
LogiCORE IP Soft 
Error Mitigation 
Controller v3.3
Product Guide

PG036 July 25, 2012



Soft Error Mitigation Controller v3.3 www.xilinx.com 2
PG036 July 25, 2012

Table of Contents

SECTION I: SUMMARY

IP Facts

Chapter 1: Overview
Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Mitigation Approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Reliability Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Feature Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Unsupported Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Chapter 2: Product Specification
Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Resource Utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Chapter 3: Designing with the Core
Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Behaviors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74
Customizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Data Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Configuration Memory Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 3
PG036 July 25, 2012

SECTION II: VIVADO DESIGN SUITE

Chapter 4: Customizing and Generating the Core
GUI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Output Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Generating and Using ChipScope Tool Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94

Chapter 5: Constraining the Core
Required Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Contents of the Xilinx Design Constraints File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Device, Package, and Speed Grade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Clock Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Clock Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Chapter 6: Detailed Example Design
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Demonstration Test Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108
External Memory Programming File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
Messages and Warnings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

SECTION III: ISE DESIGN SUITE

Chapter 7: Customizing and Generating the Core
Creating a Project in ISE Design Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Customizing and Generating the Core in ISE Design Suite  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114
Output Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
Generating and Using ChipScope Tool Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Chapter 8: Constraining the Core
Required Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Contents of the User Constraints File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Device, Package, and Speed Grade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
Clock Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 4
PG036 July 25, 2012

Clock Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

Chapter 9: Example Design
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Demonstration Test Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Implementation in ISE Design Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133
External Memory Programming File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134
Directory and File Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

SECTION IV: APPENDICES

Appendix A: Verification, Compliance, and Interoperability
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
Conformance Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

Appendix B: Migrating
Customization and Generation Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Port Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Functionality Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Appendix C: Debugging
Release Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Monitor Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

Appendix D: Additional Resources
Xilinx Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Solution Centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Technical Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146
Notice of Disclaimer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 5
PG036 July 25, 2012

SECTION I:  SUMMARY

IP Facts

Overview

Product Specification

Designing with the Core

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 6
PG036 July 25, 2012 Product Specification

Introduction
The LogiCORE ™ IP Soft Error Mitigation (SEM) 
Controller is an automatically configured, 
pre-verif ied solution to detect and correct soft 
errors in Configuration Memory of Xilinx 
FPGAs. Soft errors are unintended changes to 
the values stored in state elements caused by 
ionizing radiation.

The SEM Controller does not prevent soft 
errors; however, it provides a method to better 
manage the system-level effects of soft errors. 
Proper management of these events can 
increase reliability and availability, and reduce 
system maintenance and downtime costs.

Features
• Typical detection latency of 25 ms in many 

devices.
• Integration of built-in silicon primitives to 

fully leverage and improve upon the 
inherent error detection capability of the 
FPGA.

• Optional error correction, using selectable 
method: repair, enhanced repair, or replace.

° Correction by repair method is ECC 
algorithm based.

° Correction by enhanced repair method 
is ECC and CRC algorithm based (7 
series devices only).

° Correction by replace method is data 
re-load based (Virtex ®-6 and 7 series 
devices only).

• Using Xilinx Essential Bits technology, 
optional error classif ication to determine if 
a soft error has affected the function of the 
user design.

° Increases uptime by avoiding disruptive 
recovery approaches for errors that 
have no real effect on design operation.

° Reduces effective failures-in-time (FIT).
• Optional error injection to support 

evaluation of SEM Controller applications.

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported 
Device 
Family(1)

Kintex-7, Virtex-7(2),

Virtex-6, Spartan-6

Supported 
User Interfaces RS-232, SPI

Resources See Table 2-1 through Table 2-4

Provided with Core

Design Files
Vivado: Encrypted RTL

ISE: NGC

Example 
Design VHDL and Verilog

Test Bench Not Applicable(3)

Constraints 
File

 Vivado: XDC
ISE: UCF

Simulation 
Model Not Applicable(3)

Supported 
S/W Driver N/A

Tested Design Flows

Design Entry 
Vivado™ Design Suite v2012.2

ISE™ Design Suite v14.2

Simulation(4) Not Applicable(3)

Synthesis(4)
Synopsys Synplify Pro

Xilinx XST
Vivado Synthesis

Support
Provided by Xilinx @ www.xilinx.com/support

Notes: 
1. For a complete listing of supported devices, see the release 

notes for this core.
2. Excluding SSI devices.
3. Functional and timing simulation of designs that include the 

SEM Controller is supported. However, it is not possible to 
observe the SEM Controller behaviors in simulation. 
Hardware-based evaluation is required.

