[7:0]

Output

Posted Header Flow Control Credits: The number of Posted Header
FC credits for the selected flow control type.

fc_pd[11:0]

Output

Posted Data Flow Control Credits: The number of Posted Data FC
credits for the selected flow control type.

fc_nph[7:0]

Output

Non-Posted Header Flow Control Credits: The number of
Non-Posted Header FC credits for the selected flow control type.

fc_npd[11:0]

Output

Non-Posted Data Flow Control Credits: The number of Non-Posted
Data FC credits for the selected flow control type.

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 18

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-7: Common Transaction Interface Signals (Cont’d)
Name Direction Description
fc_cplh[7:0] Output | Completion Header Flow Control Credits: The number of Completion
Header FC credits for the selected flow control type.
fc_cpld[11:0] Output | Completion Data Flow Control Credits: The number of Completion
Data FC credits for the selected flow control type.
fc_sel[2:0] Input Flow Control Informational Select: Selects the type of flow control
information presented on the fc_* signals. Possible values:
« 000: Receive buffer available space
001: Receive credits granted to the link partner
010: Receive credits consumed
100: Transmit user credits available
101: Transmit credit limit
110: Transmit credits consumed
Table 2-8: Recommended and Optional Transaction Clock (user_clk_out) Frequencies
Product Link Speed Interface Width(%) Recommended Optional
(Gb/s) (Bits) Frequency (MHz) | Frequency (MHz)
1-lane 2.5 64 62.5 31.25, 125, 250
1-lane 5 64 62.5 125, 250
2-lane 2.5 64 62.5 125, 250
2-lane 5 64 125 250
4-lane 2.5 64 125 250
4-lane 5 64 250 -
4-lane 5 128 125 250
8-lane 2.5 64 250 -
8-lane 2.5 128 125 250
8-lane 5 128 250 -
Notes:

1. Interface Width is a static selection and does not change with dynamic Link Speed changes.

Transmit Interface

Table 2-9 defines the transmit (TX) interface signals. The bus s_axis_tx_tuser consists of
unrelated signals. Both the mnemonics and TSUSER signals are used throughout this
document. For example, the Transmit Source Discontinue signal is referenced as:
(tsrc_dsc)s_axis_tx_tuser[3].

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

19

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-9: Transmit Interface Signals

Name Mnemonic Direction Description
s_axis_tx_tlast Input Transmit End-of-Frame (EOF): Signals the end of a packet.
Valid only along with assertion of s_axis_tx_tvalid.
s_axis_tx_tdata[W-1:0] Input Transmit Data: Packet data to be transmitted.
Data Bus Width
Product
(W)
1-lane (2.5 Gb/s and 5.0 Gb/s) 64
2-lane (2.5 Gb/s and 5.0 Gb/s) 64
4-lane (2.5 Gb/s and 5.0 Gb/s) 64 or 128
8-lane (2.5 Gb/s and 5.0 Gb/s) 64 or 128
s_axis_tx_tkeep[7:0] Input Transmit Data Strobe: Determines which data bytes are
(64-bit interface) valid on s_axis_tx_tdata[W-1:0] during a given beat
(s_axis_tx_tvalid and s_axis_tx_tready both asserted).
s_axis_tx_tkeep[15:0] Bit 0 corresponds to the least significant byte on
(128-bit interface) s_axis_tx_tdata and bit 7 (64-bit) and bit 15(128-bit)

correspond to the most significant byte, for example:

+ s_axis_tx_tkeep[0] == 1Db, s_axis_tx_tdata[7:0] is valid

+ s_axis_tx_tkeep[7] ==0Db, s_axis_tx_tdata[63:56] is not
valid

When s_axis_tx_tlast is not asserted, the only valid values
are OxFF (64-bit) or 0xFFFF (128-bit).

When s_axis_tx_tlast is asserted, valid values are:
* 64-bit: only 0x0F and 0xFF are valid

» 128-bit: 0x000F, 0x00FF, 0x0FFF, and OxFFFF are
valid

s_axis_tx_tvalid Input Transmit Source Ready: Indicates that the User
Application is presenting valid data on s_axis_tx_tdata.

s_axis_tx_tready Output Transmit Destination Ready: Indicates that the core is
ready to accept data on s_axis_tx_tdata. The simultaneous
assertion of s_axis_tx_tvalid and s_axis_tx_tready marks
the successful transfer of one data beat on
s_axis_tx_tdata.

s_axis_tx_tuser[3] t_src_dsc Input Transmit Source Discontinue: Can be asserted any time
starting on the first cycle after SOF. Assert s_axis_tx_tlast
simultaneously with (tx_src_dsc)s_axis_tx_tuser[3].

tx_buf_av[5:0] Output Transmit Buffers Available: Indicates the number of free
transmit buffers available in the core. Each free transmit
buffer can accommodate one TLP up to the supported
Maximum Payload Size (MPS). The maximum number of
transmit buffers is determined by the supported MPS and
block RAM configuration selected. (See Core Buffering
and Flow Control, page 97.)

tx_err_drop Output Transmit Error Drop: Indicates that the core discarded a
packet because of a length violation or, when streaming,
data was not presented on consecutive clock cycles.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 20
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-9: Transmit Interface Signals (Cont’d)

Name Mnemonic Direction Description

s_axis_tx_tuser[2] tx_str Input Transmit Streamed: Indicates a packet is presented on
consecutive clock cycles and transmission on the link can
begin before the entire packet has been written to the
core. Commonly referred as transmit cut-through mode.

tx_cfg_req Output | Transmit Configuration Request: Asserted when the core
is ready to transmit a Configuration Completion or other
internally generated TLP.

tx_cfg_gnt Input Transmit Configuration Grant: Asserted by the User
Application in response to tx_cfg_req, to allow the core to
transmit an internally generated TLP. The tx_cfg_req
signal is always deasserted after the core-generated
packet has been serviced before another request is made.
Therefore, user designs can look for the rising edge of
tx_cfg_req to determine when to assert tx_cfg_gnt.
Holding tx_cfg_gnt deasserted after tx_cfg_req allows
user-initiated TLPs to be given a higher priority of
transmission over core-generated TLPs. Asserting
tx_cfg_gnt for one clock cycle when tx_cfg_req is asserted
causes the next packet output to be the core’s internally
generated packet. In cases where there is no buffer space
to store the internal packet, tx_cfg_req remains asserted
even after tx_cfg_gnt has been asserted. The user design
does not need to assert tx_cfg_gnt again because the
initial assertion has been captured.

If the user does not wish to alter the prioritization of the
transmission of internally generated TLPs, this signal can
be continuously asserted.

s_axis_tx_tuser[1] tx_err_fwd Input Transmit Error Forward: This input marks the current
packet in progress as error-poisoned. It can be asserted
any time between SOF and EOF, inclusive. The tx_err_fwd
signal must not be asserted if (tx_str)s_axis_tx_tuser[2] is
asserted.

s_axis_tx_tuser[0] tx_ecrc_gen Input Transmit ECRC Generate: Causes the end-to-end cyclic
redundancy check (ECRC) digest to be appended. This
input must be asserted at the beginning of the TLP.

Receive Interface

Table 2-10 defines the receive (RX) interface signals. The bus m_axis_tx_tuser consists
of unrelated signals. Mnemonics for these signals are used throughout this document in
place of the TUSER signal names.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 21
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 2-10: Receive Interface Signals

Chapter 2: Product Specification

Name

Mnemonic

Direction

Description

m_axis_rx_tlast

Output

Receive End-of-Frame (EOF): Signals the end of a
packet. Valid only if m_axis_rx_tvalid is also
asserted.

m_axis_rx_tdata[W-1:0]

Output

Receive Data: Packet data being received. Valid only if
m_axis_rx_tvalidis also asserted.

Data Bus Width
(W)

64

64
64 or 128
64 or 128

Product

1-lane (2.5 Gb/s and 5.0 Gb/s

(
2-lane (2.5 Gb/s and 5.0 Gb/s
(
(

4-lane (2.5 Gb/s and 5.0 Gb/s
8-lane (2.5 Gb/s and 5.0 Gb/s

)
)
)
)

128-bit interface only: Unlike the Transmit interface
s_axis_tx_tdata[l1l27:0], received TLPs can
begin on either the upper QWORD
m_axis_rx_tdatal[127:64] or lower QWORD
m_axis_rx_tdatal[63:0] of the bus. See the
description of is_sof and (rx_is_sof[4:0])
m_axis_rx_tuser[14:10]
m_axis_rx_tuser[21:17] for further explanation.

m_axis_rx_tkeep[7:0]
(64-bit interface only)

Output

Receive Data Strobe:

Determines which data bytes are valid on

m_axis_rx_tdatal[63:0] during a given beat

(m_axis_rx_tvalid and m_axis_rx_tready

both asserted).

Bit 0 corresponds to the least significant byte on

m_axis_rx_tdata and bit 7 correspond to the most

significant byte, for example:

e m_axis_rx_tkeep[0] == 1b,
m_axis_rx_tdata[7:0] isvalid

e m_axis_rx_tkeep[7] == 0b,
m_axis_rx_tdata[63:56] is not valid

When m_axis_rx_tlast is not asserted, the only

valid value is 0xFF.

When m_axis_rx_tlast is asserted, valid values

are:

« 64-bit;, only 0x0F and OxFF are valid

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 22

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-10: Receive Interface Signals (Cont’d)

Name Mnemonic Direction Description
m_axis_rx_tuser[14:10] rx_is_sof[4:0] Output Indicates the start of a new packet header in
(128-bit interface only) m_axis_rx_tdata:

Bit 4: Asserted when a new packet is present

Bit 0-3: Indicates byte location of start of new packet,

binary encoded

Valid values:

* 5'b10000 = SOF at AXI byte 0 (DWORD 0)
m_axis_rx_tdata[7:0]

¢+ 5'b11000 = SOF at AXI byte 8 (DWORD 2)
m_axis_rx_tdata[71:64]

* 5'b00000 = No SOF present

m_axis_rx_tuser[21:17] rx_is_eof[4:0] Output Indicates the end of a packet inm_axis_rx_tdata:

(128-bit interface only) Bit 4: Asserted when a packet is ending

Bit 0-3: Indicates byte location of end of the packet,

binary encoded

Valid values:

¢+ 5'b10011 = EOF at AXI byte 3 (DWORD 0)
m_axis_rx_tdatal[31:24]

* 5'b10111 = EOF at AXI byte 7 (DWORD 1)
m_axis_rx_tdatal[63:56]

* 5'b11011 = EOF at AXI byte 11 (DWORD 2)
m_axis_rx_tdatal[95:88]

« 5'b11111 = EOF at AXI byte 15 (DWORD 3)
m_axis_rx_tdatal[l27:120]

* 5'b00011 = No EOF present

m_axis_rx_tuser[1] rx_err_fwd Output Receive Error Forward:

64-bit interface: When asserted, marks the packet in
progress as error-poisoned. Asserted by the core for
the entire length of the packet.

128-bit interface: When asserted, marks the current
packet in progress as error-poisoned. Asserted by the
core for the entire length of the packet. If asserted
during a straddled data transfer, applies to the packet
that is beginning.

m_axis_rx_tuser[0] rx_ecrc_err Output Receive ECRC Error: Indicates the current packet has
an ECRC error. Asserted at the packet EOF.

m_axis_rx_tvalid Output Receive Source Ready: Indicates that the core is
presenting valid data on m_axis_rx_tdata.

m_axis_rx_tready Input Receive Destination Ready: Indicates that the User
Application is ready to accept data on
m_axis_rx_tdata. The simultaneous assertion of
m_axis_rx_tvalidand m_axis_rx_tready
marks the successful transfer of one data beat on
s_axis_tx_tdata

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 23
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-10: Receive Interface Signals (Cont’d)

Name Mnemonic Direction Description

rx_np_ok Input Receive Non-Posted OK: The User Application asserts
this signal when it is ready to accept Non-Posted
Request TLPs. rx_np_ok must be deasserted when
the User Application cannot process received
Non-Posted TLPs, so that these can be buffered within
the core's receive queue. In this case, Posted and
Completion TLPs received after the Non-Posted TLPs
bypass the blocked TLPs.

When the User Application approaches a state where
it is unable to service Non-Posted Requests, it must
deassert rx_np_ok two clock cycle before the core
asserts m_axis_rx_tlast of the next-to-last
Non-Posted TLP the User Application can accept.

rx_np_req Input Receive Non-Posted Request: When asserted,
requests one non-posted TLP from the core per
user_clk cycle. If the User Application can process
received Non-Posted TLPs at the line rate, this signal
can be constantly asserted. If the User Application is
not requesting Non-Posted packets, received Posted
and Completion TLPs bypass waiting Non-Posted
TLPs.

m_axis_rx_tuser[9:2] rx_bar_hit[7:0] Output Receive BAR Hit: Indicates BAR(s) targeted by the
current receive transaction. Asserted from the
beginning of the packet tom_axis_rx_tlast.

e (rx_bar_hit[0])m_axis_rx_tuser[2]: BARO
1

rx_bar_hit m_axis_rx_tuser[3]:BAR1

rx_bar_hit m_axis_rx_tuser[4]: BAR2

m_axis_rx_tuser[6]: BAR4

(
(

e (rx_bar_hit
(rx_bar_hit
(

2
3
4
. 5

m_axis_rx_tuser[7]: BARS

[

1) [

1) [
])m_axis_rx_tuser[5]: BAR3

1) [

rx_bar_hit[5]) [

[

[
[
[
[
[
[

e (rx_bar_hit[6])m_axis_rx_tuser[8]:
Expansion ROM Address

If two BARs are configured into a single 64-bit

address, both corresponding rx_bar_hit bits are

asserted.

m_axis_rx_tuser[8:4] are not applicable to Root

Port configurations.

m_axis_rx_tuser[9] is reserved for future use.

m_axis_rx_tuser[16:15] Reserved

Physical Layer Interface

The Physical Layer (PL) interface enables the user design to inspect the status of the Link
and Link Partner and control the Link State. Table 2-11 describes the signals for the PL
interface.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 24
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 2-11: Physical Layer Interface Signals

Chapter 2: Product Specification

Name

Direction

Description

pl_initial_link_width[2:0]

Output

Initial Negotiated Link Width: Indicates the link width after
the PCI Express port has achieved the first successful link
training. Initial Negotiated Link Width represents the
widest link width possible during normal operation of the
link, and can be equal to or smaller than the capability link
width (smaller of the two) supported by link partners. This
value is reset when the core is reset or the LTSSM goes
through the Detect state. Otherwise the value remains the
same.

¢ 000: Link not trained

¢ 001: 1-Lane link

e 010: 2-Lane link

e 011:4-Lane link

¢ 100: 8-Lane link

pl_phy_Ink_up

Output

Physical Layer Link Up Status: Indicates the physical layer
link up status.

pl_lane_reversal_mode[1:0]

Output

Lane Reversal Mode: Indicates the current Lane Reversal
mode.

« 00: No reversal

e 01: Lanes 1:0 reversed
e 10: Lanes 3:0 reversed
e 11: Lanes 7:0 reversed

pl_link_gen2_cap

Output

Link Gen2 Capable: Indicates that the PCI Express link is
5.0 Gb/s (Gen 2) speed capable (both the Link Partner and
the Device are Gen 2 capable)

« 0: Link is not Gen2 Capable
« 1: Link is Gen2 Capable

pl_link_partner_gen2_supported

Output

Link Partner Gen2 Capable: Indicates if the PCI Express link
partner advertises 5.0 Gb/s (Gen2) capability. Valid only
when user_1nk_up is asserted.

« 0: Link partner not Gen2 capable
 1: Link partner is Gen2 capable

pl_link_upcfg_cap

Output

Link Upconfigure Capable: Indicates the PCI Express link is
Upconfigure capable. Valid only when user_1nk_up is
asserted.

 0: Link is not Upconfigure capable
 1: Link is Upconfigure capable

pl_sel_Ink_rate

Output

Current Link Rate: Reports the current link speed. Valid
only when user_1nk_up is asserted.

0: 2.5 Gb/s
1: 5.0 Gb/s

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 25

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

pl_sel_Ink_width[1:0] Output Current Link Width: Reports the current link width. Valid
only when user_1nk_up is asserted.

00: 1-Lane link
01: 2-Lane link
10: 4-Lane link
11: 8-Lane link

pl_ltssm_state[5:0] Output LTSSM State: Shows the current LTSSM state (hex).
0, 1: Detect Quiet

2, 3: Detect Active

4: Polling Active

: Polling Configuration

: Polling Compliance, Pre_Send_EIOS
: Polling Compliance, Pre_Timeout

: Polling Compliance, Send_Pattern

: Polling Compliance, Post_Send_EIOS
: Polling Compliance, Post_Timeout

: Configuration Linkwidth, State 0

: Configuration Linkwidth, State 1

: Configuration Linkwidth, Accept 0

: Configuration Linkwidth, Accept 1
F: Configuration Lanenum Wait

10: Configuration Lanenum, Accept
11: Configuration Complete x1

12: Configuration Complete x2

13: Configuration Complete x4

14: Configuration Complete x8

15: Configuration Idle

16:LO

17: L1 Entry0

18: L1 Entryl

19: L1 Entry2 (also used for the L2/L3 Ready pseudo state)
1A: L1 Idle

1B: L1 Exit

1C: Recovery Revrlock

1D: Recovery Revrcfg

H O Q W » W o 3 o U

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 26
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name

Direction

Description

pl_ltssm_state[5:0] (Contd)

Output

1E: Recovery Speed_0

1F: Recovery Speed_1

20: Recovery Idle

21: Hot Reset

22: Disabled Entry 0

23: Disabled Entry 1

24: Disabled Entry 2

25: Disabled Idle

26: Root Port, Configuration, Linkwidth State O
27: Root Port, Configuration, Linkwidth State 1
28: Root Port, Configuration, Linkwidth State 2
29: Root Port, Configuration, Link Width Accept 0
2A: Root Port, Configuration, Link Width Accept 1
2B: Root Port, Configuration, Lanenum_Wait
2C: Root Port, Configuration, Lanenum_Accept
2D: Timeout To Detect

2E: Loopback Entry0

2F: Loopback Entryl

30: Loopback Active0

31: Loopback Exit0

32: Loopback Exitl

33: Loopback Master Entry0

pl_rx_pm_state[1:0]

Output

RX Power Management State: Indicates the RX Power
Management State:

00: RX Not in LOs
01: RX LOs Entry
10: RX LOs Idle
11: RX LOs FTS

pl_tx_pm_state[2:0]

Output

TX Power Management State: Indicates the TX Power
Management State:

000: TX Not in LOs
001: TX LOs Entry
010: TX LOs Idle
011: TX LOs FTS

100 - 111: Reserved

pl_directed_link_auton

Input

Directed Autonomous Link Change: Specifies the reason
for directed link width and speed change. This must be
used in conjunction with
pl_directed_link_change[1:0],
pl_directed_link_speed, and
pl_directed_link_width[1:0] inputs.

 0: Link reliability driven

« 1: Application requirement driven (autonomous)

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

27

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-11: Physical Layer Interface Signals (Cont’d)

Name Direction Description

pl_directed_link_change[1:0] Input Directed Link Change Control: Directs the PCI Express Port
to initiate a link width and/or speed change. Link change
operation must be initiated when user_Ink_up is asserted.
For a Root Port, pl_directed_link_change must not be set to
10 or 11 unless the attribute RP_AUTO_SPD = 11.
« 00: No change
« 01: Link width
e 10: Link speed
« 11: Link width and speed (level-triggered)

pl_directed_link_speed Input Directed Target Link Speed: Specifies the target link speed
for a directed link change operation, in conjunction with
the pl_directed_link_change[1:0] input. The
target link speed must not be set High unless the
pl_link_gen2_capable output is High.
e 0:2.5Gb/s
e 1:5.0 Gb/s

pl_directed_link_width[1:0] Input Directed Target Link Width: Specifies the target link width
for a directed link change operation, in conjunction with
pl_directed_link_change[1:0] input.
Encoding Target Link Width:
* 00: 1-Lane link
e 01: 2-Lane link
e 10:4-Lane link
e 11:8-Lane link

pl_directed_change_done Output Directed Link Change Done: Indicates to the user that the
directed link speed change or directed link width change
is done.

pl_upstream_prefer_deemph Input Endpoint Preferred Transmitter De-emphasis: Enables the

Endpoint to control de-emphasis used on the link at

5.0 Gb/s speeds. pl_upstream_prefer_deemph can be
changed in conjunction with
pl_directed_link_speed and
pl_directed_link_change[1:0] inputs when
transitioning from 2.5 Gb/s to 5.0 Gb/s data rates. Value
presented on pl_upstream_prefer_deemph depends
upon the property of PCI Express physical interconnect
channel in use.

« 0: -6 dB de-emphasis recommended for short,
reflection dominated channels.

+ 1:-3.5 dB de-emphasis recommended for long, loss
dominated channels.

Table 2-12: Role-Specific Physical Layer Interface Signals: Endpoint

Name

Direction

Description

pl_received_hot_rst

Output

Hot Reset Received: Indicates that an in-band hot
reset command has been received.

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 28

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-13: Role-Specific Physical Layer Interface Signals: Root Port

Name

Direction Description

pl_transmit_hot_rst

Input Transmit Hot Reset: Active-High. Directs the PCI

Express Port to transmit an In-Band Hot Reset.

pl_downstream_deemph_source

Input Root Port Preferred Transmitter De-emphasis:

Enables the Root Port to control de-emphasis

used on the link at 5.0 Gb/s speeds.

* 0: Use Upstream link partner preferred
de-emphasis.

» 1: Use Selectable de-emphasis value from
Link Control 2 register.

Configuration Interface

The Configuration (CFG) interface enables the user design to inspect the state of the
Endpoint for PCle configuration space. The user provides a 10-bit configuration address,
which selects one of the 1024 configuration space doubleword (DWORD) registers. The
Endpoint returns the state of the selected register over the 32-bit data output port.
Table 2-14 defines the Configuration interface signals. See Design with Configuration
Space Registers and Configuration Interface, page 109 for usage.

Table 2-14: Configuration Interface Signals

Name Direction Description
cfg_mgmt_do[31:0] Output | Configuration Data Out: A 32-bit data output port used
to obtain read data from the configuration space inside
the core.
cfg_mgmt_rd_wr_done Output | Configuration Read Write Done: Read-write done signal
indicates a successful completion of the user
configuration register access operation.

» For a user configuration register read operation, this
signal validates the cfg_mgmt_do[31:0] data-bus
value.

« For a user configuration register write operation, the
assertion indicates completion of a successful write
operation.

cfg_mgmt_di[31:0] Input Configuration Data In: A 32-bit data input port used to
provide write data to the configuration space inside the
core.

cfg_mgmt_dwaddr[9:0] Input Configuration DWORD Address: A 10-bit address input
port used to provide a configuration register DWORD
address during configuration register accesses.

cfg_mgmt_byte_en[3:0] Input Configuration Byte Enable: Byte enables for
configuration register write access.

cfg_mgmt_wr_en Input Configuration Write Enable: Write enable for

configuration register access.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

29

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-14: Configuration Interface Signals (Cont’d)

Name Direction Description

cfg_mgmt_rd_en Input Configuration Read Enable: Read enable for
configuration register access.

cfg_mgmt_wr_readonly Input Management Write Readonly Bits: Write enable to treat
any ReadOnly bit in the current Management Write as a
RW bit, not including bits set by attributes, reserved bits,
and status bits.

cfg_status[15:0] Output | Configuration Status: Status register from the
Configuration Space Header. Not supported.

cfg_command[15:0] Output | Configuration Command: Command register from the
Configuration Space Header.

cfg_dstatus[15:0] Output | Configuration Device Status: Device status register from
the PCI Express Capability Structure.

cfg_dcommand[15:0] Output | Configuration Device Command: Device control register
from the PCI Express Capability Structure.

cfg_dcommand?2[15:0] Output | Configuration Device Command 2: Device control 2
register from the PCI Express Capability Structure.

cfg_lstatus[15:0] Output | Configuration Link Status: Link status register from the
PCI Express Capability Structure.

cfg_lcommand[15:0] Output | Configuration Link Command: Link control register from
the PCI Express Capability Structure.

cfg_aer_ecrc_gen_en Output Configuration AER - ECRC Generation Enable: AER
Capability and Control Register bit 6. When asserted,
indicates that ECRC Generation has been enabled by the
host.

cfg_aer_ecrc_check_en Output | Configuration AER - ECRC Check Enable: AER Capability
and Control Register bit 8. When asserted, indicates that
ECRC Checking has been enabled by the host.

cfg_pcie_link_state[2:0] Output | PCI Express Link State: This encoded bus reports the PCI
Express Link State information to the user.
* 000: “LO"

* 001: “PPM L1~

e 010: “PPM L2/L3 Ready”

e 011: “PM_PME"

« 100: “in or transitioning to/from ASPM LOs”
+ 101: “transitioning to/from PPM L1~

e 110: “transition to PPM L2/L3 Ready”

e 111: Reserved

cfg_trn_pending Input User Transaction Pending: If asserted, sets the
Transactions Pending bit in the Device Status Register.
Note: You must assert this input if the User Application
has not received a completion to an upstream request.

cfg_dsn[63:0] Input Configuration Device Serial Number: Serial Number
Register fields of the Device Serial Number extended
capability.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 30

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-14: Configuration Interface Signals (Cont’d)

Name

Direction

Description

cfg_pmcsr_pme_en

Output

PMCSR PME Enable: PME_En bit (bit 8) in the Power
Management Control/Status Register.

cfg_pmcsr_pme_status

Output

PMCSR PME_Status: PME_Status bit (bit 15) in the Power
Management Control/Status Register.

cfg_pmcsr_powerstate[1:0]

Output

PMCSR PowerState: PowerState bits (bits 1:0) in the
Power Management Control/Status Register.

cfg_pm_halt_aspm_l0s

Input

Halt ASPM LOs: When asserted, it prevents the core from
going into ASPM LOs. If the core is already in LOs, it
causes the core to return to LO. cfg_pm_force_state,
however, takes precedence over this input.

cfg_pm_halt_aspm_I1

Input

Halt ASPM L1: When asserted, it prevents the core from
going into ASPM L1 If the core is already in L1, it
causes the core to return to LO. cfg_pm_force_state,
however, takes precedence over this input.

cfg_pm_force_state[1:0]

Input

Force PM State: Forces the Power Management State
machine to attempt to stay in or move to the desired
state.

* 00: Move to or stay in LO

* 01: Move to or stay in PPM L1

* 10: Move to or stay in ASPM LOs
+ 11: Move to or stay in ASPM L1

cfg_pm_force_state_en

Input

Force PM State Transition Enable: Enables the transition
to/stay in the desired Power Management state, as
indicated by cfg_pm_force_state. If attempting to
move to a desired state, cfg_pm_force_state_en
must be held asserted until cfg_pcie_link_state
indicates a move to the desired state.

cfg_received_func_lvl_rst

Output

Received Function Level Reset: Indicates when the
Function Level Reset has been received (FLR
Configuration Register has been set).

Note: This feature is not supported in this core.
DEV_CAP_FUNCTION_LEVEL_RESET_CAPABLE is
always set to FALSE, and this port is unused.

cfg_vc_tcve_map[6:0]

Output

Configuration VC Resource Control TC/VC Map:
Indicates whether TCs 1 through 7 are valid for VCO.

cfg_msg_received

Output

Message Received: Active-High. Notifies the user that a
Message TLP was received on the Link.

cfg_msg_data[15:0]

Output

Message Requester ID: The Requester ID of the Message
was received. Valid only along with assertion of
cfg_msg_received.

Notes:

1. ASPM L1 is unsupported in the 7 series FPGAs Integrated Block for PCI Express.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 31

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-15: Role-Specific Configuration Interface Signals: Endpoint

Name Direction Description

cfg_bus_number[7:0] Output Configuration Bus Number: Provides the
assigned bus number for the device. The User
Application must use this information in the
Bus Number field of outgoing TLP requests.
Default value after reset is 00h. Refreshed
whenever a Type 0 Configuration Write packet
is received.

cfg_device_number[4:0] Output Configuration Device Number: Provides the
assigned device number for the device. The
User Application must use this information in
the Device Number field of outgoing TLP
requests. Default value after reset is 00000b.
Refreshed whenever a Type 0 Configuration
Write packet is received.

cfg_function_number[2:0] Output Configuration Function Number: Provides the
function number for the device. The User
Application must use this information in the
Function Number field of outgoing TLP
request. Function number is hardwired to
000b.

cfg_to_turnoff Output | Configuration To Turnoff: Output that notifies
the user that a PME_TURN_Off message has
been received and the CMM starts polling the
cfg_turnoff_ ok input coming in from the
user. After cfg_turnoff_ok is asserted,
CMM sends a PME_To_Ack message to the
upstream device.

cfg_turnoff_ok Input Configuration Turnoff OK: The User Application
can assert this to notify the Endpoint that it is
safe to turn off power.

cfg_pm_wake Input Configuration Power Management Wake: A
one-clock cycle assertion informs the core to
generate and send a Power Management Wake
Event (PM_PME) Message TLP to the upstream
link partner.

Note: The user is required to assert this input
only under stable link conditions as reported
onthe cfg_pcie_link_state[2:0] bus.
Assertion of this signal when the PCI Express
link is in transition results in incorrect behavior
on the PCI Express link.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 32
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-15: Role-Specific Configuration Interface Signals: Endpoint (Cont’d)

Name

Direction Description

cfg_msg_received_pm_as_nak

Output Received Power Management Active State NAK

Message: Indicates that a PM_AS_NAK
Message was received on the link.

cfg_msg_received_setslotpowerlimit

Output Received Set Slot Power Limit: Indicates that a

Set Slot Power Limit Message was received on
the link. The data of the Set Slot Power Limit
Message is delivered on the cfg_msg_data
output.

Table 2-16: Role-Specific Configuration Interface Signals: Root Port

Name

Direction

Description

cfg_ds_bus_number([7:0]

Input

Configuration Downstream Bus Number: Provides the

bus number (Requester ID) of the Downstream Port. This
is used in TLPs generated inside the core and does not
affect the TLPs presented on the AXI4-Stream interface.

cfg_ds_device_number[4:0]

Input

Configuration Downstream Device Number: Provides
the device number (Requester ID) of the Downstream
Port. This is used in TLPs generated inside the core and
does not affect the TLPs presented on the Transaction
interface.

cfg_ds_function_number[2:0]

Input

Configuration Downstream Function Number: Provides
the function number (Requester ID) of the Downstream
Port. This is used in TLPs generated inside the core and
does not affect the TLPs presented on the Transaction
interface.

cfg_wr_rwlc_as_rw

Input

Configuration Write RW1C Bit as RW: Indicates that the
current write operation should treat any RW1C bit as a
RW bit. Normally, a RW1C bit is cleared by writing a 1 to
it, and can normally only be set by internal core
conditions. However, during a configuration register
access operation with this signal asserted, for every bit
on cfg_di thatis 1, the corresponding RW1C
configuration register bit is set to 1. A value of 0 on
cfg_di during this operation has no effect, and
non-RW1C bits are unaffected regardless of the value on
cfg_di.

cfg_msg_received_err_cor

Output

Received ERR_COR Message: Active-High. Indicates that
the core received an ERR_COR Message. Valid only along
with assertion of cfg_msg_received. The Requester
ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_err_non_fatal

Output

Received ERR_NONFATAL Message: Active-High.
Indicates that the core received an ERR_NONFATAL
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this Message
Transaction is provided on cfg_msg_data[15:0].

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 33

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-16: Role-Specific Configuration Interface Signals: Root Port (Cont’d)

Name

Direction

Description

cfg_msg_received_err_fatal

Output

Received ERR_FATAL Message: Active-High. Indicates
that the core received an ERR_FATAL Message. Valid only
along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_data[l5:0].

cfg_pm_send_pme_to

Input

Configuration Send Turn-off: Asserting this active-Low
input causes the Root Port to send Turn Off Message.
When the link partner responds with a Turn Off Ack, this
isreportedon cfg_msg_received_pme_to_ack, and
the final transition to L3 Ready is reported on
cfg_pcie_link_state. Tie-off to 1 for Endpoint.

cfg_msg_received_err_pme_to_ack

Output

Received PME_TO_Ack Message: Active-High. Indicates
that the core received an PME_TO_Ack Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_assert_inta

Output

Received Assert_INTA Message: Active-High. Indicates
that the core received an Assert INTA Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_assert_intb

Output

Received Assert_INTB Message: Active-High. Indicates
that the core received an Assert_INTB Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_assert_intc

Output

Received Assert_INTC Message: Active-High. Indicates
that the core received an Assert_INTC Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_assert_intd

Output

Received Assert_INTD Message: Active-High. Indicates
that the core received an Assert_INTD Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_deassert_inta

Output

Received Deassert_INTA Message: Active-High. Indicates
that the core received a Deassert_INTA Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_deassert_intb

Output

Received Deassert_INTB Message: Active-High. Indicates
that the core received a Deassert_INTB Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 34

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-16: Role-Specific Configuration Interface Signals: Root Port (Cont’d)

Name Direction Description

cfg_msg_received_deassert_intc Output | Received Deassert_INTC Message: Active-High. Indicates
that the core received a Deassert_INTC Message. Valid
only along with assertion of cfg_msg_received. The
Requester ID of this Message Transaction is provided on
cfg_msg_datal[l5:0].

cfg_msg_received_deassert_intd Output | Received Deassert_INTD Message: Active-High.
Indicates that the core received a Deassert_INTD
Message. Valid only along with assertion of
cfg_msg_received. The Requester ID of this Message
Transaction is provided on cfg_msg_data[15:0].

cfg_msg_received_pm_pme Output | Received PME Message: Indicates that a Power
Management Event Message was received on the link.

Interrupt Interface Signals

Table 2-17 defines the Interrupt interface signals.

Table 2-17: Configuration Interface Signals: Interrupt Interface - Endpoint Only

Name Direction Description

cfg_interrupt Input | Configuration Interrupt: Interrupt-request signal. The
User Application can assert this input to cause the
selected interrupt message type to be transmitted by
the core. The signal should be held Low until
cfg_interrupt_rdy is asserted.

cfg_interrupt_rdy Output | Configuration Interrupt Ready: Interrupt grant signal.
The simultaneous assertion of cfg_interrupt_rdy
and cfg_interrupt indicates that the core has
successfully transmitted the requested interrupt
message.

cfg_interrupt_assert Input Configuration Legacy Interrupt Assert/Deassert Select:
Selects between Assert and Deassert messages for
Legacy interrupts when cfg_interrupt is asserted.
Not used for MSI interrupts.

Value Message Type

0 Assert
1 Deassert
cfg_interrupt_di[7:0] Input | Configuration Interrupt Data In: For MSIs, the portion of

the Message Data that the Endpoint must drive to
indicate the MSI vector number, if Multi-Vector
Interrupts are enabled. The value indicated by
cfg_interrupt_mmenable[2:0] determines the
number of lower-order bits of Message Data that the
Endpoint provides; the remaining upper bits of
cfg_interrupt_di[7:0] are not used. For
Single-Vector Interrupts, cfg_interrupt_di[7:0] is
not used. For Legacy Interrupt messages (Assert_INTx,
Deassert_INTx), only INTA (00h) is supported.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 35
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-17: Configuration Interface Signals: Interrupt Interface - Endpoint Only (Cont’d)

Name

Direction

Description

cfg_interrupt_do([7:0]

Output

Configuration Interrupt Data Out: The value of the
lowest eight bits of the Message Data field in the
Endpoint’'s MSI capability structure. This value is
provided for informational purposes and backwards
compatibility.

cfg_interrupt_mmenable[2:0]

Output

Configuration Interrupt Multiple Message Enable: This is
the value of the Multiple Message Enable field and
defines the number of vectors the system allows for
multi-vector MSL Values range from 000b to 101b. A
value of 000b indicates that single-vector MSI is
enabled, while other values indicate the number of
lower-order bits that can be overridden by
cfg_interrupt_di[7:0].

* 000: 0 bits

 001:1 bit

e 010: 2 bits

e 011: 3 bits

« 100: 4 bits

¢ 101: 5 bits

cfg_interrupt_msienable

Output

Configuration Interrupt MSI Enabled: Indicates that MSI
messaging is enabled.

« 0: Only Legacy (INTX) interrupts or MSI-X Interrupts
can be sent.

« 1: Only MSI Interrupts should be sent.

cfg_interrupt_msixenable

Output

Configuration Interrupt MSI-X Enabled: Indicates that
the MSI-X messaging is enabled.

« 0: Only Legacy (INTX) interrupts or MSI Interrupts can
be sent.

« 1: Only MSI-X Interrupts should be sent.

cfg_interrupt_msixfm

Output

Configuration Interrupt MSI-X Function Mask: Indicates
the state of the Function Mask bit in the MSI-X Message
Control field. If 0, each vector's Mask bit determines its
masking. If 1, all vectors are masked, regardless of their
per-vector Mask bit states.

cfg_pciecap_interrupt_msgnum(4:0]

Input

Configuration PCle Capabilities - Interrupt Message
Number: This input sets the Interrupt Message Number
field in the PCI Express Capability register. This input
value must be adjusted by the user if only MSl is enabled
and the host adjusts the Multiple Message Enable field
such that it invalidates the current value.

cfg_interrupt_stat

Input

Configuration Interrupt Status: Causes the Interrupt
Status bit to be set or cleared when the automatic
setting of the Interrupt Status bit based on the Interrupt
Interface inputs is disabled.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 36

http://www.xilinx.com

& XILINX

Error Reporting Signals

Chapter 2: Product Specification

Table 2-18 defines the User Application error-reporting signals.

Table 2-18: User Application Error-Reporting Signals

Port Name

Direction

Description

cfg_err_ecrc

Input

ECRC Error Report: The user can assert this signal to
report an ECRC error (end-to-end CRC).

cfg_err_ur

Input

Configuration Error Unsupported Request: The user
can assert this signal to report that an unsupported
request was received. This signal is ignored if
cfg_err_cpl_rdy is deasserted.

cfg_err_cpl_timeout(l)

Input

Configuration Error Completion Timeout: The user can
assert this signal to report a completion timed out.

cfg_err_cpl_unexpect

Input

Configuration Error Completion Unexpected: The user
can assert this signal to report that an unexpected
completion was received.

cfg_err_cpl_abort

Input

Configuration Error Completion Aborted: The user can
assert this signal to report that a completion was
aborted. This signal is ignored if cfg_err_cpl_rdy is
deasserted.

cfg_err_posted

Input

Configuration Error Posted: This signal is used to
further qualify any of the cfg_err_* input signals. When
this input is asserted concurrently with one of the
other signals, it indicates that the transaction that
caused the error was a posted transaction.

cfg_err_cor(l)

Input

Configuration Error Correctable Error: The user can
assert this signal to report that a correctable error was
detected.

cfg_err_atomic_egress_blocked

Input

Configuration Error AtomicOp Egress Blocked: The
user asserts this signal to report that an Atomic TLP
was blocked.

cfg_err_internal_cor

Input

Configuration Error Corrected Internal: The user
asserts this signal to report that an Internal error
occurred and was corrected. This input is only sampled
if AER is enabled.

cfg_err_internal_uncor

Input

Configuration Error Uncorrectable Internal: The user
asserts this signal to report that an Uncorrectable
Internal error occurred. This input is only sampled if
AER is enabled.

cfg_err_malformed

Input

Configuration Error Malformed Error: The user asserts
this signal to report a Malformed Error.

cfg_err_mc_blocked

Input

Configuration Error MultiCast Blocked: The user
asserts this signal to report that a Multicast TLP was
blocked.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 37

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-18: User Application Error-Reporting Signals (Cont’d)

Port Name

Direction

Description

cfg_err_poisoned

Input

Configuration Error Poisoned TLP: The user can assert
this signal to report that a Poisoned TLP was received.
Normally, only used if attribute
DISABLE_RX_POISONED_RESP=TRUE.

cfg_err_no_recovery

Input

Configuration Error Cannot Recover: Used to further
qualify the cfg_err_poisoned and cfg_err_cpl_timeout
input signals. When this input is asserted concurrently
with one of these signals, it indicates that the
transaction that caused these errors cannot be
recovered from. For a Completion Timeout, it means
the user elects not to attempt the Request again. For
a received Poisoned TLP, it means that the user cannot
continue operation. In either case, assertion causes
the corresponding error to not be regarded as ANFE.

cfg_err_tlp_cpl_header[47:0]

Input

Configuration Error TLP Completion Header: Accepts
the header information from the user when an error is
signaled. This information is required so that the core
can issue a correct completion, if required.

This information should be extracted from the
received error TLP and presented in the given format:

47:41] Lower Address
40:29] Byte Count
28:26] TC

25:24] Attr

23:8] Requester ID

[
[
[
[
[
[7:0] Tag

cfg_err_cpl_rdy

Output

Configuration Error Completion Ready: When
asserted, this signal indicates that the core can accept
assertions on cfg_err_ur and cfg_err_cpl_abort for
Non-Posted Transactions. Assertions on cfg_err_ur
and cfg_err_cpl_abort are ignored when
cfg_err_cpl_rdy is deasserted.

cfg_err_locked

Input

Configuration Error Locked: This signal is used to
further qualify any of the cfg_err_* input signals.
When this input is asserted concurrently with one of
the other signals, it indicates that the transaction that
caused the error was a locked transaction.

This signal is for use in Legacy mode. If the user needs
to signal an unsupported request or an aborted
completion for a locked transaction, this signal can be
used to return a Completion Locked with UR or CA
status.

Note: When not in Legacy mode, the core
automatically returns a Completion Locked, if
appropriate.

cfg_err_aer_headerlog[127:0]

Input

Configuration Error AER Header Log: AER Header log
for the signalled error.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

38

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-18: User Application Error-Reporting Signals (Cont’d)

Port Name

Direction

Description

cfg_err_aer_headerlog_set

Output

Configuration Error AER Header Log Set: When
asserted, indicates that Error AER Header Log is Set in
the case of a Single Header implementation/Full in the
case of a Multi-Header implementation and the
header for user-reported error is not needed.

cfg_aer_interrupt_msgnum(4:0]

Input

Configuration AER Interrupt Message Number: This
input sets the AER Interrupt Message (Root Port only)
Number field in the AER Capability - Root Error Status
register.

If AER is enabled, this input must be driven to a value
appropriate for MSI or MSIx mode, whichever is
enabled. This input value must be adjusted by the user
if only MSlis enabled and the host adjusts the Multiple
Message Enable field such that it invalidates the
current value.

cfg_err_acs

Input

Configuration Error ACS Violation: The user can assert
this signal to report that an ACS Violation has
occurred.

Notes:

1. The user should assert these signals only if the device power state is DO. Asserting these signals in non-DO device
power states might result in an incorrect operation on the PCle link. For additional information, see the PCI Express
Base Specification, rev. 2.1, Section 5.3.1.2 [Ref 2].

Table 2-19 defines the Error and Advanced Error Reporting Status of the 7 Series FPGAs
Integrated Block for PCI Express when configured as a Root Port.

Table 2-19: Error-Reporting Interface - Root Port Only

Name

Direction Description

cfg_bridge_serr_en

Output Configuration Bridge Control — SERR
Enable: When asserted, this enables
the forwarding of Correctable,
Non-Fatal, and Fatal errors, as set in
the Bridge Control register bit 1. The
user must enforce forwarding of
these errors.

cfg_slot_control_electromech_il_ctl_pulse

Output Electromechanical Interlock Control:
Indicates that the Electromechanical
Interlock Control bit of the Slot
Control Configuration register was
written with a '1".

cfg_root_control_syserr_corr_err_en

Output System Error on Correctable Error
Enable: Indicates the status of the
System Error on Correctable Error
Enable bit in the Root Control
Configuration register. This enables
the user logic to generate a System
Error for reported Correctable Errors.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 39

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-19: Error-Reporting Interface - Root Port Only (Cont’d)

Name

Direction

Description

cfg_root_control_syserr_non_fatal_err_en

Output

System Error on Non-Fatal Error
Enable: Indicates the status of the
System Error on Non-Fatal Error
Enable bit in the Root Control
Configuration register. This enables
the user logic to generate a System
Error for reported Non-Fatal Errors.

cfg_root_control_syserr_fatal_err_en

Output

System Error on Fatal Error Enable:
Indicates the status of the System
Error on Fatal Error Enable bit in the
Root Control Configuration register.
This enables the user logic to
generate a System Error for reported
Fatal Errors.

cfg_root_control_pme_int_en

Output

PME Interrupt Enable: Indicates the
status of the PME Interrupt Enable bit
in the Root Control Configuration
register. This enables the user logic
to generate an Interrupt for received
PME messages.

cfg_aer_rooterr_corr_err_reporting_en

Output

AER Correctable Error Reporting
Enable: Indicates status of the AER
Correctable Error Reporting Enable
bit in the AER Root Error Command
configuration register. This bit
enables the user logic to generate
Interrupts for reported Correctable
Errors.

cfg_aer_rooterr_non_fatal_err_reporting_en

Output

AER Non-Fatal Error Reporting
Enable: Indicates status of the AER
Non-Fatal Error Reporting Enable bit
in the AER Root Error Command
configuration register. This bit
enables the user logic to generate
Interrupts for reported Non-Fatal
Errors.

cfg_aer_rooterr_fatal_err_reporting_en

Output

AER Fatal Error Reporting Enable:
Indicates status of the AER Fatal Error
Reporting Enable bit in the AER Root
Error Command configuration
register. This bit enables the user
logic to generate Interrupts for
reported Fatal Errors.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com

PG054 October 16, 2012

40

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-19: Error-Reporting Interface - Root Port Only (Cont’d)

Name

Direction Description

cfg_aer_rooterr_corr_err_received

Output AER Correctable Error Message
Received: Indicates status of the AER
Correctable Error Message Received
bit in the AER Root Error Status
configuration register. This bit
indicates that a Correctable Error
message was received.

cfg_aer_rooterr_non_fatal_err_received

Output AER Non-Fatal Error Message
Received: Indicates status of the AER
Non-Fatal Error Message Received
bit in the AER Root Error Status
configuration register. This bit
indicates that a Non-Fatal Error
message was received.

cfg_aer_rooterr_fatal_err_received

Output AER Fatal Error Message Received:
Indicates status of the AER Fatal Error
Message Received bit in the AER
Root Error Status configuration
register. This bit indicates that a Fatal
Error message was received.

Dynamic Reconfiguration Port Interface

The Dynamic Reconfiguration Port (DRP) interface allows for the dynamic change of FPGA
configuration memory bits of the 7 Series FPGAs Integrated Block for PCI Express core.
These configuration bits are represented as attributes for the pcte_2_1 library primitive,
which is instantiated as part of this core. Table 2-20 defines the DRP interface signals. For
detailed usage information, see Using the Dynamic Reconfiguration Port Interface,

Table 2-20: Dynamic Reconfiguration Port Interface Signals

Description

PCI Express DRP Clock: The rising edge of this signal is the
timing reference for all the other DRP signals. Normally,
drp_clk is driven with a global clock buffer. The maximum
frequency is defined in the appropriate 7 Series FPGAs Data
Sheet.

PCI Express DRP Data Enable: When asserted, this signal
enables a read or write operation. If drp_dwe is deasserted,
it is a read operation, otherwise a write operation. For any
given drp_clk cycle, all other input signals are not affected
if drp_den is not active.

page 148.

Name Direction
pcie_drp_clk Input
pcie_drp_en Input
pcie_drp_we Input

PCI Express DRP Write Enable: When asserted, this signal
enables a write operation to the port (see drp_den).

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 41

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-20: Dynamic Reconfiguration Port Interface Signals (Cont’d)

Name Direction Description

pcie_drp_addr[8:0] Input PCI Express DRP Address Bus: The value on this bus
specifies the individual cell that is written or read. The
address is presented in the cycle that drp_den is active.

pcie_drp_di[15:0] Input PCI Express DRP Data Input: The value on this bus is the data
written to the addressed cell. The data is presented in the
cycle that drp_den and drp_dwe are active, and is
captured in a register at the end of that cycle, but the actual
write occurs at an unspecified time before drp_drdy is
returned.

pcie_drp_rdy Output PCI Express DRP Ready: This signal is a response to drp_den
to indicate that the DRP cycle is complete and another DRP
cycle can be initiated. In the case of a DRP read, the drp_do
bus must be captured on the rising edge of drp_c1lkin the
cycle that drp_drdy is active. The earliest that drp_den can
go active to start the next port cycle is the same clock cycle
that drp_drdy is active.

pcie_drp_do[15:0] Output PCI Express DRP Data Out: If drp_dwe was inactive when
drp_den was activated, the value on this bus when
drp_drdy goes active is the data read from the addressed
cell. At all other times, the value on drp_do[15:01] is
undefined.

Clocking Interface for Partial Reconfiguration

The clocking interface provided to the user supports Partial Reconfiguration by use of
clocking external to the PCI Express design. Table 2-21 defines the clocking interface
signals

Table 2-21: Clocking Interface Signals

Name Direction Description
PIPE_PCLK_IN Input Parallel clock used to synchronize data transfers across
the parallel interface of the GTX transceiver.
PIPE_RXUSRCLK_IN Input Provides a clock for the internal RX PCS datapath.
PIPE_RXOUTCLK_IN Input Recommended clock output to the FPGA logic.
PIPE_DCLK_IN Input Dynamic reconfiguration clock.
PIPE_USERCLK1_IN Input Optional user clock.
PIPE_USERCLK2_IN Input Optional user clock.
PIPE_MMCM_LOCK_IN Input Indicates if the MMCM is locked onto the source CLK.
PIPE_TXOUTCLK_OUT Output Recommended clock output to the FPGA logic.
PIPE_RXOUTCLK_OUT Output Recommended clock output to the FPGA logic.
PIPE_PCLK_SEL_OUT Output Parallel clock select.
PIPE_GEN3_OUT Output Indicates the PCI Express operating speed.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 42

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

The Clocking architecture is described in detail in the Use Model chapter of the 7 Series
FPGAs GTX/GTH Transceivers User Guide [Ref 3].

PCI Configuration Space

The PCI configuration space consists of three primary parts, illustrated in Table 2-22. These
include:

« Legacy PCI v3.0 Type 0/1 Configuration Space Header
- Type 0 Configuration Space Header used by Endpoint applications (see Table 2-23)
- Type 1 Configuration Space Header used by Root Port applications (see Table 2-24)
» Legacy Extended Capability Items
o PCle Capability Item
- Power Management Capability Item
- Message Signaled Interrupt (MSI) Capability Item
o MSI-X Capability Item (optional)
« PCle Extended Capabilities
- Device Serial Number Extended Capability Structure (optional)
o Virtual Channel Extended Capability Structure (optional)
- Vendor Specific Extended Capability Structure (optional)
- Advanced Error Reporting Extended Capability Structure (optional)
- Resizable BAR Extended Capability Structure (optional)

The core implements up to four legacy extended capability items. The remaining legacy
extended capability space from address 0xA8 to 0xFF is reserved or user-definable
(Endpoint configuration only). Also, the locations for any optional capability structure that
is not implemented are reserved. If you do not use this space, the core returns 0x00000000
when this address range is read. If you implement registers within user-definable locations
in the range 0xA8 to 0xFF, this space must be implemented in the User Application. You
are also responsible for returning 0x00000000 for any address within this range that is not
implemented in the User Application.

For more information about enabling this feature, see Chapter 4, Customizing and
Generating the Core (Vivado Design Suite) or Chapter 10, Customizing and Generating the
Core (ISE Design Suite). For more information about designing with this feature, see Design
with Configuration Space Registers and Configuration Interface, page 109.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 43
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

ﬁ IMPORTANT: The core optionally implements up to three PCl Express Extended Capabilities. The
remaining PCl Express Extended Capability Space is available for you to implement.

The starting address of the space available to you depends on which, if any, of the five
optional PCle Extended Capabilities are implemented. If you implement registers in this
space, you can select the starting location of this space, and this space must be
implemented in the User Application. For more information about enabling this feature, see
Extended Capabilities, page 217 (Vivado Design Suite) or PCI Express Extended Capabilities,
page 308 (ISE Design Suite). For more information about designing with this feature, see
Design with Configuration Space Registers and Configuration Interface in Chapter 3.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 44
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 2-22:

Common PCI Configuration Space Header

31 16 15

Chapter 2: Product Specification

0

Device ID

Vendor ID 000h

Status

Command 004h

Class Code

Rev ID 008h

BIST Header Lat Timer

Cache Ln 00Ch

Header Type Specific
(see Table 2-23 and Table 2-24)

010h
014h
018h
01Ch
020h
024h
028h
02Ch
030h

CapPtr 034h

038h

Intr Pin

Intr Line 03Ch

PM Capability NxtCap

PM Cap 040h

Data BSE

PMCSR 044h

Customizablet®

MSI Control NxtCap

MSI Cap 048h

Message Address (Lower)

04Ch

Message Address (Upper)

050h

Reserved ‘

Message Data

054h

Mask Bits

058h

Pending Bits

05Ch

PE Capability ‘ NxtCap

PE Cap 060h

PCI Express Device Capabilities

064h

Device Status ‘

Device Control

068h

PCI Express Link Capabilities

06Ch

Link Status ‘

Link Control

070h

Root Port Only(®

Slot Capabilities

074h

Slot Status

Slot Control 078h

Root Capabilities

Root Control

07Ch

Root Status

080h

7 Series Integrated Block for PCle (v1.7)

PCI Express Device Capabilities 2

084h

Device Status 2

Device Control 2

088h

PCI Express Link Capabilities 2

08Ch

www.xilinx.com

PG054 October 16, 2012

45

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-22: Common PCI Configuration Space Header (Cont’d)
31 16 15 0
Link Status 2 Link Control 2 090h
Unimplemented Configuration Space 094h-

(Returns 0x00000000) 098h

Optional MSIx Control NxtCap MSIx Cap 09Ch

Table Offset Table 0AQh

BIR
PBA Offset PBA 0A4h
BIR
Reserved Legacy Configuration Space 0A8h-

(Returns 0x00000000) 0FFh

Optional® Next Cap Cap. PCI Express Extended Capability - DSN 100h
Ver.

PCI Express Device Serial Number (1st) 104h

PCI Express Device Serial Number (2nd) 108h

Optiona|(3) Next Cap Cap. PCI Express Extended 10Ch

Ver. Capability - VC

Port VC Capability Register 1 110h

Port VC Capability Register 2 114h

Port VC Status Port VC Control 118h

VC Resource Capability Register 0 11Ch

VC Resource Control Register 0 120h

VC Resource Status Register 0 124h

Optional® Next Cap Cap. PCI Express Extended Capability - VSEC | 128h
Ver.

Vendor Specific Header 12Ch

Vendor Specific - Loopback Command 130h

Vendor Specific - Loopback Status 134h

Vendor Specific - Error Count #1 138h

Vendor Specific - Error Count #2 13Ch

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 46

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-22: Common PCI Configuration Space Header (Cont’d)
31 16 15 0
Next Cap Cap. Ver. PCI Express Extended Cap. ID (AER) 140h
Uncorrectable Error Status Register 144h
Uncorrectable Error Mask Register 148h
Uncorrectable Error Severity Register 14Ch
Correctable Error Status Register 150h
Optional® Correctable Error Mask Register 154h
Advanced Error Cap. & Control Register 158h
Header Log Register 1 15Ch
Header Log Register 2 160h
Header Log Register 3 164h
Header Log Register 4 168h
Root Error Command Register 16Ch
Optional, Root Port Root Error Status Register 170h
only®
Error Source ID Register 174h
Next Cap Cap. Ver. PCI Express Extended Cap. ID (RBAR) 178h
Resizable BAR Capability Register(0) 17Ch
Reserved ‘ Resizable BAR Control(0) 180h
Resizable BAR Capability Register(1) 184h
Reserved ‘ Resizable BAR Control(1) 188h
Resizable BAR Capability Register(2) 18Ch
Optional(3> Reserved ‘ Resizable BAR Control(2) 190h
Resizable BAR Capability Register(3) 194h
Reserved ‘ Resizable BAR Control(3) 198h
Resizable BAR Capability Register(4) 19Ch
Reserved ‘ Resizable BAR Control(4) 1A0h
Resizable BAR Capability Register(5) 1A4h
Reserved Resizable BAR Control(5) 1A8h
Reserved Extended Configuration Space (Returns Completion with 0x00000000) 1ACh-
FFFh
Notes:
1. The MSI Capability Structure varies dependent on the selections in the CORE Generator tool GUL
2. Reserved for Endpoint configurations (returns 0x00000000).
3. The layout of the PCI Express Extended Configuration Space (1L00h-FFFh) can change dependent on which

optional capabilities are enabled. This table represents the Extended Configuration space layout when all five
optional extended capability structures are enabled. For more information, see Optional PCI Express Extended

Capabilities, page 117.

7 Series Integrated Block for PCle (v1.7)

www.xilinx.com

47

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-23: Type 0 PCI Configuration Space Header

31 16 15 0
Device ID Vendor ID 00h
Status Command 04h
Class Code Rev ID 08h
BIST Header Lat Timer Cache Ln 0Ch
Base Address Register 0 10h
Base Address Register 1 14h
Base Address Register 2 18h
Base Address Register 3 1Ch
Base Address Register 4 20h
Base Address Register 5 24h
Cardbus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID 2Ch
Expansion ROM Base Address 30h
Reserved | CapPtr 34h
Reserved 38h
Max Lat Min Gnt Intr Pin | Intr Line 3Ch

Table 2-24: Type 1 PCl Configuration Space Header

31 16 15 0
Device ID Vendor ID 00h
Status Command 04h
Class Code Rev ID 08h
BIST ‘ Header Lat Timer Cache Ln 0Ch
Base Address Register 0 10h
Base Address Register 1 14h
Second Lat Timer ‘ Sub Bus Number Second Bus Number Primary Bus Number | 18h
Secondary Status I/0 Limit I/0 Base 1Ch
Memory Limit Memory Base 20h
Prefetchable Memory Limit Prefetchable Memory Base 24h
Prefetchable Base Upper 32 Bits 28h
Prefetchable Limit Upper 32 Bits 2Ch
I/0 Limit Upper 16 Bits | I/0O Base Upper 16 Bits 30h
Reserved | CapPtr 34h
Expansion ROM Base Address 38h
Bridge Control | Intr Pin | Intr Line 3Ch
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 48

PG054 October 16, 2012

http://www.xilinx.com

& XILINX.
Chapter 3

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier. It provides design instructions for the Xilinx® 7 Series FPGAs Integrated Block
for PCI Express® user interface and assumes knowledge of the PCI Express Transaction
Layer Packet (TLP) header fields. Header fields are defined in PC/ Express Base Specification
v2.1 [Ref 2], in the "Transaction Layer Specification” chapter.

This chapter contains these sections:

« General Design Guidelines
+ Clocking

* Resets

* Protocol Layers

« FPGA Configuration

General Design Guidelines

This section provides design guidelines on these topics:

« Designing with the Transaction Layer Interface

« Designing with the Physical Layer Control and Status Interface

« Design with Configuration Space Registers and Configuration Interface
» Error Detection

+ Power Management

* Generating Interrupt Requests

« Link Training: 2-Lane, 4-Lane, and 8-Lane Components

» Lane Reversal

« Using the Dynamic Reconfiguration Port Interface

« Tandem Configuration

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 49
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

« Tandem PROM
« Tandem PCle (ISE Tool Flow)

Designing with the Transaction Layer Interface

This section provides guidelines for designing with the 64-bit and 128-bit transaction layer
interface.

Designing with the 64-Bit Transaction Layer Interface

TLP Format on the AXI4-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PCI Express Base
Specification [Ref 2]. See the "Transaction Layer Specification” chapter of the PCI Express
Base Specification for detailed information about TLP packet ordering. Figure 3-1 represents
a typical 32-bit addressable Memory Write Request TLP (as illustrated in the "Transaction
Layer Specification” chapter of the specification).

+0 +1 +2 +3
7 6|5 4|3|2 1|0 7 6|5|4 312|1|0|7|6 5|4 3|2 1|0 7|6 5|4 3|2|1|0
Byte 0> [R[ZD| Tyee [R| TC [RpR|LID[5 At | AT Length
Byte 4 > Requester ID Tag LathEDW 13}32\/\/
Byte 8 > Address[31:2] R
Byte 12 > Data 0O
Byte 16 > Data 1
Byte 20 > Data 2
Byte 24 > TLP Digest

Figure 3-1: PCIl Express Base Specification Byte Order

When using the AXI4-Stream interface, packets are arranged on the entire 64-bit datapath.
Figure 3-2 shows the same example packet on the AXI4-Stream interface. Byte 0 of the
packet appears on s_axis_tx_tdata[31:24] (transmit) or m_axis_rx_tdata[31:24] (receive) of
the first QWORD, byte 1 on s_axis_tx_tdata[23:16] or m_axis_rx_tdata[23:16], and so forth.
Byte 8 of the packet then appears on s_axis_tx_tdata[31:24] or m_axis_rx_tdata[31:24] of the
second QWORD. The Header section of the packet consists of either three or four DWORDs,
determined by the TLP format and type as described in section 2.2 of the PCI Express Base
Specification.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 50
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

AXIBit 63 32731)
AXI Byte | +7 +6 r +5 ! +4 r +3 r +2 r +1 +0
PCle Byte | +4 +5 r +6 r +7 r 40 r o w2 3

7] 6] 5] 4] 3] 2] 1] 0| 7] 6] 5] 4] 3| 2| 1] 0] 7] 6] 5] 4] 3] 2| 1] 0] 7| 6| 5] 4| 3] 2| 1] 0] 7] 6] 5] 4] 3| 2] 1] 0] 7| 6] 5] 4] 3] 2] 1] 0| 7] 6] 5] 4] 3] 2] 1] 0] 7| 6] 5] 4] 3] 2] 1] 0
Clock 0 Requester ID Tag Las;II;)W 1S;Eéw R :m; Type Rl TC R g E Attr | R Length
Scey Data[31:0] Address [31:2] R

Figure 3-2: Endpoint Integrated Block Byte Order

Packets sent to the core for transmission must follow the formatting rules for Transaction
Layer Packets (TLPs) as specified in the "Transaction Layer Specification” chapter of the PC/
Express Base Specification. The User Application is responsible for ensuring its packets’
validity. The core does not check that a packet is correctly formed and this can result in
transferring a malformed TLP. The exact fields of a given TLP vary depending on the type of
packet being transmitted.

