
DS252 March 1, 2011 www.xilinx.com 1
Product Specification

© Copyright 2002 - 2011 Xilinx, Inc. XILINX, the Xilinx logo, Kintex, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. Simulink is a registered trademark of The MathWorks, Inc. All other trademarks are the property of their respective owners.

Features
• High speed, compact Reed-Solomon Decoder

• Implements many different Reed-Solomon (RS)
coding standards

• Fully synchronous design using a single clock

• Supports continuous input data with no gap
between code blocks

• Symbol size from 3 to 12 bits

• Code block length variable up to 4095 symbols

• Code block length and number of check symbols
can be dynamically varied on a block-by-block
basis

• Supports shortened codes

• Supports error and erasure decoding

• Supports puncturing (as in IEEE 802.16d standard)

• Supports multiple channels

• Parameterizable number of errors corrected

• Supports any primitive field polynomial for a
given symbol size

• Counts number of errors corrected and flags
failures

• Marker bits provided with same latency as input
data

• User-selectable control signal behavior

• Use with Xilinx CORE Generator™ software and
Xilinx System Generator for DSP v13.1

• Available under terms of the SignOnce IP Site
License

LogiCORE IP
Reed-Solomon Decoder v7.1

DS252 March 1, 2011 Product Specification

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1)

Virtex-7 and Kintex™-7,
Virtex-6, Virtex-5, Virtex-4, Spartan®-6,

Spartan-3, Spartan-3E,Spartan-3A/3AN/3A DSP

Supported User
Interfaces Not Applicable

Resources(2) Frequency

Configuration LUTs FFs DSP
Slices

Block
RAMs(3)

Max.
Freq.(4)

DVB 768 783 0 2/0 379

G.709 766 783 0 2/0 371

CCSDS 1364 1350 0 3/0 345

Provided with Core

Documentation Product Specification

Design Files Netlist

Example Design Not Provided

Test Bench Not Provided

Constraints File Not Applicable

Simulation
Model VHDL, Verilog

Tested Design Tools

Design Entry
Tools

CORE Generator tool 13.1
System Generator for DSP 13.1

Simulation

Mentor Graphics ModelSim 6.6d
Cadence Incisive Enterprise Simulator (IES) 10.2

Synopsys VCS and VCS MX 2010.06
ISIM 13.1

Synthesis Tools N/A

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release notes for this
core.

2. Resources listed here are for Virtex-6 (-3) devices. For more complete
device performance numbers, see Table 9.

3. Based on 18K/36K block RAMs.
4. Performance numbers listed are for Virtex-6 (-3) FPGAs. For more

complete performance data, see Performance Characteristics, page 28.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf

DS252 March 1, 2011 www.xilinx.com 2
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Applications
The Reed-Solomon decoder (with the Reed-Solomon algorithm) is used for Forward Error Correction (FEC) in sys-
tems where data are transmitted and subject to errors before reception, for example, communications systems, disk
drives, and so on.

The core meets the requirements of most standards that employ RS codes, such as CCSDS, DVB, ETSI-BRAN,
IEEE802.16, G.709, IESS-308, and so on.

Pinout
Some of the pins are optional. The outputs that are not required should be left unconnected. The Xilinx mapping
software removes the logic driving them, ensuring that FPGA resources are not wasted.

A representative symbol, with the signal names, is shown in Figure 1 and described in Table 1.

X-Ref Target - Figure 1

Figure 1: Core Schematic Symbol

Table 1: Core Signal Pinout

Signal Direction Description

DATA_IN INPUT Input data

MARK_IN INPUT Marker bits for tagging DATA_IN

N_IN INPUT Allows block length to be varied on a block-by-block basis (optional)

R_IN INPUT Allows number of check symbols to be varied on a block-by-block basis (optional)

PUNC_SEL INPUT Select one of a number of predefined puncture patterns (optional)

SYNC INPUT Timing control input

ERASE INPUT Flag an input symbol as an erasure (optional)

DATA_IN

SYNC

R_IN

ERASE

SR

CE

CLK

DATA_OUT

MARK_OUT

ERASE_CNT

ERR_CNT

ERR_FOUND

FAIL

BLK_STRT

BLK_END

READY

RFFD

PUNC_SEL

MARK_IN

N_IN

DATA_DEL

BIT_ERR_0_TO_1

BIT_ERR_1_TO_0

BIT_ERR_RDY

INFO_END

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 3
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Functional Description
Reed-Solomon codes are usually referred to as (n,k) codes, where n is the total number of symbols in a code block
and k is the number of information or data symbols. In a systematic code, the complete code block is formed from
the k data symbols, followed by the n-k check symbols.

A Reed-Solomon code is also characterized by two polynomials: the field polynomial and the generator polyno-
mial. The field polynomial defines the Galois field, of which the symbols are members. The generator polynomial
defines how the check symbols are generated. Both of these polynomials are usually defined in the specification for
any particular Reed-Solomon code. The core GUI allows both of these polynomials to be user-defined.

The Reed-Solomon decoder samples the n symbols on the DATA_IN port and attempts to correct any errors. The
corrected symbols are output on the DATA_OUT port after a fixed latency.

The maximum number of symbol errors in a block that can be guaranteed to be corrected by the Reed-Solomon
algorithm is t = (n-k)/2. (Each symbol error may contain any number of bit errors). This is always rounded down to
the nearest whole number. The decoder core implements the Reed-Solomon algorithm in full, but if a block is
received with more than t errors the decoder will fail.

The Reed-Solomon decoder algorithm can generally detect that an excess of errors has occurred and can therefore
indicate a failure to decode a block. However, it is possible for excessive errors to produce a codeword that the
decoder algorithm recognizes as a legitimate lower number of errors, in which case the failure is not detected. This
is a function of the Reed-Solomon algorithm and not a limitation of the core.

CE INPUT Clock enable (optional)

SR INPUT Synchronous reset (optional)

CLK INPUT Clock-Active on rising edge

DATA_OUT OUTPUT Corrected data output

MARK_OUT OUTPUT MARK_IN delayed by core latency

DATA_DEL OUTPUT Uncorrected data output (optional)

ERASE_CNT OUTPUT Number of punctured symbols or erasures flagged in a block; present if erasures or
puncturing used (optional)

ERR_CNT OUTPUT Number of errors corrected in a block

ERR_FOUND OUTPUT High if decoder found any errors in the block

FAIL OUTPUT High if decoder failed to correct the block

BLK_STRT OUTPUT High to signal the start of a block on DATA_OUT

BLK_END OUTPUT High to signal the end of a block on DATA_OUT

INFO_END OUTPUT High to signal the last information symbol of a block on DATA_OUT (optional)

READY OUTPUT High when the decoder is ready to accept symbols

RFFD OUTPUT High when the decoder is ready to accept the start of a new codeword

BIT_ERR_0_TO_1 OUTPUT Number of bits received as 1 but corrected to 0 (optional)

BIT_ERR_1_TO_0 OUTPUT Number of bits received as 0 but corrected to 1 (optional)

BIT_ERR_RDY OUTPUT High to signal BIT_ERR_0_TO_1 and BIT_ERR_1_TO_0 valid (optional)

Table 1: Core Signal Pinout (Cont’d)

Signal Direction Description

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 4
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Shortened Codes

Normally, n = 2(Symbol Width)-1. If n is less than this, the code is referred to as a “shortened code.” The decoder core
handles both full-length and shortened codes. Only n symbols are input and output, where n is the value entered in
the CORE Generator GUI or supplied on the N_IN port. This is the case even if the code is shortened. Shortening
does not affect k or the number of check symbols or the number of errors that can be corrected.