4. For the supported versions of the tools, see the Xilinx Design 
Tools: Release Notes Guide.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf


Soft Error Mitigation Controller v3.3 www.xilinx.com 7
PG036 July 25, 2012

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 8
PG036 July 25, 2012

Chapter 1

Overview
Ionizing radiation is capable of inducing undesired effects in most silicon devices. Broadly, 
an undesired effect resulting from a single event is called a single event effect (SEE). In most 
cases, these events do not permanently damage the silicon device; SEEs that result in no 
permanent damage to the device are called soft errors. However, soft errors have the 
potential to reduce reliability.

Xilinx devices are designed to have an inherently low susceptibility to soft errors. However, 
Xilinx also recognizes that soft errors are unavoidable within commercial and practical 
constraints. As a result, Xilinx has integrated soft error detection and correction capability 
into many device families.

In many applications, soft errors can be ignored. In applications where higher reliability is 
desired, the integrated soft error detection and correction capability is usually suff icient. In 
demanding applications, the SEM Controller can ensure an even higher level of reliability.

Memory Types
If a soft error occurs, one or more memory bits are corrupted. The memory bits affected can 
be in the device configuration memory (which determines the behavior of the design), or 
may be in design memory elements (which determine the state of the design). The 
following four memory categories represent a majority of the memory in a device:

• Configuration Memory. Storage elements used to configure the function of the 
design loaded into the device. This includes function block behavior and function block 
connectivity. This memory is physically distributed across the entire device and 
represents the largest number of bits. Only a fraction of the bits are essential to the 
proper operation of any specific design loaded into the device.

• Block Memory. High capacity storage elements used to store design state. As the 
name implies, the bits are clustered into a physical block, with several blocks 
distributed across the entire device. Block Memory represents the second largest 
number of bits.

• Distributed Memory. Medium capacity storage elements used to store design state. 
This type of memory is present in certain configurable logic blocks (CLBs) and is 
distributed across the entire device. Distributed Memory represents the third largest 
number of bits.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 9
PG036 July 25, 2012

Mitigation Approaches

• Flip-Flops. Low capacity storage elements used to store design state. This type of 
memory is present in all configurable logic blocks (CLBs) and is distributed across the 
entire device. Flip-Flops represent the fourth largest number of bits.

An extremely small number of additional memory bits exist as internal device control 
registers and state elements. Soft errors occurring in these areas can result in regional or 
device-wide interference that is referred to as a single-event functional interrupt (SEFI). Due 
to the small number of these memory bits, the frequency of SEFI events is considered 
negligible in this discussion, and these infrequent events are not addressed by the SEM 
Controller.

Mitigation Approaches
Soft error mitigation for design state in Block Memory, Distributed Memory, and Flip-Flops 
can be performed in the design itself, by applying standard techniques such as error 
detection and correction codes or redundancy. Soft errors in unused design state resources 
(those physically present in the device, but unused by the design) are ignored. Designers 
concerned about reliability must assess risk areas in the design and incorporate mitigation 
techniques for the design state as warranted.

Soft error mitigation for the design function in Configuration Memory is performed using 
error detection and correction codes.

Configuration Memory is organized as an array of frames, much like a wide static RAM. In 
many device families, each frame is protected by ECC, with the entire array of frames 
protected by CRC in all device families. The two techniques are complementary; CRC is 
incredibly robust for error detection, while ECC provides high resolution of error location.

The SEM Controller builds upon the robust capability of the integrated logic by adding 
optional capability to classify Configuration Memory errors as either “essential” or 
“non-essential.” This leverages the fact that only a fraction of the Configuration Memory 
bits are essential to the proper operation of any specif ic design.

Without error classif ication, all Configuration Memory errors must be considered 
“essential.” With error classif ication, most errors will be assessed “non-essential” which 
eliminates false alarms and reduces the frequency of errors that require a potentially 
disruptive system-level mitigation response.

Additionally, the SEM Controller extends the built-in correction capability to accelerate 
error detection and provides the optional capability to handle multi-bit errors.

If the features offered by the SEM Controller are not required, the integrated soft error 
detection and correction capability in the silicon should be sufficient for SEU mitigation. 
See the relevant FPGA Configuration User Guide for information on how to use the built-in 
error detection and correction capability.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 10
PG036 July 25, 2012

Reliability Estimation

Reliability Estimation
As a starting point, a designer’s specification for system reliability should highlight critical 
sections of the system design and provide a value for the required reliability of each 
sub-section. Reliability requirements are typically expressed as failures in time (FIT), which is 
the number of design failures that can be expected in 109 hours (approximately 114,155 
years).