Transmitting Outbound Packets
Basic TLP Transmit Operation

The 7 Series FPGAs Integrated Block for PCI Express core automatically transmits these
types of packets:

« Completions to a remote device in response to Configuration Space requests.

« Error-message responses to inbound requests that are malformed or unrecognized by
the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be
detected by the User Application, which is responsible for generating the appropriate response.

The User Application is responsible for constructing these types of outbound packets:

« Memory, Atomic Ops, and I/O Requests to remote devices.

« Completions in response to requests to the User Application, for example, a Memory
Read Request.

« Completions in response to user-implemented Configuration Space requests, when
enabled. These requests include PCI™ legacy capability registers beyond address BFh
and PCI Express extended capability registers beyond address 1FFh.

Note: For information about accessing user-implemented Configuration Space while in a
low-power state, see Power Management, page 139.

When configured as an Endpoint, the 7 Series FPGAs Integrated Block for PCI Express core
notifies the User Application of pending internally generated TLPs that arbitrate for the
transmit datapath by asserting tx_cfg_reqg (1b). The User Application can choose to give
priority to core-generated TLPs by asserting tx_cfg_gnt (1b) permanently, without
regard to tx_cfg_req. Doing so prevents User-Application-generated TLPs from being

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 51
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

transmitted when a core-generated TLP is pending. Alternatively, the User Application can
reserve priority for a User-Application-generated TLP over core-generated TLPs, by
deasserting tx_cfg_gnt (0b) until the user transaction is complete. When the user
transaction is complete, the User Application can assert tx_cfg_gnt (1b) for at least one
clock cycle to allow the pending core-generated TLP to be transmitted. Users must not
delay asserting tx_cfg_gnt indefinitely, because this might cause a completion timeout
in the Requester. See the PCI Express Base Specification [Ref 2] for more information on the
Completion Timeout Mechanism.

The integrated block does not do any filtering on the Base/Limit registers (Root Port only).
The user is responsible for determining if filtering is required. These registers can be read
out of the Type 1 Configuration Header space via the Configuration interface (see Design
with Configuration Space Registers and Configuration Interface, page 109).

Table 2-9, page 20 defines the transmit User Application signals. To transmit a TLP, the User
Application must perform this sequence of events on the transmit Transaction interface:

1. The User Application logic asserts s_axis_tx_tvalid and presents the first TLP
QWORD on s_axis_tx_tdatal[63:0].If the core is asserting s_axis_tx_tready,
the QWORD is accepted immediately; otherwise, the User Application must keep the
QWORD presented until the core asserts s_axis_tx_tready.

2. The User Application asserts s_axis_tx_tvalid and presents the remainder of the
TLP QWORDs on s_axis_tx_tdatal[63:0] for subsequent clock cycles (for which the
core asserts s_axis_tx_tready).

3. The User Application asserts s_axis_tx_tvalidand s_axis_tx_tlast together
with the last QWORD data. If all eight data bytes of the last transfer are valid, they are
presented on s_axis_tx_tdata[63:0] and s_axis_tx_tkeep is driven to 0xFF;
otherwise, the four remaining data bytes are presented on s_axis_tx_tdata[31:0],
and s_axis_tx_tkeep is driven to 0xOF.

4. At the next clock cycle, the User Application deasserts s_axis_tx_tvalid to signal
the end of valid transfers on s_axis_tx_tdatal[63:0].

Figure 3-3 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast,
it also places a value of 0x0F on s_axis_tx_tkeep, notifying the core that only
s_axis_ tx_tdatal[31:0] contains valid data.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 52
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

I
user_clock_out :
[

s_axis_tx_tdata[63:0] :

s_axis_tx_tready

|
l
s_axis_tx_tvalid :
I
s_axis_tx_tlast :

I

s_axis_tx_tstrb[7:0] :
(tx_err_fwd)s_axis_tx_tuser[1] i
(tx_str)s_axis_tx_tuser[2] :

(tx_src_dsc)s_axis_tx_tuser[3]

[}
|
\
|
tx_terr_drop |

Figure 3-3: TLP 3-DW Header without Payload

Figure 3-4 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast,
it also places a value of 0xFF on s_axis_tx_tkeep, notifying the core that
s_axis_tx_tdata[63:0] contains valid data.

I
user_clk_out: | I | I | I |

I
s_axis_tx_tdata[63:0] : HH, | HiH,

s_axis_tx_tready

I

|

|

. |

s_axis_tx_tvalid | _m_

I | |
| | |
| |

s_axis_tx_tlast |
I o —
: 01!
s_axis_tx_tstrb[7:0] | FFh
|
(tx_err_fwd)s_axis_tx_tuser{1] :
|

I
|
I
(tx_str)s_axis_tx_tuser[2] : :
I
I
Il
I
I

I
(tx_src_dsc)s_axis_tx_tuser{3] |

|
tx_terr_drop |

Figure 3-4: TLP with 4-DW Header without Payload

Figure 3-5 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the User Application asserts
s_axis_tx_tlast,italso puts avalue of 0xFF on s_axis_tx_tkeep, notifying the core
that s_axis_tx_tdata[63:0] contains valid data.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 53
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

I |
user_clock_out: | I | I | I | ! S S | I | I |
I
s_axis_tx_tdata[63:0] :- H,H, X DoH, X D,D,

s_axis_tx_tready

I

|

|

|
s_axis_tx_tvalid | | ,

I

s_axis_tx_tlast : |

5)
))
))
| § §
s_axis_tx_tstrb[7:0] i‘ FFh é é FFh .
§ §
§ §
54

(terr_fwd)s_axis_tx_tuser[1] :
I

(str)s_axis_tx_tuser[2] !

|
I
(src_dsc)s_axis_tx_tuser[3] :
I
!

tx_terr_d rop

Figure 3-5: TLP with 3-DW Header with Payload

Figure 3-6 illustrates a 4-DW TLP header with a data payload; an example is a 64-bit
addressable Memory Write request. When the User Application asserts
s_axis_tx_tlast, it also places a value of 0x0F on s_axis_tx_tkeep, notifying the
core that only s_axis_tx_tdata[31:0] contains valid data.

I |
user_clk_out: | I | I | I | I | ! S S: | I | I |
s_axis_tx_tdata[63:0] - H,H, X HzH, X D,D, X D,D,

I
s_axis_tx_tready |
I
|

s_axis_tx_tvalid | ,
|

s_axis_tx_tlast

i))
|))
|))
— (
s_axis_tx_tstrb[7:0] i‘ FFh % % X OFh _
i § §
i § §
| § §

(terr_fwd)s_axis_tx_tuser[1]

(str)s_axis_tx_tuser[2]

(src_dsc)s_axis_tx_tuser[3]

tx_terr_drop

Figure 3-6: TLP with 4-DW Header with Payload

Presenting Back-to-Back Transactions on the Transmit Interface

The User Application can present back-to-back TLPs on the transmit AXI4-Stream interface
to maximize bandwidth utilization. Figure 3-7 illustrates back-to-back TLPs presented on
the transmit interface. The User Application keeps s_axis_tx_tvalid asserted and
presents a new TLP on the next clock cycle after asserting s_axis_tx_tlast for the
previous TLP.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 54
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

I
user_clk_out: | I | I | I | I | I | I | I | I |
s_axis_tx_tdata[63:0] - H,H, X DoH, X D,D, X D,D, X H,H, X DoH, X D,D, _

J|\ J|

|
Y

TLP1

s_axis_tx_tready

s_axis_tx_tvalid | | ,
I

s_axis_tx_tlast : :

|-

|
s_axis_tx_tstrb[7:0] :- FFh X FFh _

Figure 3-7: Back-to-Back Transaction on the Transmit Interface

Source Throttling on the Transmit Datapath

The Transaction interface lets the User Application throttle back if it has no data to present
ons_axis_tx_tdata[63:0].When this condition occurs, the User Application deasserts
s_axis_tx_tvalid, which instructs the core AXI4-Stream interface to disregard data
presented on s_axis_tx_tdatal[63:0]. Figure 3-8 illustrates the source throttling
mechanism, where the User Application does not have data to present every clock cycle,
and for this reason must deassert s_axis_tx_tvalid during these cycles.

user_clk_out

I
|
|
[
s_axis_tx_tdata[63:0] :- X
I
|

s_axis_tx_tready

I I
| |
| |
) L | [_I'\ |
s_axis_tx_tvalid | | | | /
t | t
| |
| |

s_axis_tx_tlast :

I,
s_asix_tx_tstrb[7:0] :‘ FFh
I 1 1 1 1 1

Figure 3-8: Source Throttling on the Transmit Interface

Destination Throttling of the Transmit Datapath

The core AXI4-Stream interface throttles the transmit User Application if there is no space
left for a new TLP in its transmit buffer pool. This can occur if the link partner is not
processing incoming packets at a rate equal to or greater than the rate at which the User
Application is presenting TLPs. Figure 3-9 illustrates the deassertion of
s_axis_tx_tready to throttle the User Application when the internal transmit buffers of
the core are full. If the core needs to throttle the User Application, it does so after the
current packet has completed. If another packet starts immediately after the current packet,
the throttle occurs immediately after tlast.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 55
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clock_out i_u_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_I_
S_aXiS_tX_[gd;E)? i- X X X X X

| | 1 1 1 1 1 1 1
| | | | | | | I TLP2 | |
| | | | | | | | | | |
s_axis_tx treadyI | I I/ I | I | I | |
_axis_tx_| | | | /ﬂ' | | \ | Q’ | |
| T T 1 T | | m | |
s_axis_tx_tvalid | ! / | | | | | : : : :
| | | | | | | | |

s_axis_tx_tlast : : : : : : : : : : : }
| 1 1 - 1 1 1 1 - 1 1

tx_buf_av[5:0] : od X—/ 1d X od X—/ 1d X od

| New Buffef Availablg

New Buffef Availablg
Figure 3-9: Destination Throttling on the Transmit Interface

If the core transmit AXI4-Stream interface accepts the start of a TLP by asserting
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the
value contained in the Max_Payload_Size field of the PCI Express Device Capability Register
(offset 04H). To stay compliant to the PCI Express Base Specification [Ref 2], users should not
violate the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H).
The core transmit AXI4-Stream interface deasserts s_axis_tx_tready only under these
conditions:

« The core does not have enough buffering if the packets are not drained due to lack of
credits made available from the link partner.

« When the core is transmitting an internally generated TLP (Completion TLP because of
a Configuration Read or Write, error Message TLP or error response as requested by
the User Application on the cfg_err interface), after it has been granted use of the
transmit datapath by the User Application, by assertion of tx_cfg_gnt. The core
subsequently asserts s_axis_tx_tready after transmitting the internally generated
TLP.

« When the Power State field in Power Management Control/Status Register (offset 0x4)
of the PCI Power Management Capability Structure is changed to a non-DO0 state. When
this occurs, any ongoing TLP is accepted completely and s_axis_tx_tready is
subsequently deasserted, disallowing the User Application from initiating any new
transactions for the duration that the core is in the non-D0 power state

On deassertion of s_axis_tx_tready by the core, the User Application needs to hold all
control and data signals until the core asserts s_axis_tx_tready.

Discontinuing Transmission of Transaction by Source

The core AXI4-Stream interface lets the User Application terminate transmission of a TLP by
asserting (tx_src_dsc) s_axis_tx_tuser[3].Both s_axis_tx_tvalid and
s_axis_tx_tready must be asserted together with tx_src_dsc for the TLP to be
discontinued. The signal tx_src_dsc must not be asserted at the beginning of a new
packet. It can be asserted on any cycle after the first beat of a new packet has been

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 56
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

accepted by the core up to and including the assertion of s_axis_tx_tlast. Asserting
src_dsc has no effect if no TLP transaction is in progress on the transmit interface.
Figure 3-10 illustrates the User Application discontinuing a packet using tx_src_dsc.
Asserting src_dsc with s_axis_tx_tlast is optional.

If streaming mode is not used, (tx_str) s_axis_tx_tuser[2] = 0b, and the packet is
discontinued, then the packet is discarded before being transmitted on the serial link. If
streaming mode is used (tx_str = 1b), the packet is terminated with the EDB symbol on
the serial link.

I
I
s_axis_tx_tdata[63:0] :- HH, X DoH, X D,D, X D,D, _
|
I
I
I
I
I

s_axis_tx_tready

s_axis_tx_tvalid | ,

s_axis_tx_tlast : |

I 1
s_axis_tx_tstrb[7:0] :- FFh .
| | T T T
(tx_src_dsc) s_axis_tx_tuser[3] : : : : : /_E-\

Figure 3-10: Source Driven Transaction Discontinue on the Transmit Interface

Discarding of Transaction by Destination
The core transmit AXI4-Stream interface discards a TLP for three reasons:

« PCI Express Link goes down.

« Presented TLP violates the Max_Payload_Size field of the PCI Express Device Capability
Register (offset 04H). It is the user’s responsibility to not violate the Max_Payload_Size
field of the Device Control Register (offset 08H).

 (tx_str) s_axis_tx_tuser([2] is asserted and data is not presented on
consecutive clock cycles, that is, s_axis_tx_tvalid is deasserted in the middle of a
TLP transfer.

When any of these occur, the transmit AXI4-Stream interface continues to accept the
remainder of the presented TLP and asserts tx_err_drop no later than the second clock
cycle following the s_axis_tx_tlast of the discarded TLP. Figure 3-11 illustrates the
core signaling that a packet was discarded using tx_err_drop.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 57
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Pac

The

Chapter 3: Designing with the Core

I
user_clk_out :

I
s_axis_tx_tdata[63:0] - HiH, X DoH, X =

[
|
| \
|
|

t v t
Valid TLP

s_axis_tx_tvalid : '

t v t
Dropped TLP
|

| |
| |

| |

1 1

| I \ [|

| |

| | | |

s_axis_tx_tlast! | | | | |
| | | | | |

I
s_axis_tx_tstrb[7:0] |- FFh X OFh FFh X OFh -
| - - - - - -

| |

(tx_src_dsc)s_axis_tx_tuser[3] |
! T

tx_terr_drop : :

Figure 3-11: Discarding of Transaction by Destination of Transmit Interface

|
|
|
s_axis_tx_tready : :
|
|
|

ket Data Poisoning on the Transmit AXI4-Stream Interface

User Application uses either of these mechanisms to mark the data payload of a

transmitted TLP as poisoned:

Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to be
poisoned when the first DWORD of the header is presented to the core on the
AXI4-Stream interface.

Assert (tx_err_fwd) s_axis_tx_tuser[1] for at least one valid data transfer
cycle any time during the packet transmission, as shown in Figure 3-12. This causes the
core to set EP = 1 in the TLP header when it transmits the packet onto the PCI Express
fabric. This mechanism can be used if the User Application does not know whether a
packet could be poisoned at the start of packet transmission. Use of terr_fwd is not
supported for packets when (tx_str) s_axis_tx_tuser[2] is asserted (streamed
transmit packets). In streaming mode, you can optionally discontinue the packet if it
becomes corrupted. See Discontinuing Transmission of Transaction by Source, page 56
for details on discontinuing packets.

When ECRC is being used, instead of setting the EP bit of the TLP to forward an error, the
User Application should nullify TLPs with errors by asserting the
src_dsc(s_axis_tx_tuser[3]) block input for the TLP and report the error using the
cfg_err interface.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 58

PGO054 Octo

ber 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out

) D B R W

I\

—

s_axis_tx_tdata[63:0]

s_axis_tx_tvalid

s_axis_tx_tlast :

I,

s_axis_tx_tstrb[7:0] :

I

(tx_err_fwd)s_axis_tx_tuser[1] :

U

Figure 3-12: Packet Data Poisoning on the Transmit Interface

Streaming Mode for Transactions on the Transmit Interface

The 7 Series FPGAs Integrated Block for PCI Express core allows the User Application to
enable Streaming (cut-through) mode for transmission of a TLP, when possible, to reduce
latency of operation. To enable this feature, the User Application must hold (tx_str)
s_axis_tx_tuser[2] asserted for the entire duration of the transmitted TLP. The User
Application must also present valid frames on every clock cycle until the final cycle of the
TLP. In other words, the User Application must not deassert s_axis_tx_tvalid for the
duration of the presented TLP. Source throttling of the transaction while in streaming mode
of operation causes the transaction to be dropped (tx_err_drop is asserted) and a
nullified TLP to be signaled on the PCI Express link. Figure 3-13 illustrates the streaming
mode of operation, where the first TLP is streamed and the second TLP is dropped because
of source throttling.

| |
user_clk_out | | |
|]

s_axis_tx_tdata[63:0] : X \ \ X X X X X X

~—1
TLP1

T
s_axis_tx_tready

s_axis_tx_tvalid

L (
~ — A/ A

s_axis_tx_tlast

|
s_axis_tx_tstrb[7:0] |- FFh
. I

(tx_str)s_axis_tx_tuser[2] |
|

)
)
|
{
)
{

tx_terr_drop :

Figure 3-13: Streaming Mode on the Transmit Interface

Using ECRC Generation

The integrated block supports automatic ECRC generation. To enable this feature, the User
Application must assert (tx_ecrc_gen) s_axis_tx_tuser[0] at the beginning of a
TLP on the transmit AXI4-Stream interface. This signal can be asserted through the duration
of the packet, if desired. If the outgoing TLP does not already have a digest, the core
generates and appends one and sets the TD bit. There is a single-clock cycle deassertion of

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 59
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

s_axis_tx_tready at the end-of-packet to allow for insertion of the digest. Figure 3-14
illustrates ECRC generation operation.

user_clk_out :

s_axis_tx_tdata[63:0]

s_axis_tx_tready

s_axis_tx_tvalid |
I

s_axis_tx_tlast :

s_axis_tx_tstrb[7:0] :

| B

(tx_ecrc_gen) s_axis_tx_tuser[0] :

Figure 3-14: ECRC Generation
Receiving Inbound Packets
Basic TLP Receive Operation

Table 2-10, page 22 defines the receive AXI4-Stream interface signals. This sequence of
events must occur on the receive AXI4-Stream interface for the Endpoint core to present a
TLP to the User Application logic:

1. When the User Application is ready to receive data, it asserts m_axis_rx_tready.

2. When the core is ready to transfer data, the core asserts m_axis_rx_tvalid and
presents the first complete TLP QWORD onm_axis_rx_tdatal[63:0].

3. The core keeps m_axis_rx_tvalid asserted, and presents TLP QWORDs on
m_axis_rx_tdatal[63:0] on subsequent clock cycles (provided the User Application
logic asserts m_axis_rx_tready).

4. The core then asserts m_axis_rx_tvalid withm_axis_rx_tlast and presents
either the last QWORD on s_axis_tx_tdata[63:0] and a value of O0xFF on
m_axis_rx_tkeep or the last DWORD on s_axis_tx_tdata[31:0] and a value of
0x0F onm_axis_rx_tkeep.

5. If no further TLPs are available at the next clock cycle, the core deasserts
m_axis_rx_tvalid to signal the end of valid transfers on
m_axlis_rx_tdatal[63:0].

Note: The User Application should ignore any assertions of m_axis_rx_tlast,
m_axis_rx_tkeep,andm_axis_rx_tdataunlessm_axis_rx_tvalidis concurrently asserted.
The m_axis_rx_tvalid signal is never deasserted mid-packet.

Figure 3-15 shows a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the core asserts m_axis_rx_tlast, it also

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 60
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

places a value of 0x0F on m_axis_rx_tkeep, notifying the user that only
m_axis_ rx_tdatal[31:0] contains valid data.

I
user_clk_out :

%

m_axis_rx_tdata[63:0]

. | | |
m_axis_rx_tlast | | |

I,

m_axis_rx_tstrb[7:0] : FFh OFh

|

(rx_err_fwd) m_axis_rx_tuser{1] :

[

(rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] :

ﬂ

Figure 3-15: TLP 3-DW Header without Payload

Figure 3-16 shows a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request. When the core asserts m_axis_rx_tlast, it also
places a value of 0xFF on m_axis_rx_tkeep, notifying the user that
m_axis_rx_tdatal[63:0] contains valid data.

I
user_clk_out: | | | | | | |

I
m_axis_rx_tdata[63:0] : HHy { HH,

m_axis_rx_tready

I I I
| | |
| | |
| T T
m_axis_rx_tvalid | _m_
I | |
| |
|

. I
m_axis_rx_tlast | |

|
m_axis_rx_tstrb[7:0] : FFh
|

(rx_err_fwd) m_axis_rx_tuser[1] : | | |

(rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] : X

Figure 3-16: TLP 4-DW Header without Payload

Figure 3-17 shows a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the core asserts m_axis_rx_tlast, it also
places a value of 0xFF on m_axis_rx_tkeep, notifying the user that

m_axis_ rx_tdatal[63:0] contains valid data.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 61
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

I
userclockout: | | | | | | | | | | | | |
[
|- H,H, X DoH, X D,D, X D,D,
|
. | | |
m_axis_rx_tready | | | ,
I
| |
|
|

m_axis_rx_tdata[63:0]

e

m_axis_rx_tvalid

N

Y
|
_ |
|
m_axis_rx_tstrb[7:0] :‘ FFh

(rx_err_fwd)m_axis_rx_tuser{1] : ! : : : : :

|
| n n n
(rx_bar_hit[7:0])m_axis_rx_tuser[9:2] '- 00000010b

Figure 3-17: TLP 3-DW Header WIth Payload

Figure 3-18 shows a 4-DW TLP header with a data payload; an example is a 64-bit
addressable Memory Write request. When the core asserts m_axis_rx_tlast, it also
places a value of 0x0F on m_axis_rx_tkeep, notifying the user that only

m_axis_ rx_tdatal[31:0] contains valid data.

user_clk_out

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid

I
|
|
| T T
| , | |
| |
m_axis_rx tlast, : :
1 1
m_axis_rx_tstrb[7:0] ‘ FFh X OFh .

(rx_err_fwd)m_axis_rx tuser[1]I

| n n n n n
(rx_bar_hit[7:0])m_axis_rx_tuser{9:2] :- 00110000b .

rx_np_ok | | | | | | |
1 1 1 1 1 1 1

Figure 3-18: TLP 4-DW Header with Payload

Throttling the Datapath on the Receive AXI4-Stream Interface

The User Application can stall the transfer of data from the core at any time by deasserting
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in
progress and if a TLP becomes available, the core asserts m_axis_rx_tvalid and
presents the first TLP QWORD on m_axis_rx_tdata[63:0]. The core remains in this
state until the user asserts m_axis_rx_tready to signal the acceptance of the data
presented onm_axis_rx_tdatal[63:0]. At that point, the core presents subsequent TLP
QWORDs as long as m_axis_rx_tready remains asserted. If the user deasserts
m_axis_rx_tready during the middle of a transfer, the core stalls the transfer of data
until the user asserts m_axis_rx_tready again. There is no limit to the number of cycles

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 62
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

the user can keep m_axis_rx_tready deasserted. The core pauses until the user is again
ready to receive TLPs.

Figure 3-19 illustrates the core asserting m_axis_rx_tvalid along with presenting data
onm_axis_rx_tdata[63:0]. The User Application logic inserts wait states by
deasserting m_axis_rx_tready. The core does not present the next TLP QWORD until it
detects m_axis_rx_tready assertion. The User Application logic can assert or deassert
m_axis_rx_tready as required to balance receipt of new TLP transfers with the rate of
TLP data processing inside the application logic.

user_clk_out

| |
\]

I
|
|
I
m_axis_rx_tdata[63:0] |-
|
| | |
m_axis_rx_tready | | \ | | '
| |
| |
| | /
|
| |
| |
I [

m_axis_rx_tvalid

M

;

m_axis_rx_tlast

Figure 3-19: User Application Throttling Receive TLP
Receiving Back-to-Back Transactions on the Receive Interface

The User Application logic must be designed to handle presentation of back-to-back TLPs
on the receive AXI4-Stream interface by the core. The core can assert m_axis_rx_tvalid for a
new TLP at the clock cycle after m_axis_rx_tlast assertion for the previous TLP.

Figure 3-20 illustrates back-to-back TLPs presented on the receive interface.

user_clk_out

I I O O B O N N

I\

!

m_axis_rx_tdata[63:0]

)
Y

Y
TLP1 TLP2

m_axis_rx_tready

m_axis_rx_tvalid | ,
I

1
|
|
T
|
|
|
|
|
m_axis_rx_tlast : :

Figure 3-20: Receive Back-to-Back Transactions

If the User Application cannot accept back-to-back packets, it can stall the transfer of the
TLP by deassertingm_axis_rx_tready as discussed in the Throttling the Datapath on the
Receive AXI4-Stream Interface section. Figure 3-21 shows an example of using
m_axis_rx_tready to pause the acceptance of the second TLP.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 63
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

I
user_clk_out:|||||||||||||

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid | | ,
I

m_axis_rx_tlast : |

m_axis_rx_tstrb[7:0]: X FFh X OFh X

Figure 3-21: User Application Throttling Back-to-Back TLPs

Packet Re-ordering on Receive Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction
ordering rules, described in Chapter 2 of the PC/ Express Base Specification [Ref 2]. The
transaction ordering rules allow Posted and Completion TLPs to bypass blocked
Non-Posted TLPs.

The 7 Series FPGAs Integrated Block for PCI Express provides two mechanisms for User
Applications to manage their Receiver Non-Posted Buffer space. The first of the two
mechanisms, Receive Non-Posted Throttling, is the use of rx_np_ok to prevent the 7 Series
FPGAs Integrated Block for PCI Express core from presenting more than two Non-Posted
requests after deassertion of the rx_np_ok signal. The second mechanism, Receive Request
for Non-Posted, allows user-controlled Flow Control of the Non-Posted queue, using the
rx_np_req signal.

The Receive Non-Posted Throttling mechanism assumes that the User Application normally
has space in its receiver for non-Posted TLPs and the User Application would throttle the
core specifically for Non-Posted requests. The Receive Request for Non-Posted mechanism
assumes that the User Application requests the core to present a Non-Posted TLP as and
when it has space in its receiver. The two mechanisms are mutually exclusive, and only one
can be active for a design. This option must be selected while generating and customizing
the core. When the Receive Non-Posted Request option is selected in the Advanced
Settings, the Receive Request for Non-Posted mechanism is enabled and any assertion/
deassertion of rx_np_ok is ignored and vice-versa. The two mechanisms are described in
further detail in the next subsections.

» Receive Non-Posted Throttling (Receive Non-Posted Request Disabled)

If the User Application can receive Posted and Completion Transactions from the core,
but is not ready to accept Non-Posted Transactions, the User Application can deassert
rx_np_ok, as shown in Figure 3-22. The User Application must deassert rx_np_ok at
least two clock cycles beforem_axis_rx_tlast of the second-to-last Non-Posted TLP
the user can accept. While rx_np_ok is deasserted, received Posted and Completion

Transactions pass Non-Posted Transactions. After the User Application is ready to accept

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 64
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Non-Posted Transactions, it must reassert rx_np_ok. Previously bypassed Non-Posted
Transactions are presented to the User Application before other received TLPs. There is
no limit as to how long rx_np_ok can be deasserted, however users must take care to
not deassert rx_np_ok for extended periods, because this can cause a completion
timeout in the Requester. See the PC/ Express Base Specification for more information on
the Completion Timeout Mechanism.

I
user_clk_out:|||||||||||||||||||||||
m_axis_rx_tdata[63:0] - H,H, X HzH, H,H, /X—HgH?X H,H, X DoH,
) J

N I l I | I T N

v

Y
Non:-Pos d T:LP2

/]

A
: Posted/(:JpI TLP3
|

[
[
I
I
: : Non—PosIled TLP1 :
|
|
|
I

I |
| |
| |
. T | | T T
m_axis_rx_tready | \ | | , | | \
| | | 7 t
m_axis_rx_tvalid | :’ : : !
/	\
I T	

m_axis_rx_tlast :
Figure 3-22: Receive Interface Non-Posted Throttling

|
|
[[
			L		
					\
) Il Il Il					
rx_np_ok | | | | | | | |

Packet re-ordering allows the User Application to optimize the rate at which
Non-Posted TLPs are processed, while continuing to receive and process Posted and
Completion TLPs in a non-blocking fashion. The rx_np_ok signaling restrictions
require that the User Application be able to receive and buffer at least three Non-Posted
TLPs. This algorithm describes the process of managing the Non-Posted TLP buffers:

Consider that Non-Posted _Buffers_Available denotes the size of Non-Posted buffer
space available to the User Application. The size of the Non-Posted buffer space is
greater than three Non-Posted TLPs. Non-Posted_Buffers_Available is decremented
when Non-Posted TLP is accepted for processing from the core, and is incremented
when Non-Posted TLP is drained for processing by the User Application.

For every clock cycle do {
if (Non-Posted_ Buffers_Available <= 3) {
if (Valid transaction Start-of-Frame accepted by user application) {
Extract TLP Format and Type from the 1st TLP DW
if (TLP type == Non-Posted) {
Deassert rx_np_ok on the following clock cycle
- or -
Other optional user policies to stall NP transactions
} else {
}
}
} else { // Non-Posted Buffers_Available > 3
Assert rx _np_ok on the following clock cycle.
}
}

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 65
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

« Receive Request for Non-Posted (Receive Non-Posted Request Enabled)

The 7 Series FPGAs Integrated Block for PCI Express allows the User Application to
control Flow Control Credit return for the Non-Posted queue using the rx_np_req
signal. When the User Application has space in its receiver to receive a Non-Posted
Transaction, it must assert rx_np_req for one clock cycle for every Non-Posted
Transaction that the User Application can accept. This enables the integrated block to
present one Non-Posted transaction from its receiver queues to the Core Transaction
interface, as shown in Figure 3-23 and return one Non-Posted Credit to the connected
Link partner.

user_clk_outi | I | I | I | I | I | I | I | I | I | I | I | I | I | I |
- HwHo X Don X D2D1 X 3 X H1H0 X “Hz X H1H0 X Don X/DZBT'X H1Ho X/HE"X H1H0 X “Hz .
i\ ' ' X T/ 7 N ' y
|

m_axis_rx_tdata[63:0]

/ N v N

T
| Y | T
| Non-Posted TLP2 Posted/Cpl T

I
T Y | Y | Y |
| Posteq TLP1 3 Non-P/és;ed TLP4 | Non-Posted TLP5

m_axis_rx_tlast : :
[

— y

Figure 3-23: Receive Interface Request for Non-Posted Transaction

m_axis_rx_tready |
|

:

|

|

. | |

m_axis_rx_tvalid | |
|

| /

;

\
[

The 7 Series FPGAs Integrated Block for PCI Express maintains a count of up to

12 Non-Posted Requests from the User Application. In other words, the core remembers
assertions of rx_np_reqg even if no Non-Posted TLPs are present in the receive buffer
and presents received Non-Posted TLPs to the user, if requests have been previously
made by the User Application. If the core has no outstanding requests from the User
Application and received Non-Posted TLPs are waiting in the receive buffer, received
Posted and Completion Transactions pass the waiting Non-Posted Transactions.

After the user is ready to accept a Non-Posted TLP, asserting rx_np_req for one or
more cycles causes that number of waiting Non-Posted TLPs to be delivered to the user
at the next available TLP boundary. In other words, any Posted or Completion TLP
currently on the user application interface finishes before waiting Non-Posted TLPs are
presented to the user application. If there are no Posted or Completion TLPs being
presented to the user and a Non-Posted TLP is waiting, assertion of rx_np_reqg causes
the Non-Posted TLP to be presented to the user. TLPs are delivered to the User
Application in order except when the user is throttling Non-Posted TLPs, allowing
Posted and Completion TLPs to pass. When the user starts accepting Non-Posted TLPs
again, ordering is still maintained with any subsequent Posted or Completion TLPs. If the
User Application can accept all Non-Posted Transactions as they are received and does
not care about controlling the Flow Control Credit return for the Non-Posted queue, the
user should keep this signal asserted.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 66
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Packet Data Poisoning and TLP Digest on the Receive AXI4-Stream Interface

To simplify logic within the User Application, the core performs automatic pre-processing
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the received
TLP.

All received TLPs with the Data Poisoning bit in the header set (EP = 1) are presented to the
user. The core asserts the (rx_err_fwd) m_axis_rx_tuser[1] signal for the duration
of each poisoned TLP, as illustrated in Figure 3-24.

|
5

user_clk_out

—
—

m_axis_rx_tdata[63:0]

m_axis_rx_tready

m_axis_rx_tvalid |

LN

. I
m_axis_rx_tlast |

gr

m_axis_rx_tstrb[7:0] FFh FFh

(rx_err_fwd) m_axis_rx_tuser[1] |

— N~ /L~
(e | T || T Ry Ry Ny

B

Figure 3-24: Receive Transaction Data Poisoning

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End
CRC (ECRC). The core performs these operations based on how the user configured the core
during core generation:

« If the Trim TLP Digest option is on, the core removes and discards the ECRC field from
the received TLP and clears the TLP Digest bit in the TLP header.

« If the Trim TLP Digest option is off, the core does not remove the ECRC field from the
received TLP and presents the entire TLP including TLP Digest to the User Application
receiver interface.

See Chapter 4, Customizing and Generating the Core (Vivado Design Suite) or Chapter 10,
Customizing and Generating the Core (ISE Design Suite) for more information about how to
enable the Trim TLP Digest option during core generation.

ECRC Error on the 64-Bit Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express core checks the ECRC on incoming
transaction packets, when ECRC checking is enabled in the core. When it detects an ECRC
error in a transaction packet, the core signals this error to the user by simultaneously
assertingm_axis_rx_tuser[0] (rx_ecrc_err) andm_axis_rx_tlast asillustrated

in Figure 3-25.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 67
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

|
user_clk_out | I | I | ! S S ! | I | I | I |
m_axis_rx_tdata[63:0] - X X X

m_axis_rx_tready

m_axis_rx_tvalid ,

I
m_axis_rx_tlast |

m_axis_rx_tstrb[7:0] - FFh FFh
T T T
(rx_ecrc_err) m_axis_rx_tuser{0] | ' : S S : : / : \

Figure 3-25: ECRC Error on 64-Bit Recelve AXI4 Stream Interface

x
)
)
)
{

S | O R R L O

Packet Base Address Register Hit on the Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express in Root Port configuration does not
perform any BAR decoding/filtering.

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration decodes
incoming Memory and I/O TLP request addresses to determine which Base Address Register
(BAR) in the core's TypeO configuration space is being targeted, and indicates the decoded
base address on (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]. For each received
Memory or I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s) are set to 1b.
If the received TLP targets a 32-bit Memory or I/O BAR, only one bit is asserted. If the
received TLP targets a 64-bit Memory BAR, two adjacent bits are asserted. If the core
receives a TLP that is not decoded by one of the BARs (that is, a misdirected TLP), then the
core drops it without presenting it to the user and it automatically generates an
Unsupported Request message. Even if the core is configured for a 64-bit BAR, the system
might not always allocate a 64-bit address, in which case only onerxbar_hit[7:0] signal is
asserted. Overlapping BAR apertures are not allowed.

Table 3-1 illustrates mapping between rx_bar_hit[7:0] and the BARs, and the
corresponding byte offsets in the core TypeO configuration header.

Table 3-1: (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] to Base Address Register Mapping

rx_bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset
0 2 0 10h
1 3 1 14h
2 4 2 18h
3 5 3 1ch
4 6 4 20h
5 7 5 24h
6 8 Expansion ROM BAR 30h
0 9 Reserved -
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 68

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

For a Memory or I/O TLP Transaction on the receive interface, (rx_bar_hit[7:0])
m_axis_rx_tuser[9:2] is valid for the entire TLP, starting with the assertion of
m_axis_rx_tvalid, as shown in Figure 3-26. When receiving non-Memory and non-I/O
transactions, signal rx_bar_hit[7:0] is undefined.

m_axis_rx_tdata[63:0] - X X X X X .

I\

m_axis_rx_tready | '
m_axis_rx_tvalld | : ,
|

m_axis_rx_ tlas'[I

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2] - 0000010b X 0001100b .

Figure 3-26: BAR Target Determmatlon Using rx_ bar hit

The (rx_bar_hit([7:0]) m_axis_rx_tuser[9:2] signal enables received Memory
and I/O transactions to be directed to the appropriate destination apertures within the User
Application. By utilizing rx_bar_hit[7:0], application logic can inspect only the lower
order Memory and I/O address bits within the address aperture to simplify decoding logic.

Packet Transfer During Link-Down Event on Receive AXI4-Stream Interface

The loss of communication with the link partner is signaled by deassertion of
user_1lnk_up. When user_1nk_up is deasserted, it effectively acts as a Hot Reset to the
entire core. For this reason, all TLPs stored inside the core or being presented to the receive
interface are irrecoverably lost. A TLP in progress on the Receive AXI4-Stream interface is
presented to its correct length, according to the Length field in the TLP header. However,
the TLP is corrupt and should be discarded by the User Application. Figure 3-27 illustrates
the packet transfer discontinue scenario.

I
user_clk_out'|||||||||||||

! Y

I
I
I
m_axis_rx_tdata[63:0] |- H,H, X DoH, X D,D, X PAD X PAD .
I : : : :
I
I
I
I

E

user_Ink_up

|
onglnal TLP data was Iost

m_axis_rx_tready |
I

m_axis_rx_tvalid : | ,
|

m_axis_rx_tlast : :

i I

Figure 3-27: Receive Transaction Dlscontlnue

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 69
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Designing with the 128-Bit Transaction Layer Interface

Note: The Transaction interface width and frequency never change with a lane width/speed
upconfigure or downconfigure.

TLP Format in the AXI4-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PC/ Express Base
Specification [Ref 2]. See Chapter 2 of the PCI Express Base Specification for detailed
information about TLP packet ordering. Figure 3-28 represents a typical 32-bit addressable
Memory Write Request TLP (as illustrated in Chapter 2 of the specification).

+0 +1 +2 +3
7 6|5 4|3|2 1|O 7 6|5|4 3|2 1|O 716 5|4 3|2 1|0 7|6 5|4 3|2|1|0
Byte0> [R[\D| Type [R| TC | Rsva |J|5|atr| R Length
Byte 4 > Requester ID Tag LathEDW 13}32\/\/
Byte 8 > Address[31:2] R
Byte 12 > Data 0O
Byte 16 > Data 1
Byte 20 > Data 2
Byte 24 > TLP Digest

Figure 3-28: PCIl Express Base Specification Byte Order

When using the Transaction interface, packets are arranged on the entire 128-bit datapath.
Figure 3-29 shows the same example packet on the AXI4-Stream interface. PCle Byte O of
the packet appears on s_axis_tx_tdata[31:24] (transmit) or
m_axis_rx_tdata[31:24] (receive) of the first DWORD, byte 1 on
s_axis_tx_tdata[23:16] orm_axis_rx_tdata[23:16], and so forth. The Header
section of the packet consists of either three or four DWORDs, determined by the TLP
format and type as described in section 2.2 of the PCI Express Base Specification.

AXI Bit [127:96] [95:64] [63:32] [31:0]

AXI Byte +15 | +14 | +13 | +12 +11 | +10 | 49 | +8 +7] 46 | +5 | +4 +3 | +2 | +1 +0
PCle Byte +12 | +13 | +14 | +15 +8 | 49 [+10 | +11 +4 | +5 | +6 +7 +0 | +1 +2 +3
Clock 0 Data DW 0 Header DW 2 Header DW 1 Header DW 0
Clock1 TLP Digest Data DW2 Data DW 1

Figure 3-29: Endpoint Integrated Block Byte Order

Packets sent to the core for transmission must follow the formatting rules for Transaction
Layer Packets (TLPs) as specified in Chapter 2 of the PCI Express Base Specification. The User

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 70
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Application is responsible for ensuring its packets’ validity. The core does not check that a
packet is correctly formed and this can result in transferring a malformed TLP. The exact
fields of a given TLP vary depending on the type of packet being transmitted.

Transmitting Outbound Packets

Basic TLP Transmit Operation

The 7 Series FPGAs Integrated Block for PCI Express core automatically transmits these
types of packets:

Completions to a remote device in response to Configuration Space requests.

Error-message responses to inbound requests that are malformed or unrecognized by
the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be
detected by the User Application, which is responsible for generating the appropriate response.

The User Application is responsible for constructing these types of outbound packets:

Memory, Atomic Ops, and I/O Requests to remote devices.

Completions in response to requests to the User Application, for example, a Memory
Read Request.

When configured as an Endpoint, the 7 Series FPGAs Integrated Block for PCI Express
core notifies the User Application of pending internally generated TLPs that arbitrate for
the transmit datapath by asserting tx_cfg_req (1b). The User Application can choose
to give priority to core-generated TLPs by asserting tx_cfg_gnt (1b) permanently,
without regard to tx_cfg_req. Doing so prevents User-Application-generated TLPs from
being transmitted when a core-generated TLP is pending. Alternatively, the User
Application can reserve priority for a User-Application-generated TLP over
core-generated TLPs, by deasserting tx_cfg_gnt (0b) until the user transaction is
complete. After the user transaction is complete, the User Application can assert
tx_cfg_gnt (1b) for at least one clock cycle to allow the pending core-generated TLP
to be transmitted. Users must not delay asserting tx_cfg_gnt indefinitely, because
this might cause a completion timeout in the Requester. See the PC/ Express Base
Specification for more information on the Completion Timeout Mechanism.

The integrated block does not do any filtering on the Base/Limit registers (Root Port
only). The user is responsible for determining if filtering is required. These registers can
be read out of the Type 1 Configuration Header space via the Configuration interface
(see Design with Configuration Space Registers and Configuration Interface, page 109).

Table 2-9, page 20 defines the transmit User Application signals. To transmit a TLP, the User
Application must perform this sequence of events on the transmit AXI4-Stream interface:

1. The User Application logic asserts s_axis_tx_tvalid, and presents the first TLP

Double-Quad Word (DQWORD = 128 bits) on s_axis_tx_tdatal[127:0].If the core

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 71
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

is asserting s_axis_tx_tready, the DQWORD is accepted immediately; otherwise,
the User Application must keep the DQWORD presented until the core asserts
Ss_axis_tx_tready.

2. The User Application asserts s_axis_tx_tvalid and presents the remainder of the
TLP DQWORDs on s_axis_tx_tdata[127:0] for subsequent clock cycles (for which
the core asserts s_axis_tx_tready).

3. The User Application asserts s_axis_tx_tvalid and s_axis_tx_tlast together
with the last DQWORD data. The user must ensure that the strobe field is selected for
the final data cycle to create a packet of length equivalent to the length field in the
packet header. For more information on the s_axis_tx_tkeep[15:0] signaling, see
Table 3-2 and Table 3-3.

4. At the next clock cycle, the User Application deasserts s_axis_tx_tvalid to signal
the end of valid transfers on s_axis_tx_tdatal[127:0].

This section uses the notation Hn and Dn to denote Header QWn and Data QWn,
respectively. Table 3-2 lists the possible single-cycle packet signaling where
s_axis_tx_tlast is asserted in the same cycle.

Table 3-2: TX: EOF Scenarios, Single Cycle

s_axis_tx_tdata[127:0]

H3 H2 H1 HO

-- H2 H1 HO

DO H2 H1 HO

s_axis_tx_tlast

1

1

1

s_axis_tx_tkeep[15:0]

OxFFFF

0xOFFF

OxFFFF

Table 3-3 lists the possible signaling for ending a multicycle packet. If a packet ends in the
lower QW of the data bus, the next packet cannot start in the upper QW of that beat. All
packets must start in the lowest DW of the data bus in a new beat. The
s_axis_tx_tkeep[15:0] signal indicates which DWORD of the data bus contains EOF.

Table 3-3: TX: EOF Scenarios, Multicycle

s_axis_tx_tdata[127:0]

D3 D2 D1 DO

--D2D1 DO

----D1 DO

- ----DO

s_axis_tx_tlast

1

1

1

1

s_axis_tx_tkeep[15:0]

OxFFFF

0xOFFF

0x00FF

0x000F

Figure 3-30 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast,
it also places a value of 0x0FFF on s_axis_tx_tkeep[15:0], notifying the core that
only s_axis_tx_tdatal[95:0] contains valid data.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 72

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clock_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready
s_axis_tx_tvalid
s_axis_tx_tlast
s_axis_tx_tstrb[15:0]

(tx_err_fwd) s_axis_tx_tuser[1]

(tx_str) s_axis_tx_tuser[2]

(tx_src_dsc) s_axis_tx_tuser[3]

|
|
I
|
|
I
|
|
|
|
I
|
|
I
I
|
|
|
|
|
|
]
|
:
|
tx_terr_drop |

Figure 3-30: TLP 3-DW Header without Payload

Figure 3-31 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request. When the User Application asserts s_axis_tx_tlast,
it also places a value of OxFFFF on s_axis_tx_tkeep[15:0] notifying the core that
s_axis_tx_tdata[127:0] contains valid data and the EOF occurs in the upper-most
DW.

user_clock_out

s_axis_tx_tdata[127:0]

HzHH H,

s_axis_tx_tvalid

|

|

I

I

|

|
s_axis_tx_tready |
|

|

|

I

s_axis_tx_tlast :
I

s_axis_tx_tstrb[15:0] :

I
(tx_err_fwd) s_axis_tx_tuser{1] : :
I I
(tx_str) s_axis_tx_tuser[2] : :
I
I

I
(tx_src_dsc) s_axis_tx_tuser[3] :

Figure 3-31: TLP with 4-DW Header without Payload

Figure 3-32 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the User Application asserts
s_axis_tx_tlast, it also puts a value of 0x0FFF on s_axis_tx_tkeep[15:0]
notifying the core that s_axis_tx_tdata[95:0] contains valid data and the EOF occurs
in DWORD 2.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 73
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

DgHH,H, X D,D4D,D, X --D;D¢Ds -

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

FFFFh X OFFFh -

s_axis_tx_tstrb[15:0]

(tx_err_fwd)s_axis_tx_tuser[1]

(tx_str)s_axis_tx_tuser[2]

(tx_src_dsc)s_axis_tx_tuser{3]

=
—

|
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
tx_terr_drop |

Figure 3-32: TLP with 3-DW Header with Payload

Figure 3-33 illustrates a 4-DW TLP header with a data payload. When the User Application
asserts s_axis_tx_tlast, it also places a value of 0x00FF on
s_axis_tx_tkeep[15:0], notifying the core that only s_axis_tx_tdatal[63:0]
contains valid data.

I |
user_clock_out : | | | !

|
I
s_axis_tx_tdata[127:0] :- HgH,H H, X D,D,D,D,

s_axis_tx_tready

I I
| |
| |
| |
s_axis_tx_tvalid | | ,
I
| |
|

s_axis_tx_tlast |

|
s_axis_tx_tstrb[15:0] :- FFFFh

I T
(terr_fwd) s_axis_tx_tuser[1] : :
I I
(str) s_axis_tx_tuser[2] : :
I
I

|
(src_dsc) s_axis_tx_tuser[3] :

.—~c~_~C~A_C~r """t A/~

Figure 3-33: TLP with 4-DW Header with Payload

Presenting Back-to-Back Transactions on the Transmit Interface

The User Application can present back-to-back TLPs on the transmit AXI4-Stream interface
to maximize bandwidth utilization. Figure 3-34 illustrates back-to-back TLPs presented on
the transmit interface, with the restriction that all TLPs must start in the lowest DW of the
data bus [31:0]. The User Application keeps s_axis_tx_tvalid asserted and presents a
new TLP on the next clock cycle after asserting s_axis_tx_tlast for the previous TLP.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 74
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out

B) o0 (e | —

JI\

s_axis_tx_tdata[127:0]

TLP1

s_axis_tx_tvalid

|
|
[\

Figure 3-34: Back-to-Back Transaction on the Transmit Interface

s_axis_tx_tlast

—
_________%4_
N

|
|
I
|
|
|
|
|
|
s_axis_tx_tready |
|
|
|
|
|
|
|
|
|

s_axis_tx_tstrb[15:0]

Source Throttling on the Transmit Datapath

The AXI4-Stream interface lets the User Application throttle back if it has no data to present
on s_axis_tx_tdata[127:0]. When this condition occurs, the User Application
deasserts s_axis_tx_tvalid, which instructs the core AXI4-Stream interface to
disregard data presented on s_axis_tx_tdata[127:0]. Figure 3-35 illustrates the
source throttling mechanism, where the User Application does not have data to present
every clock cycle, and therefore must deassert s_axis_tx_tvalid during these cycles.

user_clock_out : | | | | | | |

I
s_axis_tx_tdata[127:0] I- HzH,H H, X D,D,D,D, X D,D,DsD, XDanDgDa-

s_axis_tx_tready

s_axis_tx_tvalid

;

s_axis_tx_tlast | |

| I I T
s_axis_tx_tstrb[15:0] :- FFFFh

Figure 3-35: Source Throttling on the Transmit Datapath

Destination Throttling of the Transmit Datapath

The core AXI4-Stream interface throttles the transmit User Application if there is no space
left for a new TLP in its transmit buffer pool. This can occur if the link partner is not
processing incoming packets at a rate equal to or greater than the rate at which the User
Application is presenting TLPs. Figure 3-36 illustrates the deassertion of
s_axis_tx_tready to throttle the User Application when the core's internal transmit
buffers are full. If the core needs to throttle the User Application, it does so after the current
packet has completed. If another packet starts immediately after the current packet, the
throttle occurs immediately after s_axis_tx_tlast.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 75
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out

B o o) e [

s_axis_tx_tdata[127:0]

Y
| | |
| | |
Il Il Il Il
s_axis_tx_tstrb[15:0] - FFFFh 00FFh FFFF! 000Fh -
I \ o) v

_buf_av | oon o) o o | oon

Figure 3-36: Destination Throttling of the Endpoint Transmit Interface

Y
TLP 2

s_axis_tx_tvalid

s_axis_tx_tlast

=
__________-U<_
N

|
|
[
|
|
|
|
|
|
s_axis_tx_tready |
1
|
|
|
|
|
I
|
|

If the core transmit AXI4-Stream interface accepts the start of a TLP by asserting
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the
value contained in the Max_Payload_Size field of the PCI Express Device Capability Register
(offset 04H). To stay compliant with the PCI Express Base Specification [Ref 2], you should
not violate the Max_Payload_Size field of the PCI Express Device Control Register (offset
08H). The core transmit AXI4-Stream interface deasserts s_axis_tx_tready only under
these conditions:

« After it has accepted the TLP completely and has no buffer space available for a new
TLP.

« When the core is transmitting an internally generated TLP (Completion TLP because of
a Configuration Read or Write, error Message TLP or error response as requested by
the User Application on the cfg_err interface), after it has been granted use of the
transmit datapath by the User Application, by assertion of tx_cfg_gnt, the core
subsequently asserts s_axis_tx_tready after transmitting the internally generated
TLP.

« When the Power State field in the Power Management Control/Status Register (offset
0x4) of the PCI Power Management Capability Structure is changed to a non-DO state,
any ongoing TLP is accepted completely and s_axis_tx_tready is subsequently
deasserted, disallowing the User Application from initiating any new transactions for
the duration that the core is in the non-D0 power state.

On deassertion of s_axis_tx_tready by the core, the User Application needs to hold all
control and data signals until the core asserts s_axis_tx_tready.

Discontinuing Transmission of Transaction by Source

The core AXI4-Stream interface lets the User Application terminate transmission of a TLP by
asserting (tx_src_dsc) s_axis_tx_tuser[3].Both s_axis_tx_tvalid and
s_axis_tx_tready must be asserted together with tx_src_dsc for the TLP to be
discontinued. The signal tx_src_dsc must not be asserted at the beginning of a TLP. It can

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 76
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

be asserted on any cycle after the first beat of a new TLP up to and including the assertion
of s_axis_tx_tlast. Asserting tx_src_dsc has no effect if no TLP transaction is in
progress on the transmit interface. Figure 3-37 illustrates the User Application
discontinuing a packet using tx_src_dsc. Asserting s_axis_tx_tlast together with
tx_src_dsc is optional.

If streaming mode is not used, (tx_str) s_axis_tx_tuser[2] = Ob, and the packet is
discontinued, then the packet is discarded before being transmitted on the serial link. If
streaming mode is used (tx_str = 1b), the packet is terminated with the EDB symbol on
the serial link.

user_clock_out: | I | I | I | I | I |

I
H,H, X DoH, X DD, X D,D,

s_axis_tx_tdata[63:0] ! .
I
|
|
T
| \
!
, | \
|
=

I
s_axis_tx_tready |
|

I

|

|
| |

s_axis_tx_tvalid | | ,

I

|

|

|

|

I I I
I I I
I I I
T T T
I I I
I I I
. I I I I
s_axis_tx_tlast | | |
L L L

}
s_axis_tx_tstrb[7:0] | FFh
|

R

(tx_src_dsc) s_axis_tx_tuser[3] :
Figure 3-37: Source Driven Transaction Discontinue on the Transmit Interface

Discarding of Transaction by Destination
The core transmit AXI4-Stream interface discards a TLP for three reasons:

» The PCI Express Link goes down.

« Presented TLP violates the Max_Payload_Size field of the Device Capability Register
(offset 04H) for PCI Express. It is the user’'s responsibility to not violate the
Max_Payload_Size field of the Device Control Register (offset 08H).

 (tx_str) s_axis_tx_tuser([2] is asserted and data is not presented on
consecutive clock cycles, that is, s_axis_tx_tvalid is deasserted in the middle of a
TLP transfer.

When any of these occur, the transmit AXI4-Stream interface continues to accept the
remainder of the presented TLP and asserts tx_err_drop no later than the third clock
cycle following the EOF of the discarded TLP. Figure 3-38 illustrates the core signaling that
a packet was discarded using tx_err_drop.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 77
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

user_clk_out

s_axis_tx_tdata[127:0]

s_axis_tx_tready
s_axis_tx_tvalid
s_axis_tx_tlast

tx_terr_drop :

Pac

The

Chapter 3: Designing with the Core

| |
I S SR S S S S

I\ J|

|

|
[\

]

Figure 3-38: Discarding of Transaction by Destination on the Transmit Interface
ket Data Poisoning on the Transmit AXI4-Stream Interface

User Application uses either of these two mechanisms to mark the data payload of a

transmitted TLP as poisoned:

Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to be
poisoned when the first DWORD of the header is presented to the core on the
AXI4-Stream interface.

Assert (tx_err_fwd) s_axis_tx_tuser[1] for at least one valid data transfer
cycle any time during the packet transmission, as shown in Figure 3-39. This causes the
core to set EP = 1 in the TLP header when it transmits the packet onto the PCI Express
fabric. This mechanism can be used if the User Application does not know whether a
packet could be poisoned at the start of packet transmission. Use of tx_err_fwd is
not supported for packets when (tx_str) s_axis_tx_tuser[2] is asserted
(streamed transmit packets). In streaming mode, users can optionally discontinue the
packet if it becomes corrupted. See Discontinuing Transmission of Transaction by
Source, page 56 for details on discontinuing packets.

HgHoH,H, X D3D,D;D, X D;D¢DsD, X --=-DgDg -

user_clock_out

s_axis_tx_tdata[127:0]

I
|
|
T
s_axis_tx_tvalid |
|
|
|

[L

s_axis_tx_tlast

|
|
I
I
|
|
s_axis_tx_tready |
|
|
|
I
|
|
|

s_axis_tx_tstrb[15:0] :
|
(tx_err_fwd) s_axis_tx_tuser[1] :

-
1
-
-
>
—
o
o
m
m
>

—
_
-:(I

Figure 3-39: Packet Data Poisoning on the Transmit Interface

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 78

PGO054 Octo

ber 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Streaming Mode for Transactions on the Transmit Interface

The 7 Series FPGAs Integrated Block for PCI Express core allows the User Application to
enable Streaming (cut-through) mode for transmission of a TLP, when possible, to reduce
latency of operation. To enable this feature, the User Application must assert (tx_str)
s_axis_tx_tuser[2] for the entire duration of the transmitted TLP. In addition, the User
Application must present valid frames on every clock cycle until the final cycle of the TLP. In
other words, the User Application must not deassert s_axis_tx_tvalid for the duration
of the presented TLP. Source throttling of the transaction while in streaming mode of
operation causes the transaction to be dropped (tx_err_drop is asserted) and a nullified
TLP to be signaled on the PCI Express link. Figure 3-40 illustrates the streaming mode of
operation, where the first TLP is streamed and the second TLP is dropped because of source
throttling.

gepECI)) B T R) B |

1

s_axis_tx_tready

s_axis_tx_tvalid | | ’
I

s_axis_tx_tlast :

— N/ §<
[|| S Ry R

(tx_str) s_axis_tx_tuser[2] :
I

]
I
|
T
I
l
I
I
I
I
I
Il
I
I
I
tx_terr_drop : :

L m

§ §

Figure 3-40: Streaming Mode on the Transmit Interface

Using ECRC Generation (128-Bit Interface)

The integrated block supports automatic ECRC generation. To enable this feature, the User
Application must assert (tx_ecrc_gen) s_axis_tx_tuser[0] at the beginning of a TLP on the
transmit AXI4-Stream interface. This signal can be asserted through the duration of the
packet, if desired. If the outgoing TLP does not already have a digest, the core generates
and appends one and sets the TD bit. There is a single-clock cycle deassertion of
s_axis_tx_tready at the end of packet to allow for insertion of the digest. Figure 3-41
illustrates ECRC generation operation.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 79
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out : | | | | | | | |

[
s s oaarzro) [e | o0 i o

s_axis_tx_tready

s_axis_tx_tvalid | | ’
|

s_axis_tx_tlast :

|
s_axis_tx_tstrb[15:0] :- FFFFh

| | | - < | |
(tx_ecrc_gen) s_axis_tx_tuser[0] : | : | : : \ | |

e
o
]
]
|
&
S
]
]
T
o]
(a g
o
S}
o
|
far

Figure 3-41: ECRC Generation Waveforms (128-Bit Interface)

Receiving Inbound Packets
Basic TLP Receive Operation

Table 2-10, page 22 defines the receive AXI4-Stream interface signals. This sequence of
events must occur on the receive AXI4-Stream interface for the Endpoint core to present a
TLP to the User Application logic:

1. When the User Application is ready to receive data, it asserts m_axis_rx_tready.

2. When the core is ready to transfer data, the core asserts (rx_is_sof[4])
m_axis_rx_tuser[14] and presents the first complete TLP DQWORD on
m_axis_rx_tdata[127:0].

3. The core then deasserts (rx_is_sof[4]) m_axis_rx_tuser[14], keeps m_axis_rx_tvalid
asserted, and presents TLP DQWORDs on m_axis_rx_tdata[127:0] on subsequent clock
cycles (provided the User Application logic asserts m_axis_rx_tready). Signal
(rx_is_eof[4]) m_axis_rx_tuser[21] is asserted to signal the end of a TLP.

4. If no further TLPs are available at the next clock cycle, the core deasserts
m_axis_rx_tvalid to signal the end of valid transfers on m_axis_rx_tdata[127:0].

Note: The User Application should ignore any assertions of rx_is_sof, rx_is_eof, and m_axis_rx_tdata
unless m_axis_rx_tvalid is concurrently asserted. Signal m_axis_rx_tvalid never deasserts mid-packet.

Signal (rx_is_sof[4:0]) m_axis_rx_tuser[14:0] indicates whether or not a new packet has been
started in the data stream, and if so, where the first byte of the new packet is located.
Because new packets are at a minimum of three DWORDs in length for PCI Express, there is
always, at most, one new packet start for a given clock cycle in the 128-bit interface.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 80
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-4: rx_is_sof Signal Description

Bit Description

Binary encoded byte location of SOF: 4'b0000 = byte 0, 4'b1111 =

rx_is_sof[3:0] byte 15

Assertion indicates a new packet has been started in the current RX

rx_is_sof[4] data

The rx_is_sof[2:0] signal is always deasserted for the 128-bit interface; users can decode
rx_is_sof[3:2] to determine in which DWORD the EOF occurs.

e rx_is_sof = 5'b10000 - SOF located at byte 0 (DWORD 0)
e rx_is_sof = 5'11000 - OF located at byte 8 (DWORD 2)

« rx_is_sof = 5'b0xXxXxXX - SOF not present
Signal (rx_is_eof[4:0]) m_axis_rx_tuser[21:17] indicates whether or not a current packet is
ending in the data stream, and if so, where the last byte of the current packet is located.

Because packets are at a minimum of three DWORDs in length for PCI Express, there is
always, at most, one packet ending for a given clock cycle in the 128-bit interface.

Table 3-5: rx_is_eof Signal Description

Bit Description

Binary encoded byte location of EOF: 4'b0000 = byte 0, 4'b1111 =

rx_is_eof[3:0] byte 15

rx_is_eof[4] | Assertion indicates a packet is ending in the current RX data.

The rx_is_eof[1:0] signal is always asserted for the 128-bit interface; users can decode
rx_is_eof[3:2] to determine in which DWORD the EOF occurs. These rx_is_eof values are valid
for PCI Express:

e rx_is_eof = 5'b10011 - EOF located at byte 3 (DWORD 0)

« rx_is_eof =5'b10111 - EOF located at byte 7 (DWORD 1)

e rx_is_eof = 5'b11011 - EOF located at byte 11 (DWORD 2)

e rx_is_eof =5'b11111 - EOF located at byte 15 (DWORD 3)

« rx_is_eof = 5'b0XXXX - EOF not present

Table 3-6 through Table 3-9 use the notation Hn and Dn to denote Header DWORD n and

Data DWORD n, respectively. Table 3-6 list the signaling for all the valid cases where a
packet can start and end within a single beat (single-cycle TLP).