Synchronous Reset Input

The Synchronous Reset (SR) input is an optional pin. It can be used to re-initialize the decoder at any time. SR needs
to be asserted high for at least one symbol period to initialize the circuit. The decoder becomes ready for normal
operation as soon as SR goes low. This pin should be selected with caution, as it increases the size of the core and
may reduce performance.

The timing for the SR input is illustrated in Figure 2. Note that the DATA_OUT output is not reset by SR. The decoder
symbol buffer is not cleared, so any symbols sampled prior to the synchronous reset continue to be shifted out after
the normal latency, with no error correction.

DATA_IN Input

This is the input bus for the incoming Reed-Solomon coded data. The width of the bus is set by the symbol width
parameter. For the fixed n decoder, prior to a code block start being signaled with the SYNC input, DATA_IN is
passed through to DATA_OUT with no error correction and latency as described in Latency, page 19. In between code
blocks, DATA_IN is just passed through to DATA_OUT. If n is variable then, between code blocks, DATA_OUT remains
at the last DATA_IN value of the most recently output block.

MARK_IN Input

This optional input is used to tag each symbol sampled on DATA_IN with marker bits. The number of marker bits
is parameterizable. The marker bits are delayed with the same latency as DATA_IN to DATA_OUT and output on
MARK_OUT. For example, if “5” is sampled on MARK_IN at the same time as the first symbol on DATA_IN, then “5”
is output on MARK_OUT at the same time the first symbol is output on DATA_OUT.

This feature can be used to mark special symbols within a frame or to tag data from different blocks with block
identification numbers.

X-Ref Target - Figure 2

Figure 2: Synchronous Reset Timing

CLK

SR

ERR_FOUND

ERR_CNT

CE

0

READY

RFFD

FAIL

BLK_STRT

BLK_END

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 5
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

In general, using a small number of marker bits makes very little difference to the core size. However, a point is
reached where extra marker bits cause more memory to be used. This point is dependent on the symbol width and
latency.

CE Input

The Clock Enable input is another optional pin. It can be used to tell the decoder to ignore some of the symbols
coming in on DATA_IN. When CE is deasserted (low), all the other synchronous inputs are ignored and the core
remains in its current state. This pin should be used only if it is genuinely required because it has a high fan out
within the core and can result in lower performance.

CE is a true clock enable and causes the entire core to freeze state when it is low.

An example of CE operation is shown in Figure 3. In this case, the decoder ignores symbol Di4 as input to the block,
and the current DATA_OUT value remains unchanged. (The decoder still samples n symbols.) As Di4 is not included
in the code block, the output sequence ...Di0,Di1,Di2,Di3,Di5... appears on DATA_OUT during the output stage of this
block.

In Figure 3, the symbol period is the same as the clock period, with one symbol per clock cycle. It is possible to have
more than one clock cycle per symbol period. This is explained in Processing Delay, page 16 of this document. In
this case CE is the only synchronous input that does not need to be synchronized to symbol periods. The core state
freezes whenever CE is low, regardless of when this occurs.

SYNC Input

The timing of the core is controlled via the SYNC input. This is asserted high for one, and only one, symbol period
when the first symbol of a code block is on DATA_IN; otherwise it is low. This is illustrated in Figure 4. D0 is the first
symbol of a code block. Once started, the remaining symbols in the code block are sampled on consecutive symbol
periods. It is impossible to start another code block before the first one has been completely sampled. SYNC is
ignored if the RFFD output is low.

X-Ref Target - Figure 3

Figure 3: Clock Enable Timing

X-Ref Target - Figure 4

Figure 4: SYNC Timing

Di0

CLK
CE

DATA_IN

DATA_OUT

Di1 Di2 Di3 Di4 Di5 Di6

CLK

SYNC

DATA_IN D3D0 D1 D2 D4

DS252_04_061506

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 6
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

For a fixed block length decoder, the SYNC pulses can be applied at most once every n symbol periods. If the
Processing Delay is greater than n, then a SYNC pulse can only be applied once every Processing Delay symbol
period. This is explained in Processing Delay, page 16.

If RFFD is fed back to the SYNC input, then the core operates in a continuous mode, starting a new block as soon as
the previous one completes. It is still important to align the symbols so that the first symbol of the block aligns with
the RFFD pulse in this case.

In earlier versions of this core, another SYNC timing mode was available, called Data Symbol Enable mode. In this
mode, the SYNC input was held high while the k data symbols were on DATA_IN; otherwise it was low. This
behavior can be replicated, if required, by a simple logic circuit outside the core. This should assert the core SYNC
input when the old SYNC signal goes high, keep the SYNC input asserted for one symbol period, and then deassert
it.

N_IN input

This allows the block length to be changed every block. N_IN is sampled at the same time as the first symbol of the
new block. The timing is described in Variable Block Length, page 22. Selecting this input significantly increases the
size of the core. Unless there is an R_IN input, the number of check symbols is fixed, so varying n automatically
varies k.

If a value less than the minimum n defined in Table 3 is sampled, then the SYNC pulse for that block is ignored.

For example, in Figure 23, if N_IN is set to 255 and R_IN is set to 16, they are sampled on the rising clock edge when
SYNC is high. The core begins sampling symbols assuming a (n=255, k=239) code block. After the last (255th) symbol
of the block has been sampled on DATA_IN, SYNC may be pulsed high again with different N_IN and R_IN values.
For example, N_IN may be 64 and R_IN equal to 8, beginning a (n=64, k=56) code block. For this example, n should
be set to 255 and k to 239 in the GUI, as the largest expected R_IN value is 16. This would give an R_IN port width
of 5 bits.

R_IN input

This allows the number of check symbols to be changed every block. R_IN is sampled at the same time as the first
symbol of a new block. The timing is identical to the case when N_IN is used: see Variable Block Length, page 22.

The width of the R_IN port is the minimum number of bits required to represent the maximum n value minus the
minimum k value.

If a value less than the minimum r defined in Table 3 is sampled, then the SYNC pulse for that block is ignored.
Blocks with r values greater than (max n - min k) are also ignored.

The value input on R_IN must correspond to the generator polynomial (and, hence, number of check symbols) used
to encode the codeword. Some specifications appear to vary the number of check symbols, but in reality the
codewords are all generated by the same generator polynomial, and the number of check symbols is varied by
deleting some of them. The R_IN input should not be used in these cases. The PUNC_SEL input is provided to
handle this.

PUNC_SEL input

This selects a puncture pattern to be applied to the new code block. Puncturing is explained in Puncturing, page 20.
PUNC_SEL is sampled at the same time as the first symbol of each new block. PUNC_SEL is provided only if the
number of puncture patterns is greater than one.

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 7
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

ERASE Input

This optional input is available only when erasure support is required. Erasure handling is described later in this
document.

DATA_OUT Output

This is the output bus for the corrected symbols. This bus always has the same width as DATA_IN.

Corrected symbols start to appear at a predefined number of symbol periods after the first symbol is sampled on
DATA_IN. This delay is termed the LATENCY of the decoder and is fully explained in Latency, page 19. The timing
for DATA_OUT is different for the variable n decoder, as the latency can vary if the block size is dynamically varied
with the N_IN input.

MARK_OUT Output

This optional output is simply MARK_IN, delayed by the same latency as DATA_IN to DATA_OUT.