When more than one instance of a design is deployed, the probability of a soft error 
affecting any one of them increases proportionately. For example, if the design is shipped in 
1,000 units of product, the nominal FIT across all deployed units is 1,000 times greater. This 
is an important consideration because the nominal FIT of the total deployment can grow 
large and can represent a service or maintenance burden.

The nominal FIT is different from the probability of an individual unit being affected. Also, 
the probability of a specif ic unit incurring a second soft error is determined by the FIT of the 
individual design and not the deployment. This is an important consideration when 
assessing suitable soft error mitigation strategies for an application.

The FIT associated with soft errors must not be confused with that of product life 
expectancy, which considers the replacement or physical repair of some part of a system.

Xilinx device FIT data is reported in UG116, Device Reliability Report. The data reveals the 
overall infrequency of soft errors. It is important to note that the failure rates involved are 
so small that most designs need not include any form of soft error mitigation.

The contribution to FIT from flip-flops is negligible based on the flip-flop’s very low FIT/
Mbit and small quantity. However, this does not discount the importance of protecting the 
design state stored in flip-flops. If any state stored in flip-flops is highly important to design 
operation, the design must contain logic to detect, correct, and recover from soft errors in 
a manner appropriate to the application.

The contribution to FIT from Distributed Memory and Block Memory can be large in designs 
where these resources are highly utilized. As previously noted, the FIT contribution can be 
substantially decreased by using soft error mitigation techniques in the design. For 
example, Block Memory resources include built-in error detection and correction circuits 
that can be used in certain Block Memory configurations. For all Block Memory and 
Distributed Memory configurations, soft error mitigation techniques can be applied using 
programmable logic resources.

The contribution to FIT from Configuration Memory is large. Without using an error 
classif ication technique, all soft errors in Configuration Memory must be considered 
“essential,” and the resulting contribution to FIT eclipses all other sources combined. Use of 
error classif ication reduces the contribution to FIT by no longer considering most soft 
errors as failures; if a soft error has no effect, it can be corrected without any disruption.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 11
PG036 July 25, 2012

Feature Summary

In designs requiring the highest level of reliability, classif ication of soft errors in 
Configuration Memory is essential. This capability is provided by the SEM Controller.

Feature Summary
The SEM Controller implements five main functions: initialization, error injection, error 
detection, error correction, and error classif ication. All functions, except initialization and 
detection, are optional; desired functions are selected during the IP core configuration and 
generation process.

The SEM Controller initializes by bringing the integrated soft error detection capability of 
the FPGA into a known state after the FPGA enters user mode. After this initialization, the 
SEM Controller observes the integrated soft error detection status. When an ECC or CRC 
error is detected, the SEM Controller evaluates the situation to identify the Configuration 
Memory location involved.

If the location can be identif ied, the SEM Controller optionally corrects the soft error by 
repairing it or by replacing the affected bits. The repair methods use active partial 
reconfiguration to perform a localized correction of Configuration Memory using a 
read-modify-write scheme. These methods use algorithms to identify the error in need of 
correction. The replace method also uses active partial reconfiguration with the same goal, 
but this method uses a write-only scheme to replace Configuration Memory with original 
data. This data is provided by the implementation tools and stored outside the SEM 
Controller.

The SEM Controller optionally classif ies the soft error as essential or non-essential using a 
lookup table. Information is fetched as needed during execution of error classif ication. This 
data is also provided by the implementation tools and stored outside the SEM Controller.

When the SEM Controller is idle, it optionally accepts input from the user to inject errors 
into Configuration Memory. This feature is useful for testing the integration of the SEM 
Controller into a larger system design. Using the error injection feature, system verif ication 
and validation engineers can construct test cases to ensure the complete system responds 
to soft error events as expected.

Applications
Although the SEM Controller can operate autonomously, most applications use the solution 
in conjunction with an application-level supervisory function. This supervisory function 
monitors the event reporting from the SEM Controller and determines if additional actions 
are necessary (for example, reconfigure the device or reset the application).

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 12
PG036 July 25, 2012

Unsupported Features

System designers are encouraged to carefully consider each design’s reliability 
requirements and system-level supervisory functions to make informed decisions.

Is an error mitigation solution even required? Is the solution built into the target device 
suff icient for the application requirements, or is the SEM Controller required? If the SEM 
Controller is required, what features should be used?

When the SEM Controller is the best choice for the application, Xilinx recommends that the 
SEM Controller is used as provided, including the system-level design example components 
for interfacing with external devices. However, these interfaces can be modified if required 
for the application.

Unsupported Features
The SEM Controller does not operate on soft errors in block memory, distributed memory, 
or flip-flops. Soft error mitigation in these memory resources must be addressed by the 
user logic through preventive measures such as redundancy or error detection and 
correction codes.