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 81
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-6: Single-Cycle SOF and EOF Scenarios (Header and Header with Data)

m_axis_rx_tdata[127:0]

H3 H2 H1 HO --H2 H1 HO DO H2 H1 HO
rx_is_sof[4] 1b 1b 1b
rx_is_sof[3:0] 0000b 0000b 0000b
rx_is_eof[4] 1b 1b 1b
rx_is_eof[3:0] 1111b 1011b 1111b

Table 3-7 lists the signaling for all multicycle, non-straddled TLP SOF scenarios.

Table 3-7: Multicycle, Non-Straddled SOF Scenarios
m_axis_rx_tdata[127:0]

H3 H2 H1 HoY) DO H2 H1 Ho® H1 HO -- --(3)
rx_is_sof[4] 1b 1b 1b
rx_is_sof[3:0] 0000b 0000b 1000b
rx_is_eof[4] 0b 0b 0b
rx_is_eof[3:0] xxxxb xxxxb xxxxb

Notes:

1. Data begins on the next clock cycle.
2. Data continues on the next clock cycle.

3. Remainder of header and possible data on the next clock cycle.

Table 3-8 lists the possible signaling for ending a multicycle packet. If a packet ends in the
lower QWORD of the data bus, the next packet can start in the upper QWORD of that beat
(see Straddle cases, Table 3-9). rx_is_eof[3:2] indicates which DW the EOF occurs

Table 3-8: Receive - EOF Scenarios (Data)
m_axis_rx_tdata[127:0]

D3 D2 D1 DO --D2 D1 DO ----D1DO ------DO0
rx_is_sof[4] 0b 0b 0b 0b
rx_is_sof[3:0] 0000b 0000b 0000b 0000b
rx_is_eof[4] 1b 1b 1b 1b
rx_is_eof[3:0] 1111b 1011b 0111b 0011b

Table 3-9 lists the possible signaling for a straddled data transfer beat. A straddled data

transfer beat occurs when one packet ends in the lower QWORD and a new packet starts in

the upper QWORD of the same cycle. Straddled data transfers only occur in the receive

direction.

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

82

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-9: Receive - Straddle Cases SOF and EOF

m_axis_rx_tdata[127:0]

H1 HO Dn Dn-1 H1 HO -- Dn
rx_is_sof[4] 1b 1b
rx_is_sof[3:0] 1000b 1000b
rx_is_eof[4] 1b 1b
rx_is_eof[3:0] 0111b 0011b

Figure 3-42 shows a 3-DWORD TLP header without a data payload; an example is a 32-bit
addressable Memory Read request. When the core asserts rx_is_eof[4], it also places a value
of 1011b on rx_is_eof[3:0], notifying the user that EOF occurs on byte 11 (DWORD 2) and
only m_axis_rx_tdata[95:0] contains valid data.

I
user_clk_out: | | | | |

m_axis_rx_tdata[127:0] --H,H,H,

[
|
|
i | T
m_axis_rx_tready | |
| |
| |
|
I

I
|
|
’_ T \
m_axis_rx_tvalid | |
|
|
|

(rx_err_fwd)m_axis_rx_tuser[1] : :

|
(rx_bar_hit[7:0])m_axis_rx_tuser[9:2] :‘:_

!
(rx_is_sof[4:0])m_axis_rx_tuser[14:10] : 10000b
I [T

| | |
| |SOFH0|

I
(rx_is_eof[4:0])m_axis_rx_tuser[21:17] I
|

1
|EOF H, |

|
|
|
|
rx_np_ok

Figure 3-42: TLP 3-DWORD Header without Payload

Figure 3-43 shows a 4-DWORD TLP header without a data payload. When the core asserts
(rx_is_eof[4]) m_axis_rx_tuser[21], it also places a value of 1111b on (rx_is_eof[3:0])
m_axis_rx_tuser[20:17], notifying the user that the EOF occurs on byte 15 (DWORD 3) and
m_axis_rx_tdata[127:0] contains valid data.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 83
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd) m_axis_rx_tuser[1]

(rx_bar_hit[7:0]) m_axis_rx_tuser{9:2]

R P——

! |
IH_jI
| SOFH, I
| |

11111b

| EOFH, |

Figure 3-43: TLP 4-DWORD Header without Payload

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17]

Figure 3-44 shows a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request. When the core asserts (rx_is_eof[4])
m_axis_rx_tuser[21], it also places a value of 1111b on (rx_is_eof[3:0])
m_axis_rx_tuser[20:17], notifying the user that EOF occurs on byte 15 (DWORD 3) and
m_axis_rx_tdata[127:0] contains valid data.

user_clock_out : | | | |

|
m_axis_rx_tdata[127:0] :- DoH,HH, X D,D,D,D, -
I I
| |
| |
T T
| | \
| |
(rx_err_fwd) m_axis_rx_tuser[1] | : :
1 1

I
|
|
_
|
|
|
|
(rx_bar_hit[7:0]) m_axis_rx_tuser{9:2] :- -
| L L
(rx_is_sof[4:0]) m_axis_rx_tuser[14:10] :- 10000b X 00000b -

[N)| |

| | |
| SOF H, | |

I
|
|
I
(rx_is_eof[4:0]) m_axis_rx_tuser[21:17] I- 00000b X 11111b -
|
|
|

m_axis_rx_tready

I
|
|
.]
m_axis_rx_tvalid |
|
|

I [N —

[| EOFD, !
| | | |

Figure 3-44: TLP 3-DWORD Header with Payload

Figure 3-45 shows a 4-DWORD TLP header with a data payload; an example is a 64-bit
addressable Memory Write request. When the core asserts (rx_is_eof[4])

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 84
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

m_axis_rx_tuser[21], it also places a value of 0011b on (rx_is_eof[3:0])
m_axis_rx_tuser[20:17], notifying the user that EOF occurs on byte 3 (DWORD 0) and only
m_axis_rx_tdata[31:0] contains valid data.

DN

user_clock_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

(rx_err_fwd)m_axis_rx_tuser[1]

00000110b -

(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]

(rx_is_sof[4:0])m_axis_rx_tuser[14:10] 10000b X 00000b
] | |
SOFH, | | |
(rx_is_eof[4:0])m_axis_rx_tuser[21:17] 00000b X 10011b
| N
EOF D,

R I

Figure 3-45: TLP 4-DWORD Header with Payload

Throttling the Datapath on the Receive Interface

The User Application can stall the transfer of data from the core at any time by deasserting
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in progress and
if a TLP becomes available, the core asserts m_axis_rx_tvalid and (rx_is_sof[4])
m_axis_rx_tuser[14] and presents the first TLP DQWORD on m_axis_rx_tdata[127:0]. The
core remains in this state until the user asserts m_axis_rx_tready to signal the acceptance of
the data presented on m_axis_rx_tdata[127:0]. At that point, the core presents subsequent
TLP DQWORDs as long as m_axis_rx_tready remains asserted. If the user deasserts
m_axis_rx_tready during the middle of a transfer, the core stalls the transfer of data until the
user asserts m_axis_rx_tready again. There is no limit to the number of cycles the user can
keep m_axis_rx_tready deasserted. The core pauses until the user is again ready to receive
TLPs.

Figure 3-46 illustrates the core asserting m_axis_rx_tvalid and (rx_is_sof[4])
m_axis_rx_tuser[14] along with presenting data on m_axis_rx_tdata[127:0]. The User
Application logic inserts wait states by deasserting m_axis_rx_tready. The core does not
present the next TLP DQWORD until it detects m_axis_rx_tready assertion. The User
Application logic can assert or deassert m_axis_rx_tready as required to balance receipt of
new TLP transfers with the rate of TLP data processing inside the application logic.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 85
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clock_out

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

|

|

I

|

|

I

|

|

| |

| | ’

I
(rx_is_sof[4:0])m_axis_rx_tuser[14:10] :-

|

|

|

|

|

|

I

|

|

[
|
|
10000b X 00000b

AN

N T g T T T T
| Y | | | | |
I SOF H, I I I I I

1 1 1 1 1 1

(rx_is_eof[4:0])m_axis_rx_tuser[21:17] - 00000b X 10111b
| | | | | I\]
| | | | | ' toFp. !
9

Figure 3-46: User Application Throttling Receive TLP
Receiving Back-to-Back Transactions on the Receive Interface

The User Application logic must be designed to handle presentation of back-to-back TLPs
on the receive AXI4-Stream interface by the core. The core can assert (rx_is_sof[4])
m_axis_rx_tuser[14] for a new TLP at the clock cycle after (rx_is_eof[4]) m_axis_rx_tuser[21]
assertion for the previous TLP. Figure 3-47 illustrates back-to-back TLPs presented on the
receive interface.

user_clk_out : | | | | | | | |
I
m_axis_rx_tdata[127:0] :- DH,H,H, X D,D,D,D, X --D,D¢Dg X DoH,H H, X D,D,D,D, X ------ D, -
| N 1 - 1 N 1 ¥ 1 |
! ! oTer ! ! IoTp2 ! !
| | | | | | | |
. | T T T T T T T
m_axis_rx_tready | | | | | | | |
| | | | | | | |
m_axis_rx_tvalid : : , : : : : : : \
} l l l l l l
(rx_is_sof[4:0])m_axis_rx_tuser[14:10] : 00000b X 10000b X 00000b X 10000b X 00000b
| T T T T T T T
| (o' | sl | |
I I SOFH, | I | SOFH, I I
(rx_is_eof[4:0])m_axis_rx_tuser[21:17] : 00000b X 11011b X 00000b X 10011b X 00000b
| | | — | —
' ' ' ' EOFD, ! ' ! EOFD; !

| | | |
Figure 3-47: Receive Back-to-Back Transactions

If the User Application cannot accept back-to-back packets, it can stall the transfer of the
TLP by deasserting m_axis_rx_tready as discussed in the Throttling the Datapath on the
Receive Interface section. Figure 3-48 shows an example of using m_axis_rx_tready to pause
the acceptance of the second TLP.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 86
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

I
user_clk_out ! | | | | | | | | | | | | |
m_axis_rx_tdata[127:0] -DOH2H1Hx34D3D2DX HgH,H H, XD D,D D_

N | N

Y
TLP1 [

: TLP2
|

1

m_axis_rx_tready

m_axis_rx_tvalid | | , \
I

|
|
|
|
| |
| |
| T T

| |

l l l
(rx_is_sof[4:0])m_axis_rx_tuser[14:10] : 00000b X 10000b X 00000 X 10000b XOOOOOb X 00000!

T T

| |

! |

|
|
|
|
|
| |
|
b

[|
| |
| SOF H, |

| |
| | SOF H,

(rx_is_eof[4:0])m_axis_rx_tuser[21:17] : 00000b X 11111b X 00000b X 11111b X 00000I
| | 1 | e —

|

|

| | | | | |
| IEOFD4I IEOFD3I

Figure 3-48: User Application Throttling Back-to-Back TLPs

Receiving Straddled Packets on the Receive AXI4-Stream Interface

The User Application logic must be designed to handle presentation of straddled TLPs on
the receive AXI4-Stream interface by the core. The core can assert (rx_is_sof[4])
m_axis_rx_tuser[14] for a new TLP on the same clock cycle as (rx_is_eof[4])
m_axis_rx_tuser[21] for the previous TLP, when the previous TLP ends in the lower QWORD.
Figure 3-49 illustrates straddled TLPs presented on the receive interface.

user_clk_out : | | | | |

I
m_axis_rx_tdata[127:0] I- DoH,H H, X HHyeD; | - H, -

I I I I
m_axis_rx_tready | | | |
| | | |
| T T T
| , | | | \
| | |
- 10000b 11000b X 00000b -
%(_/

m_axis_rx_tvalid

(rx_is_sof[4:0]) m_axis_rx_tuser[14:10]

|
| SOF H, | SOF H,

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17] - 00011b 10011b X 10011b -
|]
| | |
, EOFD, | EOFH,

Figure 3-49: Receive Straddled Transactions

In Figure 3-49, the first packet is a 3-DWORD packet with 64 bits of data and the second
packet is a 3-DWORD packet that begins on the lower QWORD portion of the bus. In the
figure, assertion of (rx_is_eof[4]) m_axis_rx_tuser[21] and(rx_is_eof[3:0])
m_axis_rx_tuser[20:17] = 0011b indicates that the EOF of the previous TLP occurs in bits
[31:0].

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 87
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Packet Re-ordering on the Receive AXI4-Stream Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction
ordering rules. The transaction ordering rules allow Posted and Completion TLPs to bypass
blocked Non-Posted TLPs.

The 7 Series FPGAs Integrated Block for PCI Express provides two mechanisms for User
Applications to manage their Receiver Non-Posted Buffer space. The first of the two
mechanisms, Receive Non-Posted Throttling, is the use of rx_np_ok to prevent the 7 Series
FPGAs Integrated Block for PCI Express core from presenting more than two Non-Posted
requests after deassertion of the rx_np_ok signal. The second mechanism, Receive Request
for Non-Posted, allows user-controlled Flow Control of the Non-Posted queue, using the
rx_np_req signal.

The Receive Non-Posted Throttling mechanism assumes that the User Application normally
has space in its receiver for non-Posted TLPs and the User Application would throttle the
core specifically for Non-Posted requests. The Receive Request for Non-Posted mechanism
assumes that the User Application requests the core to present a Non-Posted TLP as and
when it has space in its receiver. The two mechanisms are mutually exclusive, and only one
can be active for a design. This option must be selected while generating and customizing
the core. When the Receive Non-Posted Request option is selected in the Advanced
Settings, the Receive Request for Non-Posted mechanism is enabled and any assertion/
deassertion of rx_np_ok is ignored and vice-versa. The two mechanisms are described in
further detail in the next subsections.

» Receive Non-Posted Throttling (Receive Non-Posted Request Disabled)

If the User Application can receive Posted and Completion Transactions from the core,
but is not ready to accept Non-Posted Transactions, the User Application can deassert
rx_np_ok, as shown in Figure 3-50. The User Application must deassert rx_np_ok at least
one clock cycle before (rx_is_eof[4]) m_axis_rx_tuser[21] of the second-to-last
Non-Posted TLP the user can accept. When rx_np_ok is deasserted, received Posted and
Completion Transactions pass Non-Posted Transactions. After the User Application is
ready to accept Non-Posted Transactions, it must reassert rx_np_ok. Previously
bypassed Non-Posted Transactions are presented to the User Application before other
received TLPs.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 88
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tuser[14:0]

user_clk_out

H3H2H1HO X H3H2H1H0 X D0H2H1H0
T T N
[M ﬁ
Npn-Posted TLR1

T T /|\
| NonPosfedTLP2 | | Posted/Cpl TLP3
| | | | t
\ | | / | \ | | | / |
: : | : ' : |
;]
|
1

J

IR A _

10000b X / 10000b X 10000b -

v /) —
| SOFH, ! | | / SOF H, | | SOFH, !

| | | | |
(rx_is_eof[4:0]) - 11111b 11111b 11111b -
m_axis_rx_tuser[21:17] X / X

;
|
[
|
|
|
|
I
|
|
l
rx_is_sof[4:0]) :
I
|
|
|
|
[
|
|
|
|
|
|

N V)

%(_J
EOF D,

N 1
|
|
|

T T |
| M |

| EOFH, | EO?IE Hy
T T | |

| | \ |

I I

\
|
|
|
|
|
|
N I I N I | I |
|
[
|
|
|
|
I

rx_np_ok

Figure 3-50: Receive Interface Non-Posted Throttling

Packet re-ordering allows the User Application to optimize the rate at which
Non-Posted TLPs are processed, while continuing to receive and process Posted and
Completion TLPs in a non-blocking fashion. The rx_np_ok signaling restrictions require
that the User Application be able to receive and buffer at least three Non-Posted TLPs.
This algorithm describes the process of managing the Non-Posted TLP buffers:

Consider that Non-Posted Buffers_Available denotes the size of Non-Posted buffer
space available to User Application. The size of the Non-Posted buffer space is greater
than three Non-Posted TLPs. Non-Posted _Buffers_Available is decremented when a
Non-Posted TLP is accepted for processing from the core, and is incremented when the
Non-Posted TLP is drained for processing by the User Application.

For every clock cycle do {
if (Non-Posted_Buffers_Available <= 3) {
if (vValid transaction Start-of-Frame accepted by user application) {
Extract TLP Format and Type from the 1lst TLP DW
if (TLP type == Non-Posted) {
Deassert rx_np_ok on the following clock cycle
- or -
Other optional user policies to stall NP transactions
} else {
}
}
} else { // Non-Posted_Buffers_Available > 3
Assert rx_np_ok on the following clock cycle.
}
}

Receive Request for Non-Posted (Receive Non-Posted Request Enabled)

The 7 Series FPGAs Integrated Block for PCI Express allows the User Application to

control Flow Control Credit return for the Non-Posted queue using the rx_np_req signal.
When the User Application has space in its receiver to receive a Non-Posted Transaction,
it must assert rx_np_req for one clock cycle for every Non-Posted Transaction that the

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 89
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

User Application can accept. This enables the integrated block to present one
Non-Posted transaction from its receiver queues to the Core Transaction interface, as
shown in Figure 3-51 and return one Non-Posted Credit to the connected Link partner.

user_clk_out|||||||||||||||||||

I
|
|
[

m_axis_rx_tdata[127:0] :

|
|
|
|
|
|
|

1 "H2H1H

| I
: Posted/(:,‘pl TLP

m_axis_rx_tready
I

m_axis_rx_tvalid : | \
I
(rx_is_sof[4:0]) m_axis_rx_tuser[14:10] : 10000b X 000‘)0

| |
ISOF Ho |

|
d 'I1ILP5

| I
d TILP2 I
| |

| |

| |

l l

I I

I I

SOF H, | SOF H, | | SOF H, | SOF Hy |

| |
| |
| |
]]
| |
| |
L L L L
b X 10000b X 10000b X 00Q00b X 00Q00b X 10000b X 10000b .
I |
| |
| |

(rx_is_eof[4:0]) m_axis_rx_tuser[21:17] -00011bX11111bX11011bX00011bX19/111bX09611bX11111bX11011b.

|
|
|
|
|
I
|
|
|
rx_np_req :
I

I I I | N— —
:EOF 4:EOFH2: 2: :EOFHs:EOFHZ:
| | | |

Figure 3-51: Receive Interface Request for Non-Posted Transaction

The 7 Series FPGAs Integrated Block for PCI Express maintains a count of up to
12 Non-Posted Requests from the User Application. In other words, the core remembers
assertions of rx_np_req even if no Non-Posted TLPs are present in the receive buffer and
presents received Non-Posted TLPs to the user, if requests have been previously made
by the User Application. If the core has no outstanding requests from the User

Application and received Non-Posted TLPs are waiting in the receive buffer, received

Posted and Completion Transactions pass the waiting Non-Posted Transactions. After

the user is ready to accept a Non-Posted TLP, asserting rx_np_req for one or more cycles
causes that number of waiting Non-Posted TLPs to be delivered to the user at the next
available TLP boundary. In other words, any Posted or Completion TLP currently on the
user application interface finishes before waiting Non-Posted TLPs are presented to the
user application. If there are no Posted or Completion TLPs being presented to the user
and a Non-Posted TLP is waiting, assertion of rx_np_req causes the Non-Posted TLP to

be presented to the user. TLPs are delivered to the User Application in order except

when the user is throttling Non-Posted TLPs, allowing Posted and Completion TLPs to
pass. When the user starts accepting Non-Posted TLPs again, ordering is still maintained
with any subsequent Posted or Completion TLPs. If the User Application can accept all
Non-Posted Transactions as they are received and does not care about controlling the
Flow Control Credit return for the Non-Posted queue, the user should keep this signal

asserted.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

90

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Packet Data Poisoning and TLP Digest on the Receive AXI4-Stream Interface

To simplify logic within the User Application, the core performs automatic pre-processing
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the received
TLP.

All received TLPs with the Data Poisoning bit in the header set (EP = 1) are presented to the
user. The core asserts the (rx_err_fwd) m_axis_rx_tuser[1] signal for the duration of each
poisoned TLP, as illustrated in Figure 3-52.

user_clk_out : | | | | |

I
m_axis_rx_tdata[127:0]

m_axis_rx_tready

m_axis_rx_tvalid

|
|
I
|
|
|
|
I
(rx_err_fwd)m_axis_rx_tuser[1] : | ’
]
|
|
|
|
|
|
]
|
|

(rx_is_sof[4:0])m_axis_rx_tuser[14:10] 00000b X 10000b X 00000b
T] T T
| | | |
| SOFH, | | |
(rx_is_eof[4:0])m_axis_rx_tuser[21:17] 00000b X 11011b X 00000b
| |]
' ' ! Eorp, !

Figure 3-52: Receive Transaction Data Poisoning

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End
CRC (ECRC). The core performs these operations based on how the user configured the core
during core generation:

« If the Trim TLP Digest option is on, the core removes and discards the ECRC field from
the received TLP and clears the TLP Digest bit in the TLP header.

« If the Trim TLP Digest option is off, the core does not remove the ECRC field from the
received TLP and presents the entire TLP including TLP Digest to the User Application
receiver interface.

See Chapter 4, Customizing and Generating the Core (Vivado™ Design Suite) or Chapter 10,
Customizing and Generating the Core (ISE® Design Suite) for more information about how
to enable the Trim TLP Digest option during core generation.

ECRC Error on the 128-Bit Receive AXI4-Stream Interface

The 7 Series FPGAs Integrated Block for PCI Express core checks the ECRC on incoming
transaction packets, when ECRC checking is enabled in the core. When it detects an ECRC
error in a transaction packet, the core signals this error to the user by simultaneously
asserting m_axis_rx_tuser[0] (rx_ecrc_err) and m_axis_rx_tuser[21:17] (rx_is_eof[4:0]), as
illustrated in Figure 3-53.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 91
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out : | | | | |

I
m_axis_rx_tdata[127:0] I- DoH,H H, X D,D,D,D, X --D,DgD; -
I

| L

m_axis_rx_tready

I
|
|
. . T
m_axis_rx_tvalid |
|
|
|
1

|

I

I

I

I

I

. I
(rx_ecrc_err)m_axis_rx_tuser[0] |
|

I

I

I

I

I

(is_sof)m_axis_rx_tuser[14:10] 00000b X 10000b X 00000b
M : :
| SOFH, | I I
(is_eof)m_axis_rx_tuser[21:17] | 00000b X 11011b X 00000b
| | | [N
| | | | EOF D7 |

Figure 3-53: ECRC Error on 128-Bit Receive AXI4-Stream Interface

Packet Base Address Register Hit on the Receive AXI4-Stream Interface

The core decodes incoming Memory and I/O TLP request addresses to determine which
Base Address Register (BAR) in the core's Type0O configuration space is being targeted, and
indicates the decoded base address on (rx_bar_hit[7:0]) m_axis_rx_tuser[8:2]. For each
received Memory or I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s) are
set to 0. If the received TLP targets a 32-bit Memory or I/O BAR, only one bit is asserted. If
the received TLP targets a 64-bit Memory BAR, two adjacent bits are asserted. If the core
receives a TLP that is not decoded by one of the BARs, then the core drops it without
presenting it to the user, and it automatically generates an Unsupported Request message.
Even if the core is configured for a 64-bit BAR, the system might not always allocate a 64-bit
address, in which case only one rx_bar_hit[7:0] signal is asserted.

Table 3-10 illustrates mapping between rx_bar_hit[7:0] and the BARs, and the
corresponding byte offsets in the core Type0O configuration header.

Table 3-10: rx_bar_hit to Base Address Register Mapping

rx_bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset

0 2 0 10h
1 1 14h
2 4 2 18h
3 5 3 1Cch
4 6 4 20h
5 7 5 24h
6 8 Expansion ROM BAR 30h
7 9 Reserved -

For a Memory or I/O TLP Transaction on the receive interface, rx_bar_hit[7:0] is valid for the
entire TLP, starting with the assertion of (rx_is_sof[4]) m_axis_rx_tuser[14], as shown in

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 92
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Figure 3-54. For straddled data transfer beats, rx_bar_hit[7:0] corresponds to the new
packet (the packet corresponding to rx_is_sof[4). When receiving non-Memory and non-I/O
transactions, rx_bar_hit[7:0] is undefined.

- H3H2H1H0 X D3D2D1DO X D7D6D5D4 X D0H2H1H0 X D4D3D2D1 X D8D7D6D5

I\ J|

user_clk_out

m_axis_rx_tdata[127:0]

Y
TLP1

|
|
I
|
|
|
|
|
) |
m_axis_rx_tready |
|
|

m_axis_rx_tvalid |

! I l |
(rx_iS_SOf[4:0]) | -
m_axis_rx_tuser[14:10] | 10000b I X O(I)OOOb I X 10000b X 00000b
N | J I I

I I I I I I I
| SOFH, | I I SO} Hy I I I

- 00011b X 11111b X 00011b X 11111b

| | I%/_/I | | I%/_/I

| | | | | | | |
| | | EOF D, | | | | EOF Dy

(rx_bar_hit[7:0]) ! X
m_axis_rx_tuser[9:2] | . ooooo10bl . OO(I)1100b

Figure 3-54: BAR Target Determination Using rx_bar_hit

(rx_is_eof[4:0])
m_axis_rx_tuser[21:17]

The (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signal enables received Memory and I/O
transactions to be directed to the appropriate destination apertures within the User
Application. By utilizing rx_bar_hit[7:0], application logic can inspect only the lower order
Memory and I/O address bits within the address aperture to simplify decoding logic.

Packet Transfer Discontinue on the Receive AXI4-Stream Interface

The loss of communication with the link partner is signaled by deassertion of user_Ink_up.
When user_Ink_up is deasserted, it effectively acts as a Hot Reset to the entire core and all
TLPs stored inside the core or being presented to the receive interface are irrecoverably
lost. A TLP in progress on the Receive AXI4-Stream interface is presented to its correct
length, according to the Length field in the TLP header. However, the TLP is corrupt and
should be discarded by the User Application. Figure 3-55 illustrates packet transfer
discontinue scenario.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 93
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

(rx_is_sof[4:0])m_axis_rx_tuser[14:10]

user_clk_out

user_Ink_up

|

) /l
Y
original TLP data was lost |
|
|
|
I
|
|
Il

m_axis_rx_tdata[127:0]

m_axis_rx_tready

|
|
|
|
|
l
m_axis_rx_tvalid :

|
|
|
|
|
|
|
|
Il
10000b X 00000b
(rx_is_eof[4:0])m_axis_rx_tuser[21:17] I- 00000b X 11111b

Figure 3-55: Receive Transaction Discontinue

]

Transaction Processing on the Receive AXI4-Stream Interface

Transaction processing in the 7 Series FPGAs Integrated Block for PCI Express is fully
compliant with the PCI Express Received TLP handling rules, as specified in the PCI Express
Base Specification, rev. 2.1 [Ref 2].

The 7 Series FPGAs Integrated Block for PCI Express performs checks on received
Transaction Layer Packets (TLPs) and passes valid TLPs to the User Application. It handles
erroneous TLPs in the manner indicated in Table 3-11 and Table 3-12. Any errors associated
with a TLP that are presented to the User Application for which the core does not check
must be signaled by the User Application logic using the cfg_err_* interface.

Table 3-11 and Table 3-12 describe the packet disposition implemented in the 7 Series
FPGAs Integrated Block for PCI Express based on received TLP type and condition of core/

TLP error for the Endpoint and Root Port configurations.

Table 3-11: TLP Disposition on the Receive AXI4-Stream Interface: Endpoint

TLP Type Condition of Core or TLP Error Core Response to TLP
Memory Read BAR Miss Unsupported Request
Memory Write Received when in Non-DO PM | | 4R
Atomic Ops State nsupported Request
I/O Read
1/0 Write Neither of the above conditions | TLP presented to User Application
Received by a non-Legacy
PCI Express Endpoint Unsupported Request
BAR Miss Unsupported Request
Memory Read Locked Received when in
Legacy Non-DO0 PM State Unsupported Request
Endpoint
Neither of above N
conditions TLP presented to User Application
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 94

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 3-11:

Chapter 3: Designing with the Core

TLP Disposition on the Receive AXI4-Stream Interface: Endpoint (Cont’d)

TLP Type

Condition of Core or TLP Error

Core Response to TLP

Configuration Read/Write Type 0

Internal Config Space

TLP consumed by the core, to read/write

internal Configuration Space and a CplD/

Cpl is generated

User-Defined Config Space

TLP presented to User Application

Configuration Read/Write Type 1

Received by an Endpoint

Unsupported Request

Completion
Completion Locked

Requester ID Miss

Unexpected Completion

Received when in Non-D0O PM
State

Unexpected Completion

Neither of above conditions

TLP presented to User Application

Set Slot Power Limit

Received by an Endpoint

TLP consumed by the core and used to
program the Captured Slot Power Limit
Scale/Value fields of the Device
Capabilities Register

PM_PME
PME_TO_Ack

Received by an Endpoint

Unsupported Request

PM_Active_State_NAK
PME_Turn_Off

Received by an Endpoint

TLP consumed by the core and used to
control Power Management

Received by a non-Legacy

Ignored

Messages | Unlock Endpoint
Received by a Legacy Endpoint | TLP presented to User Application®
INTX Received by an Endpoint Fatal Error
Error_Fatal
Error Non-Fatal Received by an Endpoint Unsupported Request
Error Correctable
Vendor Defined Type 0O . . o
Vz:dz: DZf;EZd ng: 1 Received by an Endpoint TLP presented to User Application?)
Hot Plug Messages Received by an Endpoint TLP dropped by the core
Notes:

1. The TLP is indicated on the cfg_msg* interface and also appears on the m_axis_rx_* interface.

Table 3-12:

TLP Disposition on the Receive AXI4-Stream Interface: Root Port

TLP Type

Condition of Core or TLP
Error

Core Response to TLP

Memory Read
Memory Write
Atomic Ops
I/O Read

I/O Write

BAR Miss

No BAR Filtering in Root Port configuration:
TLP presented to User Application

Received when in Non-D0 PM
State

Unsupported Request

Neither of the above
conditions

TLP presented to User Application

Memory Read Locked

Received by a Root Port

TLP presented to User Application

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

95

http://www.xilinx.com

& XILINX

Table 3-12:

Chapter 3: Designing with the Core

TLP Disposition on the Receive AXI4-Stream Interface: Root Port (Cont’d)

TLP Type

Condition of Core or TLP

Error

Core Response to TLP

Configuration Read / Write Type 0

Received by a Root Port

Unsupported Request

Configuration Read / Write Type 1

Received by a Root Port

Unsupported Request

Completion
Completion Locked

Received by a Root Port

TLP presented to User Application

Set Slot Power Limit

Received by a Root Port

Unsupported Request

PM_PME
PME_TO_Ack

Received by a Root Port

TLP presented to User Application?

PM_Active_State_ NAK

Received by a Root Port

Unsupported Request

PME_Turn_Off

Received by a Root Port

Fatal Error

Unlock

Received by a Root Port

Fatal Error

Messages | [\Tx

Received by a Root Port

TLP presented to User Application®

Error_Fatal
Error Non-Fatal
Error Correctable

Received by a Root Port

TLP presented to User Application?

Vendor Defined Type 0
Vendor Defined Type 1

Received by a Root Port

TLP presented to User Application?

Hot Plug Messages

Received by a Root Port

TLP dropped by the core

Notes:

1. The TLP is indicated on the cfg_msg* interface and also appears on the m_axis_rx* interface only if enabled in the GUL

Atomic Operations

The 7 Series FPGAs Integrated Block for PCI Express supports both sending and receiving
Atomic operations (Atomic Ops) as defined in the PC/ Express Base Specification v2.1. The

specification defines three TLP types that allow advanced synchronization mechanisms
amongst multiple producers and/or consumers. The integrated block treats Atomic Ops

TLPs as Non-Posted Memory Transactions. The three TLP types are:

+ FetchAdd
+ Swap

« CAS (Compare And Set)

Applications that request Atomic Ops must create the TLP in the User Application and send
via the transmit AXI4-Stream interface. Applications that respond (complete) to Atomic Ops

must receive the TLP from the receive AXI4-Stream interface, create the appropriate

completion TLP in the User Application, and send the resulting completion via the transmit

AXI4-Stream interface.

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

96

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Core Buffering and Flow Control

Maximum Payload Size

TLP size is restricted by the capabilities of both link partners. After the link is trained, the
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This value is
equal to or less than the value advertised by the core's Device Capability register. The
advertised value in the Device Capability register of the Integrated Block core is either 128,
256, 512, or 1024 bytes, depending on the setting in the CORE Generator™ tool (1024 is not
supported for the 8-lane, 5.0 Gb/s 128-bit core). For more information about these
registers, see section 7.8 of the PCI Express Base Specification [Ref 2]. The value of the core’s
Device Control register is provided to the User Application on the cfg_dcommand[15:0]
output. See Design with Configuration Space Registers and Configuration Interface,

page 109 for information about this output.

Transmit Buffers

The Integrated Block for PCI Express transmit AXI4-Stream interface provides tx_buf_av, an
instantaneous indication of the number of Max_Payload_Size buffers available for use in the
transmit buffer pool. Table 3-13 defines the number of transmit buffers available and
maximum supported payload size for a specific core.

Table 3-13: Transmit Buffers Available

Capability Max Performance Level(?)
Payload Size

(Bytes) Good (Minimize Block RAM Usage) High (Maximize Performance)
128 26 32
256 14 29
512 15 30

1024@ 15 31

Notes:

1. Performance level is set through a CORE Generator tool GUI selection.
2. 1024 is not supported for the 8-lane, 5.0 Gb/s, 128-bit core.

Each buffer can hold one maximum sized TLP. A maximum sized TLP is a TLP with a
4-DWORD header plus a data payload equal to the MAX_PAYLOAD_SIZE of the core (as
defined in the Device Capability register) plus a TLP Digest. After the link is trained, the root
complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This value is
equal to or less than the value advertised by the core’s Device Capability register. For more
information about these registers, see section 7.8 of the PCI Express Base Specification. A
TLP is held in the transmit buffer of the core until the link partner acknowledges receipt of
the packet, at which time the buffer is released and a new TLP can be loaded into it by the
User Application.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 97
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

For example, if the Capability Max Payload Size selected for the Endpoint core is 256 bytes,
and the performance level selected is high, there are 29 total transmit buffers. Each of these
buffers can hold at a maximum one 64-bit Memory Write Request (4-DWORD header) plus
256 bytes of data (64 DWORDs) plus TLP Digest (one DWORD) for a total of 69 DWORDs.
This example assumes the root complex sets the MAX_PAYLOAD_SIZE register of the Device
Control register to 256 bytes, which is the maximum capability advertised by this core. For
this reason, at any given time, this core could have 29 of these 69 DWORD TLPs waiting for
transmittal. There is no sharing of buffers among multiple TLPs, so even if user is sending
smaller TLPs such as 32-bit Memory Read request with no TLP Digest totaling three
DWORDs only per TLP, each transmit buffer still holds only one TLP at any time.

The internal transmit buffers are shared between the User Application and the core's
configuration management module (CMM). Because of this, the tx_buf_av bus can fluctuate
even if the User Application is not transmitting packets. The CMM generates completion
TLPs in response to configuration reads or writes, interrupt TLPs at the request of the User
Application, and message TLPs when needed.

The Transmit Buffers Available indication enables the User Application to completely utilize
the PCI transaction ordering feature of the core transmitter. The transaction ordering rules
allow for Posted and Completion TLPs to bypass Non-Posted TLPs. See section 2.4 of the
PCI Express Base Specification [Ref 2] for more information about ordering rules.

The core supports the transaction ordering rules and promotes Posted and Completion
packets ahead of blocked Non-Posted TLPs. Non-Posted TLPs can become blocked if the
link partner is in a state where it momentarily has no Non-Posted receive buffers available,
which it advertises through Flow Control updates. In this case, the core promotes
Completion and Posted TLPs ahead of these blocked Non-Posted TLPs. However, this can
only occur if the Completion or Posted TLP has been loaded into the core by the User
Application. By monitoring the tx_buf_av bus, the User Application can ensure there is at
least one free buffer available for any Completion or Posted TLP. Promotion of Completion
and Posted TLPs only occurs when Non-Posted TLPs are blocked; otherwise packets are sent
on the link in the order they are received from the User Application.

Receiver Flow Control Credits Available

The Integrated Block for PCI Express provides the User Application information about the
state of the receiver buffer pool queues. This information represents the current space
available for the Posted, Non-Posted, and Completion queues.

One Header Credit is equal to either a 3- or 4-DWORD TLP Header and one Data Credit is
equal to 16 bytes of payload data. Table 3-14 provides values on credits available
immediately after user_Ink_up assertion but before the reception of any TLP. If space
available for any of the above categories is exhausted, the corresponding credit available
signals indicate a value of zero. Credits available return to initial values after the receiver has
drained all TLPs.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 98
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-14: Transaction Receiver Credits Available Initial Values

Credit Category Perffg,‘;?nce Capability Maximum Payload Size
128 Byte 256 Byte 512 Byte 1024 Byte
Non-Posted Header Good 1
High
Non-Posted Data Good 1>
High
Posted Header Good 3
High
Posted Data Good 77 77 154 308
High 154 154 308 616
Completion Header Good 36
High
Completion Data Good 77 77 154 308
High 154 154 308 616

The User Application can use the fc_ph[7:0], fc_pd[11:0], fc_nph[7:0], fc_npd[11:0],
fc_cplh[7:0], fc_cpld[11:0], and fc_sel[2:0] signals to efficiently utilize and manage receiver
buffer space available in the core and the core application. For additional information, see
Flow Control Credit Information.

Integrated Block for PCI Express Endpoint cores have a unique requirement where the User
Application must use advanced methods to prevent buffer overflows when requesting
Non-Posted Read Requests from an upstream component. According to the specification, a
PCI Express Endpoint is required to advertise infinite storage credits for Completion
Transactions in its receivers. This means that Endpoints must internally manage Memory
Read Requests transmitted upstream and not overflow the receiver when the corresponding
Completions are received. The User Application transmit logic must use Completion credit
information presented to modulate the rate and size of Memory Read requests, to stay
within the instantaneous Completion space available in the core receiver. For additional
information, see Appendix C, Managing Receive-Buffer Space for Inbound Completions.

Flow Control Credit Information
Using the Flow Control Credit Signals

The integrated block provides the User Application with information about the state of the
Transaction Layer transmit and receive buffer credit pools. This information represents the
current space available, as well as the credit “limit” and “consumed” information for the
Posted, Non-Posted, and Completion pools.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 99
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 2-7, page 18 defines the Flow Control Credit signals. Credit status information is
presented on these signals:

« fc_ph[7:0]

« fc_pd[11:0]

« fc_nph[7:0]

« fc_npd[11:0]
« fc_cplh[7:0]
« fc_cpld[11:0]

Collectively, these signals are referred to as fc_*.

The fc_* signals provide information about each of the six credit pools defined in the
PCI Express Base Specification: Header and Data Credits for Each of Posted, Non-Posted, and
Completion.

Six different types of flow control information can be read by the User Application. The
fc_sel[2:0] input selects the type of flow control information represented by the fc_*
outputs. The Flow Control Information Types are shown in Table 3-15.

Table 3-15: Flow Control Information Types

fc_sel[2:0] Flow Control Information Type
000 Receive Credits Available Space
001 Receive Credits Limit
010 Receive Credits Consumed
011 Reserved
100 Transmit Credits Available Space
101 Transmit Credit Limit
110 Transmit Credits Consumed
111 Reserved

The fc_sel[2:0] input can be changed on every clock cycle to indicate a different Flow
Control Information Type. There is a two clock-cycle delay between the value of fc_sel[2:0]
changing and the corresponding Flow Control Information Type being presented on the
fc_* outputs for both 64-bit and 128-bit interface. Figure 3-56 illustrates the timing of the
Flow Control Credits signals.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 100
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out

fc_sel[2:0]

|

|

I

I- 000b X 001b X 110b

I

[

I T T T

Figure 3-56: Flow Control Credits for the 64-Bit and 128-Bit Interfaces

*

fc_

The output values of the fc_* signals represent credit values as defined in the PCI Express
Base Specification [Ref 2]. One Header Credit is equal to either a 3- or 4-DWORD TLP Header
and one Data Credit is equal to 16 bytes of payload data. Initial credit information is
available immediately after user_Ink_up assertion, but before the reception of any TLP.
Table 3-16 defines the possible values presented on the fc_* signals. Initial credit
information varies depending on the size of the receive buffers within the integrated block
and the Link Partner.

Table 3-16: fc_* Value Definition

Header Credit Value Data Credit Value Meaning
00 - 7F 000 - 7FF User credits
FF-80 FFF-800 Negative credits available®
7F 7FF Infinite credits available®
Notes:

1. Only Transmit Credits Available Space indicate Negative or Infinite credits available.

Receive Credit Flow Control Information

Receive Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 000b,
001b, or 010b. The Receive Credit Flow Control information indicates the current status of
the receive buffers within the integrated block.

Receive Credits Available Space: fc_sel[2:0] = 000b

Receive Credits Available Space shows the credit space available in the integrated block's
Transaction Layer local receive buffers for each credit pool. If space available for any of the
credit pools is exhausted, the corresponding fc_* signal indicates a value of zero. Receive
Credits Available Space returns to its initial values after the User Application has drained all
TLPs from the integrated block.

In the case where infinite credits have been advertised to the Link Partner for a specific
Credit pool, such as Completion Credits for Endpoints, the User Application should use this
value along with the methods described in Appendix C, Managing Receive-Buffer Space for
Inbound Completions, to avoid completion buffer overflow.

Receive Credits Limit: fc_sel[2:0] = 001b

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 101
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Receive Credits Limit shows the credits granted to the link partner. The fc_* values are
initialized with the values advertised by the integrated block during Flow Control
initialization and are updated as a cumulative count as TLPs are read out of the Transaction
Layer's receive buffers via the AXI4-Stream interface. This value is referred to as
CREDITS_ALLOCATED within the PCI Express Base Specification.

In the case where infinite credits have been advertised for a specific credit pool, the Receive
Buffer Credits Limit for that pool always indicates zero credits.

Receive Credits Consumed: fc_sel[2:0] = 010b

Receive Buffer Credits Consumed shows the credits consumed by the link partner (and
received by the integrated block). The initial fc_* values are always zero and are updated as
a cumulative count, as packets are received by the Transaction Layers receive buffers. This
value is referred to as CREDITS_RECEIVED in the PCI Express Base Specification.

Transmit Credit Flow Control Information

Transmit Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 100D,
101b, or 110b. The Transmit Credit Flow Control information indicates the current status of
the receive buffers within the Link Partner.

Transmit Credits Available Space: fc_sel[2:0] = 100b

Transmit Credits Available Space indicates the available credit space within the receive
buffers of the Link Partner for each credit pool. If space available for any of the credit pools
is exhausted, the corresponding fc_* signal indicates a value of zero or negative. Transmit
Credits Available Space returns to its initial values after the integrated block has successfully
sent all TLPs to the Link Partner.

If the value is negative, more header or data has been written into the integrated block’s
local transmit buffers than the Link Partner can currently consume. Because the block does
not allow posted packets to pass completions, a posted packet that is written is not
transmitted if there is a completion ahead of it waiting for credits (as indicated by a zero or
negative value). Similarly, a completion that is written is not transmitted if a posted packet
is ahead of it waiting for credits. The User Application can monitor the Transmit Credits
Available Space to ensure that these temporary blocking conditions do not occur, and that
the bandwidth of the PCI Express Link is fully utilized by only writing packets to the
integrated block that have sufficient space within the Link Partner’s Receive buffer.
Non-Posted packets can always be bypassed within the integrated block; so, any Posted or
Completion packet written passes Non-Posted packets waiting for credits.

The Link Partner can advertise infinite credits for one or more of the three traffic types.
Infinite credits are indicated to the user by setting the Header and Data credit outputs to
their maximum value as indicated in Table 3-16.

Transmit Credits Limit: fc_sel[2:0] = 101b

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 102
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Transmit Credits Limit shows the receive buffer limits of the Link Partner for each credit
pool. The fc_* values are initialized with the values advertised by the Link Partner during
Flow Control initialization and are updated as a cumulative count as Flow Control updates
are received from the Link Partner. This value is referred to as CREDITS_LIMIT in the PC/
Express Base Specification [Ref 2].

In the case where infinite credits have been advertised for a specific Credit pool, the
Transmit Buffer Credits Limit always indicates zero credits for that pool.

Transmit Credits Consumed: fc_sel[2:0] = 110b

Transmit Credits Consumed show the credits consumed of the Receive Buffer of the Link
Partner by the integrated block. The initial value is always zero and is updated as a
cumulative count, as packets are transmitted to the Link Partner. This value is referred to as
CREDITS_CONSUMED in the PCI Express Base Specification.

Designing with the Physical Layer Control and Status Interface

Physical Layer Control and Status enables the User Application to change link width and
speed in response to data throughput and power requirements.

Design Considerations for a Directed Link Change
These points should be considered during a Directed Link Change:

« Link change operation must be initiated only when user_Ink_up is asserted and the core
is in the LO state, as indicated by the signal pl_ltssm_state[5:0].

« Link Width Change should not be used when Lane Reversal is enabled.

« Target Link Width of a Link Width Change operation must be equal to or less than the
width indicated by pl_initial_link_width output.

« When pl_link_upcfg_cap is set to 1b, the PCI Express link is Upconfigure capable. This
allows the link width to be varied between the Initial Negotiated Link Width and any
smaller link width supported by both the Port and link partner (this is for link reliability
or application reasons).

« If alink is not Upconfigure capable, the Negotiated link width can only be varied to a
width less than the Negotiated Link Width that is supported by both the link partner
and device.

« Before initiating a link speed change from 2.5 Gb/s to 5.0 Gb/s, the User Application
must ensure that the link is 5.0 Gb/s (Gen2) capable (that is, pl_link_gen2_cap is 1b) and
the Link Partner is also Gen2 capable (pl_link_partner_gen2_capable is 1Db).

« Alink width change that benefits the application must be initiated only when
cfg_lcommand[9] (the Hardware Autonomous Width Disable bit) is 0b. In addition, for
both link speed and/or width change driven by application need,
pl_directed_link_auton must be driven (1b). If the user wants the option to restore the

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 103
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

link width and speed to the original (higher) width and speed, the User Application
should ensure that pl_link_upcfg_cap is 1b.

« If the User Application directs the link to a width not supported by the link partner, the
resulting link width is the next narrower mutually supported link width. For example, an
8-lane link is directed to a 4-lane operation, but the link partner supports only 1-lane
train down operations. So, this would result in a 1-lane operation.

« The Endpoint should initiate directed link change only when the device is in DO power
state (cfg_pmcsr_powerstate[1:0] = 00b).

« Avretrain should not be initiated using directed link change pins (Root or Endpoint) or
by setting the retrain bit (Root only), if the cfg_pcie_link_state = 101b (transitioning to/
from PPM L1) or 110b (transitioning to PPM L2/L3 Ready).

« To ease timing closure, it is permitted to check for the conditions specified above to be
all simultaneously TRUE up to 16 user clock cycles before initiating a Directed Link
Change. These conditions are:

o user_Ink_up ==1'bl

o pl_ltssm_state[5:0] == 6'hl6

o cfg_lcommand[9] == 1'Db0

o cfg_pmcsr_powerstate[1:0] == 2'b00

- cfg_pcie_link_state[2:0] != either 3'b101 or 3'b110

Directed Link Width Change

Figure 3-57 shows the directed link width change process that must be implemented by the
User Application. Here target_link_width[1:0] is the application-driven new link width
request.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 104
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

usr_Ink_up = 1b
and
pl_Itssm_state[5:0] = LO

Assign target_link_width[1:0] |«

target_link_width[1:0] = pl_sel_Ink_width[1:0]

pl_link_upcfg_cap == 1b

target_link_width[1:0] <=
pl_initial_link_width[2:0] -1

\

Unsupported
Operation

target_link_width[1:0] <
pl_sel_Ink_width[1:0]

pl_directed _Ink_width[1:0] = target_link_width[1:0]
pl_directed_link_change[1:0] = 01b

((pl_directed_change_done == 1b) Il
(user_Ink_up == 0b))

Yes

pl_directed_link_change[1:0] = 00b

Y

C Change Complete)

Figure 3-57: Directed Link Width Change

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

105

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Directed Link Speed Change

Figure 3-58 shows the directed link speed change process that must be implemented by the
User Application. Here target_link_speed is the application-driven new link speed request.

Note: A link speed change should not be initiated on a Root Port by driving the
pl_directed_link_change pin to 10 or 11 unless the attribute RP_AUTO_SPD = 11.

user_Ink_up = 1b
and
pl_ltssm_state[5:0] = LO

Assign target _link_speed |

target_link_speed != pl_sel_link rate

pl_directed_Ink_speed = target_link_speed
pl_directed_link_change[1:0] = 10b

A

((pl_directed_change_done == 1b) ||
(user_Ink_up == 0b))

pl_directed_link_change[1:0] = 00b

Y

C Change Complete)

Figure 3-58: Directed Link Speed Change

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 106
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Directed Link Width and Speed Change

Figure 3-59 shows the directed link width and speed change process that must be
implemented by the User Application. Here target_link_width[1:0] is the application-driven
new link width request, and target_link_speed is the application-driven new link speed
request.

Note: A link speed change should not be initiated on a Root Port by driving the
pl_directed_link_change pin to 10 or 11 unless the attribute RP_AUTO_SPD = 11.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 107
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

user_Ink_up = 1b
and
pl_ltssm_state[5:0] = LO

Assign target_link_width[1:0] | _
Assign target _link_speed -

No
arget_link_width[1:0] = pl_sel_Ink_width[1:
&&
target_link_speed != pl_sel_Ink_rate

Yes
pl_link_upcfg_capable == 1b

target_link_width[1:0] <=

target_link_width[1:0] <
pl_initial_link_width[2:0] -1

pl_sel_Ink_width[1:0]

\i
Unsupported
Operation

pl_directed _Ink_width[1:0] = target_link_width[1:0]
> pl_directed_Ink_speed = target_link_speed -
pl_directed_link_change[1:0] = 11b

((pl_directed_change_done == 1b) Il
(user_Ink_up == 0b))

pl_directed_link_change[1:0] = 00b

y

(Change Complete)

Figure 3-59: Directed Link Width and Speed Change

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 108
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Design with Configuration Space Registers and Configuration
Interface

This section describes the use of the Configuration interface for accessing the PCI Express
Configuration Space Type 0 or Type 1 registers that are part of the Integrated Block core.
The Configuration interface includes a read/write Configuration Port for accessing the
registers. In addition, some commonly used registers are mapped directly on the
Configuration interface for convenience.

Registers Mapped Directly onto the Configuration Interface

The Integrated Block core provides direct access to select command and status registers in
its Configuration Space. For Endpoints, the values in these registers are typically modified
by Configuration Writes received from the Root Complex; however, the User Application
can also modify these values using the Configuration Port. In the Root Port configuration,
the Configuration Port must always be used to modify these values. Table 3-17 defines the
command and status registers mapped to the configuration port.

Table 3-17: Command and Status Registers Mapped to the Configuration Port

Port Name Direction Description

cfg_bus_number[7:0] Output Bus Number: Default value after reset is 00h. Refreshed
whenever a Type 0 Configuration Write packet is
received.

cfg_device_number[4:0] Output Device Number: Default value after reset is 00000b.
Refreshed whenever a Type 0 Configuration Write packet
is received.

cfg_function_number[2:0] Output Function Number: Function number of the core,

hardwired to 000b.

cfg_status[15:0] Output Status Register: Status register from the Configuration
Space Header. Not supported.

cfg_command[15:0] Output Command Register: Command register from the
Configuration Space Header.

cfg_dstatus[15:0] Output Device Status Register: Device status register from the
PCI Express Capability Structure.

cfg_dcommand[15:0] Output Device Command Register: Device control register from
the PCI Express Capability Structure.

cfg_dcommand?2[15:0] Output Device Command 2 Register: Device control 2 register
from the PCI Express Capability Structure.

cfg_lstatus[15:0] Output Link Status Register: Link status register from the PCI
Express Capability Structure.

cfg_lcommand[15:0] Output Link Command Register: Link control register from the
PCI Express Capability Structure.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 109
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Device Control and Status Register Definitions

cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0]

Together, these three values comprise the core ID, which the core captures from the
corresponding fields of inbound Type 0 Configuration Write accesses. The User Application
is responsible for using this core ID as the Requestor ID on any requests it originates, and
using it as the Completer ID on any Completion response it sends. This core supports only
one function; for this reason, the function number is hardwired to 000b.

cfg_status[15:0]

This output bus is not supported. If the user wishes to retrieve this information, this can be
derived by Read access of the Configuration Space in the 7 Series FPGAs Integrated Block
for PCI Express via the Configuration Port.

cfg_command[15:0]

This bus reflects the value stored in the Command register in the PCI Configuration Space
Header. Table 3-18 provides the definitions for each bit in this bus. See the PCI Express Base
Specification [Ref 2] for detailed information.

Table 3-18: Bit Mapping on Header Command Register

Bit Name
cfg_command[15:11] Reserved
cfg_command[10] Interrupt Disable
cfg_command[9] Fast Back-to-Back Transactions Enable (hardwired to 0)
cfg_command|[8] SERR Enable
cfg_command[7] IDSEL Stepping/Wait Cycle Control (hardwired to 0)
cfg_command[6] Parity Error Enable - Not Supported
cfg_command|[5] VGA Palette Snoop (hardwired to 0)
cfg_command[4] Memory Write and Invalidate (hardwired to 0)
cfg_command|3] Special Cycle Enable (hardwired to 0)
cfg_command[2] Bus Master Enable
cfg_command[1] Memory Address Space Decoder Enable
cfg_command[0] I/O Address Space Decoder Enable

The User Application must monitor the Bus Master Enable bit (cfg_command[2]) and refrain
from transmitting requests while this bit is not set. This requirement applies only to
requests; completions can be transmitted regardless of this bit.

The Memory Address Space Decoder Enable bit (cfg_command[1]) or the I/O Address Space
Decoder Enable bit (cfg_command[0]) must be set to receive Memory or I/O requests. These
bits are set by an incoming Configuration Write request from the system host.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 110
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

cfg_dstatus[15:0]

Chapter 3: Designing with the Core

This bus reflects the value stored in the Device Status register of the PCI Express Capabilities
Structure. Table 3-19 defines each bit in the cfg_dstatus bus. See the PC/I Express Base

Specification [Ref 2] for detailed information.

Table 3-19: Bit Mapping on PCI Express Device Status Register

Bit Name
cfg_dstatus[15:6] Reserved
cfg_dstatus[5] Transaction Pending
cfg_dstatus[4] AUX Power Detected (hardwired to 0)
cfg_dstatus[3] Unsupported Request Detected
cfg_dstatus[2] Fatal Error Detected
cfg_dstatus[1] Non-Fatal Error Detected
cfg_dstatus[0] Correctable Error Detected

cfg_dcommand[15:0]

This bus reflects the value stored in the Device Control register of the PCI Express
Capabilities Structure. Table 3-20 defines each bit in the cfg_dcommand bus. See the

PCI Express Base Specification for detailed information.

Table 3-20: Bit Mapping of PCl Express Device Control Register

Bit Name
cfg_dcommand[15] Reserved
cfg_dcommand[14:12] Max_Read_Request_Size
cfg_dcommand[11] Enable No Snoop

cfg_dcommand[10]

Auxiliary Power PM Enable

cfg_dcommand[9]

Phantom Functions Enable

cfg_dcommand|[8]

Extended Tag Field Enable

cfg_dcommand[7:5]

Max_Payload_Size

cfg_dcommand[4]

Enable Relaxed Ordering

cfg_dcommand|3]

Unsupported Request Reporting Enable

cfg_dcommand|2]

Fatal Error Reporting Enable

cfg_dcommand[1]

Non-Fatal Error Reporting Enable

cfg_dcommand[0]

Correctable Error Reporting Enable

cfg_lIstatus[15:0]

This bus reflects the value stored in the Link Status register in the PCI Express Capabilities
Structure. Table 3-21 defines each bit in the cfg_Istatus bus. See the PCI Express Base

Specification for details.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com

PG054 October 16, 2012

111

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-21: Bit Mapping of PCI Express Link Status Register

Bit Name
cfg_lstatus[15] Link Autonomous Bandwidth Status
cfg_lstatus[14] Link Bandwidth Management Status
cfg_lstatus[13] Data Link Layer Link Active
cfg_lstatus[12] Slot Clock Configuration
cfg_lstatus[11] Link Training
cfg_lstatus[10] Reserved
cfg_lstatus[9:4] Negotiated Link Width
cfg_lstatus[3:0] Current Link Speed

cfg_lcommand[15:0]

This bus reflects the value stored in the Link Control register of the PCI Express Capabilities
Structure. Table 3-22 provides the definition of each bit in cfg_lcommand bus. See the PC/
Express Base Specification, rev. 2.1 for more details.

Table 3-22: Bit Mapping of PCI Express Link Control Register

Bit Name
cfg_lcommand[15:12] Reserved
cfg_lcommand[11] Link Autonomous Bandwidth Interrupt Enable
cfg_lcommand[10] Link Bandwidth Management Interrupt Enable
cfg_lcommand[9] Hardware Autonomous Width Disable
cfg_lcommand[8] Enable Clock Power Management
cfg_lcommand(7] Extended Synch
cfg_lcommand[6] Common Clock Configuration
cfg_lcommand[S](l) Retrain Link (Reserved for an Endpoint device)
cfg_lcommand[4] Link Disable
cfg_lcommand(3] Read Completion Boundary
cfg_lcommand|[2] Reserved
cfg_lcommand[1:0] Active State Link PM Control
Notes:

1. During L1 negotiation, the user should not trigger a link retrain by writing a 1 to cfg_Ilcommand[5]. L1 negotiation
can be observed by monitoring the cfg_pcie_link_state port.

cfg_dcommand2[15:0]

This bus reflects the value stored in the Device Control 2 register of the PCI Express
Capabilities Structure. Table 3-23 defines each bit in the cfg_dcommand bus. See the
PCI Express Base Specification [Ref 2] for detailed information.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 112
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 3-23:

Chapter 3

Bit Mapping of PCl Express Device Control 2 Register

: Designing with the Core

Bit

Name

cfg_dcommand?2[15:5] Reserved

cfg_dcommand?2[4] Completion Timeout Disable

cfg_dcommand?2[3:0] Completion Timeout Value

Core Response to Command Register Settings

Table 3-24 and Table 3-25 illustrate the behavior of the 7 Series FPGAs Integrated Block for
PCI Express based on the Command Register settings when configured as either an

Endpoint or a Root Port.
Table 3-24: Command Register (0x004): Endpoint
Bit(s) Name Attr Endpoint Core Behavior
0 I/O Space Enable RW | The Endpoint does not permit a BAR hit on I/O space unless
this is enabled.
1 Memory Space Enable RW | The Endpoint does not permit a BAR hit on Memory space
unless this is enabled.
2 Bus Master Enable RW | The Endpoint does not enforce this; user could send a TLP via
AXI4-Stream interface.
5:3 | Reserved RO | Wired to 0. Not applicable to PCI Express.
6 Parity Error Response RW | Enables Master Data Parity Error (Status[8]) to be set.
7 Reserved RO | Wired to 0. Not applicable to PCI Express.
8 SERR# Enable RW | Can enable Error NonFatal / Error Fatal Message generation,
and enables Status[14] (“Signaled System Error”).
9 Reserved RO | Wired to 0. Not applicable to PCI Express.
10 | Interrupt Disable RW | If set to “1”, the cfg_interrupt* interface is unable to cause
INTx messages to be sent.
15:11 | Reserved RO | Wired to 0. Not applicable to PCI Express.
Table 3-25: Command Register (0x004): Root Port
Bit(s) Name Attr Root Port Core behavior
0 I/O Space Enable RW | The Root Port ignores this setting. If disabled, it still accepts
I/O TLP from the user side and passes downstream. User
Application logic must enforce not sending I/O TLPs
downstream if this is unset.
1 Memory Space Enable RW | The Root Port ignores this setting. If disabled, it still accepts
Mem TLPs from the user side and passes downstream. User
Application logic must enforce not sending Mem TLPs
downstream if this is unset.

7 Series Integrated Block for PCle (v1.7)

PG054 October

16, 2012

www.xilinx.com

113

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-25: Command Register (0x004): Root Port (Cont’d)
Bit(s) Name Attr Root Port Core behavior

2 Bus Master Enable RW | When set to 0, the Root Port responds to target transactions
such as an Upstream Mem or I/O TLPs as a UR (that is, the UR
bit is set if enabled or a Cpl w/ UR packet is sent if the TLP
was Non-Posted).

When set to 1, all target transactions are passed to the user.
5:3 | Reserved RO | Wired to 0. Not applicable to PCI Express.

6 Parity Error Response RW | Enables Master Data Parity Error (Status[8]) to be set.

7 Reserved RO | Wired to 0. Not applicable to PCI Express.

8 SERR# Enable RW | If enabled, Error Fatal/Error Non-Fatal Messages can be
forwarded from the AXI4-Stream interface or cfg_err*, or
internally generated. The Root Port does not enforce the
requirement that Error Fatal/Error Non-Fatal Messages
received on the link not be forwarded if this bit unset; user
logic must do that.