DATA_DEL Output

This optional output bus is an uncorrected version of DATA_OUT. It is simply DATA_IN delayed by the latency of the
core. DATA_DEL is useful for making comparisons of corrected and uncorrected data. This bus always has the same
width as DATA_IN. With the fixed n decoder, DATA_DEL continues to follow DATA_IN between code blocks. With
the variable block length decoder, DATA_DEL changes only when DATA_OUT changes, so in between blocks it
remains at the last input symbol value of the previous block.

This output can be compared to DATA_OUT to gather error statistics and examine the position of error bits. The
positions of individual bit errors can be obtained by XORing DATA_OUT and DATA_DEL.

BLK_STRT Output

BLK_STRT is pulsed high for one symbol period to indicate that the first symbol of a block is currently on
DATA_OUT. The timing for BLK_STRT is illustrated in Figure 5.

X-Ref Target - Figure 5

Figure 5: BLK_STRT Timing

CLK

BLK_STRT

DATA_OUT D0 D1 D2

DS252_05_061506

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 8
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

BLK_END Output

BLK_END is pulsed high for one symbol period to indicate that the last symbol of a block is currently on DATA_OUT.
The timing for BLK_END is illustrated in Figure 6.

INFO_END Output

INFO_END is pulsed high for one symbol period to indicate that the last information symbol of a block is currently
on DATA_OUT. This is the kth data symbol. The n-k check symbols are output on DATA_OUT after this. The timing for
INFO_END is illustrated in Figure 7. This assumes the first symbol of the block is D0.

ERR_FOUND Output

This is one of a number of status outputs, which are set as the last symbol of a block is output on DATA_OUT. At this
time, if the decoder detected any errors, erasures, or punctures in the code block, ERR_FOUND goes high. If no
errors, erasures, or punctures are found, ERR_FOUND goes low. The status outputs retain their state until the end of
the next code block or until the core is reset. The timing for all the status outputs is illustrated in Figure 8.

X-Ref Target - Figure 6

Figure 6: BLK_END Timing

X-Ref Target - Figure 7

Figure 7: INFO_END Timing

X-Ref Target - Figure 8

Figure 8: Status Output Timing

CLK

BLK_END

DATA_OUT Dn-3 Dn-2 Dn-1

DS252_06_061506

CLK
INFO_END
DATA_OUT Dk-1 Dk Dk+1Dk-2Dk-3Dk-4

CLK

BLK_END

DATA_OUT

ERR_FOUND New value for block just output

New value for block just output

New value for block just output

ERR_CNT

FAIL

Dn-3 Dn-2 Dn-1

DS252_07_061506

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 9
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

ERR_CNT Output

This is another of the status outputs. The ERR_CNT bus gives the number of errors, erasures, and punctures that
were corrected in the most recent output block. The width of the bus depends on the input parameters n and k. The
bus width is equal to the number of binary bits required to represent (n-k). If n-k = 16, for example, the ERR_CNT bus
is five bits wide.

If decoding fails, then FAIL is asserted and the ERR_CNT value cannot be relied upon.

ERASE_CNT Output

This status output is available only when erasure or puncture support is required. The bus width is equal to the
number of binary bits required to represent n. Erasure handling is described later in this document.

FAIL Output

FAIL is also a status output. The decoder sets FAIL high if it determines that there were more errors in the code
block than it could correct. In this case, ERR_FOUND, ERR_CNT, ERASE_CNT, BIT_ERR_0_TO_1 and
BIT_ERR_1_TO_0 status outputs are now undefined and should not be relied upon until FAIL goes low again.

With Reed-Solomon codes, if the error correcting capacity of the code is exceeded, it is usually possible to detect this
and assert FAIL. However, there may be some cases where it is impossible. For example, consider a (5,1) code. This
code can correct up to two symbol errors. Any more than two symbol errors should result in a failure. Assume the
transmitted codeword symbol sequence was [a, b, c, d, e]. Also assume that [g, h, i, j, k] is another legitimate
codeword. Suppose the received codeword is [a, b, i, j, k]. This contains three symbol errors; however, this is the
same as [g, h, i, j, k] with two symbol errors.

The decoder corrects this to yield [g, h, i, j, k], and FAIL is not asserted. This is a function of the codes themselves
and not the decoder implementation. As the block sizes become larger, it is extremely unlikely that one codeword
will be converted into another, and FAIL generally detects that the correction capacity of the code has been
exceeded.

If the error correction capacity of the code is exceeded in a particular code block, then the values on DATA_OUT
when that block is output are undefined.

READY Output

The READY output is high when the decoder is ready to sample symbols on DATA_IN. If the processing delay (see
Processing Delay, page 16) is greater than n, READY goes low after the last symbol of a block is sampled. This is the
case in Figure 9. It remains low until the processing delay is over, as shown in Figure 10. If the processing delay is
less than or equal to n, READY is always high.

When the processing delay is greater than n, READY consistently goes low one symbol period after the
second-to-last symbol has been sampled.

The timing for READY is different if the block length is variable. See Variable Block Length, page 22.

READY may not be registered inside the core. It should be registered outside the core if necessary.

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 10
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

RFFD Output

RFFD is the Ready for First Data output. The RFFD output is high when the decoder is ready for a new SYNC pulse.
RFFD goes low as soon as SYNC has been sampled high and remains low until it is safe to reassert SYNC. Any SYNC
pulses that occur while RFFD is low are ignored. The timing for RFFD is shown in Figure 23.

Note: RFFD is not registered inside the core. It should be registered outside the core if necessary.

BIT_ERR_0_TO_1 Output

This optional output gives the number of bits that were received as 1 but corrected to 0 in the block just output. As
long as the error correction capability of the code has not been exceeded, this is the same as the number of 0 bits that
were corrupted to 1 during transmission. BIT_ERR_0_TO_1 is accumulated as the codeword is being output on
DATA_OUT. The value changes as data is output. The final value is valid for a single symbol period when
BIT_ERR_RDY goes high. This occurs four symbol periods after the BLK_END pulse.

BIT_ERR_1_TO_0 Output

This optional output has the same functionality as BIT_ERR_0_TO_1, except it counts the number of bits received
as 0 but corrected to 1.

BIT_ERR_RDY Output

This optional output is high for one symbol period when BIT_ERR_0_TO_1 and BIT_ERR_1_TO_0 should be
sampled. It is simply a delayed version of BLK_END.

X-Ref Target - Figure 9

Figure 9: READY Timing

X-Ref Target - Figure 10

Figure 10: READY Timing

CLK

READY

DATA_IN Dn-1

DS252_08)61506

CLK

READY

DATA_IN D0 D1 D2 D3

Processing Delay over
DS252_09_061506

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 11
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Erasure Decoding

An erased symbol is an input symbol that is known to be wrong. The symbol is flagged as being erased by asserting
the ERASE input high while the symbol is being sampled. In the example shown in Figure 11, D2 is flagged as an
erasure.

The decoder corrects the code block if 2e + E ≤ n-k, where e is the number of errors and E is the number of erasures.

The ERASE_CNT output provides a count of the number of erasures that were flagged for the block just output. It is
updated at the same time as ERR_CNT and the other status outputs. If erasure decoding is selected, ERR_CNT
provides a count of the number of erasures plus errors that were corrected.

Erasure decoding increases the size of the core considerably. It should be selected only if it is essential, and is
recommended only for codes where n-k is less than eight. The core does support erasures for larger values of n-k,
but there is a large area overhead compared to the same core without erasure support. See the example
implementations toward the end of this data sheet.

Parameters
The core GUI provides a number of preset parameter values for several common Reed-Solomon standards. It also
allows the user to define the following parameters:

GeneratorStart

This is the Galois Field logarithm of the first root of the generator polynomial.