Unsupported features and specif ic limitations include functional, implementation, and use 
considerations. For more details, see Additional Considerations in Chapter 3.

Licensing
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado™ 
Design Suite and ISE™ Design Suite software under the terms of the Xilinx End User License.  
The core may be accessed through the Vivado Design Suite and ISE CORE Generator IP 
catalog.

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx 
Intellectual Property page. For information about pricing and availability of other Xilinx 
LogiCORE modules and software, please contact your local Xilinx sales representative.

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact.htm


Soft Error Mitigation Controller v3.3 www.xilinx.com 13
PG036 July 25, 2012 Product Specification

Chapter 2

Product Specification
This chapter contains the specif ication of the LogiCORE IP Soft Error Mitigation (SEM) 
Controller. This configurable controller for mitigation of soft errors in configuration 
memory also comes with a system-level example design showing use of the controller in a 
system. 

Features
The SEM controller includes:

• Integration of silicon features to leverage built-in error detection capability.

• Implementation of error correction capability to support correction of soft errors. The 
error correction method can be defined as:

° Repair: ECC algorithm-based correction. This method supports correction of 
configuration memory frames with single-bit errors. This covers correction of all 
single-bit upset events. It also covers correction of multi-bit upset events when 
errors are distributed one per frame as a result of configuration memory 
interleaving.

° Enhanced Repair: ECC and CRC algorithm-based correction. This method supports 
correction of configuration memory frames with single-bit errors or double-bit 
adjacent errors. This covers correction of all single-bit upset events and all 
double-bit adjacent upset events. This also covers correction of multi-bit upset 
events when errors are distributed one or two adjacent per frame as a result of 
configuration memory interleaving (7 series devices only).

° Replace: Data reload based correction. This method supports correction of 
configuration memory frames with arbitrary errors. This covers correction of any 
upset event that can be resolved to specif ic configuration memory frames, even if 
the exact bit locations in the frames cannot be determined (Virtex-6 and 7 series 
devices only).

• Implementation of error classif ication capability to determine if corrected errors have 
affected configuration memory in locations essential to the function of the design.

• Provision for error injection to support verif ication of the controller and evaluation of 
applications of the controller.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 14
PG036 July 25, 2012 Product Specification

Standards Compliance

The example design includes:

• Instantiation of the user-configured controller.

• An interface between the controller and external storage. This is required when the 
controller is configured to perform error classif ication or error correction by replace.

• An interface between the controller and an external processor for ease of use when the 
controller is configured to perform error injection.

Standards Compliance
No standards compliance or certif ication testing is defined. The SEM Controller is exposed 
to a beam of accelerated particles as part of an extensive hardware validation process.

Resource Utilization
Resource utilization metrics for the SEM Controller are derived from post-synthesis reports 
and are for budgetary purposes only. Actual resource utilization may vary.

Table 2-1: Resource Utilization for Kintex-7 Devicesab

Device IP Core Configuration LUTs FFs I/Os Block RAMs

Kintex-7
All Devices

Complete solution with no 
optional features 433 322 11 3 RAMB18

Kintex-7
XC7K70T

Complete solution with all 
optional features 835 506 56 3 RAMB18, 3 RAMB36

Kintex-7
XC7K160T

Complete solution with all 
optional features 869 508 56 3 RAMB18, 5 RAMB36

Kintex-7
XC7K325T

Complete solution with all 
optional features 974 510 56 3 RAMB18, 9 RAMB36

Kintex-7
XC7K355T

Complete solution with all 
optional features 975 510 56 3 RAMB18, 10 RAMB36

Kintex-7
XC7K410T

Complete solution with all 
optional features 1005 510 56 3 RAMB18, 11 RAMB36

Kintex-7
XC7K420T

Complete solution with all 
optional features 1040 510 56 3 RAMB18, 13 RAMB36

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 15
PG036 July 25, 2012 Product Specification

Resource Utilization

Kintex-7
XC7K480T

Complete solution with all 
optional features 1040 510 56 3 RAMB18, 13 RAMB36

Kintex-7 -2L,
Kintex-7Q,
Kintex-7Q -2L,
All Devices

Same as Kintex-7

a. The complete solution is the SEM Controller and the example design, which are intended to be used together.
b. The Error Injection Interface is connected to I/Os; use of ChipScope increases LUTs/FFs but decreases I/Os.

Table 2-2: Resource Utilization for Virtex-7 Devicesab

a. The complete solution is the SEM Controller and the example design, which are intended to be used together.
b. The Error Injection Interface is connected to I/Os; use of ChipScope increases LUTs/FFs but decreases I/Os.