Note: Error conditions detected internal to the Root Port are
indicated on cfg_msg* interface.

9 Reserved RO | Wired to 0. Not applicable to PCI Express.

10 Interrupt Disable RW | Not applicable to Root Port.

15:11 | Reserved RO | Wired to 0. Not applicable to PCI Express.

Status Register Response to Error Conditions

Table 3-26 throughTable 3-28 illustrate the conditions that cause the Status Register bits to
be set in the 7 Series FPGAs Integrated Block for PCI Express when configured as either an
Endpoint or a Root Port.

Table 3-26: Status Register (0x006): Endpoint

Bit(s) Name Attr Cause in an Endpoint
2:0 | Reserved RO Wired to 0. Not applicable to PCI Express.
3 Interrupt Status RO » Set when interrupt signaled by user.

» Clears when interrupt is cleared by the Interrupt
handler.

4 Capabilities List RO Wired to 1.
7:5 | Reserved RO Wired to 0. Not applicable to PCI Express.
8 Master Data Parity Error RW1C | Setif Parity Error Response is set and a Poisoned Cpl TLP
is received on the link, or a Poisoned Write TLP is sent.
10:9 | Reserved RO Wired to 0. Not applicable to PCI Express.
11 | Signaled Target Abort RW1C | Set if a Completion with status Completer Abort is sent
upstream by the user via the cfg_err* interface.
12 | Received Target Abort RW1C | Set if a Completion with status Completer Abort is
received.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 114

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-26: Status Register (0x006): Endpoint (Cont’d)
Bit(s) Name Attr Cause in an Endpoint
13 | Received Master Abort RW1C | Setif a Completion with status Unsupported Request is
received.
14 | Signaled System Error RW1C | Set if an Error Non-Fatal / Error Fatal Message is sent,
and SERR# Enable (Command][8]) is set.
15 | Detected Parity Error RW1C | Set if a Poisoned TLP is received on the link.
Table 3-27: Status Register (0x006): Root Port
Bit(s) Name Attr Cause in a Root Port
2:0 | Reserved RO Wired to 0. Not applicable to PCI Express.
3 Interrupt Status RO Has no function in the Root Port.
4 Capabilities List RO Wired to 1.
7:5 | Reserved RO Wired to 0. Not applicable to PCI Express.
8 Master Data Parity Error RW1C | Set if Parity Error Response is set and a Poisoned

Completion TLP is received on the link.

10:9 | Reserved RO Wired to 0. Not applicable to PCI Express.
11 | Signaled Target Abort RW1C | Never set by the Root Port

12 | Received Target Abort RW1C | Never set by the Root Port

13 | Received Master Abort RW1C | Never set by the Root Port

14 | Signaled System Error RW1C | Set if the Root Port:

* Receives an Error Non-Fatal / Error Fatal Message and
both SERR# Enable and Secondary SERR# enable are
set.

« Indicates on the cfg_msg* interface that a Error Fatal
/ Error Non-Fatal Message should be generated
upstream and SERR# enable is set.

15 | Detected Parity Error RW1C | Set if a Poisoned TLP is transmitted downstream.
Table 3-28: Secondary Status Register (0x01E): Root Port
Bit(s) Name Attr Cause in a Root Port
7:0 | Reserved RO Wired to 0. Not applicable to PCI Express.
8 Secondary Master Data Parity Error RWI1C | Set when the Root Port:
Receives a Poisoned Completion TLP, and
Secondary Parity Error Response==
Transmits a Poisoned Write TLP, and
Secondary Parity Error Response==1
10:9 | Reserved RO Wired to 0. Not applicable to PCI Express.
11 | Secondary Signaled Target Abort RWI1C | Set when User indicates a Completer-Abort
via cfg_err_cpl_abort

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com 115

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-28: Secondary Status Register (0x01E): Root Port

Bit(s) Name Attr Cause in a Root Port

12 | Secondary Received Target Abort RW1C | Set when the Root Port receives a
Completion TLP with status
Completer-Abort.

13 | Secondary Received Master Abort RW1C | Set when the Root Port receives a
Completion TLP with status Unsupported
Request

14 | Secondary Received System Error RW1C | Set when the Root Port receives an Error
Fatal/Error Non-Fatal Message.

15 | Secondary Detected Parity Error RW1C | Set when the Root Port receives a Poisoned
TLP.

Accessing Registers through the Configuration Port

Configuration registers that are not directly mapped to the user interface can be accessed
by configuration-space address using the ports shown in Table 2-14, page 29. Root Ports
must use the Configuration Port to setup the Configuration Space. Endpoints can also use
the Configuration Port to read and write; however, care must be taken to avoid adverse
system side effects.

The User Application must supply the address as a DWORD address, not a byte address. To
calculate the DWORD address for a register, divide the byte address by four. For example:

« The DWORD address of the Command/Status Register in the PCI Configuration Space
Header is 01h. (The byte address is 04h.)

« The DWORD address for BARO is 04h. (The byte address is 10h.)

To read any register in configuration space, shown in Table 2-22, page 45, the User
Application drives the register DWORD address onto cfg_dwaddr[9:0]. The core drives the
content of the addressed register onto cfg_do[31:0]. The value on cfg_do[31:0] is qualified
by signal assertion on cfg_rd_wr_done. Figure 3-60 illustrates an example with two
consecutive reads from the Configuration Space.

|

user_clk_out :

cfg_mgmt_dwaddr[9:0] |

cfg_mgmt_do[31:0]

cfg_mgmt_wr_en

cfg_mgmt_rd_en

cfg_mgmt_rd_wr_done :

Figure 3-60: Example Configuration Space Read Access

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 116
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Configuration Space registers which are defined as "RW" by the PC/I Local Bus Specification
and PCl Express Base Specification are writable via the Configuration Management interface.
To write a register in this address space, the User Application drives the register DWORD
address onto cfg_dwaddr[9:0] and the data onto cfg_di[31:0]. This data is further qualified
by cfg_byte_en[3:0], which validates the bytes of data presented on cfg_di[31:0]. These
signals should be held asserted until cfg_rd_wr_done is asserted. Figure 3-61 illustrates an
example with two consecutive writes to the Configuration Space, the first write with the
User Application writing to all 32 bits of data, and the second write with the User
Application selectively writing to only bits [23:26].

Note: Writing to the Configuration Space could have adverse system side effects. Users should
ensure these writes do not negatively impact the overall system functionality.

user_clk_out

cfg_mgmt_dwaddr[9:0]

cfg_mgmt_di[31:0]

cfg_mgmt_byte_en[3:0]

cfg_mgmt_wr_en

1111b . 0100b
|-
|

cfg_mgmt_rd_en |

cfg_mgmt_rd_wr_done !

RN | |

Figure 3-61: Example Configuration Space Write Access
Optional PCI Express Extended Capabilities

The 7 Series FPGAs Integrated Block for PCI Express optionally implements up to five PCI
Express Extended Capabilities: Device Serial Number Capability, Virtual Channel Capability,
Vendor Specific Capability, Advanced Error Reporting Capability, and Resizable BAR
Capability. Using the CORE Generator tool, you can choose which of these to enable. The
relative order of the capabilities implemented is always the same. The order is:

1. Device Serial Number (DSN) Capability

2. Virtual Channel (VC) Capability

3. Vendor Specific (VSEC) Capability

4. Advanced Error Reporting (AER) Capability
5. Resizable BAR (RBAR) Capability

The Start addresses (Base Pointer address) of the five capability structures vary depending
on the combination of capabilities enabled in the CORE Generator tool GUL

Table 3-29 through Table 3-33 define the start addresses of the five Extended Capability
Structures, depending on the combination of PCI Express Extended Capabilities selected.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 117
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 3-29: DSN Base Pointer

Chapter 3: Designing with the Core

DSN Base Pointer

No Capabilities Selected

DSN Enabled

100h

Table 3-30: VC Capability Base Pointer

VC Capability Base Pointer

No Capabilities Selected

Only VC Capability Enabled

100h

DSN and VC Capability Enabled

10Ch

Table 3-31: VSEC Capability Base Pointer

VSEC Capability Base
Pointer
No Capabilities Selected -
Only VSEC Capability Enabled 100h
DSN and VSEC Capability Enabled 10Ch
DSN, VC Capability, and VSEC Capability Enabled 128h

Table 3-32: AER Capability Base Pointer

AER Capability
Base Pointer

No Capabilities Selected -

Only AER Capability Enabled 100h
DSN and AER Capability Enabled 10Ch
VC Capability and AER Capability Enabled 11ch
VSEC Capability and AER Capability Enabled 118h
DSN, VC Capability, and AER Capability Enabled 128h
DSN, VSEC Capability, and AER Capability Enabled 124h
VC Capability, VSEC Capability, and AER Capability Enabled 134h
DSN, VC Capability, VSEC Capability, and AER Capability Enabled 140h

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

118

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-33: RBAR Capability Base Pointer

RBAR Capability
Base Pointer

No Capabilities Selected -

Only RBAR Capability Enabled 100h
DSN and RBAR Capability Enabled 10Ch
VC Capability and RBAR Capability Enabled 1ich
VSEC Capability and RBAR Capability Enabled 118h
AER Capability and RBAR Capability Enabled 138h
DSN, VC Capability, and RBAR Capability Enabled 128h
DSN, VSEC Capability, and RBAR Capability Enabled 124h
DSN, AER Capability, and RBAR Capability Enabled 144h
VC Capability, VSEC Capability, and RBAR Capability Enabled 134h
VC Capability, AER Capability, and RBAR Capability Enabled 154h
VSEC Capability, AER Capability, and RBAR Capability Enabled 150h
DSN, VC Capability, VSEC Capability, and RBAR Capability Enabled 140h
DSN, VC Capability, AER Capability, and RBAR Capability Enabled 160h
DSN, VSEC Capability, AER Capability and RBAR Capability Enabled 15Ch
VC Capability, VSEC Capability, AER Capability, and RBAR Capability Enabled l6Ch
DSN, VC Capability, VSEC Capability, AER Capability, and RBAR Capability Enabled 178h

The rest of the PCI Express Extended Configuration Space is optionally available for you to
implement.

Xilinx Defined Vendor Specific Capability

The 7 Series FPGAs Integrated Block for PCI Express supports Xilinx defined Vendor Specific
Capability that provides Control and Status for Loopback Master function for both the Root
Port and Endpoint configurations.

O RECOMMENDED: Use Loopback Master functionality to perform in-system test of the physical link only,
that is, when the application is not active.

User logic is required to control the Loopback Master functionality by assessing the VSEC
structure via the Configuration interface.

Figure 3-62 shows the VSEC structure in the PCle Extended Configuration Space
implemented in the integrated block.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 119
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

31 0 Byte Offset
Next Capability Offset Capability Version = 1h PCI Express extended capability = 000Bh 00h
VSEC Length = 24 bytes VSEC Rev = Oh VSECID = Oh 04h
Loopback Control Register 08h
Loopback Status Register 0Ch
Loopback Error Count Register 1 10h
Loopback Error Count Register 2 14h

Figure 3-62: Xilinx Defined Vendor Specific Capability Structure

Loopback Control Register (Offset 08h)

The Loopback Control Register controls Xilinx Defined Loopback specific parameters.
Table 3-34 shows the bit locations and definitions.

Table 3-34:

Loopback Control Register

Bit Location

Register Description

Attributes

0

Start Loopback: When set to 1b and pl_ltssm_state[5:0] is indicating LO
(16H), the block transitions to Loopback Master state and starts the
loopback test. When set to 0b, the block exits the loopback master mode.

Note: The Start Loopback bit should not be set to 1b during a link
speed change.

RW

Force Loopback: The loopback master can force the slave which fails to
achieve symbol lock at specified “link speed” and “de-emphasis level” to
enter the loopback.active state by setting this bit to 1b. The start bit must
be set to 1b when force is set to 1b.

RW

3:2

Loopback Link Speed: Advertised link speed in the TS1s sent by master with
loopback bit set to 1b. The master can control the loopback link speed by
properly controlling these bits.

RW

Loopback De-emphasis: Advertised de-emphasis level in the TS1s sent by
master. This also sets the De-emphasis level for the loopback slave.

RW

Loopback Modified Compliance: The loopback master generates modified
compliance pattern when in loopback mode else compliance pattern is
generated. Only one SKP OS is generated instead of two while in modified
compliance.

RW

Loopback Suppress SKP OS: When this bit is set to 1b then SKP OS are not
transmitted by Loopback Master. This bit is ignored when
send_modified_compliance pattern is set to 0b.

RW

157

Reserved

RO

23:16

Reserved

RO

31:24

Reserved

RO

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

120

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Loopback Status Register (Offset 0Ch)

The Loopback Status Register provides information about Xilinx Defined Loopback specific
parameters. Table 3-35 shows the bit locations and definitions.

Table 3-35: Loopback Status Register
Bit Location Register Description Attributes

0 Loopback Slave: This bit is set by hardware, if the device is currently in RO
loopback slave mode. When this bit is set to 1b, the Start Loopback bit must
not be set to 1b.

1 Loopback Slave Failed: This bit is set by Loopback Master hardware, when RO
the master receives no TS1's while Loopback bit set to 1b, within 100 ms of
"Loopback.Active”. This bit is never set to 1b, when the Force Loopback bit
is set to 1b. Setting the Start Loopback bit to 1b clears this bit to 0b.

7:2 Reserved RO
15:8 Loopback Tested: These bits are set to 0b, when the Start Loopback bit is RO
set to 1b. These bits are set to 1b when loopback test has been performed
on a given lane and the Loopback_Err_count_n for the corresponding lane

is valid.

Bit Positions Lane

8 Lane O Tested
9 Lane 1 Tested
10 Lane 2 Tested
11 Lane 3 Tested
12 Lane 4 Tested
13 Lane 5 Tested
14 Lane 6 Tested
15 Lane 7 Tested

31:16 Reserved RO

Loopback Error Count Register 1 (Offset 10h)

The Loopback Error Count Register 1 provides information about the Error Count on the
Physical Lanes O - 3, as tested by Xilinx Defined Loopback Control Test. A lane has an error
count reported as zero if that lane was not tested in loopback. This could be if the lane is
either not part of a configured port or has not detected a receiver at the other end.

Table 3-36 shows the bit locations and definitions.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

121

http://www.xilinx.com

& XILINX

Table 3-36:

Chapter 3: Designing with the Core

Loopback Error Count Register 1

Bit Location

Register Description

Attributes

7:0

Loopback Error Count 0: This specifies the Error Count on Lane 0. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to Oh.
This is only valid when Loopback Tested: Lane 0 Tested is set to 1b.

RO

15:8

Loopback Error Count 1: This specifies the Error Count on Lane 1. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to Oh.
This is only valid when Loopback Tested: Lane 1 Tested is set to 1b.

RO

23:16

Loopback Error Count 2: This specifies the Error Count on Lane 2. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to Oh.
This is only valid when Loopback Tested: Lane 2 Tested is set to 1b.

RO

31:24

Loopback Error Count 3: This specifies the Error Count on Lane 3. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to Oh.
This is only valid when Loopback Tested: Lane 3 Tested is set to 1b.

RO

Loopback Error Count Register 2 (Offset 14h)

The Loopback Error Count Register 2 provides information about the Error Count on the
Physical Lanes 7 - 4, as tested by Xilinx Defined Loopback Control Test. A lane has an error
count reported as zero if that lane was not tested in loopback. This could be the case the
lane is either not part of configured port or has not detected a receiver at the other end.
Table 3-37 shows the bit locations and definitions.

Table 3-37:

Loopback Error Count Register 2

Bit Location

Register Description

Attributes

7:0

Loopback Error Count 4: This specifies the Error Count on Lane 4. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to 0h.
This is only valid when Loopback Tested: Lane 4 Tested is set to 1b.

RO

15:8

Loopback Error Count 5: This specifies the Error Count on Lane 5. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to 0h.
This is only valid when Loopback Tested: Lane 5 Tested is set to 1b.

RO

23:16

Loopback Error Count 6: This specifies the Error Count on Lane 6. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the Lane. Setting Loopback Start bit to 1b clears the error count to Oh.
This is only valid when Loopback Tested: Lane 6 Tested is set to 1b.

RO

31:24

Loopback Error Count 7: This specifies the Error Count on Lane 7. An error
is said to have occurred if there is an 8B/10B error or disparity error signaled
on the lane. Setting Loopback Start bit to 1b clears the error count to 0h.
This is only valid when Loopback Tested: Lane 7 Tested is set to 1b.

RO

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

122

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Advanced Error Reporting Capability

The 7 Series FPGAs Integrated Block for PCI Express implements the Advanced Error
Reporting (AER) Capability structure as defined in PC/ Express Base Specification, rev. 2.1
[Ref 2]. All optional bits defined in the specification are supported. Multiple Header
Logging is not supported.

When AER is enabled, the core responds to error conditions by setting the appropriate
Configuration Space bit(s) and sending the appropriate error messages in the manner
described in PCI Express Base Specification, rev. 2.1.

For additional signaling requirements when AER is enabled, see AER Requirements,
page 133.

Resizable BAR Capability

The 7 Series FPGAs Integrated Block for PCI Express implements the Resizable BAR
Capability structure as defined in PC/ Express Base Specification, rev. 2.1. For more
information on the Resizable BAR feature of the integrated block, see Resizable BAR
Implementation-Specific Information (Endpoint Only), page 134.

User-Implemented Configuration Space

The 7 Series FPGAs Integrated Block for PCI Express enables you to optionally implement
registers in the PCI Configuration Space, the PCI Express Extended Configuration Space, or
both, in the User Application. The User Application is required to return Config Completions
for all address within this space. For more information about enabling and customizing this
feature, see Chapter 4, Customizing and Generating the Core (Vivado Design Suite) or
Chapter 10, Customizing and Generating the Core (ISE Design Suite).

PCI Configuration Space

If you choose to implement registers within 0xA8 to 0xFF in the PCI Configuration Space,
the start address of the address region you wish to implement can be defined during the
core generation process.

The User Application is responsible for generating all Completions to Configuration Reads
and Writes from the user-defined start address to the end of PCI Configuration Space
(0xFF). Configuration Reads to unimplemented registers within this range should be
responded to with a Completion with 0x00000000 as the data, and configuration writes
should be responded to with a successful Completion.

For example, to implement address range 0xC0 to 0xCF, there are several address ranges
defined that should be treated differently depending on the access. See Table 3-38 for
more details on this example.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 123
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 3-38:

Chapter 3: Designing with the Core

Example: User-Implemented Space 0xCO to OxCF

Configuration Writes

Configuration Reads

0x00 to OxBF

Core responds automatically

Core responds automatically

0xCO0 to 0xCF

User Application responds with
Successful Completion

User Application responds with register
contents

0xDO0 to OxFF

User Application responds with
Successful Completion

User Application responds with
0x00000000

7 Series Integrated Block for PCle (v1.7)

PCl Express Extended Configuration Space

The starting address of the region in the PCI Express Extended Configuration Space that is
optionally available for you to implement depends on the PCI Express Extended Capabilities
that the user has enabled in the 7 Series FPGAs Integrated Block for PCI Express.

The 7 Series FPGAs Integrated Block for PCI Express allows the user to select the start
address of the user-implemented PCI Express Extended Configuration Space, while
generating and customizing the core. This space must be implemented in the User
Application. The User Application is required to generate a CplD with 0x00000000 for
Configuration Read and successful Cpl for Configuration Write to addresses in this selected
range not implemented in the User Application.

The user can choose to implement a User Configuration Space with a start address not
adjacent to the last capability structure implemented by the 7 Series FPGAs Integrated
Block for PCI Express. In such a case, the core returns a completion with 0x00000000 for
configuration accesses to the region that the user has chosen to not implement. Table 3-39
further illustrates this scenario.

Table 3-39: Example: User-Defined Start Address for Configuration Space
Configuration Space Byte Address
DSN Capability 100h - 108h
VSEC Capability 10Ch - 120h
Reserved Extended Configuration Space
. . 124h - 164h
(Core Returns Successful Completion with 0x00000000)
User-Implemented PCI Express Extended Configuration Space 168h - 47Ch
User-Implemented Reserved PCI Express Extended Configuration Space 180h - FFFh
(User Application Returns Successful Completion with 0x00000000)

Table 3-39 illustrates an example Configuration of the PCI Express Extended Configuration
Space, with these settings:

« DSN Capability Enabled
« VSEC Capability Enabled

www.xilinx.com 124

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

« User Implemented PCI Express Extended Configuration Space Enabled

« User Implemented PCI Express Extended Configuration Space Start Address 168h

In this configuration, the DSN Capability occupies the registers at 100h-108h, and the
VSEC Capability occupies registers at addresses 10Ch to 120h.

The remaining PCI Express Extended Configuration Space, starting at address 124h is
available to the user to implement. For this example, the user has chosen to implement
registers in the address region starting 168h.

In this scenario, the core returns successful Completions with 0x00000000 for
Configuration accesses to registers 124h-164h. Table 3-39 also illustrates a case where the
user only implements the registers from 168h to 47Ch. In this case, the user is responsible
for returning successful Completions with 0x00000000 for configuration accesses to
480h-FFFh.

Additional Packet Handling Requirements

The User Application must manage the mechanisms described in this section to ensure
protocol compliance, because the core does not manage them automatically.

Generation of Completions

The Integrated Block core does not generate Completions for Memory Reads or I/O
requests made by a remote device. The user is expected to service these completions
according to the rules specified in the PCI Express Base Specification [Ref 2].

Tracking Non-Posted Requests and Inbound Completions

The integrated block does not track transmitted I/O requests or Memory Reads that have
yet to be serviced with inbound Completions. The User Application is required to keep track
of such requests using the Tag ID or other information.

One Memory Read request can be answered by several Completion packets. The User
Application must accept all inbound Completions associated with the original Memory
Read until all requested data has been received.

The PCI Express Base Specification requires that an Endpoint advertise infinite Completion
Flow Control credits as a receiver; the Endpoint can only transmit Memory Reads and I/O
requests if it has enough space to receive subsequent Completions.

The integrated block does not keep track of receive-buffer space for Completion. Rather, it
sets aside a fixed amount of buffer space for inbound Completions. The User Application
must keep track of this buffer space to know if it can transmit requests requiring a
Completion response. See Appendix C, Managing Receive-Buffer Space for Inbound
Completions for Inbound Completions for more information.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 125
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Handling Message TLPs

By default, the 7 Series FPGAs Integrated Block for PCI Express does not route any received
messages to the AXI4-Stream interface. It signals the receipt of messages on the cfg_msg_*
interface. The user can, however, choose to receive these messages, in addition to signaling
on this interface, by enabling this feature during customization of the core through the
CORE Generator tool.

Root Port Configuration

The Root Port of a PCI Express Root Complex does not send any internally generated
messages on the PCI Express link, although messages can still be sent via the AXI4-Stream
interface, such as a Set Slot Power Limit message. Any errors detected by the Integrated
Block in Root Port configuration that could cause an error message to be sent are therefore
signaled to the User Application on the cfg_msg_* interface.

The Integrated Block for PCI Express in Root Port configuration also decodes received
messages and signals these to the User Application on this interface. When configured as a
Root Port, the Integrated Block distinguishes between these received messages and error
conditions detected internally by the asserting the cfg_msg_received signal.

Reporting User Error Conditions

The User Application must report errors that occur during Completion handling using
dedicated error signals on the core interface, and must observe the Device Power State
before signaling an error to the core. If the User Application detects an error (for example,
a Completion Timeout) while the device has been programmed to a non-DO0 state, the User
Application is responsible to signal the error after the device is programmed back to the DO
state.

After the User Application signals an error, the core reports the error on the PCI Express Link
and also sets the appropriate status bit(s) in the Configuration Space. Because status bits
must be set in the appropriate Configuration Space register, the User Application cannot
generate error reporting packets on the transmit interface. The type of error-reporting
packets transmitted depends on whether or not the error resulted from a Posted or
Non-Posted Request, and if AER is enabled or disabled. User-reported Posted errors cause
Message packets to be sent to the Root Complex if enabled to do so through the Device
Control Error Reporting bits and/or the Status SERR Enable bit, and the AER Mask bits (if
AER enabled). User-reported non-Posted errors cause Completion packets with
non-successful status to be sent to the Root Complex, unless the error is regarded as an
Advisory Non-Fatal Error. If AER is enabled, user-reported non-Posted errors can also cause
Message packets to be sent, if enabled by the AER Mask bits. For more information about
Advisory Non-Fatal Errors, see Chapter 6 of the PC/ Express Base Specification. Errors on
Non-Posted Requests can result in either Messages to the Root Complex or Completion
packets with non-Successful status sent to the original Requester.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 126
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Error Types

The User Application triggers different types of errors using the signals defined in
Table 2-18, page 37.

+ End-to-end CRC ECRC Error
« Unsupported Request Error
+ Completion Timeout Error

« Unexpected Completion Error
« Completer Abort Error

« Correctable Error

« Atomic Egress Blocked Error
« Multicast Blocked Error

« Correctable Internal Error

« Malformed Error

« Poisoned Error

* Uncorrectable Internal Error

Multiple errors can be detected in the same received packet; for example, the same packet
can be an Unsupported Request and have an ECRC error. If this happens, only one error
should be reported. Because all user-reported errors have the same severity, the User
Application design can determine which error to report. The cfg_err_posted signal,
combined with the appropriate error reporting signal, indicates what type of
error-reporting packets are transmitted. The user can signal only one error per clock cycle.
See Figure 3-63, Figure 3-64, and Figure 3-65, and Table 3-40 and Table 3-41.

The User Application must ensure that the device is in a DO Power state prior to reporting
any errors via the cfg_err_ interface. The User Application can ensure this by checking that
the PMCSR PowerState (cfg_pmcsr_pme_powerstate[1:0]) is set to 2 'b00. If the PowerState
is not setto 2 'b00 (the coreis in a non-DO power state) and PME_EN cfg_pmcsr_pme_en is
asserted (1 'bl), then the user can assert (pulse) cfg_pm_wake and wait for the Root to set
the PMCSR PowerState bits to 2 ' b00. If the PowerState (cfg_pmcsr_pme_powerstate) is not
equal to 2'b00 and PME_EN cfg_pmcsr_pme_en is deasserted (1'b0), the user must wait
for the Root to set the PowerState to 2 'b00.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 127
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-40: User-Indicated Error Signaling
User Reported Error Internal Cause AER Enabled Action
None None Don't care No action is taken.
RX: A completion with an
« Bar Miss (NP TLP) No Unsupported Request status is
cfg_err_ur * Locked TLP sent.
&8 * Typel Cfg A completion with an
cfg_err_posted = 0 + Non-Cpl TLP during Yes Unsupported Request status is
PM mode sent. If enabled, a Correctable
« Poisoned TLP Error Message is sent.
RX: No If enabled, a Non-Fatal Error
« Bar Miss (Posted) Message is sent.
cfg_err_ur TLP
&& Dependi the AER Severit
* Locked (Posted) TLP pending on the everity
cfg_err_posted = 1 () Yes register, either a Non-Fatal or
+ Posted TLP during .
Fatal Error Message is sent.
PM mode
A completion with a Completer
Abort status is sent. If enabled,
No .
a Non-Fatal Error Message is
cfg_err_cpl_abort sent.
&& Poisoned TLP - -
cfg_err_posted = 0 A completion with a Completer
- Yes Abort status is sent. If enabled,
a Correctable Error Message is
sent.
A completion with a Completer
Abort status is sent. If enabled,
No .
cfg_err_cpl_abort a Non-Fatal Error Message is
&& ECRC Error sent.
cfg_err_posted = 1 Depending on the AER Severity
Yes register, either a Non-Fatal or
Fatal Error Message is sent.
) N None (considered an Advisory
cfg_err_cpl_timeout . o Non-Fatal Error).
&& Poisoned TLP
cfg_err_no_recovery = 0 Ves If enablec!, a Correctable Error
Message is sent.
No If enabled, a Non-Fatal Error
cfg_err_cpl_timeout Message is sent.
&a& ECRC Error Depending on the AER Severity
cfg_err_no_recovery = 1 Yes register, a Non-Fatal or Fatal
Error Message is sent.
No If enabled, a Non-Fatal Error
Message is sent.
cfg_err_ecrc ECRC Error Depending on the AER Severity
Yes register, either a Non-Fatal or

Fatal Error Message is sent.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

128

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-40: User-Indicated Error Signaling (Cont’d)
User Reported Error Internal Cause AER Enabled Action
cfg_err_cor RX: Don't care
« PLM MGT Err
« Replay TO
» Replay Rollover If enabled, a Correctable Error
cfg_err_internal_cor - Bad DLLP Yes Message is sent.
« Bad TLP (crc/seq#)
« Header Log
Overflow™®
None (considered an Advisory
No
) Non-Fatal Error).
cfg_err_cpl_unexpect Poisoned TLP
If enabled, a Correctable Error
Yes .
Message is sent.
None (considered an Advisory
ctg_err_atomic_eg - Poisoned TLP
cked If enabled, a Correctable Error
Yes .
Message is sent.
RX: No If enabled, a Fatal Error
. Out-of-range ACK/ Message is sent.
NAK
cfg_err_malformed « Malformed TLP Depending on the AER Severity
Yes register, either a Non-Fatal or
 Buffer Overflow .
Fatal Error Message is sent.
+ FC error
If enabled, a Non-Fatal Error
No .
Message is sent.
Yes register, either a Non-Fatal or
Fatal Error Message is sent.
. N None (considered an Advisory
cfg_err_poisoned ° Non-Fatal Error).
&’ Poisoned TLP
cfg_err_no_recovery = 0 Ves If enableq, a Correctable Error
Message is sent.
If enabled, a Non-Fatal Error
. No .
cfg_err_poisoned Message is sent.
&& ECRC Error Depending on the AER Severity
cfg_err_no_recovery = 1 Yes register, either a Non-Fatal or

Fatal Error Message is sent.

Notes:
1. Only when AER is enabled.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

129

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-41: Possible Error Conditions for TLPs Received by the User Application

Possible Error Condition Error Qualifying Signal Status
Completion Unexpected . .
Unsupported Correctable ECRC Error) Value to Drive Drive Data
Abort Completion
Request (cfg_err_cpl Error (cfg_err_ (cfg_err_ (cfg_err_cpl on (cfg_err_ on (cfg_err_tlp_
g (cfg_err_ur) Berr_cpl_ cor) ecrc) g_err_cpl posted) cpl header[47:0])
= abort) unexpect)
= M
=
= emory 3 X N/A 3 X 1 No
e Write
M
= emory 3 3 N/A 3 X 0 Yes
Read
1/0 3 3 N/A 3 X 0 Yes
Completion X X N/A 3 3 1 No
Notes:

1. Acheckmark indicates a possible error condition for a given TLP type. For example, users can signal Unsupported Request or ECRC
Error for a Memory Write TLP, if these errors are detected. An X indicates not a valid error condition for a given TLP type. For
example, users should never signal Completion Abort in response to a Memory Write TLP.

Whenever an error is detected in a Non-Posted Request, the User Application deasserts
cfg_err_posted and provides header information on cfg_err_tlp_cpl_header[47:0] during the
same clock cycle the error is reported, as illustrated in Figure 3-63. The additional header
information is necessary to construct the required Completion with non-Successful status.
Additional information about when to assert or deassert cfg_err_posted is provided in the
remainder of this section.

If an error is detected on a Posted Request, the User Application instead asserts
cfg_err_posted, but otherwise follows the same signaling protocol. This results in a
Non-Fatal Message to be sent, if enabled (see Figure 3-64).

If several non-Posted errors are signaled on cfg_err_ur or cfg_err_cpl_abort in a short
amount of time, it is possible for the core to be unable to buffer them all. If that occurs, then
cfg_err_cpl_rdy is deasserted and the user must cease signaling those types of errors on the
same cycle. The user must not resume signaling those types of errors until cfg_err_cpl_rdy
is reasserted (see Figure 3-65).

The core’s ability to generate error messages can be disabled by the Root Complex issuing
a configuration write to the Endpoint core’s Device Control register and the PCI Command
register setting the appropriate bits to 0. For more information about these registers, see
Chapter 7 of the PCI Express Base Specification [Ref 2]. However, error-reporting status bits
are always set in the Configuration Space whether or not their Messages are disabled.

If AER is enabled, the root complex has fine-grained control over the ability and types of
error messages generated by the Endpoint core by setting the Severity and Mask Registers
in the AER Capability Structure. For more information about these registers, see Chapter 7
of the PCI Express Base Specification, rev. 2.1.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 130
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out :

|
cfg_err_cpl_rdy |
cfg_err_tlp_cpl_header{47:0] |

|

|
cfg_err_ur |

cfg_err_posted :
I
cfg_err_locked :

cfg_dcommand[3] :

tx_data[63:0]*

| I | Vi |
:Completion with Status Unsu{pported Requ‘%st sent on Iink:

| | | | |
* Internal signal not appearing on User Interface |
|

Figure 3-63: Signaling Unsupported Request for Non-Posted TLP

user_clk_out : | | | | | | | |
cfg_err_cpl_rdy : : | | | | |

I
cfg_err_ur | |

I I I
cfg_err_posted | | |
| i i

I I

|
N ! y

| | | T I
| | NonrFatal Error Mgssage sent or link

—t

cfg_dcommand[1]

|«

tx_data[63:0]*

* Internal :signal not applbaring on User1| Interface : |

Figure 3-64: Signaling Unsupported Request for Posted TLP

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 131
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

user_clk_out !

cfg_err_cpl_rdy |

cfg_err_tlp_cpl_header{47:0] |
|

I
cfg_err_ur |
cfg_err_posted :
I

cfg_err_locked :

cfg_dcommand[3] : L
A,

| I | v

:Completion wi#h Status Unsqpported Requ%st sent on link

I
|

|
|
|
| |) | o |
| * Internal signal not appearing on User Interface
| | | | |

Figure 3-65: Signaling Locked Unsupported Request for Locked Non-Posted TLP
Completion Timeouts

The Integrated Block core does not implement Completion timers; for this reason, the User
Application must track how long its pending Non-Posted Requests have each been waiting
for a Completion and trigger timeouts on them accordingly. The core has no method of
knowing when such a timeout has occurred, and for this reason does not filter out inbound
Completions for expired requests.

If a request times out, the User Application must assert cfg_err_cpl_timeout, which causes
an error message to be sent to the Root Complex. If a Completion is later received after a
request times out, the User Application must treat it as an Unexpected Completion.

Unexpected Completions

The Integrated Block core automatically reports Unexpected Completions in response to
inbound Completions whose Requestor ID is different than the Endpoint ID programmed in
the Configuration Space. These completions are not passed to the User Application. The
current version of the core regards an Unexpected Completion to be an Advisory Non-Fatal
Error (ANFE), and no message is sent.

Completer Abort

If the User Application is unable to transmit a normal Completion in response to a
Non-Posted Request it receives, it must signal cfg_err_cpl_abort. The cfg_err_posted signal
can also be set to 1 simultaneously to indicate Non-Posted and the appropriate request
information placed on cfg_err_tlp_cpl_header[47:0]. This sends a Completion with
non-Successful status to the original Requester, but does not send an Error Message. When
in Legacy mode if the cfg_err_locked signal is set to 0 (to indicate the transaction causing
the error was a locked transaction), a Completion Locked with Non-Successful status is sent.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 132
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

If the cfg_err_posted signal is set to 0 (to indicate a Posted transaction), no Completion is
sent, but a Non-Fatal Error Message is sent (if enabled).

Unsupported Request

If the User Application receives an inbound Request it does not support or recognize, it
must assert cfg_err_ur to signal an Unsupported Request. The cfg_err_posted signal must
also be asserted or deasserted depending on whether the packet in question is a Posted or
Non-Posted Request. If the packet is Posted, a Non-Fatal Error Message is sent out (if
enabled); if the packet is Non-Posted, a Completion with a non-Successful status is sent to
the original Requester. When in Legacy mode if the cfg_err_locked signal is set to 0 (to
indicate the transaction causing the error was a locked transaction), a Completion Locked
with Unsupported Request status is sent.

The Unsupported Request condition can occur for several reasons, including:

* Aninbound Memory Write packet violates the User Application's programming model,
for example, if the User Application has been allotted a 4 KB address space but only
uses 3 KB, and the inbound packet addresses the unused portion.

Note: If this occurs on a Non-Posted Request, the User Application should use cfg_err_cpl_abort
to flag the error.

« Aninbound packet uses a packet Type not supported by the User Application, for
example, an I/O request to a memory-only device.

ECRC Error

When enabled, the Integrated Block core automatically checks the ECRC field for validity. If
an ECRC error is detected, the core responds by setting the appropriate status bits and an
appropriate error message is sent, if enabled to do so in the configuration space.

If automatic ECRC checking is disabled, the User Application can still signal an ECRC error
by asserting cfg_err_ecrc. The User Application should only assert cfg_err_ecrc if AER is
disabled.

AER Requirements

Whenever the User Application signals an error using one of the cfg_err_* inputs (for
example, cfg_err_ecrc_n), it must also log the header of the TLP that caused the error. The
User Application provides header information on cfg_err_aer_headerlog[127:0] during the
same clock cycle the error is reported. The User Application must hold the header
information until cfg_err_aer_headerlog_set is asserted. cfg_err_aer_headerlog_set remains
asserted until the Uncorrectable Error Status Register bit corresponding to the first error
pointer is cleared (typically, via system software — see the PC/I Express Base Specification, v2.1
[Ref 2]). If cfg_err_aer_headerlog_set is already asserted, there is already a header logged.
Figure 3-66 illustrates the operation for AER header logging.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 133
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

! |
sl puNRREaREaR iRy
cfg_err_<condition> | |

cfg_err_aer_headerlog[127:0] HOH1 H2[H3

I\ } } /I

| Headerlof TLP W|th Error|
| | |

lll/l

cfg_err_aer_headerlog_set

S S | \ Clelf'ared by éoftware

| T T
AER Header Logging

Figure 3-66:

Resizable BAR Implementation-Specific Information (Endpoint Only)

The integrated block can support up to six resizable BARs; however, the BAR Index field of
the Resizable BAR Capability Registers (0 through 5) must be in ascending order. For
example, if Bar Index (0) is set to 4 (indicating it points to the BAR[4]), Bar Index (1) can be
set to 5 and Bar Index (2 - 5) cannot be used and is disabled. In this example, if BAR[4]
represents a 64-bit BAR (using BARS for the upper 32 bits), Bar Index(1) cannot be used.

When the Bar Size field of a Resizable BAR Capability is programmed, any value previously
programmed in the corresponding BAR is cleared and the number of writable bits in that
BAR is immediately changed to reflect the new size.

Error Detection

The PCI Express Base Specification identifies a number of errors a PCle port should check for,
together with a number of additional optional checks.

Most of the required checks (including several of the optional checks) are carried out by the
integrated block. Some, however, need to be implemented by the user. The integrated block
performs checks on received TLPs only. You must perform all checks on transmit TLPs.

Details of checks made by the integrated block or you are shown in Table 3-42. This table is
organized broadly in line with the sections of the PCI/ Express Base Specification describing

how these checks should be made.

Table 3-42: Error Checking Summary

PCl Express | Checkis | Where Check

Specification| Required is
Section |or Optional| Implemented

Checks Made Regarding TLPs with Data Payloads
That the data payload of a TLP does not exceed Max_Payload_Size. 222 Required Integrated
Any TLP that violates this rule is a Malformed TLP. Block
That where a TLP includes data, the actual amount of data matches 222 Required Integrated
the value in the length field. Any TLP that violates this rule is a Block
Malformed TLP.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 134

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 3-42: Error Checking Summary (Cont’d)

Chapter 3: Designing with the Core

PCl Express
Specification
Section

Check is
Required
or Optional

Where Check
is
Implemented

Checks Made Regarding TLP Digests

That the presence (or absence) of a digest correctly reflects the
setting of the TD field. Any TLP that violates this rule is a Malformed
TLP.

2.2.3

Required

Integrated
Block

Checks Made Regarding First/Last DWORD Byte Enable (1 DWOR

D = 32 bits)

« That if length > 1 DWORD, then the first DWORD BE is not 0000
« That if length = 1 DWORD, then the last DWORD BE is 0000
« That if length > 1 DWORD, then the last DWORD BE is not 0000

« That the BEs are not non-contiguous for packets > 3DW in length
or 2 DWORD packets that are not QWORD aligned

Any TLP that violates these rules is a Malformed TLP.

225

Optional

User

Checks Made Regarding Memory, 1/0, and Configuration Requests

That the tag field is the correct length for the current configuration.
The tag field for received and transmitted memory and I/O requests
must be checked by the user.

2.2.6.2

Optional

Integrated
Block

That MWr requests do not specify an Address/Length combination
that causes a Memory Space access to cross a 4 KB boundary. Any
MWr request that violates this rule is treated as a Malformed TLP. For
MRd requests, this optional check should be implemented in the
fabric, if desired.

227

Optional

Integrated
Block

That I/O requests obey these restrictions:

e TC[2:0] must be 000b

e Attr[1:0] must be 00b

e AT[1:0] must be 00b

« Length[9:0] must be 00 0000 0001b

* The last DW BE[3:0] must be 000b

Any I/O request that violates this rule is treated as a Malformed TLP.

2.2.7

Optional

Integrated
Block

That configuration requests obey these restrictions:
« TC[2:0] must be 000b

e Attr[1:0] must be 00b

« AT[1:0] must be 00b

« Length[9:0] must be 00 0000 0001b

* The last DW BE[3:0] must be 000b

Any configuration request that violates this rule is treated as a
Malformed TLP.

227

Optional

Integrated
Block

That configuration requests address a valid function number field.

7.3.2

Required

Integrated
Block

Checks Made Regarding Message Requests

That Assert_INTx/Deassert_INTx Messages are only issued by
upstream Ports. Any Assert_INTx/Deassert_INTx Message that
violates this rule is treated as a Malformed TLP.

2281

Optional

Integrated
Block

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

135

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-42: Error Checking Summary (Cont’d)
PCl Express | Checkis | Where Check
Specification| Required is
Section |or Optional Implemented
That Assert_INTx/Deassert_INTx Messages use TCO. Any Assert_INTx/ 2.2.8.1 Required Integrated
Deassert_INTx Message that violates this rule is treated as a Block
Malformed TLP.
That Power Management Messages use TCO. Any PM Message that 2.28.2 Required Integrated
violates this rule is treated as a Malformed TLP. Block
That Error Signaling Messages use TCO. Any Error Signaling Message 2.2.83 Required Integrated
that violates this rule is treated as a Malformed TLP. Block
That Unlock Messages use TCO. Any Unlock Message that violates 2284 Required Integrated
this rule is treated as a Malformed TLP. Block
That Set_Slot_Power_Limit Messages use TCO. Any 2.2.8.5 Required Integrated
Set_Slot_Power_Limit message that violates this rule is treated as a Block
Malformed TLP.
Unsupported Type 0 Vendor-Defined Messages. Reported as 2.2.86 Required User
unsupported requests.
Note: Type 1 Vendor-Defined Messages should be ignored.
Unsupported messages, that is, all messages other than: 2.2.8.6,2.2.8.7 | Required User
 Supported Type 0 Vendor-Defined Messages (message code
01111110)
« Type 1 Vendor-Defined Messages (message code 01111111)
« Ignored Messages (messages codes 01000000, 01000001,
01000011, 01000100, 01000101, 01000111, 01001000)
Reported as unsupported requests.
That Latency Tolerance Reporting Messages use TCO. Any Latency 2.2.8.8 Optional User
Tolerance Reporting message that violates this rule is treated as a
Malformed TLP.
That TLPs containing a TLP Prefix must have an underlying TLP 2.2.10 Optional User
Header. A TLP that violates this rule is treated as a Malformed TLP.
That in a TLPs containing a combinations of Local and End-End TLP 2.2.10 Optional User
Prefixes, all Local TLP Prefixes precede any End-End TLP Prefixes. Any
TLP that violates this rule is treated as a Malformed TLP.
It is an error to receive a TLP with a Local TLP Prefix type not 2.2.101 Optional User
supported by the Receiver. If the Extended Fmt Field Supported bit is
set, any TLP that violates this rule is treated as a Malformed TLP.
That the maximum number of End-End TLP Prefixes permitted in a 2.2.10.2 Optional User
TLP is 4. Any TLP that violates this rule is treated as a Malformed TLP.
It is an error to receive a TLP with End-End TLP Prefix by a Receiver 2.2.10.2 Optional User
that does not support End-End Prefixes. Any TLP that violates this
rule is treated as a Malformed TLP.
Checks Made Regarding Handling of TLPs
If the Extended Fmt Field Supported bit is set, Received TLPs that use 23 Optional User
encodings of Fmt and Type that are Reserved are treated as
Malformed TLPs.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 136

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-42: Error Checking Summary (Cont’d)
PCl Express | Checkis | Where Check
Specification | Required is
Section |or Optional| Implemented
That TLPs with Fmt[2] clear and that use undefined Type field values 2.3 Optional User
are treated as Malformed TLPs.
That any received TLP passes the required and implemented optional 23 Required Integrated
checks on TLP formation. Any TLP that violates this rule is a Block
malformed TLP. The user must generate the appropriate completion
TLP.
That Memory Read Request-Locked (MRdLk) requests do not include 2.3 Required User
a payload. Any MRdLk requests with payload must be discarded by
the user and a malformed TLP must be signaled.
That a Completion with Data (CplID) has a 3DW header. Any CpID with 2.3 Required User
a 4 DW header must be discarded by the user and a malformed TLP
must be signaled.
That an I/0O request has a 3DW header. Any I/O request with a 4DW 227 Required User
header must be discarded by the user and a malformed TLP must be
signaled.
That the byte enable rules for received memory reads are followed. 2.25 Required User
If not, TLP must be discarded by the user and a malformed TLP must
be signaled.
Checks Made Regarding Request Handling
Unsupported request types. Reported as an unsupported request. 231 Required Integrated
The user must generate the appropriate completion TLP. Block
Requests that violate the programming model of the device. 231 Optional User
Reported as a completer abort. The user must generate the
appropriate completion TLP.
Requests that cannot be processed due to a device-specific error 231 Required User
condition. Reported as a completer abort. The user must generate
the appropriate completion TLP.
That completions do not include more data than permitted by the 2311 Required Integrated
Max_Payload_Size. Any completion that violates this rule is treated as Block
a Malformed TLP.
Violations of RCB. Any completion that violates the RCB rules is 2311 Optional User
treated as a Malformed TLP.
Checks Made Regarding Completion Handling
Unexpected completions. 232 Required User
Completions with a status of request retry for requests other than 232 Optional User
configuration requests. Treated as a malformed TLP.
Completions with a completion status of unsupported request or 232 Required User
completer abort. Reported via conventional PCI reporting
mechanisms.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 137

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-42: Error Checking Summary (Cont’d)
PCl Express | Checkis | Where Check
Specification | Required is
Section |or Optional| Implemented
Checks Made Regarding Virtual Channel Mechanism
That requesters that do not support the VC capability structure only 2.5 Optional User
operate on TCO. Received requests on TC1-TC7 must be handled
normally (without error) and completions must be returned on the
same TC in which the request was received.
That the TC associated with each TLP is mapped to an enabled VC at 253 Required Integrated
an Ingress Port. Any TLP that violates this rule is treated as a Block
Malformed TLP.
Checks Made Regarding Flow Control
That the initial FC value is greater than or equal to the minimum 2.6.1 Optional User
advertisement. Reported as a flow control protocol error. Requires
knowledge of the device and the Max Payload Size setting at the far
end of the link.
That no receiver ever cumulatively issues more than 2047 2.6.1 Optional Integrated
outstanding unused data credits or 127 outstanding unused header Block
credits. Reported as a flow control protocol error.
That if infinite credits are advertised during initialization, all updates 26.1 Optional Integrated
must also be infinite. Reported as a flow control protocol error. This Block
also applies where just a header or just the data has been advertised
as infinite.
That the VC used by a TLP has been enabled. Any TLP that violates 2.6.1 Required Integrated
this rule is treated as a Malformed TLP. Block
Receiver Overflow. The PCI Express Base Specification defines this as 2.6.1.2 Optional Integrated
happening where the number of TLPs exceeds CREDITS_ALLOCATED. Block
That Update FCPs are scheduled for transmission at the specified 26.12 Optional Integrated
interval. Block
Checks Made Regarding Data Integrity
Integrity of TD bit in messages received and forwarded by switches. 271 Required Integrated
Any failed ECRC checks are reported. Block®
Receipt of a Poisoned TLP. 2722 Required User
Checks Made Regarding Completion Timeout
That the completion timeout timer does not expire in less than 50 s 2.8 Required User
but must expire if a request is not completed in 50 ms.
Checks Made Regarding LCRC and Sequence Number (TLP Transmitter)
REPLAY_NUM rolling over from 11b to 00b. Causes the Transmitter 3521 Required Integrated
to: (a) report an error; (b) signal the Physical Layer to retrain the Link. Block
Retry buffer containing TLPs for which no Ack or Nak DLLP has been 3.5.21 Required Integrated
received for a period exceeding specified maximum time. Causes the Block
Transmitter to: (a) report an error; (b) initiate a replay.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 138

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Table 3-42: Error Checking Summary (Cont’d)
PCl Express | Checkis | Where Check
Specification | Required is
Section |or Optional| Implemented
Value in the CRC field of all received DLLPs compared with calculated 3521 Required Integrated
result. If not equal: (a) the DLLP is discarded as corrupt; (b) an error Block
is reported.
Sequence Number specified by the AckNak_Seq_Num compared 3.5.21 Required Integrated
with that of unacknowledged TLPs and value in ACKD_SEQ. If no Block
match found: (a) the DLLP is discarded; (b) a DLLP error is reported.
Checks Made Regarding LCRC and Sequence Number (TLP Receiver)
LCRC field of the received TLP compared with calculated result. If not 3531 Required Integrated
equal: (a) the TLP is discarded as corrupt; (b) an error is reported. Block
LCRC field of the received TLP compared with logical NOT of 3531 Required Integrated
calculated result if TLP end framing symbol is EDB. LCRC does not Block
match logical NOT of the calculated value: (a) the TLP is discarded as
corrupt; (b) an error is reported.
TLP Sequence Number compared with expected value stored in 3,531 Required Integrated
NEXT_RCV_SEQ. If not equal, an error is reported. Block
Checks Resulting in Receiver Errors
Validity of received 8B/10B symbols bearing in mind the running 4213 Required Integrated
disparity. Errors reported as Receiver Errors. Block
Framing Errors, Loss of Symbol Lock, Lane Deskew Errors, and 4221 Optional User

Elasticity Buffer Overflow/Underflow. Errors reported as Receiver
Errors.

Notes:

1. The integrated block checks the ECRC depending on the customizable ECRC check setting.

Power Management

The Integrated Block core supports these power management modes:

» Active State Power Management (ASPM)

« Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design
enables the PCI Express hierarchy to seamlessly exchange power-management messages to
save system power. All power management message identification functions are
implemented. The subsections in this section describe the user logic definition to support

the above modes of power management.

For additional information on ASPM and PPM implementation, see the PC/ Express Base

Specification [Ref 2].

7 Series Integrated Block for PCle (v1.7) www.xilinx.com

PG054 October 16, 2012

139

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Active State Power Management

The Active State Power Management (ASPM) functionality is autonomous and transparent
from a user-logic function perspective. The core supports the conditions required for ASPM.
The integrated block supports ASPM LOs.

Programmed Power Management

To achieve considerable power savings on the PCI Express hierarchy tree, the core supports
these link states of Programmed Power Management (PPM):

« LO: Active State (data exchange state)
« L1: Higher Latency, lower power standby state

« L3: Link Off State

The Programmed Power Management Protocol is initiated by the Downstream Component/
Upstream Port.

PPM LO State

The LO state represents normal operation and is transparent to the user logic. The core
reaches the LO (active state) after a successful initialization and training of the PCI Express
Link(s) as per the protocol.

PPM L1 State
These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream device,
by programming the PCI Express device power state to D3-hot (or to D1 or D2 if they are
supported).

2. The device power state is communicated to the user logic through the
cfg_pmcsr_powerstate[1:0] output.

3. The core then throttles/stalls the user logic from initiating any new transactions on the
user interface by deasserting s_axis_tx_tready. Any pending transactions on the user
interface are, however, accepted fully and can be completed later.

There are two exceptions to this rule:

- The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user must refrain from sending new Request TLPs if
cfg_pmcsr_powerstate[1:0] indicates non-DO0, but the user can return Completions
to Configuration transactions targeting User Configuration space.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 140
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

o The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_pmcsr_powerstate[1:0] indicates
non-DO0.

4. The core exchanges appropriate power management DLLPs with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is transparent
to the user logic.

5. All user transactions are stalled for the duration of time when the device power state is
non-DO, with the exceptions indicated in step 3.

Note: The user logic, after identifying the device power state as non-DO0, can initiate a request
through the cfg_pm_wake to the upstream link partner to configure the device back to the DO power
state. If the upstream link partner has not configured the device to allow the generation of PM_PME
messages (cfg_pmcsr_pme_en = 0), the assertion of cfg_pm_wake is ignored by the core.

PPM L3 State
These steps outline the transition of the Endpoint for PCI Express to the PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a
PME_Turn_Off message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the core initiates a handshake with the user
logic through cfg_to_turnoff (see Table 3-43) and expects a cfg_turnoff_ok back from the
user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the core to its upstream link partner.

4. The core closes all its interfaces, disables the Physical/Data-Link/Transaction layers and
is ready for removal of power to the core.

There are two exceptions to this rule:

- The core is configured as an Endpoint and the User Configuration Space is enabled.
In this situation, the user must refrain from sending new Request TLPs if
cfg_pmcsr_powerstate[1:0] indicates non-DO0, but the user can return Completions
to Configuration transactions targeting User Configuration space.

o The core is configured as a Root Port. To be compliant in this situation, the user
should refrain from sending new Requests if cfg_pmcsr_powerstate[1:0] indicates
non-DO0.

Table 3-43: Power Management Handshaking Signals

Port Name Direction Description

cfg_to_turnoff Output Asserted if a power-down request TLP is received from the
upstream device. After assertion, cfg_to_turnoff remains
asserted until the user asserts cfg_turnoff_ok.

cfg_turnoff_ok Input Asserted by the User Application when it is safe to power
down.
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 141

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in a
downstream switch issues a PME_Turn_Off broadcast message.

2. When the core receives this TLP, it asserts cfg_to_turnoff to the User Application and
starts polling the cfg_turnoff_ok input.

3. When the User Application detects the assertion of cfg_to_turnoff, it must complete any
packet in progress and stop generating any new packets. After the User Application is
ready to be turned off, it asserts cfg_turnoff_ok to the core. After assertion of
cfg_turnoff_ok, the User Application has committed to being turned off.

4. The core sends a PME_TO_Ack when it detects assertion of cfg_turnoff_ok, as displayed
in Figure 3-67 (64-bit).

rx_data[63:0]*i X PME_Turn_Off Xﬁ
S L
e

|
cfg_to_turnoff |

|
cfg_turnoff_ok |

tx_data[63:0]" | \ \ X PME_TO_ACK X
i I I I I I I I I I I I I I

| | | | | | | | |

| | | | | | | | |

| % I o ;
! Intema!l signal n(?t appearlbg on Us%.r Interfac%

Figure 3-67: Power Management Handshaking: 64-Bit

Generating Interrupt Requests

Note: This section is only applicable to the Endpoint Configuration of the 7 Series FPGAs Integrated
Block for PCI Express.

The Integrated Block core supports sending interrupt requests as either legacy, Message
MSI, or MSI-X interrupts. The mode is programmed using the MSI Enable bit in the Message
Control Register of the MSI Capability Structure and the MSI-X Enable bit in the MSI-X
Message Control Register of the MSI-X Capability Structure. For more information on the
MSI and MSI-X capability structures, see section 6.8 of the PC/ Local Base Specification v3.0
[Ref 2].

The state of the MSI Enable and MSI-X Enabled bits are reflected by the
cfg_interrupt_msienable and cfg_interrupt_msixeable outputs, respectively. Table 3-44
describes the Interrupt Mode the device has been programmed to, based on the
cfg_interrupt_msienable and cfg_interrupt_msixenable outputs of the core.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 142
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-44: Interrupt Modes

cfg_interrupt_msixenable=0 cfg_interrupt_msixenable=1
Legacy Interrupt (INTx) mode. MSI-X mode. MSI-X interrupts must be
The cfg_interrupt interface only sends | generated by the user by composing MWr
INTx messages. TLPs on the transmit AXI4-Stream interface;

cfg_interrupt_

- Do not use the cfg_interrupt interface.
msienable=0 9- P

The cfg_interrupt interface is active and
sends INTx messages, but the user should
refrain from doing so.

MSI mode. The cfg_interrupt interface | Undefined. System software is not

only sends MSI interrupts (MWr TLPs). | supposed to permit this.

However, the cfg_interrupt interface is
active and sends MSI interrupts (MWr TLPs)
if the user chooses to do so.

cfg_interrupt_
msienable=1

The MSI Enable bit in the MSI control register, the MSI-X Enable bit in the MSI-X Control
Register, and the Interrupt Disable bit in the PCI Command register are programmed by the
Root Complex. The User Application has no direct control over these bits.

The Internal Interrupt Controller in the 7 Series FPGAs Integrated Block for PCI Express core
only generates Legacy Interrupts and MSI Interrupts. MSI-X Interrupts need to be generated
by the User Application and presented on the transmit AXI4-Stream interface. The status of
cfg_interrupt_msienable determines the type of interrupt generated by the internal
Interrupt Controller:

If the MSI Enable bit is set to a 1, then the core generates MSI requests by sending Memory
Write TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as
long as the Interrupt Disable bit in the PCI Command Register is set to 0:

« cfg_command[10] = 0: INTx interrupts enabled
« cfg_command[10] = 1: INTx interrupts disabled (request are blocked by the core)

« cfg_interrupt_msienable = 0: Legacy Interrupt

1: MSI

« cfg_interrupt_msienable

Regardless of the interrupt type used (Legacy or MSI), the user initiates interrupt requests
through the use of cfg_interrupt and cfg_interrupt_rdy as shown in Table 3-45.

Table 3-45: Interrupt Signalling

Port Name Direction Description
cfg_interrupt Input Assert to request an interrupt. Leave asserted until the interrupt is
serviced.
cfg_interrupt_rdy Output | Asserted when the core accepts the signaled interrupt request.

The User Application requests interrupt service in one of two ways, each of which are
described next.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 143
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Legacy Interrupt Mode

« As shown in Figure 3-68, the User Application first asserts cfg_interrupt and
cfg_interrupt_assert to assert the interrupt. The User Application should select a
specific interrupt (INTA) using cfg_interrupt_di[7:0] as shown in Table 3-46.

« The core then asserts cfg_interrupt_rdy to indicate the interrupt has been accepted. On
the following clock cycle, the User Application deasserts cfg_interrupt and, if the
Interrupt Disable bit in the PCI Command register is set to 0, the core sends an assert
interrupt message (Assert_INTA).

« After the User Application has determined that the interrupt has been serviced, it
asserts cfg_interrupt while deasserting cfg_interrupt_assert to deassert the interrupt.
The appropriate interrupt must be indicated via cfg_interrupt_di[7:0].

« The core then asserts cfg_interrupt_rdy to indicate the interrupt deassertion has been
accepted. On the following clock cycle, the User Application deasserts cfg_interrupt
and the core sends a deassert interrupt message (Deassert_INTA).

cfg_interrupt_msienable :

—
"

|
|
I T
cfg_interrupt | | |
[|
cfg_interrupt_di :

| |
cfg_interrupt_assert | | ’
I

cfg_interrupt_rdy :

m—

—
e N

—

l\
—— .~ A

INTA

=

—

— M
""")))
e RS

s R

S Ol O R N]

cfg_interrupt_msienable |
|

cfg_interrupt : ! ’
|
cfg_interrupt_di ,-
| I

cfg_interrupt_rdy ! ! |

—~—

e RS
s R

4 ©
>

— L
""" ") "))

Y
Y
| |\\| |
R Y A N T I

Figure 3-68: Requesting Interrupt Service: MSI and Legacy Mode

Table 3-46: Legacy Interrupt Mapping

cfg_interrupt_di[7:0] value Legacy Interrupt
00h INTA
0lh - FFh Not Supported
MSI Mode

« As shown in Figure 3-68, the User Application first asserts cfg_interrupt. Additionally
the User Application supplies a value on cfg_interrupt_di[7:0] if Multi-Vector MSI is
enabled.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 144
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

« The core asserts cfg_interrupt_rdy to signal that the interrupt has been accepted and
the core sends a MSI Memory Write TLP. On the following clock cycle, the User
Application deasserts cfg_interrupt if no further interrupts are to be sent.

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable
Memory Write TLP. The address is taken from the Message Address and Message Upper
Address fields of the MSI Capability Structure, while the payload is taken from the Message
Data field. These values are programmed by system software through configuration writes
to the MSI Capability structure. When the core is configured for Multi-Vector MSI, system
software can permit Multi-Vector MSI messages by programming a non-zero value to the
Multiple Message Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value
of the Upper Address field in the MSI capability structure. By default, MSI messages are sent
as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable Memory
Write TLPs only if the system software programs a non-zero value into the Upper Address
register.

When Multi-Vector MSI messages are enabled, the User Application can override one or
more of the lower-order bits in the Message Data field of each transmitted MSI TLP to
differentiate between the various MSI messages sent upstream. The number of lower-order
bits in the Message Data field available to the User Application is determined by the lesser
of the value of the Multiple Message Capable field, as set in the CORE Generator tool, and
the Multiple Message Enable field, as set by system software and available as the
cfg_interrupt_mmenable[2:0] core output. The core masks any bits in cfg_interrupt_di[7:0]
which are not configured by system software via Multiple Message Enable.