Normally, GeneratorStart is 0 or 1; however, the core accepts other values.

h

This is the scaling factor for the generator polynomial root index. Normally h is 1.

To ensure correct operation, the value of h must be chosen so that the greatest common divisor of h and
2(Symbol_Width)-1 is 1, that is, h and 2(Symbol_Width)-1 must be relative primes.

X-Ref Target - Figure 11

Figure 11: ERASE Timing

CLK

ERASE

DATA_IN D0 D1 D2 D3

DS252_10_061506

g x() x αh GeneratorStart i+()×
–()

i 0=

n k– 1–

∏=

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 12
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

k

This is the number of information or data symbols in a code block. If the core has an N_IN or R_IN input, then k is
used to specify the maximum number of check symbols supported. For example, if n=255 and k=239, then there can
be a maximum of 16 check symbols.

n

This is the number of symbols in an entire code block. If this is a shortened code, n should be the shortened number.

Field Polynomial

This is the Galois Field polynomial, used to generate the Galois Field for the code. Polynomials are entered as
decimal numbers. The bits of the binary equivalent correspond to the polynomial coefficients. For example,

285 = 100011101 => x8+x4+x3+x2+1

A value of zero causes the default polynomial for the given symbol width to be selected.

Symbol Width

This is the bus-width of DATA_IN and DATA_OUT.

Clock Enable

This is selected when a clock enable input is required.

Synchronous Reset

This is selected when a synchronous reset input is required.

Info End

This is selected when the INFO_END output is required.

Variable Block Length

This is selected when the N_IN input is required.

Table 2: Default Polynomials

Symbol Width Default Polynomial Decimal Representation

3 x3+x+1 11

4 x4+x+1 19

5 x5+x2+1 37

6 x6+x+1 67

7 x7+x3+1 137

8 x8+x4+x3+x2+1 285

9 x9+x4+1 529

10 x10+x3+1 1033

11 x11+x2+1 2053

12 x12+x6+x4+x+1 4179

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 13
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Variable Number of Check Symbols

This is selected when the R_IN input is required. Take care that this is actually required, and variable check symbols
are not to be implemented using puncture patterns.

Define Supported R_IN Values

If only a subset of the possible values that could be sampled on R_IN is actually required, then it is possible to
reduce the size of the core slightly. For example, for the Intelsat standard, the R_IN input is 5 bits wide but only
requires r values of 14, 16, 18, and 20. The core size can be slightly reduced by defining only these four values to be
supported. If any other value is sampled on R_IN, the core does not decode the data correctly.

Number of Supported R_IN Values

If “Define Supported R_IN Values” has been selected, then the number of supported R_IN values must be entered.

Supported R_IN Definition File

This is a COE file that defines the R values to be supported. It has the following format:

radix=10;

legal_r_vector=14,16,18,20;

The number of elements in the legal_r_vector must equal the “Number of Supported R_IN Values” set in the GUI.

Delayed Data

This is selected when the DATA_DEL output is required.

Marker Bits

This is selected when MARK_IN and MARK_OUT are required.

Number of Marker Bits

This sets the width of MARK_IN and MARK_OUT.

Erase

This is selected when erasure support is required. See the explanation in Erasure Decoding, page 11.

Clock Periods Per Symbol

Normally, there is only one clock period per symbol. This may be increased to reduce the processing delay, which
is described in the next section. The symbol period must always be a whole number of clock periods.

Number of Puncture Patterns

This defines how many puncture patterns the core needs to handle. It is set to 0 if puncturing is not required, which
is explained in Puncturing, page 20. This parameter is not available if erasures are selected. The puncturing can be
handled externally by asserting the ERASE pin in this case.

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 14
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Number of Channels

This parameter defines how many channels the core should support. Multi-channel operation is described in
Multiple Channels, page 26.

Memory Style

The following options are available:

• Distributed – The core should not use any block memories if possible. This is useful if they are required
elsewhere in the design. Note that for symbol widths of 8 and under, this option results in no block memories
being used. For symbol widths greater than 8, some block memories are used, but their use is kept to a
minimum.

• Block – The core should use block memories wherever possible. This keeps the number of CLBs used to a
minimum, but may use block memory wastefully.

• Automatic – This option allows the core to use the most appropriate style of memory for each case, based on
required memory depth.

Code Specification (including CCSDS)

The GUI aids creation of cores for a number of common Reed-Solomon specifications. Upon selecting a particular
specification, the GUI automatically selects the parameter values necessary to meet the specification.

When implementing the CCSDS specification, the core automatically implements the dual-basis conversions
defined in the CCSDS specification. This is illustrated in Figure 12. If the dual-basis conversions are not wanted,
select custom specification instead of CCSDS and enter all the code parameters manually.

Short CCSDS codes are also supported by selecting the appropriate values of n and k from the GUI.

If IEEE 802.16d is selected, then the GUI uses a predefined COE file to define the required puncture patterns. This
file can be modified if required.

X-Ref Target - Figure 12

Figure 12: CCSDS Decoder

CCSDS Symbols

Dual-Basis to Normal

Conventional Decoder

Normal to Dual-Basis

CCSDS Symbols
DS252_11_061506

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 15
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Optimization

For Virtex®-5, the optimization of the core can be chosen from the CORE Generator GUI. With area optimization,
the core uses the smallest possible area within the FPGA. With speed optimization, additional area is traded to
provide an increased maximum clock rate.

Self-Recovering

Selecting this option causes extra logic to be generated in the core to detect if the controlling state machine has
entered an illegal state. This should never happen; however, in some systems illegal timing conditions may be
generated by switching clocks outside of the core, for example. If the core is not reset after a violation like this, then
it might end in an illegal state. If this is detected, then the core automatically synchronously resets itself. Selecting
this option means that all the logic to handle synchronous reset is included in the core.

Parameter Ranges

Valid ranges for the parameters are given in Table 3.

Table 3: Parameter Ranges

Parameter Min Max Notes

n 4 2(Symbol_Width)-1 [5]

k 1 2(Symbol_Width)-3 [1]

h 1 2(16)-1

Polynomial 0 2(13)-1

r=n-k 2 256 [2] [3]

Symbol Width 3 12

Gen Start 0 1023

Clock Periods Per Symbol 1 2(16)-1 [4]

Number of Puncture Patterns 0 128

Number of Channels 1 128

Number of Marker Bits 1 16 [6]

Notes:
1. Max=n-r
2. In reality, r is limited by the maximum size of the device available. If the core exceeds the device size because r is so large, and a

larger FPGA cannot be selected, the size of the core can be reduced by increasing the number of clock periods per symbol.
3. For CCSDS the minimum value of r=3.
4. The practical limit for this parameter is usually caused by the core maximum clock frequency being reached.
5. The lower limit for the variable n decoder is Maximum(5, r+1).
6. Only used if Marker Bits option is selected in the GUI.

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 16
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Processing Delay
For some parameter selections, the decoder might not be ready to accept one code block immediately after another.
This is because it is still processing the first block. The processing delay for a given t, assuming one clock cycle per
symbol period, is shown in Figure 13.

In the case of the fixed n decoder, this is the minimum number of symbol periods from the start of the first symbol
period of a code block before another code block can be started. If the processing delay is greater than n, it is not
possible to follow one code block immediately with another.

The variable n decoder can still accept a new code block, even if the processing delay is greater than n, due to its
internal buffering. However, if new blocks are continually fed to the decoder with n greater than the processing
delay, at some point it is unable to accept a new code block. The timing for the variable n decoder is described in
Variable Block Length, page 22.