Device IP Core Configuration LUTs FFs I/Os Block RAMs

Virtex-7
All Devices

Complete solution with no 
optional features 433 322 11 3 RAMB18

Virtex-7
XC7VX330T

Complete solution with all 
optional features 975 510 56 3 RAMB18, 10 RAMB36

Virtex-7
XC7VX415T

Complete solution with all 
optional features 1005 510 56 3 RAMB18, 12 RAMB36

Virtex-7
XC7VX485T

Complete solution with all 
optional features 1074 510 56 3 RAMB18, 14 RAMB36

Virtex-7
XC7VX550T

Complete solution with all 
optional features 1179 512 56 3 RAMB18, 20 RAMB36

Virtex-7
XC7V585T

Complete solution with all 
optional features 1042 510 56 3 RAMB18, 15 RAMB36

Virtex-7
XC7VX690T

Complete solution with all 
optional features 1179 512 56 3 RAMB18, 20 RAMB36

Virtex-7
XC7VX980T

Complete solution with all 
optional features 1317 512 56 3 RAMB18, 26 RAMB36

Virtex-7 -2L,
Virtex-7Q,
Virtex-7Q -2L
All Devices

Same as Virtex-7

Table 2-1: Resource Utilization for Kintex-7 Devicesab (Cont’d)

Device IP Core Configuration LUTs FFs I/Os Block RAMs

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 16
PG036 July 25, 2012 Product Specification

Resource Utilization

Table 2-3: Resource Utilization for Virtex-6 Devicesab

a. The complete solution is the SEM Controller and the example design, which are intended to be used together.
b. The Error Injection Interface is connected to I/Os; use of ChipScope increases LUTs/FFs but decreases I/Os.

Device IP Core Configuration LUTs FFs I/Os Block RAMs

Virtex-6
All Devices

Complete solution with no 
optional features 402 315 11 3 RAMB18

Virtex-6
All Devices

Complete solution with all 
optional features 459 383 52 3 RAMB18

Virtex-6 -1L,
Virtex-6Q,
Virtex-6Q -1L
All Devices

Same as Virtex-6

Table 2-4: Resource Utilization for Spartan-6 Devicesab

Device IP Core Configuration LUTs FFs I/Os Block RAMs

Spartan-6
XC6SLX4

Complete solution with no 
optional features

764 380 11 4 RAMB16, 1 RAMB8

Complete solution with all 
optional features

810 442 52 4 RAMB16, 1 RAMB8

Spartan-6
XC6SLX9

Complete solution with no 
optional features

764 380 11 4 RAMB16, 1 RAMB8

Complete solution with all 
optional features

810 442 52 4 RAMB16, 1 RAMB8

Spartan-6
XC6SLX16

Complete solution with no 
optional features

764 380 11 6 RAMB16

Complete solution with all 
optional features

810 442 52 6 RAMB16

Spartan-6
XC6SLX25(T)

Complete solution with no 
optional features

782 380 11 7 RAMB16

Complete solution with all 
optional features

834 446 52 7 RAMB16

Spartan-6
XC6SLX45(T)

Complete solution with no 
optional features

782 380 11 10 RAMB16

Complete solution with all 
optional features

834 446 52 10 RAMB16

Spartan-6
XC6SLX75(T)

Complete solution with no 
optional features

764 380 11 15 RAMB16

Complete solution with all 
optional features

816 446 52 15 RAMB16

Spartan-6
XC6SLX100(T)

Complete solution with no 
optional features

782 380 11 18 RAMB16

Complete solution with all 
optional features

834 446 52 18 RAMB16

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 17
PG036 July 25, 2012 Product Specification

Performance

Performance
Performance metrics for the SEM Controller are derived from silicon specif ications and 
direct measurement, and are for budgetary purposes only. Actual performance may vary.

Solution Reliability
The system-level design example is analyzed in the following section to provide an estimate 
of the FIT of the solution itself, as implemented in the FPGA. This analysis method is also 
appropriate for generating estimates of other circuits implemented in the FPGA.

In this analysis, all features are considered enabled, with all signals brought to I/O pins. 
ChipScope™analyzer is specif ically excluded from analysis, as it is unlikely a production 
design will include this interactive debug and experimentation capability. As a result, the 
estimate represents an upper bound.

Estimation Data

Xilinx device FIT data is reported in UG116, Device Reliability Report. Table 2-5 provides 
example data for a sample reliability estimation.

Spartan-6
XC6SLX150(T)

Complete solution with no 
optional features

795 380 11 24 RAMB16

Complete solution with all 
optional features

848 446 52 24 RAMB16

Spartan-6 -1L,
Spartan-6Q,
Spartan-6Q 
-1L,
Automotive 
Spartan-6
All Devices

Same as Spartan-6

a. The complete solution is the SEM Controller and the example design, which are intended to be used together.
b. The Error Injection Interface is connected to I/Os; use of ChipScope increases LUTs/FFs but decreases I/Os.