This pseudo-code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 < MSI_Vector_ Num <
(2"cfg_interrupt_mmenable) -1

if (cfg_interrupt_msienable) ({ // MSI Enabled
if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled
cfg _interrupt_di[7:0] = {Padding 0Os, MSI_Vector_Num};
} else { // Single-Vector MSI Enabled
cfg_interrupt_di[7:0] = Padding_ 0s;
}
} else {
// Legacy Interrupts Enabled
}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000Db, that is, 1 MSI Vector Enabled,
then cfg_interrupt_di[7:0] = 00h;

2. if cfg_interrupt_mmenable[2:0] == 101b, that is, 32 MSI Vectors Enabled,
then cfg_interrupt_di[7:0] = {{000b}, {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b < MSI_Vector#< 11111b.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 145
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

If Per-Vector Masking is enabled, the user must first verify that the vector being signaled is
not masked in the Mask register. This is done by reading this register on the Configuration
interface (the core does not look at the Mask register).

MSI-X Mode

The 7 Series FPGAs Integrated Block for PCI Express optionally supports the MSI-X
Capability Structure. The MSI-X vector table and the MSI-X Pending Bit Array need to be
implemented as part of the user’s logic, by claiming a BAR aperture.

If the cfg_interrupt_msixenable output of the core is asserted, the User Application should
compose and present the MSI-X interrupts on the transmit AXI4-Stream interface.

Link Training: 2-Lane, 4-Lane, and 8-Lane Components

The 2-lane, 4-lane, and 8-lane Integrated Block for PCI Express can operate at less than the
maximum lane width as required by the PCI Express Base Specification [Ref 2]. Two cases
cause core to operate at less than its specified maximum lane width, as defined in these
subsections.

Link Partner Supports Fewer Lanes

When the 2-lane core is connected to a device that implements only 1 lane, the 2-lane core
trains and operates as a 1-lane device using lane 0.

When the 4-lane core is connected to a device that implements 1 lane, the 4-lane core
trains and operates as a 1-lane device using lane 0, as shown in Figure 3-69. Similarly, if the
4-lane core is connected to a 2-lane device, the core trains and operates as a 2-lane device
using lanes 0 and 1.

When the 8-lane core is connected to a device that only implements 4 lanes, it trains and
operates as a 4-lane device using lanes 0-3. Additionally, if the connected device only
implements 1 or 2 lanes, the 8-lane core trains and operates as a 1- or 2-lane device.

Upstream Device Upstream Device
4-lane Downstream Port 1-lane Downstream Port
Lane 0 | Lane 1 | Lane 2|Lane 3 Lane 0 | Lane 1 | Lane 2| Lane 3

disabled lanes.

|

Lane 0Lane 1|Lane 2[Lane 3 Lane 0 Lane 1|Lane 2[Lane 3

‘ ' ‘ Note: Shaded blocks indicate

4-lane Integrated Block 4-lane Integrated Block

Figure 3-69: Scaling of 4-Lane Endpoint Block from 4-Lane to 1-Lane Operation

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 146
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Lane Becomes Faulty

If a link becomes faulty after training to the maximum lane width supported by the core and
the link partner device, the core attempts to recover and train to a lower lane width, if
available. If lane 0 becomes faulty, the link is irrecoverably lost. If any or all of lanes 1-7
become faulty, the link goes into recovery and attempts to recover the largest viable link
with whichever lanes are still operational.

For example, when using the 8-lane core, loss of lane 1 yields a recovery to 1-lane operation
on lane 0, whereas the loss of lane 6 yields a recovery to 4-lane operation on lanes 0-3.
After recovery occurs, if the failed lane(s) becomes alive again, the core does not attempt to
recover to a wider link width. The only way a wider link width can occur is if the link actually
goes down and it attempts to retrain from scratch.

The user_clk_out clock output is a fixed frequency configured in the CORE Generator tool
GULI. user_clk_out does not shift frequencies in case of link recovery or training down.

Lane Reversal

The integrated Endpoint block supports limited lane reversal capabilities and therefore
provides flexibility in the design of the board for the link partner. The link partner can
choose to lay out the board with reversed lane numbers and the integrated Endpoint block
continues to link train successfully and operate normally. The configurations that have lane
reversal support are x8 and x4 (excluding downshift modes). Downshift refers to the link
width negotiation process that occurs when link partners have different lane width
capabilities advertised. As a result of lane width negotiation, the link partners negotiate
down to the smaller of the two advertised lane widths. Table 3-47 describes the several
possible combinations including downshift modes and availability of lane reversal support.

Table 3-47: Lane Reversal Support

Endpoint Block Negotiated Lane Number Mapping Lane
Advertised Lane (Endpoint Link Partner) Reversal
Lane Width Width Endpoint Link Partner Supported

x8 x8 Lane 0 ... Lane 7 Lane 7 ... Lane O Yes
x8 x4 Lane 0 ... Lane 3 Lane 7 ... Lane 4 No®
x8 x2 Lane 0 ... Lane 3 Lane 7 ... Lane 6 No(®
x4 x4 Lane 0 ... Lane 3 Lane 3 ... Lane 0 Yes
x4 x2 Lane 0 ... Lane 1 Lane 3 ... Lane 2 No®
X2 X2 Lane 0 ... Lane 1 Lane 1... Lane 0 Yes
X2 x1 Lane 0 ... Lane 1 Lane 1 No®
Notes:

1. When the lanes are reversed in the board layout and a downshift adapter card is inserted between the Endpoint
and link partner, Lane 0 of the link partner remains unconnected (as shown by the lane mapping in Table 3-47) and
therefore does not link train.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 147
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Using the Dynamic Reconfiguration Port Interface

The Dynamic Reconfiguration Port (DRP) interface allows read and write access to the FPGA
configuration memory bits of the integrated block instantiated as part of the core. These
configuration memory bits are represented as attributes of the PCIE_2_1 library element.

The DRP interface is a standard interface found on many integrated IP blocks in Xilinx
devices. For detailed information about how the DRP interface works with the FPGA
configuration memory, see the 7 Series FPGAs Configuration User Guide [Ref 3].

Writing and Reading the DRP Interface

The interface is a processor-friendly synchronous interface with an address bus (drp_addr)
and separated data buses for reading (drp_do) and writing (drp_di) configuration data to
the PCIE_2_1 block. An enable signal (drp_en), a read/write signal (drp_we), and a ready/
valid signal (drp_rdy) are the control signals that implement read and write operations,
indicate operation completion, or indicate the availability of data. Figure 3-70 shows a write
cycle, and Figure 3-71 shows a read cycle.

pcie_drp_clki | | | | | : S S: | | | | | | |
pcie_drp_en ! ! ’ : \ ! S S
pcie_drp_ we: :/ :\ : S S

pcie_drp_di[15:0] :m
pcie_drp_| rdyI

F/gure 3-70: DRP Interface Write Cycle

IS

|
pcie_drp_en : :
|

|

]

pcie_drp_ we |
pcie_drp_addr[8:0] :
I

|

|

“
pcie_drp_rdy |

pcie_drp_di[15:0]
I

pcie_drp_do[1 5:0] '

data

Figure 3-71: DRP Interface Read Cycle

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 148
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Other Considerations for the DRP Interface

Updating attribute values through the DRP port is only supported while the core is in reset
with sys_reset asserted. Behavior of the core is undefined if attributes are updated
on-the-fly with sys_rst deasserted. Reading attributes through the DRP port is
independent of sys_rst.

Attributes larger than 16 bits span two drp_daddr addresses, for example BARO[31:0]
requires two accesses to read or write the attribute. Additionally, some attributes share a
single drp_daddr address. The user should employ a read-modify-write approach so that
shared-address attributes are not modified unintentionally.

There are a number of attributes that should not be modified via DRP, because these
attributes need to be set in an aligned manner with the rest of the design. For example,
changing the memory latency attributes on the PCIE_2_1 block without changing the actual
number of pipeline registers attached to the block RAM causes a functional failure. These
attributes are included in this category:

+ DEV_CAP_MAX_PAYLOAD_SUPPORTED
* VCO_TX_LASTPACKET

+ TL_TX_RAM_RADDR_LATENCY
 TL_TX_RAM_RDATA_LATENCY
 TL_TX_RAM_WRITE_LATENCY

* VCO_RX_LIMIT

+ TL_RX_RAM_RADDR_LATENCY

+ TL_RX_RAM_RDATA_LATENCY
TL_RX_RAM_WRITE_LATENCY

DRP Address Map

Table 3-48 defines the DRP address map for the PCIE_2_1 library element attributes.
Some attributes span two addresses, for example, BARO. In addition, some addresses
contain multiple attributes; for example, address 0x004 contains both
AER_CAP_NEXTPTR[11:0] and AER_CAP_ON.

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes

Data Bits
drp_di[15:0] or
drp_do[15:0]

Address

Attribute Name drp. daddr[8:0]

AER_CAP_ECRC_CHECK_CAPABLE 0x000 [0]
AER_CAP_ECRC_GEN_CAPABLE 0x000 [1]
AER_CAP_ID[15:0] 0x001 [15:0]

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 149

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Chapter 3: Designing with the Core

Attribute Name

Address
drp_daddr[8:0]

Data Bits
drp_di[15:0] or
drp_do[15:0]

AER_CAP_PERMIT_ROOTERR_UPDATE 0x002 [0]
AER_CAP_VERSION[3:0] 0x002 [4:1]
AER_BASE_PTR[11:0] 0x003 [11:0]
AER_CAP_NEXTPTR[11:0] 0x004 [11:0]
AER_CAP_ON 0x004 [12]
AER_CAP_OPTIONAL_ERR_SUPPORT[15:0] 0x005 [15:0]
AER_CAP_OPTIONAL_ERR_SUPPORT[23:16] 0x006 [7:0]
AER_CAP_MULTIHEADER 0x006 [8]
BARO[15:0] 0x007 [15:0]
BARO[31:16] 0x008 [15:0]
BAR1[15:0] 0x009 [15:0]
BAR1[31:16] 0x00a [15:0]
BAR2[15:0] 0x00b [15:0]
BAR2[31:16] 0x00c [15:0]
BAR3[15:0] 0x00d [15:0]
BAR3[31:16] 0x00e [15:0]
BAR4[15:0] 0x00f [15:0]
BAR4[31:16] 0x010 [15:0]
BAR5[15:0] 0x011 [15:0]
BAR5[31:16] 0x012 [15:0]
EXPANSION_ROM[15:0] 0x013 [15:0]
EXPANSION_ROM[31:16] 0x014 [15:0]
CAPABILITIES_PTR[7:0] 0x015 [7:0]
CARDBUS_CIS_POINTER[15:0] 0x016 [15:0]
CARDBUS_CIS_POINTER[31:16] 0x017 [15:0]
CLASS_CODE[15:0] 0x018 [15:0]
CLASS_CODE[23:16] 0x019 [7:0]
CMD_INTX_IMPLEMENTED 0x019 [8]
CPL_TIMEOUT_DISABLE_SUPPORTED 0x019 [9]
CPL_TIMEOUT_RANGES_SUPPORTED[3:0] 0x019 [13:10]
DEV_CAP2_ARI_FORWARDING_SUPPORTED 0x019 [14]
DEV_CAP2_ATOMICOP_ROUTING_SUPPORTED 0x019 [15]
DEV_CAP2_ATOMICOP32_COMPLETER_SUPPORTED 0x0la [0]

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

150

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf(;j:Jg:FS:O] d(rjplzzlf?lglt)s] or
rp_do[15:0]
DEV_CAP2_ATOMICOP64_COMPLETER_SUPPORTED 0x01la [1]
DEV_CAP2_CAS128_COMPLETER_SUPPORTED 0x01la [2]
DEV_CAP2_NO_RO_ENABLED_PRPR_PASSING 0x01la [3]
DEV_CAP2_LTR_MECHANISM_SUPPORTED 0x0la [4]
DEV_CAP2_TPH_COMPLETER_SUPPORTED[1:0] 0x0la [6:5]
DEV_CAP2_EXTENDED_FMT_FIELD_SUPPORTED 0x0la [7]
DEV_CAP2_ENDEND_TLP_PREFIX_SUPPORTED 0x01la [8]
DEV_CAP2_MAX_ENDEND_TLP_PREFIXES[1:0] 0x01la [10:9]
ENDEND_TLP_PREFIX_FORWARDING_SUPPORTED 0x01la [11]
DEV_CAP_ENABLE_SLOT_PWR_LIMIT_SCALE 0x01la [12]
DEV_CAP_ENABLE_SLOT_PWR_LIMIT_VALUE 0x01la [13]
DEV_CAP_ENDPOINT_LOS_LATENCY[2:0] 0x01b [2:0]
DEV_CAP_ENDPOINT_L1_LATENCY[2:0] 0x01b [5:3]
DEV_CAP_EXT_TAG_SUPPORTED 0x01b [6]
DEV_CAP_FUNCTION_LEVEL_RESET_CAPABLE 0x01b [7]
DEV_CAP_MAX_PAYLOAD_SUPPORTED[2:0] 0x01b [10:8]
DEV_CAP_PHANTOM_FUNCTIONS_SUPPORT[1:0] 0x01b [12:11]
DEV_CAP_ROLE_BASED_ERROR 0x01b [13]
DEV_CAP_RSVD_14_12[2:0] 0x01lc [2:0]
DEV_CAP_RSVD_17_16[1:0] 0x01c [4:3]
DEV_CAP_RSVD_31_29[2:0] 0x01c [7:5]
DEV_CONTROL_AUX_POWER_SUPPORTED 0x01c [8]
DEV_CONTROL_EXT_TAG_DEFAULT 0x01c [9]
DSN_BASE_PTR[11:0] 0x01d [11:0]
DSN_CAP_ID[15:0] 0x01le [15:0]
DSN_CAP_NEXTPTR[11:0] 0x01f [11:0]
DSN_CAP_ON 0x01f [12]
DSN_CAP_VERSION][3:0] 0x020 [3:0]
EXT_CFG_CAP_PTR[5:0] 0x020 [9:4]
EXT_CFG_XP_CAP_PTR[9:0] 0x021 [9:0]
HEADER_TYPE[7:0] 0x022 [7:0]
INTERRUPT_PIN[7:0] 0x022 [15:8]
INTERRUPT_STAT_AUTO 0x023 [0]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 151

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf(;j:Jg:FS:O] d(rjplzzlf?lglt)s] or
rp_do[15:0]
IS_SWITCH 0x023 [1]
LAST_CONFIG_DWORDI[9:0] 0x023 [11:2]
LINK_CAP_ASPM_SUPPORTI[1:0] 0x023 [13:12]
LINK_CAP_CLOCK_POWER_MANAGEMENT 0x023 [14]
LINK_CAP_DLL_LINK_ACTIVE_REPORTING_CAP 0x023 [15]
LINK_CAP_LOS_EXIT_LATENCY_COMCLK_GEN1[2:0] 0x024 [2:0]
LINK_CAP_LOS_EXIT_LATENCY_COMCLK_GENZ2[2:0] 0x024 [5:3]
LINK_CAP_LOS_EXIT_LATENCY_GEN1[2:0] 0x024 [8:6]
LINK_CAP_LOS_EXIT_LATENCY_GENZ2[2:0] 0x024 [11:9]
LINK_CAP_L1_EXIT_LATENCY_COMCLK_GEN1[2:0] 0x024 [14:12]
LINK_CAP_L1_EXIT_LATENCY_COMCLK_GENZ2[2:0] 0x025 [2:0]
LINK_CAP_L1_EXIT_LATENCY_GEN1[2:0] 0x025 [5:3]
LINK_CAP_L1_EXIT_LATENCY_GENZ2[2:0] 0x025 [8:6]
LINK_CAP_LINK_BANDWIDTH_NOTIFICATION_CAP 0x025 [9]
LINK_CAP_MAX_LINK_SPEEDI[3:0] 0x025 [13:10]
LINK_CAP_ASPM_OPTIONALITY 0x025 [14]
LINK_CAP_RSVD_23 0x025 [15]
LINK_CAP_SURPRISE_DOWN_ERROR_CAPABLE 0x026 [0]
LINK_CONTROL_RCB 0x026 [1]
LINK_CTRL2_DEEMPHASIS 0x026 [2]
LINK_CTRL2_HW_AUTONOMOUS_SPEED_DISABLE 0x026 [3]
LINK_CTRL2_TARGET_LINK_SPEED[3:0] 0x026 [7:4]
LINK_STATUS_SLOT_CLOCK_CONFIG 0x026 [8]
MPS_FORCE 0x026 [9]
MSI_BASE_PTR[7:0] 0x027 [7:0]
MSI_CAP_64_BIT_ADDR_CAPABLE 0x027 [8]
MSI_CAP_ID[7:0] 0x028 [7:0]
MSI_CAP_MULTIMSG_EXTENSION 0x028 [8]
MSI_CAP_MULTIMSGCAP[2:0] 0x028 [11:9]
MSI_CAP_NEXTPTR[7:0] 0x029 [7:0]
MSI_CAP_ON 0x029 [8]
MSI_CAP_PER_VECTOR_MASKING_CAPABLE 0x029 [9]
MSIX_BASE_PTR[7:0] 0x02a [7:0]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 152

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf::JS:FS:O] d‘;pli?:lf?lgltﬁ or
rp_do[15:0]
MSIX_CAP_ID[7:0] 0x02a [15:8]
MSIX_CAP_NEXTPTR[7:0] 0x02b [7:0]
MSIX_CAP_ON 0x02b [8]
MSIX_CAP_PBA_BIR[2:0] 0x02b [11:9]
MSIX_CAP_PBA_OFFSET[15:0] 0x02c [15:0]
MSIX_CAP_PBA_OFFSET[28:16] 0x02d [12:0]
MSIX_CAP_TABLE_BIR[2:0] 0x02d [15:13]
MSIX_CAP_TABLE_OFFSET[15:0] 0x02e [15:0]
MSIX_CAP_TABLE_OFFSET[28:16] 0x02f [12:0]
MSIX_CAP_TABLE_SIZE[10:0] 0x030 [10:0]
PCIE_BASE_PTRI[7:0] 0x031 [7:0]
PCIE_CAP_CAPABILITY_ID[7:0] 0x031 [15:8]
PCIE_CAP_CAPABILITY_VERSION|[3:0] 0x032 [3:0]
PCIE_CAP_DEVICE_PORT_TYPE[3:0] 0x032 [7:4]
PCIE_CAP_NEXTPTR[7:0] 0x032 [15:8]
PCIE_CAP_ON 0x033 [0]
PCIE_CAP_RSVD_15_14[1:0] 0x033 [2:1]
PCIE_CAP_SLOT_IMPLEMENTED 0x033 [3]
PCIE_REVISION[3:0] 0x033 [7:4]
PM_BASE_PTR[7:0] 0x033 [15:8]
PM_CAP_AUXCURRENT[2:0] 0x034 [2:0]
PM_CAP_D1SUPPORT 0x034 [3]
PM_CAP_D2SUPPORT 0x034 [4]
PM_CAP_DSI 0x034 [5]
PM_CAP_ID[7:0] 0x034 [13:6]
PM_CAP_NEXTPTR[7:0] 0x035 [7:0]
PM_CAP_ON 0x035 [8]
PM_CAP_PME_CLOCK 0x035 [9]
PM_CAP_PMESUPPORT[4:0] 0x035 [14:10]
PM_CAP_RSVD_04 0x035 [15]
PM_CAP_VERSION[2:0] 0x036 [2:0]
PM_CSR_B2B3 0x036 [3]
PM_CSR_BPCCEN 0x036 [4]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 153

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf::JS:FS:O] d‘;pli?:lf?lgltﬁ or
rp_do[15:0]
PM_CSR_NOSOFTRST 0x036 [5]
PM_DATA_SCALEO[1:0] 0x036 [7:6]
PM_DATA_SCALE1[1:0] 0x036 [9:8]
PM_DATA_SCALE2[1:0] 0x036 [11:10]
PM_DATA_SCALE3[1:0] 0x036 [13:12]
PM_DATA_SCALE4[1:0] 0x036 [15:14]
PM_DATA_SCALE5[1:0] 0x037 [1:0]
PM_DATA_SCALE6[1:0] 0x037 [3:2]
PM_DATA_SCALE7[1:0] 0x037 [5:4]
PM_DATAOQ[7:0] 0x037 [13:6]
PM_DATA1[7:0] 0x038 [7:0]
PM_DATA2[7:0] 0x038 [15:8]
PM_DATA3[7:0] 0x039 [7:0]
PM_DATA4[7:0] 0x039 [15:8]
PM_DATA5[7:0] 0x03a [7:0]
PM_DATAG6[7:0] 0x03a [15:8]
PM_DATA7[7:0] 0x03b [7:0]
RBAR_BASE_PTR[11:0] 0x03c [11:0]
RBAR_CAP_NEXTPTR[11:0] 0x03d [11:0]
RBAR_CAP_ON 0x03d [12]
RBAR_CAP_ID[15:0] 0x03e [15:0]
RBAR_CAP_VERSION([3:0] 0x03f [3:0]
RBAR_NUM]2:0] 0x03f [6:4]
RBAR_CAP_SUPO[15:0] 0x040 [15:0]
RBAR_CAP_SUPO[31:16] 0x041 [15:0]
RBAR_CAP_SUP1[15:0] 0x042 [15:0]
RBAR_CAP_SUP1[31:16] 0x043 [15:0]
RBAR_CAP_SUP2[15:0] 0x044 [15:0]
RBAR_CAP_SUP2[31:16] 0x045 [15:0]
RBAR_CAP_SUP3[15:0] 0x046 [15:0]
RBAR_CAP_SUP3[31:16] 0x047 [15:0]
RBAR_CAP_SUPA4[15:0] 0x0438 [15:0]
RBAR_CAP_SUP4[31:16] 0x049 [15:0]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 154

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf(;j:Jg:FS:O] d(rjplzzlf?lglt)s] or
rp_do[15:0]
RBAR_CAP_SUP5[15:0] 0x04a [15:0]
RBAR_CAP_SUP5[31:16] 0x04b [15:0]
RBAR_CAP_INDEXO0[2:0] 0x04c [2:0]
RBAR_CAP_INDEX1[2:0] 0x04c [5:3]
RBAR_CAP_INDEX2[2:0] 0x04c [8:6]
RBAR_CAP_INDEX3[2:0] 0x04c [11:9]
RBAR_CAP_INDEX4[2:0] 0x04c [14:12]
RBAR_CAP_INDEX5[2:0] 0x04d [2:0]
RBAR_CAP_CONTROL_ENCODEDBARO[4:0] 0x04d [7:3]
RBAR_CAP_CONTROL_ENCODEDBAR1[4:0] 0x04d [12:8]
RBAR_CAP_CONTROL_ENCODEDBAR2[4:0] 0x04e [4:0]
RBAR_CAP_CONTROL_ENCODEDBAR3[4:0] 0x04e [9:5]
RBAR_CAP_CONTROL_ENCODEDBARA4[4:0] 0x04e [14:10]
RBAR_CAP_CONTROL_ENCODEDBARS5[4:0] 0x04f [4:0]
ROOT_CAP_CRS_SW_VISIBILITY 0x04f [5]
SELECT_DLL_IF 0x04f (6]
SLOT_CAP_ATT_BUTTON_PRESENT 0x04f [7]
SLOT_CAP_ATT_INDICATOR_PRESENT 0x04f [8]
SLOT_CAP_ELEC_INTERLOCK_PRESENT 0x04f [9]
SLOT_CAP_HOTPLUG_CAPABLE 0x04f [10]
SLOT_CAP_HOTPLUG_SURPRISE 0x04f [11]
SLOT_CAP_MRL_SENSOR_PRESENT 0x04f [12]
SLOT_CAP_NO_CMD_COMPLETED_SUPPORT 0x04f [13]
SLOT_CAP_PHYSICAL_SLOT_NUM|[12:0] 0x050 [12:0]
SLOT_CAP_POWER_CONTROLLER_PRESENT 0x050 [13]
SLOT_CAP_POWER_INDICATOR_PRESENT 0x050 [14]
SLOT_CAP_SLOT_POWER_LIMIT_SCALE[1:0] 0x051 [1:0]
SLOT_CAP_SLOT_POWER_LIMIT_VALUE[7:0] 0x051 [9:2]
SSL_MESSAGE_AUTO 0x051 [10]
VC_BASE_PTR[11:0] 0x052 [11:0]
VC_CAP_NEXTPTR[11:0] 0x053 [11:0]
VC_CAP_ON 0x053 [12]
VC_CAP_ID[15:0] 0x054 [15:0]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 155

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf::JS:FS:O] d‘;plizlf?lgltﬁ or
rp_do[15:0]
VC_CAP_REJECT_SNOOP_TRANSACTIONS 0x055 [0]
VSEC_BASE_PTR[11:0] 0x055 [12:1]
VSEC_CAP_HDR_ID[15:0] 0x056 [15:0]
VSEC_CAP_HDR_LENGTH[11:0] 0x057 [11:0]
VSEC_CAP_HDR_REVISION[3:0] 0x057 [15:12]
VSEC_CAP_ID[15:0] 0x058 [15:0]
VSEC_CAP_IS_LINK_VISIBLE 0x059 [0]
VSEC_CAP_NEXTPTR[11:0] 0x059 [12:1]
VSEC_CAP_ON 0x059 [13]
VSEC_CAP_VERSION][3:0] 0x05a [3:0]
USER_CLK_FREQ[2:0] 0x05a [6:4]
CRM_MODULE_RSTS[6:0] 0x05a [13:7]
LL_ACK_TIMEOUT[14:0] 0x05b [14:0]
LL_ACK_TIMEOUT_EN 0x05b [15]
LL_ACK_TIMEOUT_FUNCI1:0] 0x05c [1:0]
LL_REPLAY_TIMEOUT[14:0] 0x05d [14:0]
LL_REPLAY_TIMEOUT_EN 0x05d [15]
LL_REPLAY_TIMEOUT_FUNCI1:0] 0x05e [1:0]
PM_ASPMLOS_TIMEOUT[14:0] 0x05f [14:0]
PM_ASPMLOS_TIMEOUT_EN 0x05f [15]
PM_ASPMLOS_TIMEOUT_FUNCJ1:0] 0x060 [1:0]
PM_ASPM_FASTEXIT 0x060 [2]
DISABLE_LANE_REVERSAL 0x060 [3]
DISABLE_SCRAMBLING 0x060 [4]
ENTER_RVRY_EI_LO 0x060 [5]
INFER_EI[4:0] 0x060 [10:6]
LINK_CAP_MAX_LINK_WIDTH[5:0] 0x061 [5:0]
LTSSM_MAX_LINK_WIDTH([5:0] 0x061 [11:6]
N_FTS_COMCLK_GEN1[7:0] 0x062 [7:0]
N_FTS_COMCLK_GENZ2[7:0] 0x062 [15:8]
N_FTS_GEN1[7:0] 0x063 [7:0]
N_FTS_GENZ2[7:0] 0x063 [15:8]
ALLOW_X8_GEN2 0x064 [0]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 156

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf::JS:FS:O] d‘;plizlf?lgltﬁ or
rp_do[15:0]
PL_AUTO_CONFIG[2:0] 0x064 [3:1]
PL_FAST_TRAIN 0x064 [4]
UPCONFIG_CAPABLE 0x064 [5]
UPSTREAM_FACING 0x064 [6]
EXIT_LOOPBACK_ON_EI 0x064 [7]
DNSTREAM_LINK_NUM][7:0] 0x064 [15:8]
DISABLE_ASPM_L1_TIMER 0x065 [0]
DISABLE_BAR_FILTERING 0x065 [1]
DISABLE_ID_CHECK 0x065 [2]
DISABLE_RX_TC_FILTER 0x065 [3]
DISABLE_RX_POISONED_RESP 0x065 [4]
ENABLE_MSG_ROUTE[10:0] 0x065 [15:5]
ENABLE_RX_TD_ECRC_TRIM 0x066 [0]
TL_RX_RAM_RADDR_LATENCY 0x066 [1]
TL_RX_RAM_RDATA_LATENCY[1:0] 0x066 [3:2]
TL_RX_RAM_WRITE_LATENCY 0x066 [4]
TL_TFC_DISABLE 0x066 [5]
TL_TX_CHECKS_DISABLE 0x066 [6]
TL_RBYPASS 0x066 [7]
DISABLE_PPM_FILTER 0x066 [8]
DISABLE_LOCKED_FILTER 0x066 [9]
USE_RID_PINS 0x066 [10]
DISABLE_ERR_MSG 0x066 [11]
PM_MF 0x066 [12]
TL_TX_RAM_RADDR_LATENCY 0x066 [13]
TL_TX_RAM_RDATA_LATENCY[1:0] 0x066 [15:14]
TL_TX_RAM_WRITE_LATENCY 0x067 [0]
VC_CAP_VERSION[3:0] 0x067 [4:1]
VCO_CPL_INFINITE 0x067 [5]
VCO_RX_RAM_LIMIT[12:0] 0x068 [12:0]
VCO_TOTAL_CREDITS_CDJ[10:0] 0x069 [10:0]
VCO_TOTAL_CREDITS_CH[6:0] 0x06a [6:0]
VCO_TOTAL_CREDITS_NPH[6:0] 0x06a [13:7]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 157

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name drpf::JS:FS:O] d‘;pli?:lf?lgltﬁ or
rp_do[15:0]
VCO_TOTAL_CREDITS_NPD[10:0] 0x06b [10:0]
VCO_TOTAL_CREDITS_PD[10:0] 0x06c [10:0]
VCO_TOTAL_CREDITS_PH[6:0] 0x06d [6:0]
VCO_TX_LASTPACKET[4:0] 0x06d [11:7]
RECRC_CHK][1:0] 0x06d [13:12]
RECRC_CHK_TRIM 0x06d [14]
TECRC_EP_INV 0x06d [15]
CFG_ECRC_ERR_CPLSTAT[1:0] 0x06e [1:0]
UR_INV_REQ 0x06e [2]
UR_PRS_RESPONSE 0x06e [3]
UR_ATOMIC 0x06e [4]
UR_CFG1 0x06e [5]
TRN_DW 0x06e [6]
TRN_NP_FC 0x06e [7]
USER_CLK2_DIV2 0x06e [8]
RP_AUTO_SPDI[1:0] 0x06e [10:9]
RP_AUTO_SPD_LOOPCNTI[4:0] 0x06e [15:11]
TEST_MODE_PIN_CHAR 0x06f [0]
SPARE_BITO 0x06f [1]
SPARE_BIT1 0x06f [2]
SPARE_BIT2 0x06f [3]
SPARE_BIT3 0x06f [4]
SPARE_BIT4 0x06f [5]
SPARE_BITS5 0x06f [6]
SPARE_BIT6 0x06f [7]
SPARE_BIT7 0x06f (8]
SPARE_BIT8 0x06f [9]
SPARE_BYTEO[7:0] 0x070 [7:0]
SPARE_BYTE1[7:0] 0x070 [15:8]
SPARE_BYTEZ2[7:0] 0x071 [7:0]
SPARE_BYTE3[7:0] 0x071 [15:8]
SPARE_WORDO[15:0] 0x072 [15:0]
SPARE_WORDO0[31:16] 0x073 [15:0]
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 158

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-48: DRP Address Map for PCIE_2_1 Library Element Attributes (Cont’d)

Attribute Name Address drpD?iE?lgi':)s] or
drp_daddr[8:0] drE_do[l.S:O]
SPARE_WORD1[15:0] 0x074 [15:0]
SPARE_WORD1[31:16] 0x075 [15:0]
SPARE_WORDZ2[15:0] 0x076 [15:0]
SPARE_WORDZ2[31:16] 0x077 [15:0]
SPARE_WORD3[15:0] 0x078 [15:0]
SPARE_WORD3[31:16] 0x079 [15:0]

Tandem Configuration

The Tandem PROM and Tandem PCI Express solutions from Xilinx solve the issue of
configuring the FPGA in under 100 ms. The Tandem PROM solution splits a bitstream into
two parts and both of those parts are loaded from an on board local configuration memory
(typically and PROM or Flash device). The first part of the bitstream configures the PCI
Express portion of the design and the second part configures the rest of the FPGA. The
Tandem PCle methodology is similar to the Tandem PROM methodology, but in this case,
the second part of the bitstream is stored in the PCI Express memory space and is loaded
into the FPGA via the PCI Express link. A more detailed discussion of both of these
methodologies and how to use them is below.

Note: Currently both Tandem PROM and Tandem PCle are beta features and should only be used in
test systems. Both solutions are only supported in the ISE software flow. Future version of the
solution will be supported for the Vivado Design Suite.

Tandem PROM

The Tandem PROM solution from Xilinx solves meeting configuration time requirements for
various protocols and specifications. In particular, the methods implemented in the Tandem
PROM solution can be applied towards the PCI Express Specification [Ref 2], which states
that PCI Express ports must be ready to link train within 100 ms of power supplies being
stable. For a full discussion on configuration specifications as related to PCI Express, see
FPGA Configuration, page 188.

To meet configuration times, the Tandem PROM implements a two-stage configuration
methodology. In the first stage, only the configuration memory cells that are critical to PCI
Express operation are loaded from the PROM. When these cells have been loaded, an FPGA
Startup command is sent at the end of the first bitstream to the FPGA configuration
controller. The partially configured FPGA then becomes active with the first-stage bitstream
contents. Meanwhile the second stage of the bitstream continues to load from the same
PROM. The Tandem bitstream (and corresponding PROM image file) is completely
self-contained, and the steps happen automatically with no requirements from the user.
Figure 3-72 illustrates the order of the stages and bitstream loading flow.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 159
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Tandem PROM

Stage 2 - User
Application

Second Stage

N
Stage 1- PCle 8
First Stage o)
3 User
© Application
(@]
]
IS

\j

X12490

Figure 3-72: Tandem PROM Bitstream Load Steps

Tandem PROM is similar to the standard model used today in terms of tool flow and
bitstream. A single bitstream is produced from BitGen and the bitfile is downloaded into the
Flash for the system.

Design Flow

Tandem PROM works with the following options in the CORE Generator tool:

« HDL: Verilog only
« PCle configurations: Up to x8 Gen2
« Silicon: General ES (GES)
« Board/device support
o VC707/ XC7VX485T-2FFG1761
o KC705 (Revisions B and C)/ XC7K325-2FFG900 ZC706/ XC7Z045-2FFG900

Generating the Core with CORE Generator Tool (ISE Tool Flow)

When opening a new CORE Generator tool project, you must select the correct Part/Package
to enable the KC705, ZC706 or VC707 board and Tandem PROM selection within the GUI.
For the VC707 board, select the XC7VX485T-2FFG1761 FPGA, and for the KC705 select the
XC7K325-2FFG900 FPGA, and for the ZC607 board select the XC7Z045-2FFG900. The KC705
selection is shown in Figure 3-73.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 160
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

¥ Project Options <@xcolmvml129176> @@
Part _Flow y
P ‘® Design Entry | verilog I

() Custom Output Products

Please refer to the online help for information about compiling
behavioral models using compxlib and using .WEO (Verilog)

templates.
E\:selxings

Vendor |other [+]
Netlist Bus Format | B<n:m> =

-Simulation Files

~ Preferred Simulation Model Preferred Language
® Behavioral O VHDL

) Structural @ Verilog

) None
-Other Output Products.

(% ASY Symbol File ‘

[ox][cancel |[apply |[Hep |
A

Figure 3-73: Choosing Verilog as the Design Entry

The Tandem PROM flow is only supported by the Verilog HDL wrapper for PCI Express.
Figure 3-74 shows the Generation tab selected with Verilog chosen for the Design Entry

type.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 161
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

% Project Options <@xcolmvm129176> @E‘
part
Generation Select the part for your project:
Advanced —
Family | Kintex7
Device | xc7k325t
Package [fgo00

Speed Grade | -2

| oK] cancel Apply Help

Figure 3-74: Device Selection for Tandem PROM Operation on the KC705

On page 10 of the customization GUI, you can select a development board to target. Ensure
that the VC707 board or the KC705 (Revision B or Revision C) board is selected as shown in
Figure 3-75.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 162
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3

% 7 Series Integrated Block for PCI Express <@xcolmvm129176=>

Dacuments

. 1 Series Integrated Block
i for PCI Express

Pinout Selection

Xilinx Development Boards
Generate Xilink Development Board specific UCF
Xilinx Development Board | KC705 REVC |=|

PCle Block Location Selection

Selects from available PCle Block locations for a part-package combination which determines Finout.
PCle Block Location | Xovo |

Datasheet < Back | Page 100f 12| Hewt >

| ﬁEI‘Il‘.‘I‘M&: Cantel Help

: Designing with the Core

xilind.com:ip:poie_Tx:1.7

-

Figure 3-75: Selecting the KC705 Board as the Design Target

On page 12 of the GUI (see Figure 3-76), select General ES silicon and click the Tandem

PROM radio button to enable the Tandem PROM.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

163

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

% 7 Sarios Integrated Block for PCI Express <@xcalmvml2ol7E>
Documents

7 Series Integrated Block
for PCI Express ilinx.com:ip:peie_7x:1.7

MFC I

Advanced Settings 2
Advanced Physical Layer Settings -

Enable Lane Reversal Force No Scrambling
x Upconfigure Capable Disable TX ASPM LOS
Link Number 00 Range: 00..FF
ATS
x UR_INV_REQ x UR_FRS_RESPONSE

DRP Ports
PCle DRP Ports
Reference Clock Freque ncy
The Integrated Block for PCI Express allows selection of the reference clock frequency
Frequency (MHz) | 100 MHz | =

Silicon

[Slllcnn Revision | General ES |-]

~Tandem Configuration

Nene & Tandem PROM(BETA) Tandem PCle(BETA)

Datas heat = Back | Page 12 of 12| Mot = Generate Cancel Help

Figure 3-76: Enabling the Tandem PROM Feature

When selecting the Tandem PROM option, the CORE Generator tool inserts additional
components into the IP wrapper. The additional components are transparent to the user
flow, except the look-up table (LUT) and area usage are slightly higher when using the
Tandem PROM solution.

When the core is generated and integrated into your design, simulation, synthesis, and
implementation can be run.

UCF Edits (ISE Tool Flow)

The generated user constraints file (UCF) contains the appropriate constraints to enable the
Tandem PROM solution. However, you must edit the UCF and provide the configuration
method to be used and what I/O voltage will be present on the configuration bank (Bank 0).
Doing so enables the proper design rule checks (DRCs) and tells BitGen which I/Os need to
be persisted. For example, to create a PROM file for a 2.5 V, 16-bit BPI Flash, you must place
these two lines in your UCF:

CONFIG CONFIG_MODE = BPI1l6;
CONFIG CONFIG_VOLTAGE = 2.5;

Note: See the VC707, ZC706 and KC705 board user guides for possible configuration modes and
voltages. As of this printing only the BPI16 mode has been verified.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 164
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

vC707:

CONFIG CONFIG_MODE = BPIl6;
CONFIG CONFIG_VOLTAGE = 1.8;
KC705:

CONFIG CONFIG_MODE = BPIl6;
CONFIG CONFIG_VOLTAGE = 2.5;

For more information on these UCF constraints, see the Constraints Guide for the 14.3
release.

The generated UCF for the Tandem PROM solution contains extra Physical Constraints.
These constraints tell the implementation tools which configuration frames must be loaded
during the first stage. The details of these UCF constraints are only described here. Do not
make any changes to these physical constraints. However, they can be copied and pasted
into existing designs. The Instance names (INST) can change due to hierarchy differences
when copying and pasting into existing designs.

In general, to achieve the best (that is, smallest) first-stage bitstream size, you should
consider the location for any I/Os that are intended to be configured in the first stage. I/Os
that are physically placed a long distance from the Integrated Block for PCI Express cause
extra configuration frames to be included in the first stage. This is due to extra routing
resources that are required to include these I/Os in the first stage.

Synthesis and Implementation

The command-line synthesis and implementation script can be run without modification to
build the design. The script is implement. [bat/sh] and is found in the implement
directory.

Designers who do not use the provided example script must ensure they follow some basic
steps to successfully build the design. Specifically, the keep_hierarchy option must be
set for synthesis, and a partition must be set on the IP core wrapper for PCI Express.

The method to set the partition depends the design flow. Command-line users must simply
copy and paste the provided xpartition.pxml file, found in the implement directory,
into the directory that the command line is run.

1/0 Behavior

For each I/O that is required for the PCI Express IP (other than I/O associated with the GTX/
GTH/GTP transceivers), the entire bank in which that I/O resides must be configured in the
first bitstream. For PCI Express, the only signal needed in the first stage is the sys_reset_n
input port. Designers need to be aware that any second stage I/O in the same I/O bank as
sys_reset_n port will also be configured with the first stage. Any pins in the same I/O bank
as sys_reset_n will be unconnected internally, so any output pins may show unknown
behavior until their internal connections are complete. Also, components requiring
initialization for second stage functionality should not be placed in these I/O banks unless
these components are reset by the user_reset_out signal from PCI Express.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 165
PGO054 October 16, 2012

http://www.xilinx.com/support/documentation/dt_ise14-3.htm
http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Configuration Pin Behavior

The DONE pin indicates completion of configuration with standard approaches. DONE is
also used for Tandem Configuration, but in a slightly different manner. DONE will pulse high
at the end of the first stage, when the startup sequences are run; it will pull high and stay
high at the end of the second stage of configuration.

BitGen Persist

The configuration Persist option must be implemented when generating the Tandem PROM
bitstream. This ensures that the second stage bitstream loads from the configuration I/O
pins after the first stage has loaded and the FPGA Startup command is issued. To enable
Persist, set the -g Persist:Yes switch when running BitGen. Figure 3-77 shows the basic
design flow for Tandem PROM.

4 Select Tandem A
PROM During
Customization

Special UCF
Generated

Run Synthesis
and
Implementation

Run BitGen with
— Persist Option

\ / X12692
Figure 3-77: Design Flow for Tandem PROM

The Persist functionality is not released after the second stage bitstream, so these
dual-purpose I/Os remain dedicated to configuration. They are not available for general
design use with the Tandem PROM flow. One key implication of this requirement is that
traditional methods for post-configuration flash updating are not possible.

See 7 Series FPGAs Configuration User Guide [Ref 3] for more information regarding Persist.

Tandem PROM Ports

The Integrated Block for PCle core and example design contain ports (signals) specific to
the Tandem PROM. These signals provide handshaking between the first stage (Integrated
Block for PCle core) and the second stage (user logic). Handshaking is necessary for
interaction between the core and the user logic. Table 3-49 defines the handshaking ports
on the Integrated Block for PCle core.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 166
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Table 3-49: Tandem PROM Handshaking Ports

Name Direction Description

init_pattern_bus[7:0] Input This bus informs the Integrated Block for PCle core that the
second stage is loaded and running.

user_app_rdy Output This signal indicates that the Integrated Block for PCle core
recognizes that the second stage loaded successfully and is
running and that the core has engaged with the second stage
logic and can begin interaction with the user application.

Handshaking Process to Engage Core to User Application

The user application must provide an alternating 8-bit pattern to the Integrated Block for
PCle core. This pattern is defined as hexadecimal values 0x12 and 0x9A (these values are
parameterized), which must alternate on every user_clk_out clock cycle. The top-level

example design file called xilinx_pcie_2_1_ep_7x.v provides an example on how to
generate this pattern. You should cut and paste the example code into your own application
to ensure the handshaking process occurs.

// Tandem PROM configuration counter
init_counter #(.PATTERN_WIDTH (INIT PATTERN_WIDTH), .INIT_PATTERN (INIT_PATTERN),
.INIT_PATTERNL (INIT_PATTERN1), .INIT_ PATTERN2 (INIT_PATTERN2)) init_counter_i (
.clk(user_clk),
.rst(~sys_rst_n_c),
.pattern_o(init_pattern_bus_pre2)
)

//This logic is needed for faster clock speeds; it is a pipeline

// stage between the init counter and lst stage bitstream pattern match logic.
// Since the init counter and fastboot logic are LOC'd to regions on the

// chip, this logic is allowed to float between the two.

always @ (posedge user_clk or negedge sys_rst_n_c) begin
if(!sys_rst_n_c) begin
init_pattern_bus_prel <= #TCQ 'hO0;
init_pattern_bus <= #TCQ 'hO;
end else begin
init_pattern_bus_prel <= #TCQ init_pattern_bus_pre2;
init_pattern_bus <= #TCQ init_pattern_bus_prel;
end
end

When the second stage finishes configuration and the FPGA Startup command is issued by
the configuration controller, the user logic drives the alternating pattern on the
init_pattern_bus port. When the Integrated Block for PCle core sees this pattern, it
begins a short countdown before asserting user_app_rdy to tell the second stage to
begin interfacing with the core.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 167
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

User Integrated
Application Block for
(Second Stage) PCle Core
user_clock_out (First Stage)

0x12,0x9a

o \ @

INIT_PATTERN_BUS

. |
| Alternating Pattern Generator . Iagggggil
10x12, 0x9a, 0x12, 0x9a, 0x12, -
: I
\ ___________ g
< user_app_rdy
- g ®
\- J

X12491

Figure 3-78: Handshaking Details
Notes relevant to Figure 3-78:

1. The second stage is activated after startup, and logic generates a predetermined
alternating pattern.

2. The logic in the first stage looks for this pattern and begins a countdown, when the
pattern is detected.

3. When the counter finishes, the first stage asserts the user_app_rdy signal, which can
be used as an internal second stage "Done” indicator.

Multiplexing on Critical Inputs

Certain input ports to the Integrated Block for PCle core are multiplexed so that they are
disabled during the second stage configuration process. These MUXes are located in the
top-level core file, pcie_7x_v1_4.v, and are controlled by the user_app_rdy signal.

Note: The name of the top-level file changes based on the name used during core customization.

These inputs are held in a deasserted state while the second stage bitstream is loaded. This
masks off any unwanted glitching from the second stage logic and keeps the PCle core in a
valid state. When user_app_rdy is asserted, the MUXes are switched, and all signals
behave as described in this document.

PROM Selection

Configuration PROMs have no specific requirements. However, to meet the 100 ms
specification, you must select a PROM that meets three criteria:

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 168
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

1. Supported by Xilinx configuration.

2. Sized appropriately for both first and second stages; that is, the PROM must be able to
contain the entire bitstream.

3. Meets the configuration time requirement for PCI Express based on the first-stage
bitstream size and the calculations for the bitstream loading time.

See the 7 Series FPGAs Configuration User Guide [Ref 3] for a list of supported PROMs and
device bitstream sizes.

Programming the Device

There are no special considerations for programming Tandem bitstreams versus standard
bitstreams into a PROM. You can program a Tandem bitstream using all standard
programming methods, such as JTAG, Slave and Master SelectMAP, SPI, and BPI. Regardless
of the programming method used, the DONE pin is asserted after the first stage is loaded
and operation begins. The USER_APP_RDY signal can be routed to a general-purpose I/O to
signify when the full bitstream has loaded.

Both internally generated CCLK and externally provided EMCCLK are supported for SPI and
BPI programming. EMCCLK can be used to provide faster configuration rates due to tighter
tolerances on the configuration clock. See the 7 Series FPGAs Configuration User Guide
[Ref 3] for details on the use of EMCCLK with the Design Suite.

Tandem PROM Summary

The PCI Express specification requires that the device is available to link train after power is
stable. This requirement can be met using the Tandem PROM. While the 7 Series Integrated
Block for PCI Express core manages many design details, you must handle these items:

« Synthesize the design with keep_hierarchy applied to the Integrated Block for PCle core
instance

» Apply a partition to the core and use the xpartition.pxml file generated by the
CORE Generator tool

« Specify CONFIG_MODE and CONFIG_VOLTAGE in the UCF
« Insert the handshaking HDL code on the user application side of the design

» Use the BitGen Persist option

With these items implemented, the design bitstream is split into two sections by the ISE
tools. When the first section has been loaded, the design is active and ready to
communicate with the PCle system. When selecting the Tandem PROM in the customization
GUI, the PIO reference design is set up to demonstrate the Tandem PROM use case.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 169
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Tandem PCle (ISE Tool Flow)

The Tandem PCle solution from Xilinx solves meeting configuration time requirements for
various protocols and specifications. In particular, the methods implemented in the Tandem
PCle solution can be applied towards the PCI Express Specification [Ref 2], which states that
PCI Express ports must be ready to link train within 100 ms of power supplies being stable.
For a full discussion on configuration specifications as related to PCI Express, see FPGA
Configuration, page 188.

To meet configuration times, the Tandem PCle implements a two-stage configuration
methodology. In the first stage, only the configuration memory cells that are critical to PCI
Express operation are loaded from the PROM. When these cells have been loaded, an FPGA
Startup command is sent at the end of the first bitstream to the FPGA configuration
controller. The partially configured FPGA then becomes active with the first-stage bitstream
contents. At the end of the initial configuration, a config Startup command is issued to
bring up the FPGA and the PCle link. Subsequently, the second stage of the bitstream is
loaded over the PCle link. Figure 3-79 illustrates the order of the stages and bitstream
loading flow.

PCle link

Initial PCle
Interface —

FPGA Startup
PROM

140d 940

7 series FPGA

X12937

Figure 3-79: Tandem PCle Bitstream Load Steps

Tandem PCle is similar to the standard model used today in terms of tool flow and
bitstream. Two partial bitstreams are produced from BitGen and the bitfile is downloaded
into the Flash for the system.

Design Flow

Tandem PCle works with the following options in the CORE Generator tool:

« HDL: Verilog only

« PCle configurations: Up to x8 Gen2
« Silicon: General ES (GES)

« Board/device support:

- KC705 (Revision C)/ XC7K325-2FFG900

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 170
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Generating the Core with CORE Generator Tool (ISE Tool Flow)

When opening a new CORE Generator tool project, you must select the correct Part/Package
to enable the KC705 board and Tandem PCle selection within the GUIL For the KC705 board,

select the XC7K325-2FFG900 FPGA. The KC705 selection is shown in Figure 3-80.

% Project Options <@xcolmvm129176>

Part

Advanced

CIES]

~Flow.

@ Design Entry

[Verilog

templates.

() Custem Output Products

Please refer to the online help for information about compiling
behavioral models using compxlib and using .VEO (Verilog)

~Flow Settings
Vendor
Netlist Bus Format

[other

| B=n:m=>

Simulation Files -

@ Behavioral

(s Structural

() None

~ Preferred Simulation Model—— - Preferred Language

|
O VHDL

|
|@ Verilog

Other Output Products
[%| ASY Symbol File

| OK | Cancel || Apply

Help |

Figure 3-80: Choosing Verilog as the Design Entry

The Tandem PCle flow is only supported by the Verilog HDL wrapper for PCI Express.
Figure 3-81 shows the Generation tab selected with Verilog chosen for the Design Entry

type.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

171

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

% Project Options <@xcolmvm129176> Eﬁ]

part

Generation
Advanced

Kintex7

Deyice | xcT k325t
Package [ffgao0

| oK] cancel Apply || Help

Figure 3-81: Device Selection for Tandem PCle Operation on the KC705

On page 10 of the customization GUI, you can select a development board to target. Ensure
that the KC705 board (Revision C) board is selected as shown in Figure 3-82.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 172
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3

% 7 Series integrated Block for PCI Express <@xcolmyml29176>

Dacuments

o 1 Series Integrated Block
i for PCI Express

Pinout Selection

Xilinx Development Boards
Generate Xilink Development Board specific UCF
Xilinx Development Board | KC705 REVC |=|

PCle Block Location Selection

Selects from available PCle Block locations for a part-package combination which determines Finout.
PCle Block Location | Xovo |

Datasheet | <pack | Page 10of12| Next>

| ﬁuneme: Cantel Help

: Designing with the Core

xilinx.com:ip:pche_Tx:1.7

-

Figure 3-82: Selecting the KC705 Board as the Design Target

On page 12 of the GUI (see Figure 3-83), select General ES silicon and click the Tandem PCle

radio button to enable the Tandem PCle.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

173

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

% 7 Series Integrated Block for PCI Express <@xcolmvm129176=
Doacuments

7 Series Integrated Block
for PCI Express xilink.comipspcie_7x:1.7

Advanced Settings 2 k1
Advanced Physical Layer Settings

fogiC PrL

Enable Lane Reversal Farce No Scrambling
® Upconfigure Capable Disable TX ASPM LOs
Link Number |00 Range: 00..FF

~ATS
% UR_INV_REQ # UR_PRS_RESPONSE
DRP Ports

PCle DRP Ports

Reference Clock Frequency

The Integrated Block for PCI Express allows selection of the reference clock frequency
Frequency (MHz) | 100 MHz |~

Silicon

I‘.‘ﬂllr_an Revision | General ES | = I

Tandem Configuration
None Tandem PROM{BETA} # | Tandem PCle(BETA)|

Datasheet < Back |Page 12of 12 | Next= Generabe Cancel Help

Figure 3-83: Enabling the Tandem PCle Feature

When selecting the Tandem PCle option, the CORE Generator tool inserts additional
components into the IP wrapper. The additional components are transparent to the user
flow, except the look-up table (LUT) and area usage are slightly higher when using the
Tandem PCle solution.

When the core is generated and integrated into your design, simulation, synthesis, and
implementation can be run.

UCF Edits (ISE Tool Flow)

The generated user constraints file (UCF) contains the appropriate constraints to enable the
Tandem PCle solution. However, you must edit the UCF and provide the configuration
method to be used and what I/O voltage will be present on the configuration bank (Bank 0).
Doing so enables the proper design rule checks (DRCs) and tells BitGen which I/Os need to
be persisted. For example, to create a PROM file for a 2.5 V, 16-bit BPI Flash, you must place
these two lines in your UCF:

CONFIG CONFIG_MODE = BPI1l6;
CONFIG CONFIG_VOLTAGE = 2.5;

Note: See the KC705 board user guide for possible configuration modes and voltages. As of this
printing only the BPI16 mode has been verified.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 174
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

KC705:
CONFIG CONFIG_MODE = BPI1l6;
CONFIG CONFIG_VOLTAGE = 2.5;

For more information on these UCF constraints, see the Constraints Guide for the 14.3
release.

The generated UCF for the Tandem PCle solution contains extra Physical Constraints. These
constraints tell the implementation tools which configuration frames must be loaded
during the first stage. The details of these UCF constraints are only described here. Do not
make any changes to these physical constraints. However, they can be copied and pasted
into existing designs. The Instance names (INST) can change due to hierarchy differences
when copying and pasting into existing designs.

In general, to achieve the best (that is, smallest) first-stage bitstream size, you should
consider the location for any I/Os that are intended to be configured in the first stage. I/Os
that are physically placed a long distance from the Integrated Block for PCI Express cause
extra configuration frames to be included in the first stage. This is due to extra routing
resources that are required to include these I/Os in the first stage.

1/0 Behavior

For each I/O that is required for the PCI Express IP (other than I/O associated with the GTX/
GTH/GTP transceivers), the entire bank in which that I/O resides must be configured in the
first bitstream. For PCI Express, the only signal needed in the first stage is the sys_reset_n
input port. Designers need to be aware that any second stage I/O in the same I/O bank as
sys_reset_n port will also be configured with the first stage. Any pins in the same I/O bank
as sys_reset_n will be unconnected internally, so any output pins may show unknown
behavior until their internal connections are complete. Also, components requiring
initialization for second stage functionality should not be placed in these I/O banks unless
these components are reset by the user_reset_out signal from PCI Express.

Configuration Pin Behavior

The DONE pin indicates completion of configuration with standard approaches. DONE is
also used for Tandem Configuration, but in a slightly different manner. DONE will pulse high
at the end of the first stage, when the startup sequences are run; it will pull high and stay
high at the end of the second stage of configuration.

Synthesis and Implementation

The command-line synthesis and implementation script can be run without modification to
build the design. The script is implement. [bat/sh] and is found in the implement
directory.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 175
PGO054 October 16, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise14-3.htm

& XILINX. Chapter 3: Designing with the Core

Designers who do not use the provided example script must ensure they follow some basic
steps to successfully build the design. Specifically, the keep_hierarchy option must be
set for synthesis, and a partition must be set on the IP core wrapper for PCI Express.

The method to set the partition depends the design flow. Command-line users must simply
copy and paste the provided xpartition.pxml file, found in the implement directory,
into the directory that the command line is run.

Tandem PCle Ports

The Integrated Block for PCle core and example design contain ports (signals) specific to
the Tandem PCle. These signals provide handshaking between the first stage (Integrated
Block for PCle core) and the second stage (user logic). Handshaking is necessary for
interaction between the core and the user logic. Table 3-49 and Table 3-50 define the
handshaking ports on the Integrated Block for PCle core for the first and second stages,
respectively.

Table 3-50: Tandem PCle Handshaking During the First Stage

Name Direction Description

init_pattern_bus[7:0] Input This bus informs the Integrated Block for PCle core that the
second stage is loaded and running.

user_app_rdy Output This signal indicates that the Integrated Block for PCle core
recognizes that the first stage has been loaded successfully and
is ready to configure the second stage bitstream.

Table 3-51: Tandem PCle Handshaking During the Second Stage

Name Direction Description
user_app_rdy Input This signal is used to generate icap_rdy though synchronization.
icap_rdy Output This signal indicates that the Integrated Block for PCle core

recognizes that the second stage of bitstream is successfully
loaded and can begin interaction with the user application.

Handshaking Process to Engage Core to User Application

The user application must provide an alternating 8-bit pattern to the Integrated Block for
PCle core. This pattern is defined as hexadecimal values 0x12 and 0x9A (these values are
parameterized), which must alternate on every user_clk_out clock cycle and made
synchronous with respect to conf_clk. The top-level example design file called
xilinx_pcie_2_1_ep_7x.v provides an example on how to generate this pattern. You
should cut and paste the example code into your own application to ensure the
handshaking process occurs.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 176
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

// Tandem PCIe configuration counter
init_counter #(.PATTERN_WIDTH (INIT PATTERN_WIDTH), .INIT_ PATTERN (INIT_PATTERN),
.INIT_PATTERNL (INIT_PATTERN1), .INIT PATTERN2 (INIT_PATTERN2)) init_counter_i (
.clk(user_clk),
.rst(~sys_rst_n c),
.pattern_o(init_pattern_bus_pre2)
) ;

//This logic is needed for faster clock speeds; it is a pipeline

// stage between the init counter and lst stage bitstream pattern match logic.
// Since the init counter and fastboot logic are LOC'd to regions on the

// chip, this logic is allowed to float between the two.

always @ (posedge user_clk or negedge sys_rst_n_c) begin
if(!sys_rst_n_c) begin
init_pattern_bus_prel <= #TCQ 'h0;
init_pattern_bus <= #TCQ 'hO;
end else begin
init_pattern_bus_prel <= #TCQ init_pattern_bus_pre2;
init_pattern_bus <= #TCQ init_pattern_bus_prel;
end
end

When the second stage finishes configuration and the FPGA Startup command is issued by
the configuration controller, the user logic drives the alternating pattern on the
init_pattern_bus port. When the Integrated Block for PCle core sees this pattern, it
asserts user_app_rdy to generate the icap_rdy signal, thus indicating the second stage
can begin interfacing with the core.

— r' _____ |
9 = PCle link !
> < I

o U | Handshaking < 3 » User App :

Initial PCle o) 2| o : |

interface ————» 7 B e ettt o
—————————— 9 g 3 3
FPGA Startup - % IR~

PROM

7 series FPGA

X12938

Figure 3-84: Handshaking Details

Notes relevant to Figure 3-84:
1. The second stage is activated after startup, and logic generates a predetermined
alternating pattern.

2. The logic in the first stage looks for this pattern and begins a countdown, when the
pattern is detected.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 177
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

3. When the counter finishes, the first stage asserts the user_app_rdy signal, which can
be used to generate the icap_rdy signal in the second stage. The icap_rdy signal
can be considered as a "Done” indicator.

Multiplexing on Critical Inputs

Certain input ports to the Integrated Block for PCle core are multiplexed so that they are
disabled during the second stage configuration process. These MUXes are located in the
top-level core file, pcie_7x_v1_7.v, and are controlled by the icap_rdy signal.

Note: The name of the top-level file changes based on the name used during core customization.

These inputs are held in a deasserted state while the second stage bitstream is loaded. This
masks off any unwanted glitching from the second stage logic and keeps the PCle core in a
valid state. When icap_rdy is asserted, the MUXes are switched, and all signals behave as
described in this document.

PROM Selection

Configuration PROMs have no specific requirements. However, to meet the 100 ms
specification, you must select a PROM that meets three criteria:

1. Supported by Xilinx configuration.

2. Sized appropriately for the first stage; that is, the PROM must be able to contain the
first stage of the bitstream.

3. Meets the configuration time requirement for PCI Express based on the first-stage
bitstream size and the calculations for the bitstream loading time.

See the 7 Series FPGAs Configuration User Guide [Ref 3] for a list of supported PROMs and
device bitstream sizes.

Programming the Device

There are no special considerations for programming Tandem bitstreams versus standard
bitstreams into a PROM. You can program a Tandem bitstream using all standard
programming methods, such as JTAG, Slave and Master SelectMAP, SPI, and BPI. Regardless
of the programming method used, the DONE pin is asserted after the first stage is loaded
and operation begins. The USER_APP_RDY signal can be routed to a general-purpose I/O to
signify when the full bitstream has loaded.

Both internally generated CCLK and externally provided EMCCLK are supported for SPI and
BPI programming. EMCCLK can be used to provide faster configuration rates due to tighter
tolerances on the configuration clock. See the 7 Series FPGAs Configuration User Guide
[Ref 3] for details on the use of EMCCLK with the Design Suite.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 178
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Loading the Bitstream Across the PCle Link

After running the implementation scripts for Tandem PCle, two bitstreams will be produced.
The routed_fastboot.bit file is the bitstream that will be stored locally and is the first
bitstream loaded. The routed.bit file is the second stage bitstream that is loaded across
the PCI Express link.