The number of symbol periods can be calculated using the following equation:

If erasure decoding or puncturing is enabled, the following equation should be used:

Note: Measures can be taken to reduce the processing delay.

X-Ref Target - Figure 13

Figure 13: Processing Delay against t Where t = (n-k)/2

DS252_12_061506

Proces gDelaysin t
2

2 3t i

i 1=

t 1+

∑+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2+ +=

Proces gDelaysin 2 i

i 1=

n k– 1+

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

3 n k–() 3+ +=

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 17
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

If necessary, the processing delay can be reduced by increasing the number of clock periods per symbol. In this case,
the processing delay (in symbol periods) can be calculated using the following expression:

where P is the result from the processing delay calculation. ClksPerSym is the number of clock cycles per symbol.
This can be increased until the maximum input clock frequency of the core is reached. The processing delay is
always rounded down to the nearest whole number. To calculate the processing delay in terms of clock cycles,
multiply the preceding result by the number of clock periods per symbol.

If the number of clock periods per symbol is greater than one, all synchronous inputs must be synchronized to
symbol periods. This is illustrated for four clock periods per symbol in Figure 14.

The decoder samples its inputs on rising edges of CLK coincident with rising edges of the imaginary SYM_CLK
signal. The outputs are also all synchronized to the symbol period. This is illustrated for three clock periods per
symbol in Figure 15.

Figure 15 also shows the timing for SR when the number of clock periods per symbol is greater than one. SR must
be pulsed for a whole number of symbol periods, just like all the other synchronous inputs. It is sampled high and
the outputs are reset one symbol period later.

X-Ref Target - Figure 14

Figure 14: Input Timing, Four Periods Per Symbol

X-Ref Target - Figure 15

Figure 15: Output Timing, Three Periods per Symbol

1 + RoundDown(P/ClksPerSym)

SYM_CLK

CLK

SYNC

DATA_IN D0 D1 D2 D3 D4

One Symbol Period

DS252_13_061506

SYM_CLK

Other
outputs

CLK

SR

Decoder samples 'SR' high Outputs Reset

BLK_STRT

DATA_OUT D0 D1 D2 ? ?

One Symbol Period

DS252_14_061606

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 18
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

The decoder always resynchronizes itself when it detects a rising edge on SYNC. If the rising edge of SYNC occurs
less than two CLK periods before the rising edge of SYM_CLK, the decoder samples the first symbol twice. This
situation is illustrated in Figure 16. The decoder still operates correctly, with D0 as the first symbol of the block and
D1 as the second. D0 appears on DATA_OUT LATENCY symbol periods after t1. The corrected value of D0 appears
LATENCY symbol periods after t2.

This may occur when SYNC goes high at the start of the first code block. It does not reoccur if the gaps between
blocks are always a whole number of symbol periods.

IMPORTANT: If a code block is started prior to corrected symbols from the previous block appearing on
DATA_OUT, there must be an integer number of symbol periods between the last symbol of the previous block and
the first symbol of the new block. This is illustrated in Figure 17. Figure 18 shows the case where there is a
non-integer number of symbol periods between blocks A and B. This may cause the decoder to lose track of block A.

It is safe to start another block with SYNC misaligned, relative to the symbol periods from the previous block, only
after the corrected symbols from all the previous blocks have started to appear on DATA_OUT.

X-Ref Target - Figure 16

Figure 16: Resynchronization Using SYNC

X-Ref Target - Figure 17

Figure 17: Integer Number of Symbols between Blocks

SYM_CLK

CLK

SYNC

DATA_IN

DATA_OUT

D0 D1 D2 D3

One Symbol Period

t1 t2
DS252_15_061606

CLK

SYNC

DATA_IN

DATA_OUT

An-2 An-1 B0 B1

A0

B2

A1

Integer Number of Symbol Periods

DS252_16_061606

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 19
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Latency
The latency is the number of sampled symbols from a symbol being sampled on DATA_IN to the corrected version
of that symbol appearing on DATA_OUT. This should not be confused with the processing delay; a subsequent code
block may be started before the latency delay is over.

An example, with a latency of three symbol periods and one clock period per symbol, is shown in Figure 19. In
reality, the latency is usually much greater than this.

The latency is dependent on the values of n (the number of symbols in a code block) and t (the number of
correctable errors). The total latency can be determined from the following equation:

X-Ref Target - Figure 18

Figure 18: Resynchronization before DATA_OUT for Previous Block

X-Ref Target - Figure 19

Figure 19: Latency = 3

CLK

SYNC

DATA_IN

DATA_OUT

An-3 An-2 An-1 B0 B1

A0 A1

Non-Integer Number of Symbol Periods

DSD252_17_061606

Laten cy n m P roce s g De la y s– c+sin+ +=

CLK
SYNC

DATA_IN
DATA_OUT

Di0 Di1 Di2 Di3 Di4 Di5

Di0 Di1 Di2

Latency

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 20
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

This gives the latency in symbol periods. The variables, m, s, and c, are defined in Table 4, Table 5, and Table 6,
respectively. To calculate the latency in clock periods, multiply the result from the table by the number of clock
periods per symbol.

Puncturing
Puncturing can be thought of as erasure decoding where the erasure positions are known prior to the block being
received. For example, in the IEEE802.16d standard, the RS codeword always has 16 check symbols; however, some
of those symbols may not be transmitted. If only the first 12 check symbols are transmitted, the number of errors
that can be corrected is reduced from 8 to 6. The decoder still decodes as if there were 16 check symbols. The last 4
check symbols are sampled, but ignored. One way of handling this is to flag the last 4 symbols of the block as
erasures; however, the complexity of the full erasure decoding logic is not required. It is possible to define the
known erasure positions in a file when generating the core. The core then automatically compensates for the
deleted symbols. Erasure decoding must be unselected if puncturing is required. If both puncturing and erasure
decoding are required, then the puncturing must be handled externally by asserting the ERASE input at the
appropriate time.

As far as the core is concerned, the length of the block (n) still includes the punctured symbols. So for variable N
codes, the value sampled on N_IN must include the number of punctured symbols. For example, IEEE802.16d
specifies a (120,108,6) code, that is, n=120, k=108, and t=(n-k)/2=6. It would seem this code has only 12 check
symbols, but it is actually a 16 check symbol code with 4 punctured check symbols. Therefore, the real value of n is
124 and N_IN must be set to 124 to allow for the 4 dummy symbols that are sampled after the 120 real symbols.

The PUNC_SEL input can be used to select between a number of predefined puncture patterns. The number of
puncture patterns is set in the core GUI. If this is fewer than two, then the PUNC_SEL input is not required. If it is
greater than zero, then a puncture definition file must be supplied to define the puncture patterns. For example, the
file for IEEE802.16d is as follows:

radix=10;

puncture_select_vector=0,4,8,12;

puncture_vector=0,1,2,3,

0,1,2,3,4,5,6,7,

0,1,2,3,4,5,6,7,8,9,10,11;

Table 4: Latency Calculation m

Symbol Width M

=8 7

Not Equal To 8 6

Table 5: Latency Calculation c

Code Specification c

CCSDS 3

Any other value 0

Table 6: Latency Calculation s

Clock Periods Per Symbol s

=1 0

>1 1

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 21
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

In this example, there are four possible puncture patterns. The number of symbols to be punctured from a block is
defined in the puncture_select_vector. The number of symbols punctured for each PUNC_SEL value in this
example is shown in Table 7.

The puncture_select_vector entries can be in the range 0 to n-k. This is because the maximum number of
punctured symbols that can be recovered is n-k.