Table 2-4: Resource Utilization for Spartan-6 Devicesab (Cont’d)

Device IP Core Configuration LUTs FFs I/Os Block RAMs

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 18
PG036 July 25, 2012 Product Specification

Performance

Note: The data in Table 2-5 is an example. This example data is for illustrative purposes only and 
must not be used in critical design decisions. See UG116 for current device FIT data.

Table 2-6 provides an approximate relationship between resources and the number of 
configuration memory cells associated with each resource.

Typically fewer than 10% of configuration memory cells directly impact the active design if 
a soft error occurs. Therefore, the sample reliability estimation uses a 10% de-rating factor.

Table 2-5: Example Device FIT Data

Device Memory Cell Type Real Time Soft Error Rate
FIT/Mbit

7 Series
FPGAs

Configuration Memory  71 

Block Memory  59

Distributed Memory (same as Configuration Memory)  71

Flip-flops Unspecified

Virtex-6 
FPGAs

Configuration Memory  104

Block Memory  247

Distributed Memory (same as Configuration Memory)  104

Flip-flops Unspecified

Spartan-6
FPGAs

Configuration Memory  185

Block Memory  389

Distributed Memory (same as Configuration Memory)  185

Flip-flops Unspecified

Table 2-6: Configuration Bits Per Device Feature

Device Device Feature
(Includes Routing)

Approximate Number
of Configuration Bits

7 Series
FPGAs

Logic Slice 1,166

Block RAM (36Kb) 9,396

Block RAM (18Kb) 4,698

I/O Block 2,850

Virtex-6
FPGAs

Logic Slice 1,166

Block RAM (36Kb) 9,396

Block RAM (18Kb) 4,698

I/O Block 2,850

Spartan-6
FPGAs

Logic Slice 1,166

Block RAM (18Kb) 4,698

Block RAM (9Kb) 2,349

I/O Block 2,850

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 19
PG036 July 25, 2012 Product Specification

Performance

Sample 7 Series Reliability Estimation

The controller and shims use approximately 250 logic slices, 56 I/O blocks, 3 block RAM (18 
Kb), and 9 block RAM (36 Kb) in a mid-size XC7K325T device, with all optional features 
enabled. Consider the configuration bit contribution:

Config FIT = 10% * (250 * 1,166 + 56 * 2,850 + 3 * 4,698 + 9 * 9,396) * 71 FIT/Mbit

Config FIT = 3.7 FIT

The controller and shims use several hundred flip-flops for data, their contribution is 
ignored due to the small number of bits.

The controller and shims use 65 LUT RAM. The usage breakdown is as follows:

• The MON shim uses 31 LUT RAM for data buffering, but the buffers are generally empty 
and data corruption not observable. These memory bits are therefore ignored.

• The controller uses 34 LUT RAM for data storage. Errors in used locations are highly 
likely halt the controller. Approximately 256 memory bits are used.

LUT RAM FIT = 100% * 256 * 71 FIT/Mbit

LUT RAM FIT = 0.02 FIT

The controller uses three block RAM (18 Kb) and nine block RAM (36 Kb). The usage 
breakdown is:

• An internal buffer uses one block RAM. In the data array, 9600 bits are allocated to data 
buffers used in correction and classif ication; a soft error here would only cause 
potential issue if it occurred during mitigation activity. No permanent data resides here; 
these are therefore ignored. Another 7480 bits are allocated to constant storage; errors 
in these locations are highly likely to break the controller and must be considered in 
the analysis. The remaining 1352 bits are unused.

• The controller f irmware resides in two block RAMs. The word count is approximately 
1932 out of 2048, with at least 336 of the used words only executed one time at system 
start and therefore ignored. The number of bits considered for the analysis is 28728.

Block RAM FIT = 100% * 36208 * 59 FIT/Mbit

Block RAM FIT = 2.0FIT

• The enhanced repair algorithm within the controller stores frame-level CRCs in the 
remaining block RAM (36 Kb). These block RAM contents are protected by built-in ECC 
of the block RAM, and do contribute to the Block RAM Bit FIT. As computed above, 
these block RAMs do contribute to the Configuration Bit FIT

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 20
PG036 July 25, 2012 Product Specification

Performance

The total controller FIT is then:

3.7 FIT + 0.02 FIT + 2.0FIT ≈ 5.7 FIT

Sample Virtex-6 Reliability Estimation

The controller and shims use approximately 148 logic slices, 52 I/O blocks, and 3 block RAM 
(18 Kb). Consider the configuration bit contribution:

Config FIT = 10% * (148 * 1,166 + 52 * 2,850 + 3 * 4,698) * 104 FIT/Mbit

Config FIT = 3.3 FIT

The controller and shims use several hundred flip-flops for data, their contribution is 
ignored due to the small number of bits.