For more information about how to load the second stage bitstream across the PCI Express
link, please see Answer Record 51950: www.xilinx.com/support/answers/51950.htm.

Tandem PCle Summary

The PCI Express specification requires that the device is available to link train after power is
stable. This requirement can be met using the Tandem PCle. While the 7 Series Integrated
Block for PCI Express core manages many design details, you must handle these items:

« Synthesize the design with keep_hierarchy applied to the Integrated Block for PCle core
instance

« Apply a partition to the core and use the xpartition.pxml file generated by the
CORE Generator tool

« Insert the handshaking HDL code on the user application side of the design

With these items implemented, the design bitstream is split into two sections by the ISE
tools. When the first section has been loaded, the design is active and ready to
communicate with the PCle system. When selecting the Tandem PCle in the customization
GUI, the PIO reference design is set up to demonstrate the Tandem PCle use case.

Calculating Bitstream Load Time for Tandem PROM and Tandem
PCle

The configuration loading time is a function of the configuration clock frequency and
precision, data width of the configuration interface, and bitstream size. The calculation is
broken down into three steps:

1. Calculate the minimum clock frequency based on the nominal clock frequency and
subtract any variation from the nominal.

Minimum Clock Frequency = Nominal Clock - Clock Variation

2. Calculate the minimum PROM bandwidth, which is a function of the data bus width,
clock frequency, and PROM type. The PROM bandwidth is the minimum clock frequency
multiplied by the bus width.

PROM Bandwidth = Minimum Clock Frequency * Bus Width

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 179
PGO054 October 16, 2012

http://www.xilinx.com
http://www.xilinx.com/support/answers/51950.htm

& XILINX. Chapter 3: Designing with the Core

3. Calculate the first-stage bitstream loading time, which is the minimum PROM bandwidth
from step 2, divided by the first-stage bitstream size as reported by BitGen.

First Stage Load Time = (PROM Bandwidth) / (First Stage Bitstream Size)

The first stage bitstream size, reported by BitGen, can be read directly from the terminal
or from the log file (BGN).

Here is a snippet from the BGN file showing the bitstream size for the first stage:

Saving bitstream in "routed.bit".

Writing fast boot bitstream.

Fast boot bitstream contains 12003648 bits.
Writing user design bitstream.

Saving bitstream in "routed.rbt".

Bitstream generation is complete.

Example 1:
The configuration for Example 1 is:

* QSPI (x4) operating at 66 MHz + 200 ppm
« First stage size = 12003648 bits

The steps to calculate the configuration loading time are:
1. Calculate the minimum clock frequency:
66 MHz * (1 - 0.0002) = 65.98 MHz
2. Calculate the minimum PROM bandwidth:
4 bits * 65.98 MHz = 263.92 Mb/s
3. Calculate the first-stage bitstream loading time:
12.004 Mb / 263.92 Mb/s = ~0.0455 s or 45.5 ms
Example 2:
The configuration for Example 2 is:

« BPI (x16) Synchronous mode, operating at 50 MHz + 100 ppm
« First Stage size = 12003648 bits

The steps to calculate the configuration loading time are:

1. Calculate the minimum clock frequency:

50 MHz * (1 - 0.0001) = 49.995 MHz

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 180
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

2. Calculate the minimum PROM bandwidth:
16 bits * 49.995 MHz = 799.92 Mb/s
3. Calculate the first-stage bitstream loading time:

12.004 (Mb) / 799.92 (Mb/s) = ~0.015 s or 15 ms

Other Bitstream Load Time Considerations
Bitstream configuration times can also be affected by:

« Power supply ramp times, including any delays due to regulators

* Tpor (power on reset)

Power-supply ramp times are design-dependent. Take care to not design in large ramp
times or delays. The FPGA power supplies that must be provided to begin FPGA
configuration are listed in 7 Series FPGAs Configuration User Guide [Ref 3].

In many cases, the FPGA power supplies can ramp up simultaneously or even slightly before
the system power supply. In these cases, the design gains timing margin because the

100 ms does not start counting until the system supplies are stable. Again this is
design-dependent. Systems should be characterized to determine the relationship between
FPGA supplies and system supplies.

Tpor is 50 ms and fixed for 7 series devices. See Virtex-7 FPGAs Data Sheet: DC and AC
Switching Characteristics and Kintex-7 FPGAs Data Sheet: DC and AC Switching
Characteristics [Ref 3].

Consider two cases for Example 1 (QSPI [x4] operating at 66 MHz + 200 ppm) from
Calculating Bitstream Load Time for Tandem PROM and Tandem PCle:

« Case 1: Without ATX supply
« Case 2: With ATX supply

Assume that the FPGA power supplies ramp to a stable level (2 ms) after the 3.3V and 12V
system power supplies. This time difference is called Tgpga pwr- In this case, because the
FPGA supplies ramp after the system supplies, the power supply ramp time takes away from
the 100 ms margin.

The equations to test are:
Tpog + Bitstream Load Time + Trpga pwr < 100 ms for non-ATX

Tpog + Bitstream Load Time + Trpga pwr - 100 ms < 100 ms for ATX

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 181
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Case 1 without ATX supply:

Because there is no ATX supply, the 100 ms begins counting when the 3.3V and 12 V system
supplies reach within 9% and 8% of their nominal voltages, respectively (see the PCI Express
Card Electromechanical Specification [Ref 2]).

50 ms (Tpor) + 45.5 ms (bitstream time) + 2 ms (ramp time) = 97.5 ms
97.5 ms < 100 ms PCle standard (okay)

In this case, the margin is 2.5 ms.

Case 2 with ATX supply:

ATX supplies provide a PWR_OK signal that indicates when system power supplies are
stable. This signal is asserted at least 100 ms after actual supplies are stable. Thus this extra
100 ms can be added to the timing margin.

50 ms (Tpor) + 45.5 ms (bitstream time) + 2 ms (ramp time) - 100 ms = -2 ms
-2.5 ms < 100 ms PCle standard (okay)

In this case, the margin is 102.5 ms.

Clocking

The Integrated Block input system clock signal is called sys_c1k. The core requires a
100 MHz, 125 MHz, or 250 MHz clock input. The clock frequency used must match the clock
frequency selection in the CORE Generator tool GUI.

In a typical PCI Express solution, the PCI Express reference clock is a Spread Spectrum Clock
(SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be
disabled. For more information regarding SSC and PCI Express, see section 4.3.1.1.1 of the
PCI Express Base Specification [Ref 2].

Synchronous and Non-Synchronous Clocking
There are two ways to clock the PCI Express system:

« Using synchronous clocking, where a shared clock source is used for all devices.

« Using non-synchronous clocking, where each device has its own clock source. ASPM
must not be used in systems with non-synchronous clocking.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 182
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

)

Chapter 3: Designing with the Core

RECOMMENDED: Use synchronous clocking when using the core. All add-in card designs must use
synchronous clocking due to the characteristics of the provided reference clock. For devices using the
Slot clock, the “Slot Clock Configuration” setting in the Link Status Register must be enabled in the
CORE Generator tool GUI. See the 7 Series FPGAs GTX Transceivers User Guide (UG476) and device data
sheet for additional information regarding reference clock requirements.

For synchronous clocked systems, each link partner device shares the same clock source.
Figure 3-85 and Figure 3-87 show a system using a 100 MHz reference clock. When
using the 125 MHz or the 250 MHz reference clock option, an external PLL must be used
to do a multiply of 5/4 and 5/2 to convert the 100 MHz clock to 125 MHz and 250 MHz,
respectively, as illustrated in Figure 3-86 and Figure 3-88.

Further, even if the device is part of an embedded system, if the system uses commercial
PCI Express root complexes or switches along with typical motherboard clocking
schemes, synchronous clocking should still be used as shown in Figure 3-85 and
Figure 3-86.

Figure 3-85 through Figure 3-88 illustrate high-level representations of the board
layouts. Designers must ensure that proper coupling, termination, and so forth are used
when laying out the board.

Embedded System Board

N\ 4
PCI Express < -
Switch or Root PCle Link G |7 Series FPGA
T E int
Complex PCle Link > X ndpoin
Device
4 g
A A A A
100 MHz
100 MH
PCIl Express 00 z
Clock Oscillator

UG477_c5_67_092110

Figure 3-85: Embedded System Using 100 MHz Reference Clock

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 183
PGO054 October 16, 2012

http://www.xilinx.com

Chapter 3: Designing with the Core

& XILINX.
4)
Embedded System Board
) 4
PCI Express PCle Link
Switch or Root (-? 7 Series FPGA
Complex PCle Link X | Endpoint
Device
J .
4 A 4 A
100 MHz 125/250 MHz
100 MHz
PCI Express I
Clock Oscillator .| External PLL
g J
UG477_c5_68_092110
Figure 3-86: Embedded System Using 125/250 MHz Reference Clock
4 N\
PCI Express Add-In Card
-
7 Series FPGA
Endpoint
100 MHz with SSC
PCI Express Clock GTX
_ Transceivers
X
s |8
()
_ 8 - _J
o 3
3
K\/
PCI Express Connector
T
Q
(o)
+ |- 15
~
UG477_c5_69_092110
Figure 3-87: Open System Add-In Card Using 100 MHz Reference Clock
7 Series Integrated Block for PCle (v1.7) www.xilinx.com

PG054 October 16, 2012

184

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Ve
7 Series FPGA
Endpoint
GTX
_ Transceivers

Figure 3-88: Open System Add-In Card Using 125/250 MHz Reference Clock

Ve
PCI Express Add-In Card
+
External PLL 125/250 MHz
+
100 MHz with SSC
PCI Express Clock
.

/\

PCle Link
YU 810d

Wi
V

PCI Express Connector

A

PCle Link

UGA477_c5_70_092110

Resets

The 7 Series FPGAs Integrated Block for PCI Express core uses sys_reset to reset the
system, an asynchronous, active-High reset signal asserted during the PCI Express

Fundamental Reset. Asserting this signal causes a hard reset of the entire core, including
the GTX transceivers. After the reset is released, the core attempts to link train and resume
normal operation. In a typical Endpoint application, for example, an add-in card, a sideband

reset signal is normally present and should be connected to sys_reset. For Endpoint
applications that do not have a sideband system reset signal, the initial hardware reset
should be generated locally. Three reset events can occur in PCI Express:

+ Cold Reset. A Fundamental Reset that occurs at the application of power. The signal

sys_reset is asserted to cause the cold reset of the core.

+ Warm Reset. A Fundamental Reset triggered by hardware without the removal and

re-application of power. The sys_reset signal is asserted to cause the warm reset to

the core.

* Hot Reset: In-band propagation of a reset across the PCI Express Link through the
protocol. In this case, sys_reset is not used. In the case of Hot Reset, the
received_hot_reset signal is asserted to indicate the source of the reset.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

185

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

The User Application interface of the core has an output signal called
user_reset_out. This signal is deasserted synchronously with respect to
user_clk_out. Signal user_reset_out is asserted as a result of any of these
conditions:

+ Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

» PLL within the Core Wrapper: Loses lock, indicating an issue with the stability of the
clock input.

* Loss of Transceiver PLL Lock: Any transceiver loses lock, indicating an issue with the
PCI Express Link.

The user_reset_out signal deasserts synchronously with user_clk_out after all of the
above conditions are resolved, allowing the core to attempt to train and resume normal
operation.

f IMPORTANT: Systems designed to the PCl Express electro-mechanical specification provide a sideband
reset signal, which uses 3.3V signaling levels—see the FPGA device data sheet to understand the
requirements for interfacing to such signals.

Protocol Layers

The functions of the protocol layers, as defined by the PCI Express Base Specification [Ref 2],
include generation and processing of Transaction Layer Packets (TLPs), flow control
management, initialization, power management, data protection, error checking and retry,
physical link interface initialization, maintenance and status tracking, serialization,
deserialization, and other circuitry for interface operation. Each layer is defined in the next
subsections.

Transaction Layer

The Transaction Layer is the upper layer of the PCI Express architecture, and its primary
function is to accept, buffer, and disseminate Transaction Layer packets or TLPs. TLPs
communicate information through the use of memory, I/0O, configuration, and message
transactions. To maximize the efficiency of communication between devices, the
Transaction Layer enforces PCI compliant Transaction ordering rules and manages TLP
buffer space via credit-based flow control.

Data Link Layer

The Data Link Layer acts as an intermediate stage between the Transaction Layer and the
Physical Layer. Its primary responsibility is to provide a reliable mechanism for the exchange
of TLPs between two components on a link.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 186
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Services provided by the Data Link Layer include data exchange (TLPs), error detection and
recovery, initialization services and the generation and consumption of Data Link Layer
Packets (DLLPs). DLLPs are used to transfer information between Data Link Layers of two
directly connected components on the link. DLLPs convey information such as Power
Management, Flow Control, and TLP acknowledgments.

Physical Layer

The Physical Layer interfaces the Data Link Layer with signalling technology for link data
interchange, and is subdivided into the Logical sub-block and the Electrical sub-block.

« The Logical sub-block frames and deframes TLPs and DLLPs. It also implements the Link
Training and Status State machine (LTSSM), which handles link initialization, training,
and maintenance. Scrambling, descrambling, and 8B/10B encoding and decoding of
data is also performed in this sub-block.

« The Electrical sub-block defines the input and output buffer characteristics that
interfaces the device to the PCle® link.

The Physical Layer also supports Lane Reversal (for multi-lane designs) and Lane Polarity
Inversion, as indicated in the PCl Express Base Specification, rev. 2.1 [Ref 2] requirement.

Configuration Management

The Configuration Management layer maintains the PCI™ Type 0 Endpoint configuration
space and supports these features:

« Implements the PCI Configuration Space
« Supports Configuration Space accesses
+ Power Management functions
« Implements error reporting and status functionality
« Implements packet processing functions
- Receive
- Configuration Reads and Writes
o Transmit
- Completions with or without data
- TLM Error Messaging
- User Error Messaging
- Power Management Messaging/Handshake

« Implements MSI and INTx interrupt emulation

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 187
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

« Optionally implements MSIx Capability Structure in the PCI Configuration Space

« Optionally implements the Device Serial Number Capability in the PCI Express Extended
Capability Space

« Optionally implements Virtual Channel Capability (support only for VCO) in the
PCI Express Extended Capability Space

« Optionally implements Xilinx defined Vendor Specific Capability Structure in the
PCI Express Extended Capability space to provide Loopback Control and Status

» Optionally implements Advanced Error Reporting (AER) Capability Structure in the PCI
Express Extended Configuration Space

« Optionally implements Resizable BAR (RBAR) Capability Structure in the PCI Express
Extended Configuration Space

FPGA Configuration

This section discusses how to configure the Xilinx® 7 series FPGA so that the device can
link up and be recognized by the system. This information is provided for you to choose the
correct FPGA configuration method for the system and verify that it works as expected.

This section discusses how specific requirements of the PC/ Express Base Specification and
PCI Express Card Electromechanical Specification [Ref 2] apply to FPGA configuration.

O RECOMMENDED: Where appropriate, Xilinx recommends that you read the actual specifications for
detailed information.

See Tandem PROM, page 159 for more information on meeting configuration requirements
after reading this section.

This section contains these subsections:

« Configuration Terminology. Defines terms used in this section.

« Configuration Access Time. Several specification items govern when an Endpoint
device needs to be ready to receive configuration accesses from the host (Root
Complex).

« Board Power in Real-World Systems. Understanding real-world system constraints
related to board power and how they affect the specification requirements.

« Recommendations. Describes methods for FPGA configuration and includes sample
problem analysis for FPGA configuration timing issues.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 188
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Configuration Terminology

In this section, these terms are used to differentiate between FPGA configuration and
configuration of the PCI Express® device:

« Configuration of the FPGA. FPGA configuration is used.

« Configuration of the PCI Express device. After the link is active, configuration is used.

Configuration Access Time

In standard systems for PCI Express, when the system is powered up, configuration software
running on the processor starts scanning the PCI Express bus to discover the machine
topology.

The process of scanning the PCI Express hierarchy to determine its topology is referred to as
the enumeration process. The root complex accomplishes this by initiating configuration
transactions to devices as it traverses and determines the topology.

All PCI Express devices are expected to have established the link with their link partner and
be ready to accept configuration requests during the enumeration process. As a result,
there are requirements as to when a device needs to be ready to accept configuration
requests after power up; if the requirements are not met, this occurs:

« If a device is not ready and does not respond to configuration requests, the root
complex does not discover it and treats it as non-existent.

+ The operating system does not report the device's existence and the user's application
is not able to communicate with the device.

Choosing the appropriate FPGA configuration method is key to ensuring the device is able
to communicate with the system in time to achieve link up and respond to the
configuration accesses.

Configuration Access Specification Requirements
Two PCI Express specification items are relevant to configuration access:

1. Section 6.6 of PC/ Express Base Specification, rev 1.1 states "A system must guarantee
that all components intended to be software visible at boot time are ready to receive
Configuration Requests within 100 ms of the end of Fundamental Reset at the Root
Complex.” For detailed information about how this is accomplished, see the
specification; it is beyond the scope of this discussion.

Xilinx compliance to this specification is validated by the PCI Express-CV tests. The PCI
Special Interest Group (PCI-SIG) provides the PCI Express Configuration Test Software to
verify the device meets the requirement of being able to receive configuration accesses
within 100 ms of the end of the fundamental reset. The software, available to any

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 189
PGO054 October 16, 2012

http://www.pcisig.com
http://www.pcisig.com
http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

member of the PCI-SIG, generates several resets using the in-band reset mechanism and
PERST# toggling to validate robustness and compliance to the specification.

2. Section 6.6 of PCI Express Base Specification v1.1 [Ref 2] defines three parameters
necessary “where power and PERST# are supplied.” The parameter T, pz, applies to
FPGA configuration timing and is defined as:

TpyperL - PERST# must remain active at least this long after power becomes valid.

The PCI Express Base Specification does not give a specific value for Ty per, — Only its
meaning is defined. The most common form factor used by designers with the

Integrated Block core is an ATX-based form factor. The PCI Express Card

Electromechanical Specification [Ref 2] focuses on requirements for ATX-based form
factors. This applies to most designs targeted to standard desktop or server type
motherboards. Figure 3-89 shows the relationship between Power Stable and PERST#.

l«—— Power Stable

3.3 Vaux /

3.3v/12v

PCI Express Link

[|
J) I I
I I
ﬂ |
I |
I
i
I
Inactive | | | Active
| 100 ms |
— 5 —
I PVPERL |

Figure 3-89: Power Up

Section 2.6.2 of the PCl Express Card Electromechanical Specification, v1.1 [Ref 2] defines
TpypreL @S @ minimum of 100 ms, indicating that from the time power is stable the system
reset is asserted for at least 100 ms (as shown in Table 3-52).

Table 3-52: Tpypgr. SPecification
Symbol Parameter Min Max Units
TPVPERL Power stable to PERST# 100 ms
inactive

From Figure 3-89 and Table 3-52, it is possible to obtain a simple equation to define the
FPGA configuration time as follows:

FPGA Configuration Time < Tpwryip * TpvPERL

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

Equation 3-1

190

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Given that Ty peg, is defined as 100 ms minimum, this becomes:

FPGA Configuration Time < Tpwryip + 100 ms Equation 3-2

Note: Although Tpwryip is included in Equation 3-2, it has yet to be defined in this discussion
because it depends on the type of system in use. The Board Power in Real-World Systems section
defines TpyryLp for both ATX-based and non ATX-based systems.

FPGA configuration time is only relevant at cold boot; subsequent warm or hot resets do
not cause reconfiguration of the FPGA. If the design appears to be having issues due to
FPGA configuration, the user should issue a warm reset as a simple test, which resets the
system, including the PCI Express link, but keeps the board powered. If the issue does not
appear, the issue could be FPGA configuration time related.

Board Power in Real-World Systems

Several boards are used in PCI Express systems. The ATX Power Supply Design specification,
endorsed by Intel, is used as a guideline and for this reason followed in the majority of
mother boards and 100% of the time if it is an Intel-based motherboard. The relationship
between power rails and power valid signaling is described in the ATX 12V Power Supply
Design Guide. Figure 3-90, redrawn here and simplified to show the information relevant to
FPGA configuration, is based on the information and diagram found in section 3.3 of the
ATX 12V Power Supply Design Guide. For the entire diagram and definition of all parameters,
see the ATX 12V Power Supply Design Guide.

Figure 3-90 shows that power stable indication from Figure 3-89 for the PCI Express system
is indicated by the assertion of PWR_OK. PWR_OK is asserted High after some delay when
the power supply has reached 95% of nominal.

+12VDC

+5VDC
+3.3VDC

T1 = Power On Time (T1 < 500 ms)

T2 = Rise Time (0.1 ms <= T2 <= 20 ms)

T3 = PWR_OK Delay (100 ms < T3 < 500 ms)
T4 = PWR_OK Rise Time (T4 <= 10 ms)

Figure 3-90: ATX Power Supply

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 191
PGO054 October 16, 2012

http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Figure 3-90 shows that power is valid before PWR_OK is asserted High. This is represented
by T3 and is the PWR_OK delay. The ATX 12V Power Supply Design Guide defines PWR_OK
as 100 ms < T3 < 500 ms, indicating that from the point at which the power level reaches
95% of nominal, there is a minimum of at least 100 ms but no more than 500 ms of delay

before PWR_OK is asserted. Remember, according to the PCI Express Card Electromechanical
Specification [Ref 2], the PERST# is guaranteed to be asserted a minimum of 100 ms from

when power is stable indicated in an ATX system by the assertion of PWR_OK.

Again, the FPGA configuration time equation is:
FPGA Configuration Time < Tpgryip + 100 ms Equation 3-3

TpwryLp is defined as PWR_OK delay period; that is, TpyryLp represents the amount of time
that power is valid in the system before PWR_OK is asserted. This time can be added to the
amount of time the FPGA has to configure. The minimum values of T2 and T4 are negligible
and considered zero for purposes of these calculations. For ATX-based motherboards,

which represent the majority of real-world motherboards in use, Tpyry p can be defined as:

100 ms < Tpywryp £ 500 ms Equation 3-4

This provides these requirements for FPGA configuration time in both ATX and
non-ATX-based motherboards:

« FPGA Configuration Time < 200 ms (for ATX based motherboard)
« FPGA Configuration Time < 100 ms (for non-ATX based motherboard)

The second equation for the non-ATX based motherboards assumes a Tpygry.p value of
0 ms because it is not defined in this context. Designers with non-ATX based motherboards
should evaluate their own power supply design to obtain a value for TpwryLD-

This section assumes that the FPGA power (VcinT) IS stable before or at the same time that
PWR_OK is asserted. If this is not the case, then additional time must be subtracted from the
available time for FPGA configuration.

ﬁ IMPORTANT: Avoid designing add-in cards with staggered voltage regulators with long delays.

Hot Plug Systems

Hot Plug systems generally employ the use of a Hot-Plug Power Controller located on the
system motherboard. Many discrete Hot-Plug Power Controllers extend Tpypgr, beyond the
minimum 100 ms. Add-in card designers should consult the Hot-Plug Power Controller data
sheet to determine the value of Tpypggr- If the Hot-Plug Power Controller is unknown, then
a TpypgrL Value of 100 ms should be assumed.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 192
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Recommendations

For minimum FPGA configuration time, Xilinx recommends the BPI configuration mode
with a parallel NOR flash, which supports high-speed synchronous read operation. In
addition, an external clock source can be supplied to the external master configuration
clock (EMCCLK) pin to ensure a consistent configuration clock frequency for all conditions.
See 7 Series FPGAs Configuration User Guide [Ref 3] for descriptions of the BPI
configuration mode and EMCCLK pin. This section discusses these recommendations and
includes sample analysis of potential issues that might arise during FPGA configuration.

FPGA Configuration Times for 7 Series Devices
During power up, the FPGA configuration sequence is performed in four steps:

1. Wait for power on reset (POR) for all voltages (Vccint Vecaux: and VCCO_0) in the FPGA
to trip, referred to as POR Trip Time.

2. Wait for completion (deassertion) of INIT_B to allow the FPGA to initialize before
accepting a bitstream transfer.

Note: As a general rule, steps 1 and 2 require £ 50 ms

3. Wait for assertion of DONE, the actual time required for a bitstream to transfer depends
on:

o Bitstream size

o Clock (CCLK) frequency

. Transfer mode (and data bus width) from the flash device
- SPI
- BPI

Serial Peripheral Interface (x1, x2, or x4)

Byte Peripheral Interface (x8 or x16)
Bitstream transfer time can be estimated using this equation.

Bitstream transfer time = (bitstream size in bits)/(CCLK frequency)/ (data bus width in bits) Equation 3-5

For detailed information about the configuration process, see the 7 Series FPGAs
Configuration User Guide [Ref 3].

Sample Problem Analysis

This section presents data from an ASUS PL5 system to demonstrate the relationships
between Power Valid, FPGA Configuration, and PERST#. Figure 3-91 shows a case where the
Endpoint failed to be recognized due to a FPGA configuration time issue. Figure 3-92 shows
a successful FPGA configuration with the Endpoint being recognized by the system.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 193
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Failed FPGA Recognition

Figure 3-91 illustrates an example of a cold boot where the host failed to recognize the
Xilinx FPGA. Although a second PERST# pulse assists in allowing more time for the FPGA to
configure, the slowness of the FPGA configuration clock (2 MHz) causes configuration to
complete well after this second deassertion. During this time, the system enumerated the
bus and did not recognize the FPGA.

(Pma]gzer](Haveform MACHIME 1](ﬁcq. EDntrD]] (Eance]] (Run]

off Screen

Hex o ->1
sec/Div Delay Markers ¥ to 0 Trig to ¥ Trig to 0O
200 ms -11.65 s Time 264.0 ms -11.57 s -11.31 s

PHR_OK | :
PERST [
INIT J E

DONE ! [

LINKE

Figure 3-91: Host Fails to Recognize FPGA Due to Slow Configuration Time

Successful FPGA Recognition

Figure 3-92 illustrates a successful cold boot test on the same system. In this test, the CCLK
was running at 50 MHz, allowing the FPGA to configure in time to be enumerated and
recognized. The figure shows that the FPGA began initialization approximately 250 ms
before PWR_OK. DONE going High shows that the FPGA was configured even before
PWR_OK was asserted.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 194
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

(Pma]gzer](Haveform MACHIME 1](ﬁcq. EDntrD]] (Eance]] (Run]

off Screen

Hex o ->1
sec/Div Delay Markers ¥ to 0 Trig to ¥ Trig to 0O
200 ms 0 s Time Ge0.0 ms —276.0 ms 284.0 ms

PHR_OK E

PERST : [

INTT :

DONE é |

CLK r_.

Figure 3-92: Host Successfully Recognizes FPGA

Workarounds for Closed Systems

For failing FPGA configuration combinations, designers might be able to work around the
issue in closed systems or systems where they can guarantee behavior. These options are
not recommended for products where the targeted end system is unknown.

1. Check if the motherboard and BIOS generate multiple PERST# pulses at start-up. This
can be determined by capturing the signal on the board using an oscilloscope. This is
similar to what is shown in Figure 3-91. If multiple PERST# pulses are generated, this
typically adds extra time for FPGA configuration.

Define TpgrstperiOD @S the total sum of the pulse width of PERST# and deassertion
period before the next PERST# pulse arrives. Because the FPGA is not power cycled or
reconfigured with additional PERST# assertions, the TpgrsTpeRIOD NUMber can be added
to the FPGA configuration equation.

FPGA Configuration Time < Tpwryip + TpersTperiop + 100 ms Equation 3-6

2. In closed systems, it might be possible to create scripts to force the system to perform
a warm reset after the FPGA is configured, after the initial power up sequence. This
resets the system along with the PCI Express subsystem allowing the device to be
recognized by the system.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 195
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.

SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core
Constraining the Core
Getting Started Example Design

Example Design and Model Test Bench for
Endpoint Configuration

Example Design and Model Test Bench for Root
Port Configuration

PIPE Mode Simulations

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 196
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.
Chapter 4

Customizing and Generating the Core

This chapter includes information on using the Vivado™ IP Catalog to customize and
generate the core.

Graphical User Interface (GUI)

The Xilinx® 7 Series FPGAs Integrated Block for PCI Express® core is a fully configurable
and highly customizable solution. The 7 Series FPGAs Integrated Block for PCI Express is
customized using the Vivado IP Catalog.

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the Vivado Design Suite.

Customizing the Core using the Vivado IP Catalog

The Vivado Design Suite IP Catalog for the 7 Series FPGAs Integrated Block for PCI Express
consists of two modes: Basic Mode and Advanced Mode. To select a mode, use the Mode
drop-down list on the first page of the Customize IP dialog box.

Basic Mode

The Basic mode parameters are in the following pages:
» Basic

« Identifiers (IDs)

« Base Address Registers (BARs)

« Core Capabilities

+ Interrupts

Basic

The initial customization page shown in Figure 4-1 is used to define the basic parameters
for the core, including the component name, lane width, and link speed.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 197
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Customize IR

Customnize 7 Series Integrated Block for

* PCl Express (1.7) by specifying IP bl
Options.

IP Options

7 Series Integrated Block for PCl Express

Compeonent Name ‘pc\e_?x_vl_?_o |

Basic IDs BARs Core Capabilities Interrupts

Device Port Type ‘PC\ Express Endpoint device E‘ Xilinx Development Board

PCle Block Location ‘XOVO ‘ Silicon Revision General ES [~
Number of Lanes 2 Maximurm Link Speed 2
Laps @2567s O5.06Ts

»

A3 Interface Frequency 2 A3 Interface Width

Frequency (MH2) A Interface Width

Reference Clock Frequency (MHz! |100 MHz |z]

[Enable Pipe Simulation

>

Show Advanced Options

| OK | Cancel

Figure 4-1: Basic Parameters

Component Name

Base name of the output files generated for the core. The name must begin with a letter and
can be composed of these characters:atoz, 0to 9, and “_"

Mode

Allows to select the Basic or Advanced mode of the configuration of the core.
PCle Device / Port Type

Indicates the PCI Express logical device type.

PCle Block Location Selection

Selects from the Integrated Blocks available to enable generation of location specific
constraint files and pinouts. When options “X0Y0 & X0Y1" or "X0Y2 & X0Y3" are selected,
constraints files for both Integrated Block locations are generated, and the constraints file
for the XOYO or X0Y3 location is used.

This option is not available if a Xilinx Development Board is selected.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 198
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Xilinx Development Board

Selects the Xilinx Development Board to enable the generation of Xilinx Development
Board specific constraints files.

Silicon Type
Selects the silicon type.
Number of Lanes

The 7 Series FPGAs Integrated Block for PCI Express requires the selection of the initial lane
width. Table 4-1 defines the available widths and associated generated core. Wider lane
width cores are capable of training down to smaller lane widths if attached to a smaller
lane-width device. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components, page 146 for
more information.

Table 4-1: Lane Width and Product Generated

Lane Width Product Generated
x1 1-Lane 7 Series FPGAs Integrated Block for PCI Express
X2 2-Lane 7 Series FPGAs Integrated Block for PCI Express
x4 4-Lane 7 Series FPGAs Integrated Block for PCI Express
x8 8-Lane 7 Series FPGAs Integrated Block for PCI Express

Maximum Link Speed

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Maximum Link
Speed supported by the device. Table 4-2 defines the lane widths and link speeds
supported by the device. Higher link speed cores are capable of training to a lower link
speed if connected to a lower link speed capable device.

Table 4-2: Lane Width and Link Speed

Lane Width Link Speed
x1 2.5 Gb/s, 5 Gb/s
X2 2.5 Gb/s, 5 Gb/s
x4 2.5 Gb/s, 5 Gb/s
x8 2.5 Gb/s, 5 Gb/s

AXI Interface Width

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Interface Width,
as defined in Table 4-3. The default interface width set in the Vivado IP Catalog is the lowest
possible interface width.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 199
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Table 4-3: Lane Width, Link Speed, and Interface Width

Lane Width Lir;légylase)ed Interface Width (Bits)
X1 25,50 64
X2 25,50 64
X4 2.5 64
X4 5.0 64, 128
X8 2.5 64, 128
X8 5.0 128

AXI Interface Frequency

It is possible to select the clock frequency of the core's user interface. Each lane width
provides multiple frequency choices: a default frequency and alternative frequencies, as
defined in Table 4-4.

O RECOMMENDED: Where possible, use the default frequency.

Selecting the alternate frequencies does not result in a difference in throughput in the core,
but does allow the user application to run at an alternate speed.

Table 4-4: Recommended and Optional Transaction Clock (user_clk_out) Frequencies

Product Link Speed (Gb/ Interfacg Width(®) Recommended Optional
s) (Bits) Frequency (MHz) | Frequency (MHz)

1-lane 2.5 64 62.5 31.25, 125, 250
1-lane 5 64 62.5 125, 250
2-lane 2.5 64 62.5 125, 250
2-lane 5 64 125 250
4-lane 2.5 64 125 250
4-lane 5 64 250 -
4-lane 5 128 125 250
8-lane 2.5 64 250 -

8-lane 2.5 128 125 250
8-lane 5 128 250 -

Notes:

1. Interface Width is a static selection and does not change with dynamic Link Speed changes

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk. For information about
clocking the 7 Series FPGA Integrated Block for PCI Express, see Clocking and Resets in
Chapter 3.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 200
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Enable Pipe Simulation

When this option is selected, the core is generated and simulated with pipe interfaces
connected.

Identifiers (IDs)

The IDs page shown in Figure 4-2 is used to customize the IP initial values, class code, and
Cardbus CIS pointer information.

Customize IR

e Customize 7 Series Integrated Block for
PCl Express (1.7) by specifying IP ‘
Options.

IP Options
7 Series Integrated Block for PCl Express

Compeonent Name ‘pc\e_?x_vl_?_o |

Basic IDs BARs Core Capabilities Interrupts

| 1D Initial Values =
Vendor ID Range: 0000, FFFF

Device ID Rangs: 0000, FFFF

Revision 1D Range: 00..FF

Subsystem Vendor ID Range: 0000, FFFF

Subsystern ID Range: 0000, FFFF

| Class Code

>

[Use Class Code Lookup Assistant

Base Class Menu |S|mp|a communication controllers ‘

Base Class [os | Range: 00..FF
Sub Class Interface Menu |Ganarm XT compatible serial controller ‘
Sub-Class [so | Range: 00..FF
Interface [oo | Range: 00..FF
Class Code (Hex): [o58000 |

Cardhus CIS Pointer (00000000 Range: 00000000, FFFFFFFF

Show Advanced Options

| K | Cancel
Figure 4-2: ldentifier Parameters

ID Initial Values

« Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers
are assigned by the PCI Special Interest Group to guarantee that each identifier is
unique. The default value, 10EEH, is the Vendor ID for Xilinx. Enter a vendor
identification number here. FFFFh is reserved.

« Device ID: A unique identifier for the application; the default value, which depends on
the configuration selected, is 70<link speed> <link width>h. This field can be any value;
change this value for the application.

« Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 201
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

« Subsystem Vendor ID: Further qualifies the manufacturer of the device or application.
Enter a Subsystem Vendor ID here; the default value is 10EE. Typically, this value is the
same as Vendor ID. Setting the value to 0000h can cause compliance testing issues.

« Subsystem ID: Further qualifies the manufacturer of the device or application. This
value is typically the same as the Device ID; the default value depends on the lane
width and link speed selected. Setting the value to 0000h can cause compliance testing
issues.

Class Code

The Class Code identifies the general function of a device, and is divided into three
byte-size fields:

« Base Class: Broadly identifies the type of function performed by the device.
« Sub-Class: More specifically identifies the device function.

« Interface: Defines a specific register-level programming interface, if any, allowing
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Class Code Look-up Assistant

The Class Code Look-up Assistant provides the Base Class, Sub-Class and Interface values
for a selected general function of a device. This Look-up Assistant tool only displays the
three values for a selected function. The user must enter the values in Class Code for these
values to be translated into device settings.

Cardbus CIS Pointer

Used in cardbus systems and points to the Card Information Structure for the cardbus card.
If this field is non-zero, an appropriate Card Information Structure must exist in the correct
location. The default value is 0000_0000h; the value range is 0000_0000h-FFFF_FFFFh.

Base Address Registers (BARs)

The Base Address Register (BAR) page shown in Figure 4-3 sets the base address register
space for the Endpoint configuration. Each BAR (0 through 5) represents a 32-bit parameter.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 202
PGO054 October 16, 2012

http://www.xilinx.com
www.pcisig.com

& XILINX. Chapter 4: Customizing and Generating the Core

Customize IP

PCl Express (1.7) by specifying IP
Options.

IP Options
7 Series Integrated Block for PCl Express

Compeonent Name ‘pc\e_?x_vl_?_o ‘

6 Customnize 7 Series Integrated Block for ‘

2]

Basic 1Dz BARs Core Capabilities | Interrupts

Base Address Registers (BARs) serve two purposes, Initially, they serve as a mechanism for the device to reguest blocks of address space in the system memaory
map, After the BIOS or OS determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the device uses
this information to perform address decoding,

Bard Enabled LI Barl Enabled

e Lisa b "
Size Unit Kilobytes []| size value ize Unit ob Size W
Walue (Hex): |FFFFF200 Walue (Hew): (00000000

[Bar2 Enabled - [1Bar3 Enabled
Walue (Hexk 00000000 Walue (Hew): (00000000
[]Bard Enabled [1Bar5 Enabled
Walue (Hex) 00000000 Value (Hew): (00000000

[Expansion Rom Enabled

Walue (Hex) =

Show Advanced Options

[ox [cancel |
Figure 4-3: BAR Parameters

Base Address Register Overview

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration supports up
to six 32-bit BARs or three 64-bit BARs, and the Expansion ROM BAR. The 7 Series FPGAs
Integrated Block for PCI Express in Root Port configuration supports up to two 32-bit BARs
or one 64-bit BAR, and the Expansion ROM BAR.

BARs can be one of two sizes:

« 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

* 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

All BAR registers share these options:

« Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

« Type: BARs can either be I/O or Memory.

o 1/0:1/0O BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 203
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

o Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

« Size: The available Size range depends on the PCle® Device/Port Type and the Type of
BAR selected. Table 4-5 lists the available BAR size ranges.

Table 4-5: BAR Size Ranges for Device Configuration

PCle Device / Port Type BAR Type BAR Size Range
32-bit Memory 128 Bytes — 2 Gigabytes
PCI Express Endpoint
64-bit Memory 128 Bytes — 8 Exabytes
32-bit Memory 16 Bytes — 2 Gigabytes
Legacy PCI Express Endpoint 64-bit Memory 16 Bytes — 8 Exabytes
I/0 16 Bytes — 2 Gigabytes

« Prefetchable: Identifies the ability of the memory space to be prefetched.

» Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According
to the PCI 3.0 Local Bus Specification [Ref 2], the maximum size for the Expansion ROM BAR
should be no larger than 16 MB. Selecting an address space larger than 16 MB might result
in a non-compliant core.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI
settings for the desired base address register.

Memory or 1/O settings indicate whether the address space is defined as memory or I/O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4 KB in size should be avoided. The minimum I/
O space allowed is 16 bytes; use of I/O space should be avoided in all new designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading,
as from a RAM). Byte write operations can be merged into a single double word write, when
applicable.

When configuring the core as an Endpoint for PCle (non-Legacy), 64-bit addressing must be
supported for all BARs (except BARS) that have the prefetchable bit set. 32-bit addressing
is permitted for all BARs that do not have the prefetchable bit set. The prefetchable bit

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 204
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

related requirement does not apply to a Legacy Endpoint. The minimum memory address
range supported by a BAR is 128 bytes for a PCI Express Endpoint and 16 bytes for a Legacy
PCI Express Endpoint.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A base
address register is disabled by deselecting unused BARs in the GUL

Core Capabilities

The Core Capabilities parameters shown in Figure 4-4 is used to customize the IP initial
values, class code, and Cardbus CIS pointer information.

Customize IP.

Customnize 7 Series Integrated Block for
PCl Express (1.7) by specifying IP ‘ =
Options.

IP Options
7 Series Integrated Block for PCl Express

Compenent Name ‘pc\e_?x_vl_?_o

Basic IDs BARs Core Capabilities | Interrupts

| Capabilities Register A | | Device Capabilities Register 3
Capabilty Version (Hex: Max Payload Size 512 bytes [7]
Device Bort/Type PClExpress Endpoint_device| Device Capabilities Register (Hex): [0DDDDED2
Capabilities Register (Hex): 0002
| BRAM Configuration Options 2
[Buffering Optimized for Bus Mastering Applications [Finite Completions
Performance Transmit TLPs Receiver Buffer Posted ﬁon:jpo?[t)etd Completion Total BRAMS
Level Buffered Size (bytes) Header/Data Credits Cfeadissr L Header/Data Credits Required
igh [=]hs 8192 327181 12/24 36/205 4
20 16384 32/437 12/24 36/461 8
Completion Timeout Range B B
Supported Ranges
Range A: 50us to 10ms
Range B: 10ms to 250ms
Range C: 250ms to 4s
Range D: 45 to 645
Device Capabilities 2 Register (Hex): 00000002
Show Advanced Options
‘w 0K Cancel

Figure 4-4: Core Capabilities Parameters
Capabilities Register

« Capability Version: Indicates the PCI-SIG® defined PCI Express capability structure
version number; this value cannot be changed.

« Device Port Type: Indicates the PCI Express logical device type.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 205
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

+ Slot Implemented: Indicates the PCI Express Link associated with this port is
connected to a slot. Only valid for a Root Port of a PCI Express Root Complex or a
Downstream Port of a PCI Express Switch.

« Capabilities Register: Displays the value of the Capabilities register presented by the
integrated block, and is not editable.

Device Capabilities Register

« Max Payload Size: Indicates the maximum payload size that the device/function can
support for TLPs.

« Device Capabilities Register: Displays the value of the Device Capabilities register
presented by the integrated block and is not editable.

Block RAM Configuration Options

« Buffering Optimized for Bus Mastering Applications: Causes the device to advertise
to its Link Partner credit settings that are optimized for Bus Mastering applications.

« Performance Level: Selects the Performance Level settings, which determines the
Receiver and Transmitter Sizes. The table displayed specifies the Receiver and
Transmitter settings - number of TLPs buffered in the Transmitter, the Receiver Size, the
Credits advertised by the Core to the Link Partner and the Number of Block RAMs
required for the configuration, corresponding to the Max Payload Size selected, for
each of the Performance Level options.

« Finite Completions: If selected, causes the device to advertise to the Link Partner the
actual amount of space available for Completions in the Receiver. For an Endpoint, this
is not compliant to the PCI Express Base Specification, rev. 2.1, as Endpoints are required
to advertise an infinite amount of completion space.

Device Capabilities 2 Register
This section sets the Device Capabilities 2 register.

+ Completion Timeout Disable Supported: Indicates support for Completion Timeout
Disable mechanism

« Completion Timeout Ranges Supported: Indicates Device Function support for the
optional Completion Timeout mechanism.

O RECOMMENDED: Do not let the Completion Timeout mechanism expire in less than 10 ms.

« Device Capabilities2 Register: Displays the value of the Device Capabilities2 Register
sent to the Core and is not editable.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 206
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Interrupts

The Interrupt parameters in Figure 4-5 sets the Legacy Interrupt Settings, and MSI
Capabilities.

Customize IP.

0 Customnize 7 Series Integrated Block for
PCl Express (1.7) by specifying IP ‘ =
Options.

IP Options
7 Series Integrated Block for PCl Express

Compenent Name ‘pc\e_?x_vl_?_o ‘

Basic | IDs BARs Core Capabilities Interrupts

»

Legacy Interrupt Settings
[Enable Intx

MS| Capabilities 2
[Enable MS| Capability Structure

64 bit Address Capable

Multiple Message Capable

Show Advanced Options
0K ‘ ‘ Cancel

Figure 4-5: Interrupts Capabilities

Legacy Interrupt Settings

« Enable INTX: Enables the ability of the PCI Express function to generate INTx
interrupts.

« Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of
“None” indicates no Legacy Interrupts are used.

Note: Only INT A is supported.
MSI Capabilities

« Enable MSI Capability Structure: Indicates that the MSI Capability structure exists.

« 64 bit Address Capable: Indicates that the function is capable of sending a 64-bit
Message Address.

« Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 207
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Per Vector Masking Capable: Indicates that the function supports MSI per-vector
Masking.

Advanced Mode

In Advanced mode, consists of the following pages:

Basic

Identifiers (IDs)

Base Address Registers (BARs)
Core Capabilities

Link Registers

Configuration Register (Only in Root Port Configuration)
Interrupts

Power Management

Extended Capabilities
Extended Capabilities 2

TL Settings

DL and PL Settings

Basic

The Basic parameters for Advanced mode, shown in Figure 4-6, is same as those for Basic
mode with the addition of the PCle DRP Ports parameter. For a description of the Basic
mode parameters, see Basic, page 197.

PCIe DRP Ports: Checking this box enables the generation of DRP ports for the PCle
Hard Block, giving users dynamic control over the PCle Hard Block attributes. This
setting can be used to perform advanced debugging. Any modifications to the PCle
default attributes must be made only if directed by Xilinx Technical Support.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 208
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Customize IP

Custorize 7 Series Integrated Block for
* PCl Express (1.7} by specifying IP bt}
Options.

IP Options
7 Series Integrated Block for PCl Express

Companent Name |pc|a_7x_v1_7_0 |

Basic IDs BARs Core Capsbilities Link Registers Interrupts = Power Management Ext Capabilities Ext Capabilities-2 TL Settings DL & PL Settings

Mode [Advanced [-]

Device Port Type |F'CI Express Endpoint device E“ Hilinw Development Board
PCle Block Location |XOYO Bl Silicon Revision General ES

Humber of Lanes 2

Lane Width

Maximum Link Speed

»

®2506Ts (05006Ts

Al Interface Frequency 2

Frequency (MHz)

Al Interface Width 2

Al Interface Width
Reference Clock Freguency (MHz) |100 MHz E

[1Enable Pipe Simulation [1PCle DRP Ports

Tandem Configuration

>

@ Nene O Tandem PROM(BETE) O Tandem PCle(BETA)

Show Advanced Options

[ok || cancel

Figure 4-6: Basic Parameters (Advanced mode)
Identifiers (IDs)

The parameters for Advanced mode are the same as those for Basic mode. See Identifiers
(IDs), page 201.

Base Address Registers (BARs)

The parameters for Advanced mode are the same as those for Basic mode. See Base Address
Registers (BARs), page 202.

Core Capabilities

The Core Capabilities parameters in Advanced mode, shown in Figure 4-7, are same as
those in Basic mode, with the addition of the following parameters. For a description of the
Basic mode parameters, see Core Capabilities, page 209.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 209
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 4: Customizing and Generating the Core

6 Customize 7 Series Integrated Block for
PCl Express (1.7) by specifying IP ‘

IF Options

Customize IP.

7 Series Integrated Block for PCI Express

Component Name [pcie_7x_v1_7_0 |

Basic IDs BARs Core Capabilities Lk Registers | Interrupts Power Management = Esxt Capabilities Ext Capabilities-2 TL Settings DL & PL Settings

Capabilties Register & | | Device Capabilities Register ==
Capability Version (Hex): Max Paylaad Size [s12 bytes = i
Device Port /T
Friceott (e (838 SNCpOTE cavce [l Extended Tag Field [Extended Tag Default
e Phantom Functions [Mo function number bits used =
capabilties Register (Hex
Acceptable LOs Latency [Mavimum of 84 ns -]
Acceptable LL Latency [tuo limit =]

Device Capabilities Register (Hex): [00000EQ2

BRAM Configuration Options 2|

[Buffering Optirmized for Bus Mastering Applications [l Finite Completion

Non-posted

Transmit TLPs Receiver Buffer Posted Header/Dat. Completion Total BRAMS
Buffered Size (bytes) Header/Data Credits cf:difﬁr atd Header/Data Credits Required
High [=]1s a1e2 32/181 12/24 36/205 4
30 16384 32/437 12124 36/461 8
[isable completion Timeou | PCle 2.1 Specific 2
Corpletion Timeout Range B =] [CJUR Atomic
Supported Ranges [132-bit AtomicOp Completer Supported
Renge A: 50us to 10ms _ i J
e 64-bit AtomicOp Completer Supporte
Renge C: 250ms to 4s [I128-bit CAS Completar Supported
Haige Baasio neg TPH Completer Supported 00 =l
Device Capabilities 2 Register (Hex): [00000002 T et D)] AtomicOn Reuting Supporte 3

Show Advanced Cptions

ok || cancel

Figure 4-7: Core Capabilities (Advanced Mode)

Device Capabilities Register

Extended Tag Field: Indicates the maximum supported size of the Tag field as a
Requester. When selected, indicates 8-bit Tag field support. When deselected, indicates
5-bit Tag field support.

Extended Tag Default: When this field is checked, indicates the default value of bit 8
of the Device Control register is set to 1 to support the Extended Tag Enable Default
ECN.

Phantom Functions: Indicates the support for use of unclaimed function numbers to
extend the number of outstanding transactions allowed by logically combining
unclaimed function numbers (called Phantom Functions) with the Tag identifier. See
Section 2.2.6.2 of the PCI Express Base Specification, rev. 2.1 [Ref 2] for a description of
Tag Extensions. This field indicates the number of most significant bits of the function
number portion of Requester ID that are logically combined with the Tag identifier.

Acceptable LOs Latency: Indicates the acceptable total latency that an Endpoint can
withstand due to the transition from LOs state to the LO state.

Acceptable L1 Latency: Indicates the acceptable latency that an Endpoint can
withstand due to the transition from L1 state to the LO state.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 210
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Device Capabilities Register

« UR Atomic: If checked, the core automatically responds to Atomic Operation requests
with an Unsupported Request. If unchecked, the core passes Atomic Operations TLPs to
the user.

+ 32-bit AtomicOp Completer Support: Indicates 32-bit AtomicOp Completer support.
* 64-bit AtomicOp Completer Support: Indicates 64-bit AtomicOp Completer support.

+ 128-bit CAS Completer Support: Indicates 128-bit Compare And Swap completer
support.

+ TPH Completer Supported: Indicates the level of support for TPH completer.

Link Registers

The Link Registers page is available only when in Advanced mode.

0 Customize 7 Series Integrated Block for —
PCl Express (1.7) by specifying IP b

options.

IF Options
7 Series Integrated Block for PCl Express

Component Name [peie_7x vl 7 0 J

Basic IDs BARs Core Capabilties Link Registers Interrupts Power Management Esxt Capabilities Ext Capabilities-2 TL Settings DL & FL Settings

»

Link Capabilities Register

Supported Link Speeds (Hex):
Masdmum Link Width (Hex:
[JASPM Optionality

Link Capabilities Register (Hex): 0003F411]]

Link Control Registers 2
Link Control-1 Register (Hex): [0] Link Control-2 Register {Hex):

Link Status Register 3

[#] Enable Slot Clock Configuration

Show Advanced Options

| QK || cancel

Figure 4-8: Link Registers (Advanced Mode)
Link Capabilities Register
This section sets the Link Capabilities register.

« Supported Link Speed: Indicates the supported link speed of the given PCI Express
Link. This value is set to the Link Speed specified in the first GUI page and is not
editable.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 211
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 4: Customizing and Generating the Core

Maximum Link Width: This value is set to the initial lane width specified in the first
GUI page and is not editable.

ASPM Optionality: When checked, this field enables ASPM optionally.

DLL Link Active Reporting Capability: Indicates the optional Capability of reporting
the DL_Active state of the Data Link Control and Management State Machine.

Link Capabilities Register: Displays the value of the Link Capabilities register sent to
the core and is not editable.

Link Control Register

Hardware Autonomous Speed Disable: When checked, this field disables the
hardware from changing the link speed for device specific reasons other than
attempting to correct unreliable link operation by reducing link speed.

Read Completion Boundary: Indicates the Read Completion Boundary for the Root
Port.

Target Link Speed: Sets an upper limit on the link operational speed. This is used to
set the target Compliance Mode speed. The value is set to the supported link speed
and can be edited only if the link speed is set to 5.0 Gb/s.

Compliance De-emphasis: Sets the level of de-emphasis for an Upstream component,
when the Link is operating at 5.0 Gb/s. This feature is not editable.

Link Control Register 1: Displays the value of the Link Control Register sent to the
core and is not editable.

Link Control Register 2: Displays the value of the Link Control 2 Register sent to the
core and is not editable.

Link Status Register

Enable Slot Clock Configuration: Indicates that the Endpoint uses the
platform-provided physical reference clock available on the connector. Must be cleared
if the Endpoint uses an independent reference clock.

Configuration Register (Only in Root Port Configuration)

The Configuration Register pages isavailable only when Root Port configuration is selected,
and when in Advanced mode.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 212

PGO054 Octo

ber 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

T <11 15,117 1 | Wi
0 Customnie 7 Series Integrated Block for
PCl Express (1.7) by specifying IP hed]

Options

Customize IP

IP Options
7 Series Integrated Block for PCl Express

Compaonent Name ‘pc\e_?x_vl_?_o |

Basic 1Dz BARs Core Capabilities Link Registers Config Registers | Interrupts Power Managerent Ext Capabilities Ext Capabilities-2 TL Settings DL & PL Settings

Configuration Register Settings 3 A
Root Capabilities Register 2
[CRS Software Visibility

Root Capahilities Register (Hex): |[00000000)

Slot Capabilities Register

Range: 0..1FFF

Range: 0..1FFF
Slot Capabilities Register (Hexh Endefined |

Show Advanced Options

‘ 0K | Cancel

Figure 4-9: Config Register

f IMPORTANT: These settings are valid for Root Port configurations only.

Root Capabilities Register

« CRS Software Visibility: Indicates the Root Port capability of returning the CRs to
software. When set, indicates that the Root Port can return the Configuration Request
Retry Status (CRS) completion status to software.

« Root Capabilities Register: Specifies the Root Capabilities Register of the device.
Slot Control Capabilities Register

« Attention Button Present: Indicates the Attention Button is implemented. When set,
indicates that an Attention Button for this slot is implemented on the chassis. This
option is disabled when “Device_Port_Type” is not “Root Port of PCI Express Root
Complex.” This is enabled only when is selected (see Figure 4-4).

« Attention Indicator Present: Indicates the Attention Indicator is implemented. When
set, indicates that an Attention Indicator for this slot is implemented on the chassis.
This option is disabled when “Device_Port_Type" is not “Root Port of PCI Express Root
Complex.” This is enabled only when is selected (see Figure 4-4).

« Power Controller Present: Indicates the Power Controller is implemented. When set,
indicates that a software programmable Power Controller is implemented for this slot.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 213
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

This option is disabled when “Device_Port_Type” is not “Root Port of PCI Express Root
Complex.” This is enabled only when is selected (see Figure 4-4).

« Power Indicator Present: Indicates the Power Indicator is implemented. When set,
indicates that a Power Indicator is implemented on the chassis for this slot. This option
is disabled when "Device_Port_Type" is not “Root Port of PCI Express Root Complex.”
This is enabled only when is selected (see Figure 4-4).

* Hot-Plug Surprise: When set, indicates that an adapter in this slot might be removed
from the system without any prior notification. This option is disabled when
“Device_Port_Type” is not “Root Port of PCI Express Root Complex.” This is enabled only
when is selected (see Figure 4-4).

« Hot-Plug Capable: When set, indicates that this slot is capable of supporting hot-plug
operations. This option is disabled when "Device_Port_Type" is not “ Root Port of PCI
Express Root Complex.” This is enabled only when is selected (see Figure 4-4).

* MRL Sensor Present: Indicates MRL Sensor implemented. When Set, indicates that an
MRL (Manually operated Retention Latch) sensor is implemented for this slot, on the
chassis. This option is disabled when "Device_Port_Type” is not “"Root Port of PCI
Express Root Complex.” This is enabled only when is selected (see Figure 4-4).

« Electromechanical Interlock Present: When set, indicates that an Electromechanical
Interlock is implemented on the chassis for this slot. This option is disabled when
"Device_Port_Type" is not "Root Port of PCI Express Root Complex.” This is enabled only
when is selected (see Figure 4-4).

* No Command Completed Support: When set, indicates that the slot does not
generate software notification when an issue command is completed by the Hot-Plug
Controller. This option is disabled when "Device_Port_Type" is not “Root Port of PCI
Express Root Complex.” This is enabled only when is selected (see Figure 4-4).

« Slot Power Limit Value: Specifies the Upper Limit on power supplied to the slot, in
combination with Slot Power Limit Scale value. . This option is disabled when
"Device_Port_Type" is not "Root Port of PCI Express Root Complex.” This is enabled only
when the is selected (see Figure 4-4).

« Slot Power Limit Scale: Specifies the scale used for the Slot Power Limit value. This
option is disabled when "Device_Port_Type" is not “Root Port of PCI Express Root
Complex.” This is enabled only when is selected (see Figure 4-4).

« Physical Slot Number: Specifies the Physical Slot Number attached to this port. This
field must be hardware initialized to a value that assigns a slot number that is unique
within the chassis, regardless of form factor associated with the slot. This option is
disabled when "Device_Port_Type" is not “Root Port of PCI Express Root Complex.” This
is enabled only when is selected (see Figure 4-4).

« Slot Capabilities Register. Specifies the Slot Capabilities Register of the device.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 214
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Interrupts

The Interrupts parameters in Advanced mode are the same as those in Basic mode, with the
addition of MSIx Capabilities. For a description of the Basic mode parameters, see
Interrupts, page 207.

- |z S
Seri
s i e L

IP Options
7 Series Integrated Block for PCl Express

Component Name [pcie_7x vl 7_0]

Basic IDs | BARs Core Capabilities Link Registers Interrupts | Power Management = Ext Capabilities Ext Capabilities-2 | TL Settings DL & PL Settings

Legacy Interrupt Settings
@I Enable It

Ml Capabilities
[Enable MS| Capability Structure

7184 bit Address Capable

Multiple Message Capable

WSk Capabilities
[1Enable Msix capability Structure
Ml Table Settings 2 | | MShPending Bit Array (PBA) Settings
Range: 1..800 Range: 0..1FFFFFFF
Range: 0..1FFFFFFF

Show Advanced Options

[o | cancel

Figure 4-10: Interrupts Parameters (Advanced Mode)

MSI-X Capabilities

« Enable MSIx Capability Structure: Indicates that the MSI-X Capability structure exists.
Note: This Capability Structure needs at least one Memory BAR to be configured.

« MSIx Table Settings: Defines the MSI-X Table Structure.
o Table Size: Specifies the MSI-X Table Size.

- Table Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X Table.

o BAR Indicator: Indicates the Base Address Register in the Configuration Space that
is used to map the function’s MSI-X Table, onto Memory Space. For a 64-bit Base
Address Register, this indicates the lower DWORD.

« MSIx Pending Bit Array (PBA) Settings: Defines the MSI-X Pending Bit Array (PBA)
Structure.

o PBA Offset: Specifies the Offset from the Base Address Register that points to the
Base of the MSI-X PBA.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 215
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

o PBA BAR Indicator: Indicates the Base Address Register in the Configuration Space
that is used to map the function’s MSI-X PBA, onto Memory Space.

Power Management

The Power Management Registers page shown in Figure 4-11 includes settings for the
Power Management Registers, power consumption and power dissipation options.

Customize IP.

0 Customize 7 Series Integrated Block for
PCl Express (1.7) by specifying IP 'E
Options.

IP Options
7 Series Integrated Block for PCI Express

Component Name \pcwe77><7v17770 ‘

Basic IDs BARs Core Capabilities Link Registers Interrupts Power Management Ext Capabilities Ext Capabilities-2 | TL Settings DL & PL Settings

| Power Management Registers 2
[Device Specific Initialization

[1D1 Support []D2 Support

PME Support 2

MDo @bl MD2 @ Dzhot

| Power Consumption 2 | | Power Dissipation A
Power Consurned Scale Factor Total Power Power Dissipated Scale Factor Total Power
oo o [« [o |= o.o0watts) Do [o Js¢ [o |= 0.0(Watts)
D1 o J» o = 0.0(watts) D1 [o Jx [o = 0.0(Watts)
oz o [« [o = 0.00watts) D2 o Js¢ [o = 0.0(Watts)
pz o J» o |= o.otwatts) D3 [o [[o |= 0.0(Watts)
Range: 0..255 Range: 0..3 Range: 0..255 Range: 0..3

Show Advanced Options

0K J ‘ Cancel

Figure 4-11: Power Management Registers

« Device Specific Initialization: This bit indicates whether special initialization of this
function is required (beyond the standard PCI configuration header) before the generic
class device driver is able to use it. When selected, this option indicates that the
function requires a device specific initialization sequence following transition to the DO
uninitialized state. See section 3.2.3 of the PCI/ Bus Power Management Interface
Specification Revision 1.2 [Ref 2].

« D1 Support: When selected, this option indicates that the function supports the D1
Power Management State. See section 3.2.3 of the PC/ Bus Power Management Interface
Specification Revision 1.2.

« D2 Support: When selected, this option indicates that the function supports the D2
Power Management State. See section 3.2.3 of the PC/ Bus Power Management Interface
Specification Revision 1.2.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 216
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

« PME Support From: When this option is selected, it indicates the power states in which
the function can assert cfg_pm_wake. See section 3.2.3 of the PC/ Bus Power
Management Interface Specification Revision 1.2.

« No Soft Reset: Checking this box indicates that if the device transitions from D3hot to
DO because of a Power State Command, it does not perform an internal reset and
Configuration context is preserved. Disabling this option is not supported.

Power Consumption

The 7 Series FPGAs Integrated Block for PCI Express always reports a power budget of OW.
For information about power consumption, see section 3.2.6 of the PCI Bus Power
Management Interface Specification Revision 1.2.