The puncture_vector defines which symbols are punctured for each of the puncture_select_vector
entries. In the previous example, there are no entries for PUNC_SEL=0, as the puncture_select_vector has
defined 0 symbols to be punctured in this case. If PUNC_SEL=1, then the puncture_select_vector has defined
that four symbols are to be punctured. The first four entries of the puncture_vector define the symbol positions.
The entries count back from the last symbol in a block, with 0 being the last symbol. Thus if PUNC_SEL=1, symbols
0, 1, 2 and 3 are all punctured, that is, the last four symbols in the block. If PUNC_SEL=2, then the last eight symbols
in the block are punctured. If PUNC_SEL=3, then the last twelve symbols in the block are punctured.

The number of entries in the puncture_vector must equal the sum of the entries in the
puncture_select_vector.

Each puncture_vector entry must be less than n. If n is variable, then the selected puncture_vector entry for
a given block must be less than the value sampled on N_IN.

If the number of puncture patterns is not a power of two and an illegal PUNC_SEL value is sampled, then the
punctured pattern applied by the core is not defined. For example, if the number of puncture patterns was set to 3,
then only 0, 1, and 2 are legal values for PUNC_SEL. A value of 3 should never be sampled on PUNC_SEL.

Timing for the IEEE802.16 example is shown in Figure 20, Figure 21, and Figure 22. PUNC_SEL is sampled as “1” at
the start of the block. The puncture_select_vector defines this as four punctured symbols. The
puncture_vector specifies that the last four symbols of the block are to be punctured (symbols 0, 1, 2, and 3).
This is shown in Figure 21. The core still samples DATA_IN for the four punctured symbols. The value on DATA_IN
is irrelevant at this time. Dn-5 is the last real symbol received.

Figure 22 shows the block being output. The decoder actually determines the values of the punctured symbols and
outputs them in the correct sequence. The ERASE_CNT output shows how many symbols were punctured. The
ERROR_CNT output shows the number of errors plus the number of punctures. So if there were no errors in the
block, ERROR_CNT is 4. The number of true errors is ERROR_CNT-ERASE_CNT.

SYNC cannot be reasserted until all the symbols in a block are sampled, including the dummy symbols in the
puncture positions.

Table 7: puncture_select_vector Example

PUNC_SEL Number of Symbols
Punctured

0 0

1 4

2 8

3 12

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 22
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

If puncturing is used, the latency and processing delay are derived from the same equation as if erasures were
enabled. See Processing Delay, page 16.

Variable Block Length
If the N_IN input is used, the block length can be different for every new block. N_IN can vary from 5 up to
2(Symbol_Width)-1. It must also be greater than the number of check symbols, r. N_IN is sampled at the same time as
the SYNC pulse that starts the block. N_IN is the n value for the block. The number of check symbols, r, can be fixed
or variable.

If the N_IN input is used, the core cannot pass non-Reed-Solomon data through in between code blocks like the
fixed n decoder. No input data is sampled until a block is started with a SYNC pulse. See Figure 23 for N_IN timing.

X-Ref Target - Figure 20

Figure 20: Puncture Timing – Start of Input Block

X-Ref Target - Figure 21

Figure 21: Puncture Timing – End of Input Block

X-Ref Target - Figure 22

Figure 22: Puncture Timing – End of Output Block

CLK
SYNC

DATA_IN
RFFD

D0 D1 D2 D3 D4 D5

PUNC_SEL 1

CLK
SYNC

DATA_IN Dn-5Dn-6 D0

PUNC_SEL 2

puncture_vector value: 3 2 1 0

RFFD

These symbols were punctured
 prior to transmission

CLK
BLK_END

DATA_OUT
ERASE_CNT

ERR_CNT

Dn-1Dn-2Dn-3Dn-4Dn-5

4

4+num errors

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 23
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

When variable block length is used, the timing of the core is slightly different compared to the fixed block length
core. The latency and processing delay for each individual block are the same as for the fixed block core and can be
computed using the equations in the previous sections. The values sampled on N_IN and R_IN may be used in the
equations to compute the processing delay and best case latency for each block sampled. Note that the Processing
Delay depends only on the number of check symbols.

A block may actually take longer to appear on DATA_OUT than the calculated latency, as an earlier, larger block may
still be being processed. This is illustrated in Figure 24.

The core always samples data and outputs results as soon as possible. It is possible for the READY output to go low,
even if the Processing Delay is not greater than all the sampled block sizes (see Figure 25 for example). However, if
the Processing Delay is not greater than any possible sampled block size, it can be guaranteed that, on average, no
gaps are required between code blocks. Thus, the input data may need to be temporarily held up, as in Figure 25,
because a large block was followed by many small ones. A small FIFO could be placed in front of the core to smooth
out these effects if necessary. The input symbols to the FIFO would never need to have any gaps, and there would
never be any gaps between output symbols from the core

X-Ref Target - Figure 23

Figure 23: N_IN Timing

X-Ref Target - Figure 24

Figure 24: Variable n – Ready Operation

X-Ref Target - Figure 25

Figure 25: Processing Delay Buffer

n

CLK

SYNC

N_IN

RFFD

N1 In N1 OutProcessing Delay

N2 In N2

N3 In PD

Processing Delay

Ready

N1 In N1 OutPD

N2 In N2PD

N3 In N3PD

N4 In N4PD

N5 In N5PD

Ready

N6 In N6PD

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 24
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Figure 24 shows an example where the Processing Delay is greater than the block length. In the fixed n decoder,
READY would have gone low as soon as the last symbol of block N1 had been sampled. The variable n decoder is
able to buffer intermediate results. As soon as block N1 has been sampled, the values required by the processing
section are passed in and processing begins. Block N2 is then sampled. The processing section is still busy with
block N1, but the N2 values are buffered, allowing block N3 to be loaded. The N3 values are also buffered; however,
the buffer is now full, and no new symbols can be sampled until the N2 values have been loaded into the processing
section. As soon as this happens, the core is ready for another new block.

If a large block is followed immediately by a small block, then the small block has to wait until the large block has
been completely output before it can be output. This is illustrated in an example in Figure 26. In this example, the
inputs are not held up because each block can be passed into the processing section before the two-block input
buffer has been filled. Notice that the overall latency for blocks N2 to N4 is larger than predicted by the latency
equation. This is because they had to wait for N1 to be output. READY is high all the time in this example, and there
is still no gap between symbols as they are input or output.

The processing section can also buffer up to two blocks worth of results. This is illustrated in the example in
Figure 25. As the processing for N2 (that is, PD2) completes, the core is still outputting N1, so it stores the PD2
results in a buffer. These results are then used when outputting N2. PD3 completes before the PD2 results have been
used, so the PD3 results are also buffered. The processing section buffer is now full, and PD4 cannot begin until the
PD3 results have been unloaded. This occurs as the N2 values begin to be output. PD4 then begins and completes
while the core is still outputting values from earlier blocks. Therefore, the PD4 results are buffered, once more filling
the processing buffer. PD5 cannot begin until the PD4 results are unloaded. This occurs as the N3 values begin to be
output. READY goes low after N5 because the input buffer is now full. It frees up again as the N4 values are fed into
the processing section at the start of PD4.

Block N6 can begin as soon as READY is high again. Notice that there is no gap between N5 Out and N6 Out, even
though there was a gap between them at the input side. This is because the core always outputs results as soon as
possible.

These figures are a slight simplification of what actually happens. For example, there are some small fixed latencies
between the input section, the processing section, and the output section, but they serve to illustrate the core
behavior.