The controller and shims use 65 LUT RAM. The usage breakdown is as follows:

• The MON shim uses 31 LUT RAM for data buffering, but the buffers are generally empty 
and data corruption not observable. These memory bits are therefore ignored.

• The controller uses 34 LUT RAM for data storage. Errors in used locations are highly 
likely halt the controller. Approximately 256 memory bits are used.

LUT RAM FIT = 100% * 256 * 104 FIT/Mbit

LUT RAM FIT = 0.03 FIT

The controller uses three block RAM (18 Kb). The usage breakdown is:

• An internal buffer uses one block RAM. In the data array, 10368 bits are allocated to 
data buffers used in correction and classif ication; a soft error here would only cause 
potential issue if it occurred during mitigation activity. No permanent data resides here; 
these are therefore ignored. Another 7552 bits are allocated to constant storage; errors 
in these locations are highly likely to break the controller and must be considered in 
the analysis. The remaining 512 bits are unused.

• The controller f irmware resides in two block RAMs. The word count is approximately 
1550 out of 2048, with at least 150 of the used words only executed one time at system 
start and therefore ignored. The number of bits considered for the analysis is 25200.

Block RAM FIT = 100% * 32752 * 247 FIT/Mbit

Block RAM FIT = 7.7 FIT

The total controller FIT is then:

3.3 FIT + 0.03 FIT + 7.7 FIT ≈ 11.0 FIT

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 21
PG036 July 25, 2012 Product Specification

Performance

Sample Spartan-6 Reliability Estimation

The controller and shims use approximately 249 logic slices, 52 I/O blocks, and 10 block 
RAM (18 Kb) in a mid-size XC6SLX45T device. Consider the configuration bit contribution:

Config FIT = 10% * (249 * 1,166 + 52 * 2,850 + 10 * 4,698) * 185 FIT/Mbit

Config FIT = 8.6 FIT

The controller and shims use several hundred flip-flops for data, their contribution is 
ignored due to the small number of bits.

The controller and shims use 70 LUT RAM. The usage breakdown is as follows:

• The MON shim uses 36 LUT RAM for data buffering, but the buffers are generally empty 
and data corruption not observable. These memory bits are therefore ignored.

• The controller uses 34 LUT RAM for data storage. Errors in used locations are highly 
likely halt the controller. Approximately 256 memory bits are used.

LUT RAM FIT = 100% * 256 * 185 FIT/Mbit

LUT RAM FIT = 0.05 FIT

The controller uses ten block RAM (18 Kb). The usage breakdown is:

• An internal buffer uses one block RAM. In the data array, 3268 bits are allocated to data 
buffers used in correction and classif ication; a soft error here would only cause 
potential issue if it occurred during mitigation activity. No permanent data resides here; 
these are therefore ignored. Another 6812 bits are allocated to constant storage; errors 
in these locations are highly likely to break the controller and must be considered in 
the analysis. The remaining 8352 bits are unused.

• The controller f irmware resides in two block RAMs. The word count is approximately 
1732 out of 2048, with at least 444 of the used words only executed one time at system 
start or as debug and therefore ignored. The number of bits considered for the analysis 
is 23184. 

• The soft logic FRAME ECC module within the controller stores the ECC checksums in the 
remaining block RAM. These block RAM contents are protected by the FRAME ECC, and 
do not contribute to the Block RAM Bit FIT. As computed above, these block RAMs do 
contribute to the Configuration Bit FIT. 

Block RAM FIT = 100% * (6812+23184) * 389 FIT/Mbit

Block RAM FIT = 11.1 FIT

The total controller FIT is then:

8.6 FIT + 0.05 FIT + 11.1 FIT ≈ 19.8 FIT

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 22
PG036 July 25, 2012 Product Specification

Performance

Maximum Frequency
The maximum frequency of operation of the SEM Controller is not guaranteed. In no case 
may the maximum frequency of operation exceed the ICAP Fmax specif ied in the relevant 
FPGA data sheet as configuration interface AC timing parameter Frbcck. Table 2-7 provides 
a summary of ICAP Fmax values.

Table 2-7: ICAP Maximum Frequency

 Device ICAP FMAX

7 Series
FPGAs

Kintex-7 100 MHza

a. CORE Generator maximum clock frequency is 70 MHz. See SEM core release notes for more information.