Power Dissipated

The 7 Series FPGAs Integrated Block for PCI Express always reports a power dissipation of
OW. For information about power dissipation, see section 3.2.6 of the PC/ Bus Power
Management Interface Specification Revision 1.2.

Extended Capabilities

The PCle Extended Capabilities page shown in Figure 4-12 is available in Advanced mode
only, and includes settings for Device Serial Number Capability, Virtual Channel Capability,
Vendor Specific Capability, and optional user-defined Configuration capabilities.

| [5 5 Customize IP.

o Customize 7 Series Integrated Block for
PCl Express (1.7} by specifying IP | ‘
Options,

IP Options
7 Series Integrated Block for PCl Express

Component Name [pcie_7x vl 7 0]

Basic [Ds BARs Core Capabilities Link Registers Interrupts Power Management Ext Capabilities | Ext Capabilities2 TL Settings DL & PL Settings

| Device Serial Number Capability 2

The Device Serial Number (DSH} Capability is an optional PCle Extended Capability, that contains a unique Device Serial Number. This idertifier must be
presented on the Device Serial Number Input pin of the port,

Enable DSH Capability

| virtual channel capability 2

| The Virtual channel (4c) Capability Is an optional Ptle Extended tapability, which when enabled, allows the port to support functionality beyond the default
Traffic Class (TCO) over the default Virtual Channel (VC0). Checking this allows Traffic Class (TC) filtering to be supported.

[] Enable VC Capability

»

| Wendor Specific Capability
The Vendor Specific (¥See) Capability is an optional PCle Extended Capability, which enables Xilink specific Loopback Contral
[JEnable VSEC Capability

| User Defined Configuration Capabilitias 2
| [IPCl Configuration Space Enable

figurat | Range: 24.3F
[IPCl Express Extended Cenfiguration Space Enable

Range : 043..3FF

Show Advanced Options

K | | Cancel

Figure 4-12: PCle Extended Capabilities

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 217
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Device Serial Number Capability

+ Device Serial Number Capability: An optional PCle Extended Capability containing a
unique Device Serial Number. When this Capability is enabled, the DSN identifier must
be presented on the Device Serial Number input pin of the port. This Capability must
be turned on to enable the Virtual Channel and Vendor Specific Capabilities

Virtual Channel Capability

« Virtual Channel Capability: An optional PCle Extended Capability which allows the
user application to be operated in TCn/VCO mode. Checking this allows Traffic Class
filtering to be supported.

* Reject Snoop Transactions (Root Port Configuration Only): When enabled, any
transactions for which the No Snoop attribute is applicable, but is not set in the TLP
header, can be rejected as an Unsupported Request.

Vendor Specific Capability

« Vendor Specific Capability: An optional PCle Extended Capability that allows PCI
Express component vendors to expose Vendor Specific Registers. When checked,
enables Xilinx specific Loopback Control.

User-Defined Configuration Capabilities: Endpoint Configuration Only

« PCI Configuration Space Enable: Allows the user application to add/implement PCI
Legacy capability registers. This option should be selected if the user application
implements a legacy capability configuration space. This option enables the routing of
Configuration Requests to addresses outside the built-in PCI-Compatible Configuration
Space address range to the AXI4-Stream interface.

« PCI Configuration Space Pointer: Sets the starting Dword aligned address of the user
definable PCI Compatible Configuration Space. The available DWORD address range is
2Ah - 3Fh.

« PCI Express Extended Configuration Space Enable: Allows the user application to
add/implement PCI Express Extended capability registers. This option should be
selected if the user application implements such an extended capability configuration
space. This enables the routing of Configuration Requests to addresses outside the
built-in PCI Express Extended Configuration Space address range to the User
Application.

« PCI Configuration Space Pointer: Sets the starting DWORD aligned address of the PCI
Express Extended Configuration Space implemented by the user application. This
action enables routing of Configuration Requests with DWORD addresses greater than
or equal to the value set in the user application. The available address range depends
on the PCle Extended Capabilities selected. For more information, see Chapter 3,
Designing with the Core.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 218
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Extended Capabilities 2

The Extended Capabilities 2 page is available only when in Advanced mode.

Customize IP

6 Custemize 7 Series Integrated Block for
PCl Express (1.7} by specifying IP ke
Qptions,

IP Options
7 Series Integrated Block for PCI Express

Compenent Name \pclejxﬁvljio |

Basic IDs BARs Core Capabilities Link Registers Interrupts Power Management Ext Capabilities Ext Capabilities-2 TL Settings DL & PL Settings

— ¥l Enable AER Capability - _

The Advanced Error Reporting(2ER) Capability is an optional PCle Extended Capability, which when enabled, allows advanced error
control and reporting

[Multiheader [Permit Root Errer Update

[J ECREC Check Capable

[Correctable Internal Error] Completion Timeout [Uncorrectable Internal Error

[J Header Log Overflow [completer Abort [MC Blocked TLP
[Receiver Error [Recsiver Overflow [AtomicOp Egress Blocked
[Surprise Down 1 ECRC Error I TLP Prefix Blocked

[Flow contral Protocel Errer - [ACS Vielation

| RBAR Capabilities

< | [

| ecre

Show Advanced Options

T
Figure 4-13: PCle Extended Capabilities: AER Capability
AER Capability
« Enable AER Capability: An optional PCle Extended Capability that allows Advanced
Error Reporting.

« Multiheader: Indicates support for multiple-header buffering for the AER header log
field. (Not supported for the 7 Series FPGAs Integrated Block for PCI Express.)

« Permit Root Error Update: If TRUE, permits the AER Root Status and Error Source ID
registers to be updated. If FALSE, these registers are forced to 0.

« ECRC Check Capable: Indicates the core can check ECRC.

« Optional Error Support: Indicates which option error conditions in the Uncorrectable
and Correctable Error Mask/Severity registers are supported. If an error box is
unchecked, the corresponding bit in the Mask/Severity register is hardwired to 0.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 219
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

REAR Capabilities A

The Resizable BARIRBAR) Capabilities is an optional PCle Extended Capability, which when enabled, adds a capability for Functions
with BARS to report various options for sizes of their memory mapped resources,

L] Enable REAR Capability

Size Supported Index value Init ¥alue {0to 19}

BAR O RBAR O
BAR 1 REAR 1
BAR 2 RBAR 2
BAR 3 REAR 3
BAR 4 REAR 4
BAR S5 REBAR 5

Figure 4-14: PCle Extended Capabilities: RBAR Capabilities
RBAR Capabilities

« Enable RBAR Capability: An optional PCle Extended Capability that allows Resizable
BARs.

Number of RBARs: Number of resizeable BARs in the Cap Structure, which depends on
the number of BARs enabled.

« BARnN Size Supported: RBAR Size Supported vector for RBAR Capability Register (0
through 5)

« BARnN Index Value: Sets the index of the resizeable BAR from among the enabled BARs
« RBARn Init Value: RBAR Initial Value for the RBAR Control BAR Size field.

RBAR Capabilities

» || %

ECRC
RECRC Check [Trim TLP Digest [Disable RX Poisoned Resp

Figure 4-15: PCle Extended Capabilities: ECRC
ECRC

« Receive ECRC Check: Enables ECRC checking of received TLPs.

o0 = Do not check

o 1 = Always check

o 3 = Check if enabled by the ECRC check enable bit of the AER Capability Structure
« Trim TLP Digest: Enables TD bit clear and ECRC trim on received TLPs.

« Disable RX Poisoned Resp: Disables the core from sending a message and setting
status bits due to receiving a Poisoned TLP. The behavior of the core when the Disable
RX poisoned Resp is checked is as follows.

- When Advisory Non-Fatal Error Mask: 1 (default). When the core Receives a
poisoned CfgWr, it sets Parity Error and sends completion with UR. When it receives
poisoned MemWr, it sets the Parity error and no TLP is sent.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 220
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

o Advisory Non-Fatal Error Mask: 0. When DISABLE_RX_POISONED_RESP is set to
FALSE and a poisoned MemWr is received, the core sends an error message
automatically. When DISABLE_RX_POISONED_RESP is set to TRUE and a poisoned
MemWr is received, an error message is not transmitted. When you assert
cfg_err_poisoned, the core sends the error message.

TL Settings

The Transaction Layer (TL) Settings page is available only when in Advanced mode.

Customize IP.

0 Customize 7 Series Integrated Block for
PCl Express (1.7) by specifying IP | b2
Options,

IP Options
7 Series Integrated Block for PCI Express

Component MName [pcie_ T vl _7_0 J

Basic D5 BARs Core Capabilties Link Registers Interrupts Power Management Ext Capabilities Est Capabilities2 TL Settings = DL & PL Settings

| Transaction Layer Module Advanced Settings 2 |

Routing Received Messages to Transaction Interface

»

Controls if Message TLPs are also received on the Transaction Interface

Endpoint

»

[unlock [PME_Turn_OFF ‘

Root Port 2|

[l Receive Non-Posted Reguest

Pipeline Registers for Transaction Block RAM Buffers

ATS 2 |
[

UR INV REQ UR PRS RESPONSE |

Showr Advanced Options
K | ‘ Cancel

Figure 4-16: TL Settings

Transaction Layer Module

« Enable Message Routing: Controls if message TLPs are also received on the
AXI14-Stream interface.

« Endpoint:
o Unlock and PME_Turn_Off Messages
* Root Port:
o Error Messages - Error Correctable, Error Non-Fatal, Error Fatal
o Assert/Deassert INT Messages - INTA, INTB, INTC, INTD
o Power Management Messages - PM_PME, PME_TO_ACK

« Receive Non-Posted Request (Non-Posted Flow Control)

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 221
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 4: Customizing and Generating the Core

The rx_np_req signal prevents the user application from buffering Non-Posted TLPs.
When rx_np_req is asserted, one Non-Posted TLP is requested from the integrated
block. This signal cannot be used in conjunction with rx_np_ok. Every time that
rx_np_req is asserted, one TLP is presented on the receive interface; whereas, every
time that rx_np_ok is deasserted, the user application needs to buffer up to two
additional Non-Posted TLPs.

Pipeline Registers for Transaction Block RAM Buffers: Selects the Pipeline registers
enabled for the Transaction Buffers. Pipeline registers can be enabled on either the
Write path or both the Read and Write paths of the Transaction Block RAM buffers.

ATS

o

UR_INV_REQ: When this box is checked, the core handles received ATS Invalidate
request messages as unsupported requests. When this box is unchecked, the core
passes received ATS Invalidate request messages to the user.

UR_PRS_RESPONSE: When this box is checked, the core handles received ATS Page
Request Group Response messages as unsupported requests. When this box is
unchecked, the core passes received ATS PRG Response messages to the user.

DL and PL Settings

The DL and PL Settings page is available only when in Advanced mode.

8 Customize 7 Series Integrated Block for

IF Options

7 Series Integrated Block for PCl Express

Show Advanced Options

Customize IP.

PCl Express (1.7) by specifying IP ‘ b
Options,

Componant Name [pcie_7x vl 7 0 |

Basic IDs BARs Core Capabilities Link Registers Interrupts Power Management Ewxt Capabilities Ext Capabilties-2 TL Settings DL & PL Settings

Link Layer Module Advanced Settings 3 |

[Override ACK/NAK Latency Timer

Range: 0000, 7FFF

[Owerride Replay Timer

| Range: 0000.. 7FFF

| Advanced Physical Layer Settings 2 |
[Enable Lane Reversal [Force No Scrambling

Upconfigure Capable [Disable T ASPM LOs

Link Murnbar Range: 00..FF

K

| !| ‘ Cancel

Figure 4-17: DL and PL Settings

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 222
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 4: Customizing and Generating the Core

Link Layer Module

Override ACK/NAK Latency Timer: Checking this box enables the user to override the
ACK/NAK latency timer values set in the device. Use of this feature could cause the ACK
timeout values to be non-compliant to the PC/ Express Base Specification, rev. 2.1

[Ref 2]. This setting can be used to perform advanced debugging operations. Any
modifications to default attributes must be made only if directed by Xilinx Technical
Support.

ACK Latency Timer Override Function: This setting determines how the override
value is used by the device with respect to the ACK/NAK Latency Timer Value in the
device. Options are "Absolute”, "Add", and “Subtract”. The first two settings could cause
the ACK timeout values to be non-compliant with the PC/ Express Base Specification, rev.
2.1.

ACK Latency Timer Override Value: This setting determines the ACK/NAK latency
timer value used by the device depending on if the ACK Latency Timer Override
Function enabled. The built-in table value depends on the Negotiated Link Width and
Programmed MPS of the device.

Override Replay Timer: Checking this box enables the user to override the replay
timer values set in the device. Use of this feature could cause the replay timeout values
to be non-compliant to the PCI Express Base Specification, rev. 2.1. This setting can be
used to perform advanced debugging operations. Any modifications to default
attributes must be made only if directed by Xilinx Technical Support.

Replay Timer Override Function: This setting determines how the override value is
used by the device with respect to the replay timer value in the device. Options are
"Absolute”, "Add", and “Subtract”. The first two settings could cause the replay timeout
values to be non-compliant with the PCI Express Base Specification, rev. 2.1.

Replay Timer Override Value: This setting determines the replay timer value used by
the device depending on if the Replay Timer Override Function enabled. The built-in
table value depends on the Negotiated Link Width and Programmed MPS of the device.
The user must ensure that the final timeout value does not overflow the 15-bit timeout
value.

Advanced Physical Layer

Enable Lane Reversal: When checked, enables the Lane Reversal feature.

Force No Scrambling: Used for diagnostic purposes only and should never be enabled
in a working design. Setting this bit results in the data scramblers being turned off so
that the serial data stream can be analyzed.

Upconfigure Capable: When unchecked, the port is advertised as “Not Upconfigure
Capable” during Link Training.

Disable TX ASPM LOs: When checked, prevents the device transmitter from entering
the LOs state.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 223
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

)

RECOMMENDED: Disable TX ASPM LOs for a link that interconnects a 7 series FPGA to any Xilinx
component.

« Link Number: Specifies the link number advertised by the device in TS1 and TS2
ordered sets during Link training. Used in downstream facing mode only.

Output Generation

Endpoint Configuration

This section shows the directory structure for the generated core’s Endpoint configuration.
See Chapter 6, Getting Started Example Design for descriptions of the contents of each
directory.
) <project_directory>
) <project_directory>.srcs
) sources_1
) ip
) component_name_#
) component_name_#
) example_design
) <component_name_#>/< component_name_#>/simulation
) simulation/dsport
) simulation/functional
) simulation/tests
) <component_name_#>/<component_name_#/source
) <component_name_#>/sim
] <component_name_#>/synth

) <component_name_#>/source

Root Port Configuration

This section shows the directory structure for the generated core’s Root Port configuration.
See Chapter 6, Getting Started Example Design for descriptions of the contents of each
directory.

) <project_directory>

) <project_directory>.srcs/

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 224
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

) sources_1
) ip
) component_name_#
) component_name_#
) <component name_#>/<component_name_#>/example_design
) <component_name_#>/< component_name_#>/simulation
) simulation/ep
) simulation/functional
) <component_name_#>/<component_name_#/source
) <component_name_#>/sim
.7} <component_name_#>/synth

) <component_name_#>/source

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 225
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.
Chapter 5

Constraining the Core

The Xilinx® 7 Series FPGAs Integrated Block for PCI Express® solution requires the
specification of timing and other physical implementation constraints to meet specified
performance requirements for PCI Express. These constraints are provided with the
Endpoint and Root Port solutions in a Xilinx Design Constraints (XDC) file. Pinouts and
hierarchy names in the generated XDC correspond to the provided example design.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of an XDC or specific constraints, see the Vivado Libraries
Guides and/or Command Line Tools User Guide [Ref 5].

Constraints provided with the Integrated Block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

Although the XDC delivered with each core shares the same overall structure and sequence
of information, the content of each core’s XDC varies. The sections that follow define the
structure and sequence of information in a generic XDC.

Required Constraint Modifications

Several constraints provided in the XDC utilize hierarchical paths to elements within the
integrated block. These constraints assume an instance name of core for the core. If a
different instance name is used, replace core with the actual instance name in all
hierarchical constraints.

For example:

Using xilinx_pcie_ep as the instance name, the physical constraint:

set_property LOC GTXE2_CHANNEL_X0Y7 [get_cells {core/inst/inst/gt_top_1i/pipe_wrapper_i/
pipe_lane[0] .gt_wrapper_i/gtx_channel.gtxe2_channel_i}]

becomes:

set_property LOC GTXE2_CHANNEL_X0Y7 [get_cells {xilinx pcie_ep/inst/inst/gt_top_i/
pipe_wrapper_1i/pipe_lane[0] .gt_wrapper_i/gtx_channel.gtxe2_channel_i}]

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 226
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

The provided XDC includes blank sections for constraining user-implemented logic. While
the constraints provided adequately constrain the Integrated Block core itself, they cannot
adequately constrain user-implemented logic interfaced to the core. Additional constraints
must be implemented by the designer.

Device, Package, and Speed Grade Selections

The first section of the XDC specifies the exact device for the implementation tools to
target, including the specific part, package, and speed grade. In some cases, device-specific
options can be included. The device in the XDC reflects the device chosen in the Vivado™
Design Suite project.

User Timing Constraints

The User Timing constraints section is not populated; it is a placeholder for the designer to
provide timing constraints on user-implemented logic.

User Physical Constraints

The User Physical constraints section is not populated; it is a placeholder for the designer to
provide physical constraints on user-implemented logic.

Core Pinout and 1/0 Constraints

The Core Pinout and I/O constraints section contains constraints for I/Os belonging to the
core's System (SYS) and PCI Express (PCI_EXP) interfaces. It includes location constraints for
pins and I/O logic as well as I/O standard constraints.

Core Physical Constraints

Core physical constraints are used to limit the core to a specific area of the device and to
specify locations for clock buffering and other logic instantiated by the core.

Core Timing Constraints

This Core timing constraints section defines clock frequency requirements for the core and
specifies which nets the timing analysis tool should ignore.

Device Selection

The device selection portion of the XDC informs the implementation tools which part,
package, and speed grade to target for the design. Because Integrated Block cores are

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 227
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

designed for specific part and package combinations, this section should not be modified
by the designer.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line:

CONFIG PART = XC7V585T-FFGl1761-1

Core I/O Assignments

This section controls the placement and options for I/Os belonging to the core's System
(SYS) interface and PCI Express (PCI_EXP) interface. set_property constraints in this
section control the pin location and I/O options for signals in the SYS group. Locations and
options vary depending on which derivative of the core is used and should not be changed
without fully understanding the system requirements.

For example:

set_property IOSTANDARD LVCMOS18 [get_ports sys_rst_n]
set_property LOC IBUFDS_GTE2_X0Y3 [get_cells refclk_ibuf]

See Clocking and Resets in Chapter 3 for detailed information about reset and clock
requirements.

For GTX transceiver pinout information, see the “Placement Information by Package”
appendix in the 7 Series FPGAs GTX/GTH Transceivers User Guide [Ref 3].

INST constraints are used to control placement of signals that belong to the PCI_EXP group.
These constraints control the location of the transceiver(s) used, which implicitly controls
pin locations for the transmit and receive differential pair.

For example:

set_property LOC GTXE2_CHANNEL_XO0Y7 [get_cells {pcie_7x_v1l_7_0_1i/inst/inst/gt_top_i/
pipe_wrapper_1i/pipe_lane[0] .gt_wrapper_i/gtx_channel.gtxe2_channel_1i}]

Core Physical Constraints

Core physical constraints are included in the constraints file to control the location of
clocking and other elements and to limit the core to a specific area of the FPGA logic.

f IMPORTANT: Specific physical constraints are chosen to match each supported device and package
combination—it is very important to leave these constraints unmodified.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 228
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

Note: In certain situations where a design cannot close timing, the following AREA_GROUP
constraints can be added to UCF.

INST "core/*" AREA_GROUP = "AG_core" ;
AREA_GROUP "AG_core" RANGE = SLICE_X136Y147:SLICE_X155Y120 ;

Core Timing Constraints

Timing constraints are provided for all integrated block solutions, although they differ
based on core configuration. In all cases they are crucial and must not be modified, except
to specify the top-level hierarchical name. Timing constraints are divided into two
categories:

« set_false_path constraints. Used on paths where specific delays are unimportant, to
instruct the timing analysis tools to refrain from issuing Unconstrained Path warnings.

« Frequency constraints. Group clock nets into time groups and assign properties and
requirements to those groups.

Here is an example of a set_false_path constraint:

set_false_path -from [get_ports sys_rst_n]

Clock constraints example:

First, the input reference clock period is specified, which can be 100 MHz, 125 MHz, or
250 MHz (selected in the Vivado Design Suite GUI).

create_clock -name sys_clk -period 10 [get_pins refclk ibuf/0]

Next, the internally generated clock net and period are specified, which can be 100 MHz,
125 MHz, or 250 MHz. (Both clock constraints must be specified as 100 MHz, 125 MHz, or
250 MHz.)

create_generated_clock -name clk_125mhz -source [get_pins refclk_ibuf/0] -edges {1 2
3} -edge_shift {0 -1 -2} [get_pins ext_clk.pipe_clock_i/mmcm_1i/CLKOUTO]

create_generated_clock -name clk_userclk -source [get_pins refclk_ibuf/0] -edges {1
2 3} -edge_shift {0 3 6} [get_pins ext_clk.pipe_clock_i/mmcm_1i/CLKOUT2]

Relocating the Integrated Block Core

While Xilinx does not provide technical support for designs whose system clock input, GTXE
transceivers, or block RAM locations are different from the provided examples, it is possible
to relocate the core within the FPGA. The locations selected in the provided examples are
the recommended pinouts. These locations have been chosen based on the proximity to the

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 229
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

PCle® block, which enables meeting 250 MHz timing, and because they are conducive to
layout requirements for add-in card design. If the core is moved, the relative location of all
transceivers and clocking resources should be maintained to ensure timing closure.

Supported Core Pinouts

Virtex®-7 FPGAs contain multiple blocks. Table 5-1 lists which blocks are available for use
in these FPGAs. Kintex™-7 and Artix™-7 devices only contain one block. In some Virtex-7
family cases, not all blocks can be targeted due to the lack of bonded transceivers sites
adjacent to the Integrated Block. The Integrated Blocks in FPGAs listed in Table 5-1 only
support operations up to Gen2 (5.0 GT/s) speeds. For Gen 3 (8.0 GT/s) operation, see
Virtex-7 FPGA Gen3 Integrated Block for PCl Express Product Guide [Ref 3].

Table 5-1: Available Integrated Blocks for PCle

Device Selection Integrated Block for PCle Location
Device Package X0YO X0Y1 X0Y2 X1Y0 X1Y1

FFG1157
FFG1761 v v

XC7VX485T FFG1930
FFG1158
FFG1927 v v v v
FFG1157 v v

XC7V585T
FFG1761 v v v
FHG1761 v v v

XC7Vv2000T
FLG1926 v v/

Table 5-2 defines the supported core pinouts for the available 7 series part and package
combinations. The Vivado tool provides an XDC for the selected part and package that
matches the table contents.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 230
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

Table 5-2: Supported Core Pinouts

Package =~ Device o ntesrated Lane X1 X2 X4 X8
Lane O X0Y3 X0Y3 X0Y3
XC7K70T Lane 1 X0Y2 X0Y2 Not
FBGAS4 XC7K160T XOY0 Lane 2 X0Y1l | Supported
Lane 3 X0YO0
XC7K70T Lane O X0Y7 X0Y7 X0Y7 X0Y7
XC7K160T
FBG676 XC7K325T Lane 1 X0Y6 X0Y6 X0Y6
XC7K410T
XC7K160T
FFG676 XC7K325T Lane 2 XO0Y5 X0Y5
XC7K410T XOY0
FBG900 ig;iii?; Lane 3 X0Y4 X0Y4
XC7K325T Lane 4 X0Y3
FFG900 XC7K410T Lane 5 X0Y2
FFG1761 XC7V585T Lane 6 X0vY1l
FHG1761 XC7V2000T
FLG1761 XC7V1500T Lane 7 X0Y0
Lane 0 X0Y1l1 X0Y1l1 X0Y1l1 X0Y1l1
FFG1158 XC7VX485T Lane 1 X0Y10 X0Y10 X0Y10
Lane 2 X0Y9 X0Y9
XOYO Lane 3 X0Y8 X0Y8
FFG1927 XC7VX485T Lane 4 X0Y7
Lane 5 X0Y6
FLG1925 | XC7V2000T Lane 6 XOY>
Lane 7 X0Y4
Lane O X0Y15 X0Y15 X0Y15 X0Y15
Lane 1 X0Y14 X0Y14 X0Y14
Lane 2 X0Y13 X0Y13
Lane 3 X0Y12 X0Y12
FFG901 | XC7K355TW X0Y0
Lane 4 X0Y1l1
Lane 5 X0Y10
Lane 6 X0Y9
Lane 7 X0Y8
FFG901 ;(E;Ejégl X0YO0 Lane 0 X0Y19 X0Y19 X0Y19 X0Y19
FFG1156 ig;ijzgl X0YO Lane 1 X0Y18 X0Y18 X0Y18
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 231

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 5: Constraining the Core

Table 5-2: Supported Core Pinouts (Cont’d)
. Integrated
Package Device Block Location Lane X1 X2 X4 X8
FFG1157 XC7V585T Lane 2 X0Y17 X0Y17
FFG1761 XC7V585T Lane 3 X0Y16 X0Y1l6
FLG1761 XC7V1500T XOV1 Lane 4 X0Y15
FHG1761 XC7V2000T Lane 5 X0Y14
Lane 6 X0Y13
FLG1925 XC7V2000T
Lane 7 X0Y12
FFG1158 XC7VX485T Lane O X0Y23 X0Y23 X0Y23 X0Y23
Lane 1 X0Y22 X0Y22 X0Y22
Lane 2 X0Y21 Xoy21
XOV1 Lane 3 X0Y20 X0Y20
FFG1927 XC7V485T Lane 4 X0Y19
Lane 5 X0Y18
Lane 6 X0Y17
Lane 7 X0Y1l6
Lane O X0Y31 X0Y31 X0Y31 X0Y31
FFG1157 XC7V585T
Lane 1 X0Y30 X0Y30 X0Y30
Lane 2 X0Y29 X0Y29
FFG1761 XC7V585T
Lane 3 X0Y28 X0Y28
X0Y2
Lane 4 X0Y27
FLG1761 XC7V1500T Lane 5 X0Y26
Lane 6 X0Y25
FHG1761 XC7V2000T Lane 7 X0Y24
Lane O X1Y1l1 X1Y1l1 X1Y1l1 X1Y1l1
FFG1157
Lane 1 X1Y10 X1Y10 X1Y10
Lane 2 X1Y9 X1Y9
FFG1158
Lane 3 X1Y8 X1Y8
XC7VX485T X1YO0
Lane 4 X1Y7
FFG1761
Lane 5 X1Y6
FFG1927 Lane 6 X1Y5
FFG1930 Lane 7 X1Y4
Lane O X1Y23 X1Y23 X1Y23 X1Y23
FFG1157
Lane 1 X1Y22 X1Y22 X1Y22
Lane 2 X1Y21 X1y21
FFG1158
Lane 3 X1Y20 X1Y20
XC7VX485T X1Y1l
Lane 4 X1Y19
FFG1761
Lane 5 X1Y18
FFG1927 Lane 6 X1Y17
FFG1930 Lane 7 X1Y1le
Notes:

1. The default GTX transceiver locations for the XC7K355T are not pin compatible with the XC7K420T and XC7K480T in the
FFG901 package. If migration compatibility is desired, change the XC7K355T GTX transceiver locations to be as follows: Lane
0: X0Y19; Lane 1: X0Y18; Lane 2: XOY17; Lane 3: X0Y16; Lane 4: X0Y15; Lane 5: XO0Y14; Lane 6: X0Y13; Lane 7: X0Y12.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

232

http://www.xilinx.com

& XILINX.
Chapter 6

Getting Started Example Design

This chapter provides an overview of the Xilinx® 7 Series FPGAs Integrated Block for
PCI Express® example design and instructions for generating the core. It also includes
information about simulating and implementing the example design using the provided
demonstration test bench.

For current information on generating, simulating, and implementing the core, see the
Release Notes provided with the core that is generated using the Vivado™ IP Catalog.

Directory and File Contents

The 7 Series FPGAs Integrated Block for PCI Express example design directories and their
associated files are defined in the sections that follow. Click a directory name to go to the
desired directory and its associated files.
) <project_directory>
) <project_directory>.srcs
) sources_1
) ip
) component_name_#
] component_name_#
) example_design
) <component_name_#>/< component_name_#>/simulation
) simulation/dsport
) simulation/functional
) simulation/tests
) <component_name_#>/<component_name_#/source
) <component_name_#>/sim
] <component_name_#>/synth

) <component_name_#>/source

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 233
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

As indicated in the directory structure, the design files are located in the
component_name_#/component_name_# directory.

example_design

The example_design directory contains the example design files provided with the core.
Table 6-1shows the directory contents for an Endpoint configuration core.

Table 6-1: Example Design Directory (Endpoint Configuration)

Name Description

example_design

xilinx_pcie_2_1_ep_7x_01_lane_ Example design XDC. The file name varies by Device/

genl_xc7v585t-ffgll57-3-PCIE_ Port Type, lane width, maximum link speed, part,

X0Y0.xdc package, PCle block location, and Xilinx Development
Board selected.

xilinx_pcie_2_1_ep_7x.v[hd] Verilog or VHDL top-level PIO example design file.

pcie_app_7x.v[hd] PIO example design files.

EP_MEM.v [hd]

PIO.v[hd]

PIO_EP.v[hd]
PIO_EP_MEM_ ACCESS.v[hd]
PIO_TO_CTRL.v[hd]
PIO_RX_ENGINE.v[hd]
PIO_TX_ENGINE.v[hd]

Back to Top

<component_name_#>/<component_name_#/source

The source directory contains the generated core source files.

Table 6-2: Source Directory

Name Description

<component_name_#>/<component_name_#>/source

hierarchy.txt ASCII text indicating the RTL
hierarchy
<component_name>.v [hd] Verilog or VHDL top-level solution

wrapper for the 7 Series FPGAs
Integrated Block for PCI Express

<component_name>_pcie_top.v[hd] AXI4-Stream solution wrapper for
the 7 Series FPGAs Integrated Block
for PCI Express

<component_name>_pcie_7x.v[hd] Solution Wrapper for the 7 Series
FPGAs Integrated Block for PCI
Express
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 234

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

Table 6-2: Source Directory (Cont’d)

Name

Description

<component_name>_pcie_pipe_pipeline.v[hd]
<component_name>_pcie_pipe_lane.v[hd]
<component_name>_pcie_pipe_misc.v[hd]

PIPE module for the 7 Series FPGAs
Integrated Block for PCI Express

<component_name>_pcie_bram_top_7x.v[hd]
<component_name>_pcie_brams_7x.v[hd]
<component_name>_pcie_bram_7x.v[hd]

Block RAM module for the 7 Series
FPGAs Integrated Block for PCI
Express

<component_name>_pcie_gt_top.v[hd]
<component_name>_gt_wrapper.v

GTX wrapper for the 7 Series FPGAs
Integrated Block for PCI Express

<component_name>_axi_basic_top.v[hd]
<component_name>_axi_basic_rx.v[hd]
<component_name>_axi_basic_rx_pipeline.v[hd]
<component_name>_axi_basic_rx_null_gen.v[hd]
<component_name>_axi_basic_tx.v[hd]
<component_name>_axi_basic_tx_pipeline.v[hd]
<component_name>_axi_basic_tx_thrtl_ctl.v[hd]

AXI4-Stream Interface files for the
7 Series FPGAs Integrated Block for
PCI Express

<component_name>_pipe_clock.v
<component_name>_pipe_drp.v
<component_name>_pipe_rate.v
<component_name>_pipe_reset.v
<component_name>_pipe_sync.v
<component_name>_pipe_user.v
<component_name>_pipe_wrapper.v
<component_name>_pipe_eq.v
<component_name>_rxeq_scan.v
<component_name>_gpll_drp.v
<component_name>_gpll_reset.v
<component_name>_gpll_wrapper.v

GTX module for the 7 Series FPGAs
GTX transceivers

Back to Top

<component_name_#>/< component_name_#>/simulation

The simulation directory contains the simulation source files provided with the core.

simulation/dsport

The dsport directory contains the files for the Root Port model test bench.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

235

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

Table 6-3: dsport Directory

Name Description

<component_name_#>/<component_name_#>/simulation/dsport

pcie_2_1 rp_v7.v[hd] Root Port model files.
pci_exp_expect_tasks.v
pci_exp_usrapp_cfg.v[hd]
pci_exp_usrapp_com.v
pci_exp_usrapp_pl.v[hd]
pci_exp_usrapp_rx.v[hd]
pci_exp_usrapp_tx.v[hd]
xilinx_pcie_2_1_rport_v7.v[hd]
test_interface.vhd

Back to Top

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 6-4: functional Directory

Name Description

<component_name_#>/<component_name_#>/simulation/functional

board. f List of files for RTL simulations.
simulate_mti.do Simulation script for ModelSim.
simulate_ncsim.sh Simulation script for Cadence IES (Verilog only).
simulate_vcs.sh Simulation script for VCS (Verilog only).
xilinx_lib_vcs. £ Points to the required SecurelP Model.
board_common.v Contains test bench definitions (Verilog only).
(Endpoint configuration only)
board.v[hd] Top-level simulation module.
sys_clk_gen_ds.v[hd] System differential clock source.
(Endpoint configuration only)
sys_clk_gen.v[hd] System clock source.
Back to Top

simulation/tests

Note: This directory exists for Endpoint configuration only.

The tests directory contains test definitions for the example test bench.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 236
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

Table 6-5: tests Directory

Name Description

<component_name_#>/<component_name_#>/simulation/tests

sample_testsl.v Test definitions for example test bench.
tests.v[hd]

Back to Top

<component_name_#>/sim

Table 6-6: sim Directory

Name Description

<component_name_#>/sim

Component_name_#.v/ | Core top-level file for simulation.
vhd

Back to Top

<component_name_#>/synth

Table 6-7: synth Directory

Name Description

<component_name_#/synth

Component_name_#.v / Core top-level file for synthesis.
vhd

Back to Top

<component_name_#>/source

Table 6-8: source Directory

Name Description

<component_name_#>/source

pcie_7x_vl1_7_top.v/ Top-level core that instantiates the core top-level module located in
vhd <component_name>/<component_name_#>/source.

Back to Top

Example Design

The example simulation design for the Endpoint configuration of the integrated block
consists of two discrete parts:

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 237
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

+ The Root Port Model, a test bench that generates, consumes, and checks PCI Express
bus traffic.

« The Programmed Input/Output (PIO) example design, a completer application for PCI
Express. The PIO example design responds to Read and Write requests to its memory
space and can be synthesized for testing in hardware.

Simulation Design Overview

For the simulation design, transactions are sent from the Root Port Model to the Integrated
Block core (configured as an Endpoint) and processed by the PIO example design.

Figure 6-1 illustrates the simulation design provided with the Integrated Block core. For
more information about the Root Port Model, see Root Port Model Test Bench for Endpoint
in Chapter 7.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 238
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 6: Getting Started Example Design

Output
Logs

usrapp_com

Figure 6-1:

Root Port
Model TPI for
PCI Express

Test
Program

usrapp_rx = usrapp_tx
A
dsport
A
> PCI Express Fabric
J
Endpoint Core

for PCI Express

PIO
Design

Endpoint DUT for PCI Express
Simulation Example Design Block Diagram

Implementation Design Overview

The implementation design consists of a simple PIO example that can accept read and write
transactions and respond to requests, as illustrated in Figure 6-2. Source code for the
example is provided with the core. For more information about the PIO example design, see
Chapter 7, Example Design and Model Test Bench for Endpoint Configuration.

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

239

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

7 Series FPGAs Integrated Block for PCI Express (Configured as Endpoint)

ep._mem0 PIO_TO_CTRL
ep_memf1
EP_TX EP_RX ep_mem?2
ep_mem3
EP_MEM
PIO_EP

PIO

Figure 6-2: Implementation Example Design Block Diagram

Example Design Elements
The PIO example design elements include:
+ Core wrapper

« An example Verilog HDL or VHDL wrapper (instantiates the cores and example design)

* A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Vivado Design Suite and these
simulators:

« Synopsys VCS and VCS MX
« Mentor Graphics ModelSim
« Cadence IES

* Vivado Simulator

For the supported versions of these tools, see the Xilinx Design Tools: Release Notes Guide.

Generating the Core

To generate a core using the default values in the Vivado IP Catalog, follow these steps:

1. Start the Vivado IP catalog.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 240
PGO054 October 16, 2012

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/irn.pdf
http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

2. Select File > New Project.

3. Enter a project name and location, then click OK. This example uses
project_name.cpg and project_dir. The Project Options dialog box appears
(Figure 6-3).

New Project |
Create a New Vivado Project
This wizard will guice you through the creation of a new project
To create a Vivado project you will need to provide a name and a location for your

project files, Next, you will specify the type of flow you'll be working with, Finally, you
will specify your project sources and choose a default part.

Vl\/ADO To continue, click Mext.

T T T

Figure 6-3: New Project Dialog Box

4. Set the project options (Figure 6-4 through Figure 6-9):

| [New Project e <
Project Name

Enter & name for your project and specify a directory where the project data files will be stored ‘:‘/
Project nama: |pro]e:t76 |

Project location: [projfiphdiusers/suneethpwork/vivado_Projs H:|

[Create Project Subdirectory

Project will be created at: /projfiphdiusers/suneeth/ork/vivado_Projs/project 6

| = Back ” MNext = I, | Cancel

Figure 6-4: Project Name

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 241
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

|ZJ New Project ; @1
Add Sources

Specify HDL and netlist files, or directories containing HOL and netlist files, to add to your project, '\\1’
Create a new source file on disk and add it to your project. You can also add and create sources later,

[id [Mame [Library [HDL Source for |Location |
[X]
2]
1]
Add Files... ‘ | Add Directories...] | Create File..,
[]Scan and Add RTL Include Files into Project
[Copy Sources into Project
] Add Sources from Subdirectories
Target Language:
| = Back ” Newt = “ Einish | | cancel
Figure 6-5: Add Sources
[~ New Project [=]]
Add Existing IP {optional} n
Specify an existing configurable IF file to add to your project. ‘?L,
[Id [PHame [IPFile |
%]
| Add Files..
[#] Copy Sources into Project
| = Back “| Newt = i| Finish | | cancel

Figure 6-6: Add Existing IP (Optional)

7 Series Integrated Block for PCle (v1.7) www.xilinx.com
PGO054 October 16, 2012

242

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

New Project

Specify or create constraint files for physical and timing constraints. If there are multiple files then
please choose the target, which is where all of the constraints created by Vivado will be saved.

Add Files...]| Create File...

aints into Project

[«][%][x]

| = Back || Ment = “ Finish || cancel

Figure 6-7: Add Constraints (Optional)

% New Project
Default Part
Choose a default Xilink part or board for your project. This can be changed later,

Specify Filter

Product category | All Z Package |Al b
@ Boards Earnily | Al - | Speed grade |All R
Sub-Farnily | All * | Temp grade |All x

| Reset All Filters]

Search; [C- |

; If0 Pin Available | LUT ; Block Ghb
Devies Count I0Bs ‘ Elerments FlipElops RAMs ‘ BEhS Transceivers
@}{c?u’}{485tf‘fgll§?-2L 15187 500 303600 807200 1030 2800 20
@}{C?V}{485tff91157-1 Ll 500 303600 807200 1030 2800 20
@}{07\0{4851:&91158-3 1,158 350 303600 507200 1030 2800 48
@}{07\0{4851:&91158-2 1,158 350 303600 507200 1030 2800 48
@}{C?V}{flElStffgllf)El-QL 1,158 350 303600 807200 1030 2800 48
@}{C?V}{485tff91158-1 1,158 350 303600 507200 1030 2800 48 E
@}{07\0{4851:&91761-3 1,761 700 303600 807200 1030 2800 28
@}{07\0{4851:&91761-2 1,761 700 303600 507200 1030 2800 28
@}{C?V}{flElStffgl?ﬁl-QL 1,761 700 303600 807200 1030 2800 28
@}{C?V}{485tffgl?61-l 1,761 700 303600 507200 1030 2800 28 -
[k T | 3 [}

| <Back || Medt> |
Figure 6-8: Default Part
7 Series Integrated Block for PCle (v1.7) www.xilinx.com

PG054 October 16, 2012

243

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

New Proiees G, -
New Project Summary

() A new RTL project named 'project_6' will be created.

/M Mo source files or directories will be added. Use Add Sources to add themn later.

/M Mo Configurable IP files will be added. Use Add Sources to add themn later.

& Mo constraints files will be added. Use Add Sources to add them later.

(&) The default part and product family for the new project:
Default Part: xc7ww485tffgll57-1
Product: Virtex-7
Farnily: Virtex-7
Package: ffjglls?
Speed Grade: -1

Vl\/ADO To create the project, click Finish

| = Back ||" | _ﬁinish J| Cancel

Figure 6-9: New Project Summary

5. Set the project options (Figure 6-4):
From the Part tab, select these options:

o Family: Virtex7

- Device: xc7v485t
- Package: ffgl157
- Speed Grade: -3

Note: If an unsupported silicon device is selected, the core is dimmed (unavailable) in the list of
cores.

6. Locate the core in the selection tree under Standard Bus Interfaces/PCI Express; then
double-click the core name to display the Integrated Block main screen.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 244
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

Eile Edit Flow Tools Window Layout View Help Search commands,
> H |1 ¢ < ® b %) B K L S [23efoutt Layout K@ Ready
Flow Navigator «| | Project Manager - project 6 <
azs Sources — O & x | ZPproject Summary x 4 IP Catalog * Oa x
QAT wak = .
4 Project Manager A= [5] = & project Settings Edit 2) Messages 2
5 Project Sattings @ Updsting Hierarchy. " Project name: project_6 Summary: O errors
&% Add Sources Product farmily: virtex- 7 Q critical warnings
£F IP catalog Project part KCTuHdBSHfg1157-1 0 warnings
Top modtle name: Mot Defined
+ smuistion = Synthesis (Ready) 4 < implementation (Ready) %
& Simulation Settings = Part: o7V BStIgL1S7-1 Part: HeTHAESHIgL1S7-1
@ run Simulation Hierarchy | Libraries Compile rcler Strategy: vivado Sunthesis Defaults Strategy: ivado Implementation Defaults
¥ open Static Simulation & Saurces | Templates Flow: wivado Synthesis Flow: Vivado Implementation
—oax
4 RTL Analysis
&% Open Elaborated Dasign
4 synthesis
#5 Synthesis Settings
Run Synthesis
> B
4 Implementation Design Runs _oax
Implemnentation Settings & | Name Fart Constraints Strates Host Status Frogress Start
Pl g AN &) ogr
B Run mplementation o [= synth_L e 7HABSHgL157-1 constrs_L vivado Synthesis Defaults (vivado Synthesis 2012) Mot started
. ¢ 2| Leimpl1 e FHaB5HfgL157-1 constrs_L wivado Implemertation Defauts (Vivado Implementation 2012) Mot started 0%
4 Program and Debug 1
5 Bitstream Settings »
¥ Generate Bitstream
«
o $
B
gl K1/ 1
[ETcl Console > Messages Gllog 5 Reports ¢ Design Runs
Fle Edt Flow Tools window Layout View Help
22 <& b ¥ |® K T 13 [3oefault Layout % | ® Eea)
Flow Navigator « | Praoject Manager - project_2 X
az= Sources — O 2 % | EProject Summary X % IP Catalog x o x
AT el B Search:
4 Project Manager - 3] 2eare [i J ‘ ‘ ‘
G Design Sources L [Name versi.. 2[4 Status | License
%P’“JECHE“‘”‘!E &2 Constraints (1) =21 [~ Automotive & Industrial
(5 Add Sources o[A Infrastructure
£F IP catalog o[BaselP
o[Basic Elements
4 simulation 2~ Communication & Networking
o[Debug & Verification
@ simulation Settings) | -1 Digital Signal Frocessing
(@ Run Simulation _ |5 embedded Frocessing
) open Static Simulation T4 | e FPGA Features and Design
Hierarchy Libraries Compile Order @ | i Math Functions
. = s | 615 Memories & Storage Elements
“ RTLTQ‘)’Q‘Q & Sources B¥ATEmplates! a 5[Standard Bus Interfaces
(5% Open Elaborated Design Freris “ O x| | o Displayrort
®|| gerd
4 synthesis -5 PCI Express
& Synthesis Sattings LgRt 7 jlznss Integrated Block for PCIE... 1.6 Pre-prod... Included
6= Rapi
Run Synthesis & spdif 12 AX14-Lite, AXI4-St... Pre-prod... Purchase
> 8 o[Video & Image Processing
4 Implementation ol
5 Implementation Settings
> Run Implementation =]
> B
- Design Runs =
4 Program and Debug @, [Name [Fart [Constraints | strateg; [Host [status [Frogress [start
\ O e o (@ synth 1 ¥e7k325tfge00-3 constre_1 Vivade Synthesis Defaults (Vivado Synthesis 2012) ot started
ftstream Settings =20 L implL HoTK325tHg900-3 constrs_1 Vivado Implementation Defaults (Vivade Implementation 2012) Hot started 0%
¥ Generate Bitstream =
B open Hardware Session
b 4
Kl 1
[ETcl Console > Messages Gllog 5 Reports ¢ Design Runs

Figure 6-11: Screenshot of Vivado IP Catalog

7. In the Component Name field, enter a name for the core. <component_name> is used
in this example.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 245
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

_ = 0

B Customize 7 Series Integrated Block for —
PCI Express (1.8 by specifying IP b
Options.

IP Gptions
7 Series Integrated Block for PCl Express

Component Name [pcie_7x vl 8 0 |

Pagel Page2 Page3 Paged PageS Page?7 PageS Paged Pageld Pagell Pagel2 Pagel3

»

PCle Device / Port Type
The Integrated Block for PCI Express allows selection of the Device / Port Type

Device Fort Type |PCl Express Endpoint device E“

Murnber of Lanes
The Integrated Elock for PCI Express requires that an initial lane width be selected. Wider lane width cores can train down to smaller lane widths if attached
to a smaller lane width device. Select only the lane width that is necessary for the design.

Lane Width [x1 =]

Link Speed

The Integrated Block for PCI Express allews selection of the Maximum Link Speed supperted by the device.
Link_Speed 2
®25GT/s
05.06T/s

Interface Width Options 2
The Integrated Block for PCI Express allows selection of Interface Width

Interface_Width 2

Interface_Width

Interface Freguency
The Integrated Block for PCI Express allaws selection of the interface clock (tm_clk} frequency. The frequency selection enables maximum achievable data throughput
for the selected number of lanes and link speed. Choice of non-default aption restilts in interface being overclocked with no overall effect on data throughput, and
depends on user application functional requirements, timing closure and pewer considerations. ilin recommends that the default frequancy

walue be used where possible.

Frequency (MHz) [62.5 -]

Show Advanced Options

| 0K | cancel

Figure 6-12: Integrated Block Core Configuration GUI

8. From the Device/Port Type drop-down menu, select the appropriate device/port type of
the core (Endpoint or Root Port).

9. Click OK to generate the core using the default parameters.
10.In the Design sources tab, right-click the xci file.
11. Select Generate.

12. Select All to generate the core with the default parameters.

Implementation

To run the implementation on the generated core:

1. Right-click the xci file.
2. Select Open IP example design.

A new Vivado tool window opens with the project name "example_project” within the
project directory. In this new window, select the Run Synthesis and Run Implementation
buttons and generate a bitstream either in sequence or any at a time. Selecting the

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 246
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 6: Getting Started Example Design

Generate Bitstream button runs all steps: synthesis, implementation, and then bitstream.
Selecting the Implementation button runs synthesis first and then implementation.

File Ecit Flow Tools Mindow Layout uiew Help
E2HE D P Db ¥ @ K| I 3|2 0efault Layout - &) Ready
Flow Navigator «| | Project Manager -pcie_7x vl_6 0 <
ATE Sources — O x | EProject Summary o x
== |wg b4 -
4 Project Manager hEE Ll = Project Settings Edit 2 Messages 2
157 Design Sources (1} =
45 Project Settings @, xilinx_pde_2 1_ep. 7 Gilise peie 2 1 ep 7w (3 Project name: peie_7H vl 60 summary: O errors
3% Add Sources Constraints (1) Product family; Virten-7 0 eritical warrnings
£ Ip catalog Project part e TdB5HiQL157-1 0 warnings
P Packager Top module name: yilinx pcie 2 1 ep_7x
=) Synthesis (Ready) 2 p implementation (Ready) 2
4 simulation
4 Simulation Settings - I. 1010 Part: HeTWABSKFG1157-1 Part: *eTWHABSETLLST-1
@ Run simulation Hierarchy P Sources Libraries | Complle order Strateqy: Vivada Syrthesis Defauts Strategy: Vivado Implementation Defauits
1 open Static Simulation & Sources | ¢ Templates Flow Vivado Synthesis Flow: ‘ivado Implementation
Properties — O x
4 RTL nalysis =
-
[5* Open Elaborated Design
4 synthesis
45 Synthesis Settings
& Run Synthesis
4 Implementation Design Runs —Oax
45 Implementation Settings @, [Mame [Part [Constraints | strateq; [Host [status | Progress [start
B Run Implementation o | @ = synth_L %e7vHABSERGI157 -1 constrs_1 Vivado Synthesis Defaults (Vivado Synthesis 2012) Wot started
o 2| L=impla *e7WHABSLg1157-1 constrs_L Vivado Implementation DefaLlts (vivado Implemertation 2012) Not started 1 0%
4 Program and Debug
43 Bitstream Settings
¥ Generate Bitstream
v *
< 3 (=l
B Tclconsole © Messages [log I Reports % Design Runs

Figure 6-13:

Example Project

Simulation

The example design provides a quick way to simulate and observe the behavior of the core.

Endpoint Configuration

The simulation environment provided with

the 7 Series FPGAs Integrated Block for

PCI Express core in Endpoint configuration performs simple memory access tests on the
PIO example design. Transactions are generated by the Root Port Model and responded to

by the PIO example design.

« PCI Express Transaction Layer Packets (TLPs) are generated by the test bench transmit
User Application (pci_exp_usrapp_tx). As it transmits TLPs, it also generates a log

file, tx.dat.

» PCI Express TLPs are received by the test bench receive User Application
(pci_exp_usrapp_rx). As the User Application receives the TLPs, it generates a log

file, rx.dat.

For more information about the test bench, see Root Port Model Test Bench for Endpoint in

Chapter 7.

7 Series Integrated Block for PCle (v1.7)

www.xilinx.com

247

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Getting Started Example Design

Setting Up for Simulation

To run the gate-level simulation, the Xilinx Simulation Libraries must be compiled for the
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE
Synthesis and Verification Design Guide and the Xilinx ISE Software Manuals and Help.
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

7 Series device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator. This core supports these simulators:

« Mentor Graphics ModelSim
» Cadence IES (Verilog only)
« Synopsys VCS and VCS MX (Verilog only)

Running the Simulation

The simulation scripts provided with the example design support pre-implementation (RTL)
simulation. The existing test bench can be used to simulate with a post-implementation
version of the example design.

The pre-implementation simulation consists of these components:

« Verilog or VHDL model of the test bench

» Verilog or VHDL RTL example design

« The Verilog or VHDL model of the 7 Series FPGAs Integrated Block for PCI Express
1. To run the simulation, go to this directory:

<project_dir>/<component_name>/simulation/functional

2. Launch the simulator and run the script that corresponds to the user simulation tool
using one of these:

o VCS > ./simulate_vcs.sh
o IES > ./simulate _ncsim.sh

- ModelSim > do simulate mti.do

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 248
PGO054 October 16, 2012

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

& XILINX.
Chapter 7

Example Desigh and Model Test Bench for
Endpoint Configuration

Programmed Input/Output: Endpoint Example
Design

Programmed Input/Output (PIO) transactions are generally used by a PCI Express® system
host CPU to access Memory Mapped Input/Output (MMIO) and Configuration Mapped
Input/Output (CMIO) locations in the PCI Express logic. Endpoints for PCI Express accept
Memory and I/O Write transactions and respond to Memory and I/O Read transactions with
Completion with Data transactions.

The PIO example design (PIO design) is included with the Xilinx® 7 Series FPGAs Integrated
Block for PCI Express in Endpoint configuration generated by the Vivado™ IP catalog, which
allows users to bring up their system board with a known established working design to
verify the link and functionality of the board.

Note: The PIO design Port Model is shared by the 7 Series FPGAs Integrated Block for PCI Express,
Endpoint Block Plus for PCI Express, and Endpoint PIPE for PCI Express solutions. This appendix
represents all the solutions generically using the name Endpoint for PCI Express (or Endpoint for
PCle®).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for PCle
core’s Transaction (AXI4-Stream) interface and is provided as a starting point for customers
to build their own designs. These features are included:

« Four transaction-specific 2 KB target regions using the internal Xilinx® FPGA block
RAMs, providing a total target space of 8192 bytes

« Supports single DWORD payload Read and Write PCI Express transactions to 32-/64-bit
address memory spaces and I/O space with support for completion TLPs

« Utilizes the core’s (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2] signals to differentiate between
TLP destination Base Address Registers

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 249
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

« Provides separate implementations optimized for 32-bit, 64-bit, and 128-bit
AXI4-Stream interfaces

Figure 7-1 illustrates the PCI Express system architecture components, consisting of a Root
Complex, a PCI Express switch device, and an Endpoint for PCle. PIO operations move data
downstream from the Root Complex (CPU register) to the Endpoint, and/or upstream from
the Endpoint to the Root Complex (CPU register). In either case, the PCI Express protocol
request to move the data is initiated by the host CPU.

PCle
Root Complex

CPU

Main Memory
Controller

Memory Device

[PCI_BUS 0

PCle
Port

} pci BUS 1

PCle
Switch

t PCI_BUS_X

PCle
Endpoint

Figure 7-1: PCI Express System Overview

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the appropriate
MMIO location address, byte enables, and the register contents. The transaction terminates
when the Endpoint receives the Memory Write TLP and updates the corresponding local
register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the appropriate
MMIO location address and byte enables. The Endpoint generates a Completion with Data
TLP after it receives the Memory Read TLP. The Completion is steered to the Root Complex
and payload is loaded into the target register, completing the transaction.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 250
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

PIO Hardware

The PIO design implements a 8192 byte target space in FPGA block RAM, behind the
Endpoint for PCle. This 32-bit target space is accessible through single DWORD 1/O Read, I/
O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 TLPs.

The PIO design generates a completion with one DWORD of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by the
core. In addition, the PIO design returns a completion without data with successful status
for I/O Write TLP request.

The PIO design processes a Memory or I/O Write TLP with one DWORD payload by
updating the payload into the target address in the FPGA block RAM space.

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the IP catalog tool produces a core configured to work with the PIO design
defined in this section, consisting of:

» One 64-bit addressable Memory Space BAR
+ One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases
they might need to change the back-end User Application depending on their system. See
Changing IP Catalog Default BAR Settings for information about changing the default IP
catalog parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of (rx_bar_hit[7:0])
m_axis_rx_tuser[9:2], as defined in Table 7-1.

Table 7-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR rx_bar_hit[7:0]

ep_mem0O I/0O TLP transactions Disabled Disabled

ep_meml 32-bit address Memory TLP 2 0000_0100b
transactions

ep_mem?2 64-bit address Memory TLP 0-1 0000_0010b
transactions

ep_mem3 32-bit address Memory TLP Expansion ROM 0100_0000b
transactions destined for
EROM

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 251

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Changing IP Catalog Default BAR Settings

Users can change the IP catalog parameters and continue to use the PIO design to create
customized Verilog or VHDL source to match the selected BAR settings. However, because
the PIO design parameters are more limited than the core parameters, consider these
example design limitations when changing the default IP catalog parameters:

« The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the first space of a given type is active—accesses to the other spaces do
not result in completions.

« Each spaceis implemented with a 2 KB memory. If the corresponding BAR is configured
to a wider aperture, accesses beyond the 2 KB limit wrap around and overlap the 2 KB
memory space.

« The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog or VHDL source code is provided
so users can tailor the example design to their specific needs.

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design. For
detailed information about the interface signals within the sub-blocks of the PIO design,
see Receive Path, page 257 and Transmit Path, page 258.

The PIO design successfully processes single DWORD payload Memory Read and Write TLPs
and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths larger than
one DWORD are not processed correctly by the PIO design; however, the core does accept
these TLPs and passes them along to the PIO design. If the PIO design receives a TLP with
a length of greater than one DWORD, the TLP is received completely from the core and
discarded. No corresponding completion is generated.

Memory and I/O Write TLP Processing

When the Endpoint for PCle receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different
ways: the PIO design responds to //O writes by generating a Completion Without Data (cpl),
a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive
AXI14-Stream interface also asserts the appropriate (rx_bar_hit[7:0]) m_axis_rx_tuser[9:2]

signal to indicate to the PIO design the specific destination BAR that matched the incoming
TLP. On reception, the PIO design’s RX State Machine processes the incoming Write TLP and

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 252
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

extracts the TLPs data and relevant address fields so that it can pass this along to the PIO
design’s internal block RAM write request controller.

Based on the specific rx_bar_hit[7:0] signal asserted, the RX State Machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting BARO,
the core passes the TLP to the PIO design and asserts rx_bar_hit[0]. The RX State machine
extracts the lower address bits and the data field from the I/O Write TLP and instructs the
internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of rx_bar_hit[0] instructed the PIO memory write controller to
access ep_memO (which by default represents 2 KB of I/O space). While the write is being
carried out to the FPGA block RAM, the PIO design RX state machine deasserts the
m_axis_rx_tready, causing the Receive AXI4-Stream interface to stall receiving any further
TLPs until the internal Memory Write controller completes the write to the block RAM.
Deasserting m_axis_rx_tready in this way is not required for all designs using the core—the
PIO design uses this method to simplify the control logic of the RX state machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCle receives a Memory or I/O Read TLP, the TLP destination address
and transaction type are compared with the values programmed in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI4-Stream interface
of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive
AXI14-Stream interface also asserts the appropriate rx_bar_hit[7:0] signal to indicate to the
PIO design the specific destination BAR that matched the incoming TLP. On reception, the
PIO design’s state machine processes the incoming Read TLP and extracts the relevant TLP
information and passes it along to the PIO design's internal block RAM read request
controller.

Based on the specific rx_bar_hit[7:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default MEM32 BAR2, the core passes the TLP to the PIO design and asserts
rx_bar_hit[2]. The RX State machine extracts the lower address bits from the Memory 32
Read TLP and instructs the internal Memory Read Request controller to start a read
operation.

In this example, the assertion of rx_bar_hit[2] instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_rx_tready, causing the Receive AXI4-Stream interface to stall receiving any further
TLPs until the internal Memory Read controller completes the read access from the block

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 253
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

RAM and generates the completion. Deasserting m_axis_rx_tready in this way is not
required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table 7-2 defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by the IP catalog tool are necessary, and some files might not be delivered.
The major difference is that some of the Endpoint for PCle solutions use a 32-bit user
datapath, others use a 64-bit datapath, and the PIO design works with both. The width of
the datapath depends on the specific core being targeted.

Table 7-2: PIO Design File Structure

File Description
PIO.vV Top-level design wrapper
PIO_EP.v PIO application module
PIO_TO_CTRL.V PIO turn-off controller module
PIO_32_RX_ENGINE.v 32-bit Receive engine
PIO_32_TX_ENGINE.v 32-bit Transmit engine
PIO_64_RX_ENGINE.v 64-bit Receive engine
PIO_64_TX_ENGINE.v 64-bit Transmit engine
PIO_128_RX_ENGINE.vV 128-bit Receive engine
PIO_128_TX_ENGINE.v 128-bit Transmit engine
PIO_EP_MEM_ACCESS.V Endpoint memory access module
PIO_EP_MEM.v Endpoint memory

Three configurations of the PIO design are provided: PIO_32, PIO_64, and PIO_128 with 32-,
64-, and 128-bit AXI4-Stream interfaces, respectively. The PIO configuration generated
depends on the selected Endpoint type (that is, 7 series FPGAs integrated block, PIPE,

PCI Express, and Block Plus) as well as the number of PCI Express lanes and the interface
width selected by the user. Table 7-3 identifies the PIO configuration generated based on
the user’s selection.

Table 7-3: PIlO Configuration

Core x1 x2 x4 x8
Endpoint for PIPE PIO_32 NA NA NA
Endpoint for PCI Express PIO_32 NA PIO_64 PIO_64
Endpoint for PCI Express Block Plus PIO_64 NA PIO_64 PIO_64
Virtex-6 FPGA Integrated Block PIO_64 PIO_64 PIO_64 PIO_64,

PIO_1281)
Spartan®-6 FPGA Integrated Endpoint PIO_32 NA NA NA
Block
7 Series Integrated Block for PCle (v1.7) www.xilinx.com 254

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-3: PIO Configuration (Cont’d)

Core x1 x2 x4 x8
7 Series FPGAs Integrated Block PIO_64 PIO_64 PIO_64, PIO_64,
PIO_128 PIO_128

Notes:
1. The PIO_128 configuration is only provided for the 128-bit x8 5.0 Gb/s, x8 2.5 Gb/s, and x4 5.0 Gb/s cores.

Figure 7-2 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power Management
Turn-Off Controller.