X-Ref Target - Figure 26

Figure 26: Large Block Followed by Small Blocks – Effect on Latency

N1 In N1 OutProc Delay

N2 In N2 OutProc Delay

N3 In N3 OutProc Delay

N4 In N4 OutProc Delay

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 25
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Block Code Settings
The core decodes a systematic (n_block, k_block) block code, where the input block is n_block symbols long,
comprised from k_block data symbols followed by r_block check symbols. The block code settings n_block, k_block,
and r_block are optionally variable on a block-by-block basis. For multi-channel configurations, all channels have
the same settings for n_block, k_block, and r_block. See Table 8.

n_block

The block code setting n_block specifies the total number of symbols in the current code block.

• When a variable block length is not required, n_block is set to the parameter n for every code block.

• When a variable block length is required, n_block is set at the sync pulse of each new block to the value
sampled on N_IN.

k_block

The block code setting k_block specifies the number of data symbols in the current code block.

• When a variable block length is not required, k_block is set to the parameter k for every block.

• When a variable block length is required and a variable number of check symbols is not required, k_block is set
at the sync pulse of each new block, to the value sampled on N_IN minus the parameter (n-k).

• When a variable number of check symbols is required, k_block is set at the start pulse of each new block to the
value sampled on N_IN minus the value sampled on R_IN.

r_block

The block code setting r_block specifies the number of check symbols in the current code block.

• When a variable number of check symbols is not required, r_block is set to parameter (n-k) for every block.

• When a variable number of check symbols is required, r_block is set at the start pulse of each new block to the
value sampled on R_IN.

Table 8: Block Code Settings – Value and Range

Block Code Settings Value [1]

Fixed Block Length

n_block n

k_block k

r_block (n-k)

Variable Block Length. Fixed Number of Check Symbols

n_block N_IN

k_block N_IN - (n-k)

r_block (n-k)

Variable Number of Check Symbols

n_block N_IN

k_block [2] N_IN - R_IN

r_block R_IN

Notes:
1. The minimum and maximum values are defined in Table 3.
2. Set k in GUI so that (n-k) equals the largest value the core needs to handle on R_IN. For

example, if n=255 and the largest legal R_IN value is 20, then set k to 235.

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 26
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Multiple Channels
The core can process multiple input channels simultaneously with a relatively small increase in the number of LUTs
used. There is a larger increase in the number of registers used. A multi-channel core generally runs at a higher
clock frequency than a single-channel core. Using one multi-channel core in a high-speed application can be more
efficient than instantiating several single-channel RS decoder cores. Multi-channel is available only for fixed n and
r decoders.

When a new block is started for one channel, a new block is started for all the other channels as well. The code
settings (n, k, etc.) are the same for all channels. If puncturing is used, then a single PUNC_SEL value that applies to
all channels is sampled when SYNC is high.

With multiple channels, there is still only one DATA_IN port. Incoming symbols for the channels are interlaced, so
that the core samples the first symbol of channel 1 on the first rising clock edge, then the first symbol of channel 2
on the second rising clock edge, and so on. Symbols (both information and check) are output on DATA_OUT in the
same sequence. An example with three channels is shown in Figure 27.

Notice that SYNC is asserted only for a single symbol period. This starts a new block for all three channels. A1, B1

and C1 are the first symbols of the new block for channels A, B and C. RFFD goes high as soon as it is safe to begin
a new block with another SYNC pulse.

If erasures are enabled, then ERASE can be asserted at any time for each channel independently. In this example,
symbol B3 is marked as an erasure.

Symbols on DATA_OUT are interlaced in the same way as symbols on DATA_IN.

BLK_STRT is driven high while the first symbol for each channel is on DATA_OUT. BLK_END is driven high while the
last symbol for each channel is on DATA_OUT. The status outputs (ERR_CNT, etc.) are also output for each channel in
sequence at this time. After BLK_END goes low, they retain the value for the last channel until a new BLK_END pulse
occurs. INFO_END is driven high while the kth symbol for each channel is on DATA_OUT.

The processing delay (in clock cycles) is approximately the single-channel processing delay multiplied by the
number of channels. See the core GUI for the exact value. The number of cycles allowed for continuous code blocks
is also multiplied by the number of channels, so multi-channel operation does not significantly affect whether or not
there needs to be a gap between code blocks.

The latency is multiplied by an amount roughly proportional to the number of channels. See the GUI for the exact
latency value for a given set of parameters.

X-Ref Target - Figure 27

Figure 27: Multi-Channel Operation

CLK

SYNC

DATA_IN

DATA_OUT

B1

BLK_STRT

ERASE

A1 A3 B3 C3

RFFD

C1 B2A2 C2

C2A1 B1 C1 B2A2

BLK_END

ERR_CNT Er1 Er2 Er3

ERASE_CNT Es1 Es2 Es3

FAIL F1 F2 F3

A3 AN BN CN

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 27
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Examples
Example 1:

RS(255,239) is a configuration of 255 symbols and 239 8-bit data symbols. This code is capable of correcting 8 symbol
errors, that is, up to 64 bit errors. The Processing Delay is 204 cycles, which is less than 255, so this configuration is
capable of continuous processing.

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 239

Example 2:

RS(255,229) is a configuration of 255 symbols and 229 8-bit data symbols. This has a greater error correcting
capability than Example 1, in that 13 symbols, or 104 bits of data, can be corrected. However, as the Processing
Delay is 459 cycles, and is therefore greater than 255, continuous processing cannot be done.

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 229

If continuous processing is required, then the number of clock periods per symbol can be set to 2. By setting
Clocks per Symbols to 2, the processing delay is now 230 symbols periods, but each symbol period is two clock
periods. Therefore, for a symbol rate of 100 Msymbols/sec, the core would need to be clocked at 200 MHz.

Example 3:

The requirement is to be able to detect and correct a minimum of 3% of the symbols in a block of 12-bit data and
have continuous operation. As this is 12-bit data, the maximum number of symbols in the block is 4095, and to meet
the correction criteria the configuration would be RS(4095,3849). The Processing Delay (31369 symbol periods)
would be prohibitive due to the n-k value of 246.

The solution could be to use a shortened code. If RS(400,376) was used, this would correct 3% within the 400
symbols block. The Processing Delay is 400, so continuous code blocks are possible.

Symbol Width = 12
Symbols per Block (n) = 400
Data Symbols (k) = 376

Example 4:

In this case there is a requirement to vary the number of symbols and the number of check symbols in the block. The
symbol width is 8 bits, so n must be set to 255. The largest expected R_IN value is 16, so k must be set to 255-16=239.
This gives an R_IN port width of 5 bits.

So the N_IN can have a value up to 255 and R_IN can have a value up to 16. Lower limits are defined in Table 3.

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 239
Variable Block Length Checked
Variable Number of Check Symbols Checked

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 28
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

System Generator for DSP Graphical User Interface
The Reed-Solomon Decoder core is available through Xilinx System Generator, a DSP design tool that enables the
use of The Mathworks™ model-based design environment Simulink® for FPGA design. The Reed-Solomon
Decoder core is one of the DSP building blocks provided in the Xilinx blockset for Simulink. The core can be found
in the Xilinx Blockset in the Communication section. The block is called “Reed-Solomon Decoder 7.1." See the
System Generator User Manual for more information.

The controls in the System Generator GUI work identically to those in the CORE Generator GUI, although the
layout has changed slightly. See Parameters, page 11, for detailed information about all other parameters.