7 Series FPGAs Integrated Block for PCI Express Core (Configured as an Endpoint)

PIO_TO_CTRL

ep_memO0

ep_memi

EP_TX EP_RX ep_mem2
ep_mem3

EP_MEM

PIO_EP
PIO

Figure 7-2: PlO Desigh Components

PIO Application

Figure 7-3, Figure 7-4, and Figure 7-5 depict 128-bit, 64-bit, and 32-bit PIO application
top-level connectivity, respectively. The datapath width (32, 64, or 128 bits) depends on
which Endpoint for PCle core is used. The PIO_EP module contains the PIO FPGA block RAM
modules and the transmit and receive engines. The PIO_TO_CTRL module is the Endpoint
Turn-Off controller unit, which responds to power turn-off message from the host CPU with
an acknowledgment.

The PIO_EP module connects to the Endpoint AXI4-Stream and Configuration (cfg)
interfaces.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 255
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

s_axis_tx_tready

Chapter 7:

Example Design and Model Test Bench for Endpoint Configuration

user_clk
m_axis_rx_tuser[14:10] .
(rx_is_sof(4:3]) s_axis_Ix_tuser(3]
PIO EP s_axis_tx_tvalid
L cik B s_axis_tx_tlast
user_reset rst n
user_Ink_up s ;xis tx_tready
pio_reset_n m_axis_rx_tuser{14:10] s_axis_tx_tlast
. (rx_is_sof[4:3]) s_axis_tx_tuser[3] PIO_TO_CTRL
m_axis_rx_tuser[21 1 7} m_axis_rx_tuser[21:17] s_axis_tx_tvalid clk
(rXﬁIS?eOf[4._0] (rx_is_eof[4:0]) m_axis_rx_tready rst_n
m_axis_rx_tvalid m_axis_rx_tvalid req_compl_o req_compl_i cfg_turnoff_ok cfg_turnoff_ok
cfg_bus_mstr_enable cfg_bus_mstr_enable compl_done_o compl_done_i
[127:0] . . . y cfg_to_turnoff
m_axis_rx_tdata[127:0] Tz - mfastfrdeata[127.0] s,aX|s.Jx,1dala[127A0] ——127:0]
mfaxisfrxftstrb[15:0] RE . m_axis_rx_tstrb[15:0] s_axis_tx_tstrb[15:0] B PIO_TO
cfg_completer_id[15:0] Tas cfg_completer_id[15:0] 150 o axis_tx_tstrb[15:0]
PIO_EP 1270, 5™ axis_tx_tdata[127:0]
_| m_axis_rx_tready
cfg_to_turnoff
Figure 7-3: PlO 128-Bit Application
s_axis_tx_tready
user_clk
s_axis_tx_tuser[3]
PIO_EP s_axis_tx_tvalid
ok - s_axis_tx_tlast
user_reset rst.n
user_Ink_up -
pio_reset_n s_axis_tx_tready s_axis_tx_tlast
. s_axis_tx_tuser[3] PIO_TO_CTRL
m_a_)(ls_rx_tla_st m_axis_rx_tlast s_axis_tx_tvalid clk
m_axis_rx_tvalid m_axis_rx_tvalid m_axis_rx_tready rst_n
req_compl_o req_compl_i cfg_turnoff_ok cfg_turnoff_ok
cfg_bus_mstr_enable cfg_bus_mstr_enable compl_done_o compl_done_i
[63:0] cfg_to_turnoff
m_axis_rx_tdata[63:0] Tl - m_axis_rx_tdata[63:0] s,ax1sftx,tdata[63.0] =3
m_axis_rx_tstrb[[7:0] T oo m_axis_rx_tstrb[[7:0] s_axis_tx_tstrb[7:0] Wl PIO_TO
cfg_completer_id[15:0] Tas; cfg_completer_id[15:0] 9 5 axis_tx_tstrb[7:0]
PIO_EP 139 5~ axis_tx_tdata[63:0]
— m_axis_rx_tready
cfg_to_turnoff
Figure 7-4: PlO 64-Bit Application
s_axis_tx_tready
user_clk
s_axis_tx_tuser[3]
PIO_EP s_axis_tx_tvalid
ok - s_axis_tx_tlast
user_reset rst.n m_axis_rx_tready
user_Ink_up -
pio_reset_n s_axis_tx_tready s_axis_tx_tlast
) s_axis_tx_tuser[3] PIO_TO_CTRL
m—a,X|S—rXJ|a,St m_axis_rx_tlast s_axis_tx_tvalid clk
m_axis_rx_tvalid m_axis_rx_tvalid m_axis_rx_tready rst.n
req_compl_o req_compl_i cfg_turnoff_ok cfg_turnoff_ok
cfg_bus_mstr_enable cfg_bus_mstr_enable compl_done_o compl_done_i
m_axis_rx_tdata[31:0] o [31:0] m_axis_rx_tdata[31:0] s_axis_tx_tdata[31:0] = cfg_to_turnoff
PIO_TO
. [15:0] I
cfg_completer_id[15:0] T5q cfg_completer_id[15:0]
PIO_EP B9 s axis_tx_tdata[31:0]

cfg_to_turnoff

Figure 7-5: PIO 32-Bit Application

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 256

PG054 October 16, 2012

http://www.xilinx.com

& XILINX

Receive Path

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Figure 7-6 illustrates the PIO_32_RX_ENGINE, PIO_64_RX_ENGINE, and PIO_128_RX_ENGINE

modules. The datapath of the module must match the datapath of the core being used.
These modules connect with Endpoint for PCle Receive interface.

PIO_[32/64/128] _RX_ENGINE

m_axis_rx_tready

req_compl_o

req_td_o

clk requ_ep_o
rst n wr_en_o

m_axis_rx_tdata

m_axis_rx_tstrb

req_tc_o[2:0]
req_attr_o[1:0]

m_axis_rx_tlast req_len_o[9:0]
m_axis_rx_tvalid req_rid_o[15:0]
m_axis_rx_tuser req_tag_o[7:0] =
compl_done_i req_be_o[7:0] ==
wr_busy_i req_addr_o[31:0] fe=

wr_addr_o[10:0] fe==
wr_be 0[7:0] =

wr_data_o[31:0] =

EP_Rx

Figure 7-6: RX Engines

The PIO_32 RX_ENGINE, PIO_64 RX_ENGINE and PIO_128 RX _ENGINE modules receive and
parse incoming read and write TLPs.

The RX engine parses one DWORD 32- and 64-bit addressable memory and 1/O read

requests. The RX state machine extracts needed information from the TLP and passes it to
the memory controller, as defined in Table 7-4.

Table 7-4: RX Engine: Read Outputs

Port

Description

req_compl_o

Completion request (active-High)

reqg_td_o

Request TLP Digest bit

req_ep_o

Request Error Poisoning bit

req_tc_o[2:0]

Request Traffic Class

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

257

http://www.xilinx.com

& XILINX

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-4: RX Engine: Read Outputs (Cont’d)

Port

Description

req_attr_o[1:0]

Request Attributes

reqg_len_o[9:0]

Request Length

reg_rid_o[15:0] Request Requester Identifier
req_tag_o[7:0] Request Tag
req_be_o[7:0] Request Byte Enable

req_addr_o[10:0]

Request Address

The RX Engine parses one DWORD 32- and 64-bit addressable memory and I/O write
requests. The RX state machine extracts needed information from the TLP and passes it to
the memory controller, as defined in Table 7-5.

Table 7-5: Rx Engine: Write Outputs

Port Description
wr_en_o Write received
wr_addr_o[10:0] Write address
wr_be_o[7:0] Write byte enable

wr_data_o[31:0]

Write data

The read datapath stops accepting new transactions from the core while the application is
processing the current TLP. This is accomplished by m_axis_rx_tready deassertion. For an
ongoing Memory or I/O Read transaction, the module waits for compl_done_i input to be
asserted before it accepts the next TLP, while an ongoing Memory or I/O Write transaction
is deemed complete after wr_busy_i is deasserted.

Transmit Path

Figure 7-7 shows the PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE
modules. The datapath of the module must match the datapath of the core being used.
These modules connect with the core Transmit interface.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 258

http://www.xilinx.com

& XILINX. Chapter 7:

Example Design and Model Test Bench for Endpoint Configuration

PIO_[32/64/128]_TX_ENGINE

clk
rst_n

s_axis_rx_tready

requ_compl_i

req_td_i

req_ep_i

cfg_bus_mstr_enable_i s_axis_tx_tdata [—
req_tc_i[2:0] s_axis_tx_tstrb {—
req_attr_i[1:0] s_axis_tx_tlast f—
req_len_i[9:0] s_axis_tx_tvalid {—
req_rid_i[15:0] tx_src_dsc |—
req_tag_i[7:0] compl_done_o —
req_be_i[7:0] rd_addr_o[10:0] =
req_addr_i[31:0] rd_be_0[3:0] ==
rd_data_i[31:0]

completer_id_i[15:0]

EP_Tx

Figure 7-7: TX Engines

The PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE modules generate
completions for received memory and I/O read TLPs. The PIO design does not generate
outbound read or write requests. However, users can add this functionality to further

customize the design.

The PIO_32_TX_ENGINE, PIO_64_TX_ENGINE, and PIO_128_TX_ENGINE modules generate
completions in response to one DWORD 32- and 64-bit addressable memory and I/O read
requests. Information necessary to generate the completion is passed to the TX Engine, as

defined in Table 7-6.

Table 7-6: TX Engine Inputs

Port Description
req_compl_i Completion request (active-High)
req_td_i Request TLP Digest bit
req_ep_i Request Error Poisoning bit
req_tc_i[2:0] Request Traffic Class

req_attr_i[1:0]

Request Attributes

reqg_len_i[9:0]

Request Length

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com 259

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-6: TX Engine Inputs (Cont’d)

Port Description
req_rid_i[15:0] Request Requester Identifier
req_tag_i[7:0] Request Tag
req_be_i[7:0] Request Byte Enable
reg_addr_i[10:0] Request Address

After the completion is sent, the TX engine asserts the compl_done_i output indicating to
the RX engine that it can assert m_axis_rx_tready and continue receiving TLPs.

Endpoint Memory

Figure 7-8 displays the PIO_EP_MEM_ACCESS module. This module contains the Endpoint
memory space.

PIO_EP_MEM_ACCESS

— clk
— rst_n
— wr_en_i
—] rd_addr_i[10:0]
—| rd_be_i[3:0] wr_busy_o [—
| wr_addr_i[10:0] rd_data_o[31:0] [==
| wr_be_i[7:0]
wr_data_i[31:0]

EP_MEM

Figure 7-8: EP Memory Access

The PIO_EP_MEM_ACCESS module processes data written to the memory from incoming
Memory and I/O Write TLPs and provides data read from the memory in response to
Memory and I/O Read TLPs.

The EP_MEM module processes one DWORD 32- and 64-bit addressable Memory and I/O
Write requests based on the information received from the RX Engine, as defined in
Table 7-7. While the memory controller is processing the write, it asserts the wr_busy_o
output indicating it is busy.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 260
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-7: EP Memory: Write Inputs

Port Description
wr_en_i Write received
wr_addr_i[10:0] Write address
wr_be_i[7:0] Write byte enable

wr_data_i[31:0]

Write data

Both 32- and 64-bit Memory and I/O Read requests of one DWORD are processed based on
the inputs defined in Table 7-8. After the read request is processed, the data is returned on

rd_data_o[31:0].

Table 7-8: EP Memory: Read Inputs

Port

Description

req_be_i[7:0]

Request Byte Enable

req_addr_i[31:0]

Request Address

P10 Operation

PIO Read Transaction

Figure 7-9 depicts a Back-to-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The next
Read transaction is accepted only after compl_done_o is asserted by the transmit engine,
indicating that Completion for the first request was successfully transmitted.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 261

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

user_clk_out|||||||||||||||||||||

I
|
|

m_axis_rx_tdata[63:0] i X H1HO X -H2 X H1HO X --H3
| A

m_axis_rx_tstrb[7:0]

, | | Ve
m_axis_rx_tlast | | | |
T
|

|
|
. . ; | | ;
m_axis_rx_tvalid | _:_/_,_:-_;_/
} l l
I I \
| |

m_axis_rx_tready :

L
(rx_bar_hit[7:0])m_axis_rx_tuser[9:2]: 00h X 01h X 00h X 0(1h X 00h

|
|
|
|
compl_done_o :
I
s_axis_tx_tdata[63:0] |

|
s_axis_tx_tstrb[7:0] | FF

1

s_axis_tx_tlast :

|

s_axis_tx_tvalid |

I
(src_dsc)s_axis_tx_tuser[3] :

1

s_axis_tx_tready : I | I I I I I I I I

Figure 7-9: Back-to-Back Read Transactions

PIO Write Transaction

Figure 7-10 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr_busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the
memory aperture.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 262
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

user_clk_out

I
|

|

1
m_axis_rx_tdata[63:0] | X H1HO X DOH2 X H1HO X DOH3
I

m_axis_rx_tstrb[7:0] |

FFh X FFh X FFh X FFh X FFh

. | | | , T \
m_axis_rx_tlast | | | |
T
|

|

|

1 T

m_axis_rx_tvalid : _:_/_:_!-_E_/

} l l
| |
| |
L L

m_axis_rx_tready :

(rxfbarﬁhit[7:0])m7axisﬁrx7tuser[9:2]: 00h X 01h X 00h X 01h X 00h

| I | | | | | | I | |
T
| | | | t t t t | | |
wboyo, L L
| | | | | | | | | | |
compl_done_o | ! ! ! ! ! ! ! ! ! !
s_axis_tx_tdata[63:0] :
s_axis_tx_tstrb[7:0] :
| | | | | | | | | | |
s_axis_tx_tlast : : : : : : : : : : :
| | | | | | | | | | |
s_axis_tx_tvalid : : : : : : : : : : :
| | | | | | | | | | |
(src_dsc)s_axis_tx_tuser|3] : : : : : : : : : : :
s_axis_tx_tready : : : : : : : : : : :
I I I I I I I I I I I
Figure 7-10: Back-to-Back Write Transactions
Device Utilization
Table 7-9 shows the PIO design FPGA resource utilization.
Table 7-9: PIO Design FPGA Resources
Resources Utilization
LUTs 300
Flip-Flops 500
Block RAMs 4
Summary

The PIO design demonstrates the Endpoint for PCle and its interface capabilities. In
addition, it enables rapid bring-up and basic validation of end user Endpoint add-in card
FPGA hardware on PCI Express platforms. Users can leverage standard operating system
utilities that enable generation of read and write transactions to the target space in the
reference design.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 263
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Root Port Model Test Bench for Endpoint

The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with the user’s design.
The purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traffic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Source code for the Root Port Model is included to provide the model for a starting point
for the user test bench. All the significant work for initializing the core’s configuration
space, creating TLP transactions, generating TLP logs, and providing an interface for
creating and verifying tests are complete, allowing the user to dedicate efforts to verifying
the correct functionality of the design rather than spending time developing an Endpoint
core test bench infrastructure.

The Root Port Model consists of:

« Test Programming Interface (TPI), which allows the user to stimulate the Endpoint
device for the PCI Express

« Example tests that illustrate how to use the test program TPI

» Verilog or VHDL source code for all Root Port Model components, which allow the user
to customize the test bench

Figure 7-11 illustrates the illustrates the Root Port Model coupled with the PIO design.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 264
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Outout Root Port
P < usrapp_com Model TPI for

Logs PCI Express
? A /

Test
- t < >
usrapp_rx usrapp_tx Program

dsport

< > PCI Express Fabric

Y

Endpoint Core for
PCI Express

PIO
Design

Endpoint DUT for PCI Express

Figure 7-11: Root Port Model and Top-Level Endpoint

Architecture
The Root Port Model consists of these blocks, illustrated in Figure 7-11:

« dsport (Root Port)
e usrapp_tx
e usrapp._rx

« usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCle and the PIO design (displayed) or customer design.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 265
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI Express
Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs across the PCI
Express Link to the dsport block, which are subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing
when communicating across the PCI Express logic. Both usrapp_tx and usrapp_rx utilize the
usrapp_com block for shared functions, for example, TLP processing and log file outputting.
Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the
Endpoint device's fabric interface. TLP responses from the Endpoint device are received by
the usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allow the
usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx block has
received TLPs from the Endpoint device.

Simulating the Design

Four simulation script files are provided with the model to facilitate simulation with
Synopsys VCS and VCS MX, Cadence IES, and Mentor Graphics ModelSim tools:

*+ simulate_vcs.sh (Verilog Only)
e simulate_ncsim.sh

e simulate_mti.do
The example simulation script files are located in this directory:

<component_name_#>/<component_name_#>/simulation/functional

Instructions for simulating the PIO design using the Root Port Model are provided in
Chapter 6, Getting Started Example Design.

Note: For Cadence IES users, the work construct must be manually inserted into the cds. 11ib file:
DEFINE WORK WORK.

Scaled Simulation Timeouts

The simulation model of the 7 Series FPGAs Integrated Block for PCI Express uses scaled
down times during link training to allow for the link to train in a reasonable amount of time
during simulation. According to the PCI Express Specification, rev. 2.1 [Ref 2], there are
various timeouts associated with the link training and status state machine (LTSSM) states.
The 7 series FPGAs integrated block scales these timeouts by a factor of 256 in simulation,
except in the Recovery Speed_1 LTSSM state, where the timeouts are not scaled.

Test Selection

Table 7-10 describes the tests provided with the Root Port Model, followed by specific
sections for VHDL and Verilog test selection.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 266
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-10: Root Port Model Provided Tests

Test in VHDL/

Test Name Verilog Description
sample_smoke_test0 Verilog and Issues a PCI Type 0 Configuration Read TLP and waits for the
VHDL completion TLP; then compares the value returned with the
expected Device/Vendor ID value.
sample_smoke_testl Verilog Performs the same operation as sample_smoke_test0 but

makes use of expectation tasks. This test uses two separate test
program threads: one thread issues the PCI Type 0
Configuration Read TLP and the second thread issues the
Completion with Data TLP expectation task. This test illustrates
the form for a parallel test that uses expectation tasks. This test
form allows for confirming reception of any TLPs from the
customer’s design. Additionally, this method can be used to
confirm reception of TLPs when ordering is unimportant.

VHDL Test Selection

Test selection is implemented in the VHDL Downstream Port Model by overriding the
test_selector generic within the tests entity. The test_selector generic is a string with a
one-to-one correspondence to each test within the tests entity.

The user can modify the generic mapping of the instantiation of the tests entity within the
pci_exp_usrapp_tx entity. Currently, there is one test defined inside the tests entity,
sample_smoke_test0. Additional customer-defined tests should be added inside
tests.vhd. Currently, specific tests cannot be selected from the VHDL simulation scripts.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets the user specify the name of the
test to be run as a command line parameter to the simulator. For example, the
simulate_ncsim. sh script file, used to start the Cadence IES simulator, can be modified
to explicitly specify the test sample_smoke_test0 to be run using this command line
syntax:

ncsim work.board +TESTNAME=sample_smoke_testO

To change the test to be run, change the value provided to TESTNAME defined in the test
files sample_testsl.v and pio_tests.v. The same mechanism is used for VCS and
ModelSim. ISim uses the -testplusarg options to specify TESTNAME, for example:
demo_tb.exe -gui -view wave.wcfg -wdb wave_isim -tclbatch
isim_cmd.tcl -testplusarg TESTNAME=sample_smoke_testO.

VHDL and Verilog Root Port Model Differences

These subsections identify differences between the VHDL and Verilog Root Port Model.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 267
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Verilog Expectation Tasks

The most significant difference between the Verilog and the VHDL test bench is that the
Verilog test bench has Expectation Tasks. Expectation tasks are API calls used in conjunction
with a bus mastering customer design. The test program issues a series of expectation task
calls, that is, the task calls expect a memory write TLP and a memory read TLP. If the
customer design does not respond with the expected TLPs, the test program fails. This
functionality was implemented using the fork-join construct in Verilog, which is not
available in VHDL and subsequently not implemented.

Verilog Command Line versus VHDL tests.vhd Module

The Verilog test bench allows test programs to be specified at the command line, while the
VHDL test bench specifies test programs within the tests.vhda module.

Generating Wave Files

» The Verilog test bench uses recordvars and dumpfile commands within the code to
generate wave files.

« The VHDL test bench leaves the generating wave file functionality up to the simulator.

Speed Differences

The VHDL test bench is slower than the Verilog test bench, especially when testing the x8
core. For initial design simulation and speed enhancement, the user might want to use the
x1 core, identify basic functionality issues, and then move to x2, x4, or x8 simulation when
testing design performance.

Waveform Dumping

Table 7-11 describes the available simulator waveform dump file formats, each of which is
provided in the simulator’s native file format. The same mechanism is used for VCS and
ModelSim.

Table 7-11: Simulator Dump File Format

Simulator Dump File Format
Synopsys VCS .vpd
Mentor Graphics ModelSim .ved
Cadence IES .trn
VHDL Flow

Waveform dumping in the VHDL flow does not use the +dump_all mechanism described in
the Verilog Flow section. Because the VHDL language itself does not provide a common
interface for dumping waveforms, each VHDL simulator has its own interface for supporting

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 268
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

waveform dumping. For both the supported ModelSim and IES flows, dumping is supported
by invoking the VHDL simulator command line with a command line option that specifies
the respective waveform command file, wave.do (ModelSim), wave. sv (IES), and
wave.wcfg (ISim). This command line can be found in the respective simulation script files
simulate_mti.do, simulate ncsim.sh, and simulate _isim.bat[.sh].

ModelSim

This command line initiates waveform dumping for the ModelSim flow using the VHDL test
bench:

>vsim +notimingchecks -do wave.do -L unisim -L work work.board

IES

This command line initiates waveform dumping for the IES flow using the VHDL test bench:

>ncsim —gui work.board -input @”simvision -input wave.sv”

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file
by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim. sh (used to start the Cadence IES simulator)
can indicate to the Root Port Model that the waveform should be saved to a file using this
command line:

ncsim work.board +TESTNAME=sample_smoke_test0 +dump_all

Output Logging

When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave file for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every
TLP that was received and transmitted, respectively, by the Root Port Model. With an
understanding of the expected TLP transmission during a specific test case, the test
programmer can more easily isolate the failure.

The log file error.dat is used in conjunction with the expectation tasks. Test programs
that utilize the expectation tasks generate a general error message to standard output.
Detailed information about the specific comparison failures that have occurred due to the
expectation error is located within error.dat.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 269
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model:

« Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 271 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

« Parallel tests. Tests involving more than one process thread. The test
sample_smoke_testl is an example of a parallel test with two process threads.
Parallel tests are very useful when verifying that a specific set of events have occurred,
however the order of these events are not known.

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify a device's functionality. The role of the
command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of expectation
tasks can be used for expecting any TLP type when used in conjunction with the customer's
design (which can include bus-mastering functionality). Currently, the VHDL version of the
Root Port Model Test Bench does not support Parallel tests.

Test Description

The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means to
create tests by invoking a series of Verilog tasks. All Root Port Model tests should follow the
same six steps:

Perform conditional comparison of a unique test name
Set up master timeout in case simulation hangs

Wait for Reset and link-up

1

2

3

4. Initialize the configuration space of the Endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT
6

Verify that the test succeeded

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 270
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Test Program: pio_writeReadBack_test0

1. else if (testname == "pio_writeReadBack_testl"

2. begin

3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back

4. TSK_SIMULATION_TIMEOUT(10050) ;

5. TSK_SYSTEM_INITIALIZATION;

6. TSK_BAR_INIT;

7. for (ii = 0; ii <= 6; 1i = ii + 1) begin

8. if (BAR_INIT_ P_BAR_ENABLED[i1ii] > 2'b00) // bar is enabled

9. case (BAR_INIT P_BAR_ENABLED[ii])

10. 2'b01l : // IO SPACE

11. begin

12. Sdisplay (" [%t] : NOTHING: to IO 32 Space BAR %x", Srealtime, 1ii);

13. end

14. 2'bl0 : // MEM 32 SPACE

15. begin

16. Sdisplay (" [%t] : Transmitting TLPs to Memory 32 Space BAR %x",

17. Srealtime, 1ii);

18. /) mmm e e

19. // Event Memory Write 32 bit TLP

20. /=

21. DATA_STORE[0] = 8'h04;

22. DATA_STORE[1] = 8'h03;

23. DATA_STORE[2] = 8'h02;

24 . DATA_STORE[3] = 8'h01;

25. P_READ_DATA = 32'hffff ffff; // make sure P_READ_DATA has known initial value

26. TSK_TX_MEMORY_WRITE_32 (DEFAULT_ TAG, DEFAULT TC, 10'dl, BAR_INIT_P_BAR[11][31:0] , 4'hF,
4'hF, 1'b0);

27. TSK_TX_CLK_EAT (10) ;

28. DEFAULT_TAG = DEFAULT_TAG + 1;

29. /]

30. // Event Memory Read 32 bit TLP

31. /]

32. TSK_TX_MEMORY_READ_32 (DEFAULT_TAG, DEFAULT TC, 10'dl, BAR_INIT_P_BAR[ii][31:0], 4'hF,
4'hF) ;

33. TSK_WAIT_ FOR_READ_DATA;

34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[O] })

35. begin

36. Sdisplay (" [%t] : Test FAILED --- Data Error Mismatch, Write Data %$x != Read Data %x",
Srealtime, {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[O0]}, P_READ_DATA) ;

37. end

38. else

39. begin

40. Sdisplay (" [%t] : Test PASSED --- Write Data: %$x successfully received", Srealtime,
P_READ_DATA) ;

41. end
Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is tailored
to make specific checks and warnings based on the limitations of the PIO design. These
checks and warnings are enabled by default when the Root Port Model is generated by the
IP catalog tool. However, these limitations can be disabled so that they do not affect the
customer's design.
Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, and
two Mem32 BARs (one of which must be the EROM space), the Root Port Model by default
makes a check during device configuration that verifies that the core has been configured
to meet this requirement. A violation of this check causes a warning message to be
displayed as well as for the offending BAR to be gracefully disabled in the test bench. This

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 271

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

check can be disabled by setting the pio_check_design variable to zero in the
pci_exp_usrapp_tx.v file.

Root Port Model TPI Task List

The Root Port Model TPI tasks include these tasks, which are further defined in these tables.

« Table 7-12, Test Setup Tasks

« Table 7-13, TLP Tasks

« Table 7-14, BAR Initialization Tasks

« Table 7-15, Example PIO Design Tasks
» Table 7-16, Expectation Tasks

Table 7-12: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and
link-up between the Root Port Model
and the Endpoint DUT.

This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE
array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT clock count | 31:30 | Waits clock_count transaction interface
clocks.
TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in

units of transaction interface clocks.
This task should be used to ensure that
all DUT tests complete.

Table 7-13: TLP Tasks

Name Input(s) Description
TSK_TX_TYPEO_CONFIGURATION_READ tag_ 7:0 | Waits for transaction interface reset and
reg_addr_ 11:0 | link-up between the Root Port Model and

first dw be 3.0 |the Endpoint DUT.

This task must be invoked prior to Endpoint
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ tag_ 7:0 |Sends a Type 1 PCI Express Config Read TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
first dw be 3:0 Endpoint DUT with tag_ and first_dw_be_
-7 inputs.

CpID returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 272
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Table 7-13: TLP Tasks (Cont’d)

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Name Input(s) Description
TSK_TX_TYPEO_CONFIGURATION_WRITE tag_ 7:0 |Sends a Type 0 PCI Express Config Write TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
reg_data 31:0 Endpoint DUT with tag_ and first_dw_be_
first_dw_be_ 3:0 Inputs.)
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_TYPE1_CONFIGURATION_WRITE tag_ 7:0 |Sends a Type 1 PCI Express Config Write TLP
reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
reg_data 31:0 Fndpoint DUT with tag_ and first_dw_be_
first_.dw_be_ 3.0 | PUts ,
Cpl returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_MEMORY_READ_32 tag_ 7:0 |Sends a PCI Express Memory Read TLP from
tc 2:0 |RootPortto 32-bit memory address addr_ of
len 9.0 |Endpoint DUT.
addr 31-0 | CPID returned from the Endpoint DUT uses
-] the contents of global COMPLETE_ID_CFG as
last_dw_be_ 3:0 .
i the completion ID.
first_dw_be_ 3:0
TSK_TX_MEMORY_READ_64 tag_ 7:0 |Sends a PCI Express Memory Read TLP from
tc_ 2:0 |Root Port Model to 64-bit memory address
len 9:0 addr_ of Endpoint DUT.
addr 63:0 | CPID returned from the Endpoint DUT uses
-] the contents of global COMPLETE_ID_CFG as
last_dw_be_ 3:0 .
] the completion ID.
first_dw_be_ 3:0
TSK_TX_MEMORY_WRITE_32 tag_ 7:0 |Sends a PCI Express Memory Write TLP from
tc_ 2:0 |Root Port Model to 32-bit memory address
len 9:0 addr_ of Endpoint DUT.
add_r 31:0 | CpID returned from the Endpoint DUT uses
-] the contents of global COMPLETE_ID_CFG as
last_dw_be_ 3:0 .
i) the completion ID.
first dw_be_) 3:0 The global DATA_STORE byte array is used to
ep_ - pass write data to task.
TSK_TX_MEMORY_WRITE_64 tag_ 7:0 |Sends a PCI Express Memory Write TLP from
tc_ 2:0 |Root Port Model to 64-bit memory address
len 9:0 addr_ of Endpoint DUT.
add_r 63:0 | CpID returned from the Endpoint DUT uses
-] the contents of global COMPLETE_ID_CFG as
last_dw_be_ 3:0 .
i) the completion ID.
first dw_be_) 3:0 The global DATA_STORE byte array is used to
ep_ - pass write data to task.
TSK_TX_COMPLETION tag_ 7:0 |Sends a PCI Express Completion TLP from
tc_ 2:0 |Root Port Model to the Endpoint DUT using
len 9:0 global COMPLETE_ID_CFG as the completion
comp_status_ | 2:0 1D,

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

273

http://www.xilinx.com

& XILINX

Table 7-13: TLP Tasks (Cont’d)

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Name Input(s) Description

TSK_TX_COMPLETION_DATA tag_ 7:0 |Sends a PCI Express Completion with Data
tc 2:0 | TLP from Root Port Model to the Endpoint
len 9.0 |DUT using global COMPLETE_ID_CFG as the
byt_e count 11:0 completion ID.

-] The global DATA_STORE byte array is used to
lower_addr 6:0 .
pass completion data to task.
comp_status 2:0
ep_ -

TSK_TX_MESSAGE tag_ 7:0 |Sends a PCI Express Message TLP from Root
tc_ 2:0 | Port Model to Endpoint DUT.
len_ 9:0 | Completion returned from the Endpoint DUT
data 63:0 | Uses the contents of global

] COMPLETE_ID_CFG as the completion ID.
message_rtg 2:0
message_code | 7:0

TSK_TX_MESSAGE_DATA tag_ 7:0 |Sends a PCI Express Message with Data TLP
tc_ 2:0 | from Root Port Model to Endpoint DUT.
len 9:0 |The global DATA_STORE byte array is used to
dat_a 63:0 | Pass message data to task.
message_rtg | 2:0 Completion returned from the Endpoint DUT
message_code 7.0 |Uses the contents of global

- ’ COMPLETE_ID_CFG as the completion ID.

TSK_TX_IO_READ tag_ 7:0 |Sends a PCI Express I/O Read TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first_dw_be_ |3:0 |Endpoint DUT.

ST CplID returned from the Endpoint DUT uses
the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_IO_WRITE tag_ 7:0 | Sends a PCI Express I/O Write TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first_dw_be 3.0 |Endpoint DUT.
data |31.0 CpID returned from the Endpoint DUT uses

the contents of global COMPLETE_ID_CFG as
the completion ID.

TSK_TX_BAR_READ bar_index 2:0 |Sends a PCI Express one DWORD Memory
byte_offset 31:0 | 32, Memory 64, or I/O Read TLP from the
tag 7.0 |Root Port Model to the target address
te - 20 corresponding to offset byte_offset from

BAR bar_index of the Endpoint DUT. This task
sends the appropriate Read TLP based on
how BAR bar_index has been configured
during initialization. This task can only be
called after TSK_BAR_INIT has successfully
completed.

CpID returned from the Endpoint DUT use
the contents of global COMPLETE_ID_CFG as
the completion ID.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

274

http://www.xilinx.com

& XILINX

Table 7-13: TLP Tasks (Cont’d)

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Name Input(s) Description
TSK_TX_BAR_WRITE bar_index 2:0 |Sends a PCI Express one DWORD Memory
byte_offset 31:0 | 32, Memory 64, or I/O Write TLP from the
. Root Port to the target address
tag_ 7:0 -
¢ 20 corresponding to offset byte_offset from
dc_) BAR bar_index of the Endpoint DUT.
ata_ 31:0 This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task
can only be called after TSK_BAR_INIT has
successfully completed.
TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data TLP

that was sent by the Endpoint DUT. On
successful completion, the first DWORD of
data from the CplID is stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks
in the TPIthat request Completion with Data
TLPs to avoid any race conditions.

By default this task locally times out and
terminates the simulation after 1000
transaction interface clocks. The global
cpld_to_finish can be set to zero so that local
time out returns execution to the calling test
and does not result in simulation timeout.
For this case test programs should check the
global cpld_to, which when set to one
indicates that this task has timed out and
that the contents of P_READ_DATA are
invalid.

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

275

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-14: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint's PCI BAR
range requirements, performs the necessary memory and
I/O space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.

On completion, the user test program can begin memory
and I/O transactions to the device. This function displays to
standard output a memory and I/O table that details how
the Endpoint has been initialized. This task also initializes
global variables within the Root Port Model that are
available for test program usage. This task should only be
called after TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes
and Configuration Reads using the PCI Express logic to
determine the memory and I/O requirements for the
Endpoint.

The task stores this information in the global array
BAR_INIT_P_BAR_RANGE[]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and
allocates Memory 32, Memory 64, and I/O space based on
the Endpoint requirements.

This task has been customized to work in conjunction with
the limitations of the PIO design and should only be called
after completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core’s PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task
should only be called after completion of
TSK_BUILD_PCIE_MAP.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 276
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-15: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration Reads
to the Endpoint device's Base Address Registers, PCI
Command Register, and PCle Device Control Register
using the PCI Express logic.

This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 | Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.

TSK_MEM_TEST_ADDR_BUS bar_index 2:0 | Tests whether the PIO design FPGA block RAM address
nBytes 31:0 | bus interface is accurately connected by performing a
walking ones address test starting at the I/O or memory
address pointed to by the input bar_index.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

TSK_MEM _TEST_DEVICE bar_index 2:0 | Tests the integrity of each bit of the PIO design FPGA
nBytes 31:0 | block RAM by performing an increment/decrement test
on all bits starting at the block RAM pointed to by the
input bar_index with the range specified by input
nBytes.

For an exhaustive test, this task should be called four
times, once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire
size of the individual block RAM.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 277
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-16: Expectation Tasks
Name Input(s) Output Description
TSK_EXPECT_CPLD traffic_class 2:0 Expect status | Waits for a Completion with
td - Data TLP that matches
ep _ traffic_class, td, ep, attr, length,
attr 1:0 and payload.
length 9:0 Returns a 1 on successful
) . completion; 0 otherwise.
completer_id 15:0
completer_status 2:0
bcm)
byte_count 11:0
requester_id 15:0
7:0
tag _
address_low 6:0
TSK_EXPECT_CPL traffic_class 2:0 Expect status | Waits for a Completion without
td - Data TLP that matches
ep _ traffic_class, td, ep, attr, and
attr 1:0 length.
. . Returns a 1 on successful
completer_id 15.'0 completion; 0 otherwise.
completer_status 2:0
bcm B
byte_count 11:0
requester_id 15:0
tag 7:0
address_low 6:0
TSK_EXPECT_MEMRD traffic_class 2:0 Expect status | Waits for a 32-bit Address
td - Memory Read TLP with
ep ; matching header fields.
attr 1:0 Returns a 1 on successful
. completion; 0 otherwise. This
length] 195'90 task can only be used in
requester_id ' conjunction with Bus Master
tag 7:0 designs.
last_dw_be 3.0
first_dw_be 3:0
address 230
TSK_EXPECT_MEMRD64 traffic_class 2:0 Expect status | Waits for a 64-bit Address
td - Memory Read TLP with
ep - matching header fields. Returns
attr 1:0 alon §uccessfu| completion; 0
9:0 otherwise.
length . 15',0 This task can only be used in
requester_id ' conjunction with Bus Master
tag 7:0 designs.
last_dw_be 30
first_dw_be 30
address 61:0

7 Series Integrated Block for PCle (v1.7)
PGO054 October 16, 2012

www.xilinx.com

278

http://www.xilinx.com

& XILINX

Chapter 7: Example Design and Model Test Bench for Endpoint Configuration

Table 7-16: Expectation Tasks (Cont’d)
Name Input(s) Output Description
TSK_EXPECT_MEMWR traffic_class 2:0 Expect status | Waits for a 32-bit Address
td - Memory Write TLP with
ep ; matching header fields. Returns
1:0 a 1 on successful completion; 0
attr . X
) otherwise.
length 9:0 his task M b di
. 15:0 This task can only be used in
requester_id 0 conjunction with Bus Master
tag ' designs.
last_dw_be 3:0
first_dw_be 3:0
address 29:0
TSK_EXPECT_MEMWR64 traffic_class 2:0 Expect status | Waits for a 64-bit Address
td - Memory Write TLP with
ep R matching header fields. Returns
1:0 a 1 on successful completion; 0
attr . K
) otherwise.
length 9:0 hi K v b qi
) 15:0 This task can only be used in
requester_id 0 conjunction with Bus Master
tag ' designs.
last_dw_be 3:0
first_dw_be 3:0
address 61:0
TSK_EXPECT_IOWR td - Expect status | Waits for an I/O Write TLP with
ep - matching header fields. Returns
requester_id 15:0 a 1 on successful completion; 0
- 7:0 otherwise.
tag ' This task can only b din
first_dw_be 3:0 Is task can only be use
. conjunction with Bus Master
address 310 designs.
data 31:0

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

279

http://www.xilinx.com

& XILINX.
Chapter 8

Example Desigh and Model Test Bench for
Root Port Configuration

Configurator Example Design

The Configurator example design, included with the Xilinx® 7 Series FPGAs Integrated
Block for PCI Express® in Root Port configuration generated by the Vivado™ IP catalog
tool, is a synthesizable, lightweight design that demonstrates the minimum setup required
for the integrated block in Root Port configuration to begin application-level transactions
with an Endpoint.

System Overview

PCI Express devices require setup after power-on, before devices in the system can begin
application specific communication with each other. Minimally, two devices connected via a
PCI Express Link must have their Configuration spaces initialized and be enumerated to
communicate.

Root Ports facilitate PCI Express enumeration and configuration by sending Configuration
Read (CfgRd) and Write (CfgWr) TLPs to the downstream devices such as Endpoints and
Switches to set up the configuration spaces of those devices. When this process is
complete, higher-level interactions, such as Memory Reads (MemRd TLPs) and Writes
(MemWr TLPs), can occur within the PCI Express System.

The Configurator example design described herein performs the configuration transactions
required to enumerate and configure the Configuration space of a single connected PCI
Express Endpoint and allow application-specific interactions to occur.

Configurator Example Design Hardware
The Configurator example design consists of four high-level blocks:

« Root Port: The 7 series FPGAs integrated block in Root Port configuration.

« Configurator Block: Logical block which interacts with the configuration space of a PCI
Express Endpoint device connected to the Root Port.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 280
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

« Configurator ROM: Read-only memory that sources configuration transactions to the
Configurator Block.

« PIO Master: Logical block which interacts with the user logic connected to the Endpoint
by exchanging data packets and checking the validity of the received data. The data
packets are limited to a single DWORD and represent the type of traffic that would be
generated by a CPU.

Note: The Configurator Block and Configurator ROM, and Root Port are logically grouped in the RTL
code within a wrapper file called the Configurator Wrapper.

The Configurator example design, as delivered, is designed to be used with the PIO Slave
example included with Xilinx Endpoint cores and described in Chapter 7, Example Design
and Model Test Bench for Endpoint Configuration. The PIO Master is useful for simple
bring-up and debugging, and is an example of how to interact with the Configurator
Wrapper. The Configurator example design can be modified to be used with other
Endpoints.

Figure 8-1 shows the various components of the Configurator example design.

PIO Master Configurator
ata
(Gen2)
Checker
Completion Enabler
Decoder
7 Series FPGAs
Integrated Block
Controller Controller for PCI Express
(Configured as
Root Port)
Packet
Packet Generator
Generator
TX Mux

Figure 8-1: Configurator Example Design Components

Figure 8-2 shows how the blocks are connected in an overall system view.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 281
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

Configurator Example Design

PIO Master

’ AXIl4-Stream Interface Pass-Through

Configurator Y

Wrapper

Configurator
Block

Configurator
ROM

A
AXIl4-Stream Interface

Integrated Root Port

Root Port
DUT for
PCI Express

> PCl Express Fabric

Model

Integrated
Endpoint

PIO Slave
Endpoint
Design

Figure 8-2: Configurator Example Design

Configurator Block

The Configurator Block generates CfgRd and CfgWr TLPs and presents them to the

AXI4-Stream interface of the integrated block in Root Port configuration. The TLPs that the
Configurator Block generates are determined by the contents of the Configurator ROM.

The generated configuration traffic is predetermined by the designer to address their

particular system requirements. The configuration traffic is encoded in a

memory-initialization file (the Configurator ROM) which is synthesized as part of the

Configurator. The Configurator Block and the attached Configurator ROM is intended to be
usable a part of a real-world embedded design.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com

PG054 October 16, 2012

282

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

The Configurator Block steps through the Configuration ROM file and sends the TLPs
specified therein. Supported TLP types are Message, Message w/Data, Configuration Write
(Type 0), and Configuration Read (Type 0). For the Configuration packets, the Configurator
Block waits for a Completion to be returned before transmitting the next TLP. If the
Completion TLP fields do not match the expected values, PCI Express configuration fails.
However, the Data field of Completion TLPs is ignored and not checked

Note: There is no completion timeout mechanism in the Configurator Block, so if no Completion is
returned, the Configurator Block waits forever.

The Configurator Block has these parameters, which can be altered by the user:

« TCQ: Clock-to-out delay modeled by all registers in design.

« EXTRA_PIPELINE: Controls insertion of an extra pipeline stage on the Receive
AXI14-Stream interface for timing.

« ROML_FILE: File name containing configuration steps to perform.

« ROML_SIZE: Number of lines in ROM_FILE containing data (equals number of TLPs to
send/2).

« REQUESTER_ID: Value for the Requester ID field in outgoing TLPs.

When the Configurator Block design is used, all TLP traffic must pass through the
Configurator Block. The user design is responsible for asserting the start_config input (for
one clock cycle) to initiate the configuration process when user_Ink_up has been asserted
by the core. Following start_config, the Configurator Block performs whatever
configuration steps have been specified in the Configuration ROM. During configuration,
the Configurator Block controls the core's AXI4-Stream interface. Following configuration,
all AX14-Stream traffic is routed to/from the User Application, which in the case of this
example design is the PIO Master. The end of configuration is signaled by the assertion of
finished_config. If configuration is unsuccessful for some reason, failed_config is also
asserted.

If used in a system that supports PCle v2.1 5.0 Gb/s links, the Configurator Block begins its
process by attempting to up-train the link from 2.5 Gb/s to 5.0 Gb/s. This feature is enabled
depending on the LINK_CAP_MAX_LINK_SPEED parameter on the Configurator Wrapper.

The Configurator does not support the user throttling received data on the Receive
AXI14-Stream interface. Because of this, the Root Port inputs which control throttling are not
included on the Configurator Wrapper. These signals are m_axis_rx_tready and
rx_np_ok. This is a limitation of the Configurator Example Design and not of the
Integrated Block for PCI Express in Root Port configuration. This means that the user design
interfacing with the Configurator Example Design must be able to accept received data at
line rate.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 283
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

Configurator ROM

The Configurator ROM stores the necessary configuration transactions to configure a PCI
Express Endpoint. This ROM interfaces with the Configurator Block to send these
transactions over the PCI Express link.

The example ROM file included with this design shows the operations needed to configure
a 7 Series FPGAs Integrated Endpoint Block for PCI Express and PIO Example Design.

The Configurator ROM can be customized for other Endpoints and PCI Express system
topologies. The unique set of configuration transactions required depends on the Endpoint
that interacts with the Root Port. This information can be obtained from the documentation
provided with the Endpoint.

The ROM file follows the format specified in the Verilog specification (IEEE 1364-2001)
section 17.2.8, which describes using the $readmemb function to pre-load data into a RAM
or ROM. Verilog-style comments are allowed.

The file is read by the simulator or synthesis tool and each memory value encountered is
used as a single location in memory. Digits can be separated by an underscore character ()
for clarity without constituting a new location.

Each configuration transaction specified uses two adjacent memory locations - the first
location specifies the header fields, while the second location specifies the 32-bit data
payload. (For CfgRd TLPs and Messages without data, the data location is unused but still
present.) In other words, header fields are on even addresses, while data payloads are on
odd addresses.

For headers, Messages and CfgRd/CfgWr TLPs use different fields. For all TLPs, two bits
specify the TLP type. For Messages, Message Routing and Message Code are specified. For
CfgRd/CfgWr TLPs, Function Number, Register Number, and 1st DWORD Byte-Enable are
specified. The specific bit layout is shown in the example ROM file.

PIO Master

The PIO Master demonstrates how a user-application design might interact with the
Configurator Block. It directs the Configurator Block to bring up the link partner at the
appropriate time, and then (after successful bring-up) generates and consumes bus traffic.
The PIO Master performs writes and reads across the PCI Express Link to the PIO Slave
Example Design (from the Endpoint core) to confirm basic operation of the link and the
Endpoint.

The PIO Master waits until user_Ink_up is asserted by the Root Port. It then asserts
start_config to the Configurator Block. When the Configurator Block asserts
finished_config, the PIO Master writes and reads to/from each BAR in the PIO Slave design.
If the readback data matches what was written, the PIO Master asserts its
pio_test_finished output. If there is a data mismatch or the Configurator Block fails to

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 284
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

configure the Endpoint, the PIO Master asserts its pio_test_failed output. The PIO
Master's operation can be restarted by asserting its pio_test_restart input for one
clock cycle.

Configurator File Structure
Table 8-1 defines the Configurator example design file structure.

Table 8-1: Example Design File Structure

File Description
xilinx_pcie_2_ 1 rport_7x.v Top-level wrapper file for Configurator example design
cgator_wrapper.v Wrapper for Configurator and Root Port
cgator.v Wrapper for Configurator sub-blocks
cgator_cpl_decoder.v Completion decoder
cgator_pkt_generator.v Configuration TLP generator
cgator_tx_mux.v Transmit AXI4-Stream muxing logic
cgator_gen2_enabler.v 5.0 Gb/s directed speed change module
cgator_controller.v Configurator transmit engine
cgator_cfg_rom.data Configurator ROM file
pio_master.v Wrapper for PIO Master
pio_master_controller.v TX and RX Engine for PIO Master
pio_master_checker.v Checks incoming User-Application Completion TLPs
pio_master_pkt_generator.v Generates User-Application TLPs

The hierarchy of the Configurator example design is:

e xilinx pcie_2_ 1 rport_7x
° cgator_wrapper

- pcie_2_1_rport_7x (in the source directory)
This directory contains all the source files for the Integrated Block for PCI
Express in Root Port Configuration.

cgator

- cgator_cpl_decoder

- cgator_pkt_generator
- cgator_tx_mux

- cgator_gen2_enabler

cgator_controller
This directory contains <cgator_cfg_rom.data> (specified by ROM_FILE)*

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 285
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

° pio_master
- pio_master_controller
- pio_master_checker
- pio_master_pkt_generator

Note: cgator_cfg_rom.data is the default name of the ROM data file. You can override this by
changing the value of the ROM_FILE parameter.

Configurator Example Design Summary

The Configurator example design is a synthesizable design that demonstrates the
capabilities of the 7 Series FPGAs Integrated Block for PCI Express when configured as a
Root Port. The example is provided via the IP catalog tool and uses the Endpoint PIO
example as a target for PCI Express enumeration and configuration. The design can be
modified to target other Endpoints by changing the contents of a ROM file.

Endpoint Model Test Bench for Root Port

The Endpoint model test bench for the 7 Series FPGAs Integrated Block for PCI Express in
Root Port configuration is a simple example test bench that connects the Configurator
example design and the PCI Express Endpoint model allowing the two to operate like two
devices in a physical system. As the Configurator example design consists of logic that
initializes itself and generates and consumes bus traffic, the example test bench only
implements logic to monitor the operation of the system and terminate the simulation.

The Endpoint model test bench consists of:

« Verilog or VHDL source code for all Endpoint model components

« PIO slave design

Figure 8-2, page 282 illustrates the Endpoint model coupled with the Configurator example
design.

Architecture

The Endpoint model consists of these blocks:

« PCI Express Endpoint (7 Series FPGAs Integrated Block for PCI Express in Endpoint
configuration) model.

« PIO slave design, consisting of:

- PIO_RX_ENGINE

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 286
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

- PIO_TX_ENGINE
o PIO_EP_MEM
- PIO_TO_CTRL

The PIO_RX_ENGINE and PIO_TX_ENGINE blocks interface with the ep block for reception
and transmission of TLPs from/to the Root Port Design Under Test (DUT). The Root Port DUT
consists of the Integrated Block for PCI Express configured as a Root Port and the
Configurator Example Design, which consists of a Configurator block and a PIO Master
design, or customer design.

The PIO slave design is described in detail in Programmed Input/Output: Endpoint Example
Design, page 249.

Simulating the Design

Three simulation script files are provided with the model to facilitate simulation with
Synopsys VCS and VCS MX, Cadence IES, and Mentor Graphics ModelSim simulators:

*+ simulate_vcs.sh (Verilog only)
+ simulate_ncsim.sh (Verilog only)

e simulate_mti.do
The example simulation script files are located in this directory:
<component_name_#>/<component_name_#>/simulation/functional

Instructions for simulating the Configurator example design with the Endpoint model are
provided in Chapter 6, Getting Started Example Design.

Note: For Cadence IES users, the work construct must be manually inserted into the cds.1ib file:
DEFINE WORK WORK.

Scaled Simulation Timeouts

The simulation model of the 7 Series FPGAs Integrated Block for PCI Express uses scaled
down times during link training to allow for the link to train in a reasonable amount of time
during simulation. According to the PCI Express Specification, rev. 2.1 [Ref 2], there are
various timeouts associated with the link training and status state machine (LTSSM) states.
The 7 Series FPGAs Integrated Block for PCI Express scales these timeouts by a factor of 256
in simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are not
scaled.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 287
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Example Design and Model Test Bench for Root Port Configuration

Waveform Dumping

Table 8-2 describes the available simulator waveform dump file formats, each of which is
provided in the simulators native file format. The same mechanism is used for VCS and
ModelSim.

Table 8-2: Simulator Dump File Format

Simulator Dump File Format
Synopsys VCS and VCS MX .vpd
ModelSim .ved
ISim .wdb
Cadence IES .trn

The Endpoint model test bench provides a mechanism for outputting the simulation
waveform to file by specifying the +dump_all command line parameter to the simulator.

For example, the script file simulate_ncsim. sh (used to start the Cadence IES simulator)
can indicate to the Endpoint model that the waveform should be saved to a file using this
command line:

ncsim work.boardx01l +dump_all

Output Logging

The test bench outputs messages, captured in the simulation log, indicating the time at
which these occur:

» user_reset deasserted

e user_lnk_up asserted

+ cfg_done asserted by the Configurator

+ pio_test_finished asserted by the PIO Master

« Simulation Timeout (if pio_test_ finished orpio_test_failed never asserted)

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 288
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.
Chapter 9

PIPE Mode Simulations

The PIPE Simulation mode allows you to run the simulations without GT block to speed up
simulations.

To run the simulations using the PIPE interface to speed up the simulation, generate the
core using the Enable PIPE Simulation option as shown on the Basic page of GUL In this
mode the PIPE interface of the core top module, the PCle example design is connected to
PIPE interface of the model. This feature is available only for a Verilog version of the core.

f IMPORTANT: A new <component_name>_gt_top_pipe.vV file is created in the source directory
and replaces GT block for PIPE mode simulation.

To run the simulations using GT block using the same core, pass the define ENABLE_GT
during run time so that the original GT block is instantiated in the core top module and
simulations are run using the GT block. Comments are included in the simulation scripts to
define which parameters need to be passed in order to run the simulations using GT block.
The comment needs to be removed to run the simulations in GT mode.

O TIP: Implementation is always run with the GT block. The PIPE mode is only for simulations.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 289
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.

SECTION III: ISE DESIGN SUITE

Customizing and Generating the Core
Constraining the Core
Getting Started Example Design

Example Design and Model Test Bench for
Endpoint Configuration

Example Design and Model Test Bench for Root
Port Configuration

PIPE Mode Simulations

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 290
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX.
Chapter 10

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the
Xilinx® 7 Series FPGAs Integrated Block for PCI Express® core. The 7 Series FPGAs
Integrated Block for PCI Express is customized using the CORE Generator™ tool.

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the CORE Generator tool.

GUI

The CORE Generator tool GUI for the 7 Series FPGAs Integrated Block for PCI Express
consists of 12 screens:

» Screen 1: Basic Parameter Settings

» Screen 2: Base Address Registers

» Screen 3: PCI Registers

« Screens 4 and 5: Configuration Register Settings
« Screen 6: Interrupt Capabilities

» Screen 7: Power Management Registers

« Screen 8 and 9: PCI Express Extended Capabilities
« Screen 10: Pinout Selection

« Screens 11 and 12: Advanced Settings

Basic Parameter Settings

The initial customization screen shown in Figure 10-1 is used to define the basic parameters
for the core, including the component name, lane width, and link speed.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 291
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 10: Customizing and Generating the Core

Documents
lgiC 1P 7 Series Integrated Block for
! PCI Express xilinx.com:ip:pcie_7x: 1.2
Component Name |pcie_?><_v1_2 ﬂ

PCle Device / Port Type

The Integrated Elock for FCl Express allows selection of the Device / Fort Type

Device / Port Type |PCI Exptess Endpoint device j

Number of Lanes

The Integrated Block for PCl Express requires that an initial lane width be selectad. Wider lane width cores can train down to smaller
lane widths if attached to a smaller lane width device. Selact only the lane width that is necessary for the design.

Lane Width |X1 -

Link Speed
The Integrated Block for PCl Express allows selection of the Maxitmum Link Speed supported by the device.
* 2.5GT/s
T 50GT/s

Interface Width

The Integrated Block for PCl Express allows selection of Interface Width
& g4-bit

€ 128-bit

Interface Frequency

The Integrated Elock for FCl Express allows selection of the interface clock (trn_clk) frequency, The frequency selection enables
maximum achievable data throughput for the selected number of lanes and link speed, Choice of non-default option results in interface
being overclocked with no overall effect on data throughput, and depends on user application functional requireaments, timing closure
and power considerations, Xilink recommends that the default frequency value be used where possible..

Frequency (MHz) |62.5 i =

4 | B
Datasheet < Back |Page 1of 12 Next = ‘ Qemerate‘ Lancel | Help |

Figure 10-1: Screen 1: Integrated Block for PClI Express Parameters

Component Name

Base name of the output files generated for the core. The name must begin with a letter and
can be composed of these characters:atoz, 0to 9, and "_"

PCle Device / Port Type

Indicates the PCI Express logical device type.

Number of Lanes

The 7 Series FPGAs Integrated Block for PCI Express requires the selection of the initial lane
width. Table 10-1 defines the available widths and associated generated core. Wider lane
width cores are capable of training down to smaller lane widths if attached to a smaller
lane-width device. See Link Training: 2-Lane, 4-Lane, and 8-Lane Components, page 146 for
more information.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 292
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 10: Customizing and Generating the Core

Table 10-1: Lane Width and Product Generated

Lane Width Product Generated
x1 1-Lane 7 Series FPGAs Integrated Block for PCI Express
X2 2-Lane 7 Series FPGAs Integrated Block for PCI Express
x4 4-Lane 7 Series FPGAs Integrated Block for PCI Express
x8 8-Lane 7 Series FPGAs Integrated Block for PCI Express
Link Speed

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Maximum Link
Speed supported by the device. Table 10-2 defines the lane widths and link speeds
supported by the device. Higher link speed cores are capable of training to a lower link
speed if connected to a lower link speed capable device.

Table 10-2: Lane Width and Link Speed

Lane Width Link Speed
x1 2.5 Gb/s, 5 Gb/s
X2 2.5 Gb/s, 5 Gb/s
x4 2.5 Gb/s, 5 Gb/s
x8 2.5 Gb/s, 5 Gb/s

Interface Width

The 7 Series FPGAs Integrated Block for PCI Express allows the selection of Interface Width,
as defined in Table 10-3. The default interface width set in the CORE Generator GUI is the
lowest possible interface width.

Table 10-3: Lane Width, Link Speed, and Interface Width

Lane Width Lin(léglpse)ed Interface Width (Bits)
X1 25,50 64
X2 25,50 64
X4 2.5 64
X4 5.0 64, 128
X8 2.5 64, 128
X8 5.0 128

Interface Frequency

It is possible to select the clock frequency of the core's user interface. Each lane width
provides multiple frequency choices: a default frequency and alternative frequencies, as
defined in Table 10-4.

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 293
PGO054 October 16, 2012

http://www.xilinx.com

& XILINX

Chapter 10: Customizing and Generating the Core

O RECOMMENDED: Where possible, use the default frequency. Selecting the alternate frequencies does
not result in a difference in throughput in the core, but does allow the user application to run at an

alternate speed.

Table 10-4: Recommended and Optional Transaction Clock (user_clk_out) Frequencies

Product Link Speed Interfacg Width() Recommended Optional
(Gb/s) (Bits) Frequency (MHz) | Frequency (MHz)

1-lane 25 64 62.5 31.25, 125, 250
1-lane 5 64 62.5 125, 250
2-lane 2.5 64 62.5 125, 250
2-lane 5 64 125 250
4-lane 2.5 64 125 250
4-lane 5 64 250 -

4-lane 5 128 125 250
8-lane 2.5 64 250 -

8-lane 2.5 128 125 250
8-lane 5 128 250 -

Notes:

1. Interface Width is a static selection and does not change with dynamic Link Speed changes

Base Address Registers

The Base Address Register (BAR) screen shown in Figure 10-2 sets the base address register
space for the Endpoint configuration. Each BAR (0 through 5) represents a 32-bit parameter.

7 Series Integrated Block for PCle (v1.7)

PG054 October 16, 2012

www.xilinx.com

294

http://www.xilinx.com

& XILINX

Chapter 10: Customizing and Generating the Core

Documents

lgiC 1P 7 Series Integrated Block for

PCl Express

b AUUTESS KEYISIErS

xilinx.com:ip:pcie_7x: 1.2

Base Address Registers (BARs) serve two purposes. Initially, they serve as a mechanism for the device to request blocks of address

space in the system memory map. After the BIOS or OS determines what addresses to assign to the device, the Baze Addrass

Registers are programrmed with addresses and the device uses this information to perform address decoding.

BAR 0 Options

W Bar0 Type |Memory <[T &4 bit I™ Prefetchable
Size |128 j ‘B\nes j
Value FFFFFFEQ (Hex)

BAR 2 Options

" Bar?2 Type [NiA I~ 64 bit " Prefeichable
Size |1 J ‘B\nes J
Value 00000000 (Hex)

BEAR 4 Options

™ Bard Type [MW/A ™ 64 bit ™ Prefatchabla
Size |2 | [Kitebyes =]

Value 00000000 (Hex)

BAR 1 Qptions

" Barl Type [MNiA ™ 64 bit I Prefetchable
Size |2 J |Ki|ob\nes J
Value 00000000 (Hex)

BAR 3 Options

[T Bar3 Type [NiA I 64 bit " Prefeichahle
Size |2 J |K|Iobwes J
Value 00000000 (Hex)

BAR 5 Options

" Bar5 Type [N/A I Prefatchabla
Size |2 J|Ki|ubwes J

WValue 00000000 (Hex)

=]

Expansion ROM Base Address Register

J ‘Klloby’tes J
Value 00000000 (Hex)

I™ Expansion Rom Size |2

4 | B
Datasheet < Back |Page2of 12 Next = ‘ Qemerate‘ Lancel | Help |

Screen 2: BAR Options - Endpoint

Figure 10-2:
Base Address Register Overview

The 7 Series FPGAs Integrated Block for PCI Express in Endpoint configuration supports up
to six 32-bit BARs or three 64-bit BARs, and the Expansion ROM BAR. The 7 Series FPGAs
Integrated Block for PCI Express in Root Port configuration supports up to two 32-bit BARs
or one 64-bit BAR, and the Expansion ROM BAR.

BARs can be one of two sizes:

« 32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes.
Used for Memory to I/O.

* 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

All BAR registers share these options:

7 Series Integrated Block for PCle (v1.7) www.xilinx.com 295

PG054 October 16, 2012

http://www.xilinx.com

& XILINX. Chapter 10: Customizing and Generating the Core

« Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.

« Type: BARs can either be I/O or Memory.

o 1/0:1/0 BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs. I/O BARs are only enabled for the Legacy PCI Express Endpoint core.

o Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user.

« Size: The available Size range depends on the PCle® Device/Port Type and the Type of
BAR selected. Table 10-5 lists the available BAR size ranges.

Table 10-5: BAR Size Ranges for Device Configuration

PCle Device / Port Type BAR Type BAR Size Range
32-bit Memory 128 Bytes — 2 Gigabytes
PCI Express Endpoint
64-bit Memory 128 Bytes — 8 Exabytes
32-bit Memory 16 Bytes — 2 Gigabytes
Legacy PCI Expr