Core Resource Utilization
The area of the core increases with n, n-k, and the symbol width. Some example configurations are shown in Table 9.
In this table, optional pins were not used, unless otherwise stated. Memory style was always set to automatic. The
option to map primary I/O registers into IOBs during placement should be selected if the core I/Os are to be
connected directly onto a PCB via the FPGA package pins. This gives lower output clock-to-out times and
predictable setup and hold times. In this case, it is especially important to register outputs that may not be
registered inside the core, such as RFFD and READY.

Performance Characteristics
It is important to set a maximum period constraint on the core clock input. The figures in Table 9 show clock speeds
that can be achieved when this is done. Apart from high map and par effort, default implementation tools options
were used. It may be possible to improve slightly on these values by trying different options for the place and route
software. Performance increases as n, n-k, and the symbol width decrease.

Table 9 provides resource and performance data for Virtex-6 FPGAs. For other devices, the user should generate a
core and consult a map report to determine device utilization. The Xilinx SmartXplorer utility may be used to
determine the maximum achievable frequency for the configuration.

Table 9: Example Decoder Implementations

ATSC 1 DVB1 DVB2 CCSDS G.709
G.709
Two-

Channel

ETSI-
BRAN

IEEE-
802.16d

Generator Start 0 0 0 112 0 0 0 0

h 1 1 1 11 1 1 1 1

k 187 188 188 223 239 239 239 239

n 207 204 204 255 255 255 255 255

Polynomial 285 285 285 391 285 285 285 285

Symbol Width 8 8 8 8 8 8 8 8

Erasure
Decoding No No Yes No No No No No

Clock Periods
Per Symbol 1 1 2[3] 1 1 1 1 1

Variable Block
Length No No No No No No Yes Yes

Number of
Channels 1 1 1 1 1 2 1 1

http://www.xilinx.com

DS252 March 1, 2011 www.xilinx.com 29
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Evaluation
An evaluation license is available for this core. The evaluation version of the core operates in the same way as the
full version for several hours, dependent on clock frequency. Operation is then disabled and the data output does
not change. If you notice this behavior in hardware, it probably means you are using an evaluation version of the
core. The Xilinx tools warn that an evaluation license is being used during netlist implementation. If a full license is
installed for the core to run on hardware, delete the old XCO file and recreate the core from new.

Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product when used as
described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if
implemented in devices that are not defined in the documentation, if customized beyond that allowed in the
product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Refer to the IP Release Notes Guide (XTP025) for further information on this core. On the first page there is a link to
“All DSP IP.” The relevant core can then be selected from the displayed list.

For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for the core
being used. The following information is listed for each version of the core:

• New Features

• Bug Fixes

• Known Issues

Puncture
Patterns 0 0 0 0 0 0 0 4

Processing
Delay[1] 294 204 179 660 204 406 204 357

Latency[1] 508 415 389 925 466 926 Variable Variable

Xilinx Part XC6VLX130T XC6VLX130T XC6VLX130T XC6VLX130T XC6VLX130T XC6VLX130T XC6VLX130T XC6VLX130T

LUT/FF Pairs 995 780 1845 1355 762 1022 999 1333

LUTs[4] 962 763 1813 1340 754 992 969 1306

FFs 919 781 1369 1347 781 1517 845 1139

Block RAMs
(36k) 0 0 0 0 0 0 0 1

Block RAMs
(18k) 2 2 2 3 2 2 3 2

Maximum Clock
Frequency[2] 281/376 281/379 273/349 276/345 287/371 334/423 281/391 274/380

Notes:
1. Measured in symbol periods.
2. Maximum clock frequencies are shown in MHz for -1/-3 parts with Speed Optimization selected. Clock frequency does

not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter
specification. ISE speed file version used for -1 speed grade was "PRODUCTION 1.07a 2010-05-25." ISE speed file
version used for -3 speed grade was "PRELIMINARY 1.07a 2010-05-25."

3. Set to 2 to keep Processing Delay <= n.
4. LUT count includes route-thrus and may vary when the core is packed with other logic. Resource information is for -1

speed grade.

Table 9: Example Decoder Implementations (Cont’d)

ATSC 1 DVB1 DVB2 CCSDS G.709
G.709
Two-

Channel

ETSI-
BRAN

IEEE-
802.16d

http://www.xilinx.com
www.xilinx.com/ipcenter/ip_license/ip_licensing.htm
http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

DS252 March 1, 2011 www.xilinx.com 30
Product Specification

LogiCORE IP Reed-Solomon Decoder v7.1

Ordering Information
This Xilinx LogiCORE IP product is provided under the terms of the SignOnce IP Site License.

To evaluate this core in hardware, generate an evaluation license, which can be accessed from the Xilinx
IP Evaluation page.

After purchasing the core, you will receive instructions for registering and generating a full core license. The full
license can be requested and installed from the Xilinx IP Center for use with the Xilinx CORE Generator software
v13.1. The CORE Generator software is bundled with the ISE® Design Suite software v13.1 at no additional charge.

Contact your local Xilinx sales representative for pricing and availability on Xilinx LogiCORE products and
software.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express
or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any
claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the
Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY
WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED
THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS
IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be
copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of
Xilinx.

Date Version Description of Revisions

03/28/03 1.0 Revision History added to document.

03/16/04 2.0 Updated to version 5.0 standards.

08/25/04 3.0 Updated to version 5.1 standards.

09/28/06 4.0 Updated to version 6.0 standards.

05/17/07 4.1 Updated to version 6.1 standards.

06/24/09 5.0 Updated to version 7.0 standards.

07/23/10 5.1 Updated to version 7.1 standards.

03/01/11 5.2 Support added for Virtex-7 and Kintex-7. ISE Design Suite 13.1 Reset last document version
from 7.1 to 5.1 because document version is independent of core version.

http://www.xilinx.com
www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/ipcenter/ipevaluation/index.htm
www.xilinx.com/ipcenter/
www.xilinx.com/company/contact/index.htm

	LogiCORE IP Reed-Solomon Decoder v7.1
	Features
	Applications
	Pinout
	Functional Description
	Shortened Codes
	Synchronous Reset Input
	DATA_IN Input
	MARK_IN Input
	CE Input
	SYNC Input
	N_IN input
	R_IN input
	PUNC_SEL input
	ERASE Input
	DATA_OUT Output
	MARK_OUT Output
	DATA_DEL Output
	BLK_STRT Output
	BLK_END Output
	INFO_END Output
	ERR_FOUND Output
	ERR_CNT Output
	ERASE_CNT Output
	FAIL Output
	READY Output
	RFFD Output
	BIT_ERR_0_TO_1 Output
	BIT_ERR_1_TO_0 Output
	BIT_ERR_RDY Output
	Erasure Decoding

	Parameters
	GeneratorStart
	h
	k
	n

	Field Polynomial
	Symbol Width
	Clock Enable
	Synchronous Reset
	Info End
	Variable Block Length
	Variable Number of Check Symbols
	Define Supported R_IN Values
	Number of Supported R_IN Values
	Supported R_IN Definition File
	Delayed Data
	Marker Bits
	Number of Marker Bits
	Erase
	Clock Periods Per Symbol
	Number of Puncture Patterns
	Number of Channels
	Memory Style
	Code Specification (including CCSDS)
	Optimization
	Self-Recovering
	Parameter Ranges

	Processing Delay
	Latency
	Puncturing
	Variable Block Length
	Block Code Settings
	n_block
	k_block
	r_block

	Multiple Channels
	Examples
	System Generator for DSP Graphical User Interface
	Core Resource Utilization
	Performance Characteristics
	Evaluation
	Support
	Ordering Information
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