Kintex-7 -2L 70 MHz

Kintex-7Q 100 MHza

Kintex-7Q -2L 70 MHz

Virtex-7 100 MHza

Virtex-7 -2L 70 MHz

Virtex-7Q 100 MHza

Virtex-7Q -2L 70 MHz

Virtex-6
FPGAs

Virtex-6 100 MHz

Virtex-6 -1L 60 MHz

Virtex-6Q 100 MHz

Virtex-6Q -1L 60 MHz

Spartan-6
FPGAs

Spartan-6
XC6SLX4 to XC6SLX75(T)

50 MHz

Spartan-6
XC6SLX100(T) to XC6SLX150(T)

35 MHz

Spartan-6 -1L
XC6SLX4 to XC6SLX75(T)

30 MHz

Spartan-6 -1L
XC6SLX100(T) to XC6SLX150(T)

20 MHz

Spartan-6Q
XQ6SLX4 to XQ6SLX75(T)

50 MHz

Spartan-6Q
XQ6SLX100(T) to XQ6SLX150(T)

35 MHz

Spartan-6Q -1L
XQ6SLX4 to XQ6SLX75(T)

30 MHz

Spartan-6Q -1L
XQ6SLX100(T) to XQ6SLX150(T)

20 MHz

Automotive Spartan-6
XA6SLX4 to XA6SLX75(T)

50 MHz

Automotive Spartan-6
XA6SLX100(T) to XA6SLX150(T)

35 MHz

http://www.xilinx.com
http://www.xilinx.com/support/answers/44541.htm


Soft Error Mitigation Controller v3.3 www.xilinx.com 23
PG036 July 25, 2012 Product Specification

Performance

Other maximum frequency limitations may apply. For more details on determining the 
maximum frequency of operation for the SEM Controller, see Interfaces in Chapter 3.

Solution Latency
The error mitigation latency of the solution is defined as the total time that elapses between 
the creation of an error condition and the conclusion of the mitigation process. The 
mitigation process consists of detection, correction, and classif ication.

Estimation Data

The solution behaviors are based on processing of FPGA configuration memory frames. 
Single-bit errors always reside in a single frame. Generally, an N-bit error can present in 
several ways, ranging from one frame containing all bit errors, to N frames each containing 
one bit error. When multiple frames are affected by an error, the sequence of detection, 
correction, and classif ication is repeated for each affected frame.

The solution properly mitigates an arbitrary workload of errors. The error mitigation latency 
estimation of an arbitrary workload is complex. This section focuses on the common case 
involving a single frame, but provides insight into the controller behavior to aid in 
understanding other scenarios.

Start-Up Latency

Start-up latency is the delay between the end of FPGA configuration and the completion of 
the controller initialization, as marked by entry into the observation state. This latency is a 
function of the FPGA size (frame count) and the solution clock frequency. It is also a 
function of the selected correction mode.

The start-up latency is incurred only once. It is not part of the mitigation process. Table 2-8 
illustrates start-up latency, decomposed into sub-steps of boot and initialization. The boot 

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 24
PG036 July 25, 2012 Product Specification

Performance

time is independent of the selected correction mode, while the initialization time is 
dependent on the selected correction mode.

Table 2-8: Start-Up Latency

Device Boot Time at
ICAP Fmax

Initialization Time at ICAP
Fmax (Repair / Replace)

Initialization Time at ICAP
Fmax (Enhanced Repair)

7 Series

XC7K70T 110 ms 17.8 ms 2.1 s

XC7K160T 110 ms 38.8 ms 4.6 s

XC7K325T 110 ms 71.0 ms 8.5 s

XC7K355T 110 ms 79.9 ms 9.6 s

XC7K410T 110 ms 91.5 ms 10.9 s

XC7K420T 110 ms 106.6 ms 12.7 s

XC7K480T 110 ms 106.6 ms 12.7 s

XC7VX330T 110 ms 77.3 ms 9.2 s

XC7VX415T 110 ms 98.1 ms 11.7 s

XC7VX485T 110 ms 115.7 ms 13.8 s

XC7VX550T 110 ms 163.5 ms 19.5 s

XC7V585T 110 ms 124.4 ms 14.9 s

XC7VX690T 110 ms 163.5 ms 19.5 s

XC7VX980T 110 ms 213.3 ms 25.5 s

Virtex-6

XC6VCX75T 110 ms 18.6 ms N/A

XC6VCX130T 110 ms 31.2 ms N/A

XC6VCX195T 110 ms 45.0 ms N/A

XC6VCX240T 110 ms 54.0 ms N/A

XC6VHX250T 110 ms 56.1 ms N/A

XC6VHX255T 110 ms 56.1 ms N/A

XC6VHX380T 110 ms 84.0 ms N/A

XC6VHX565T 110 ms 117.9 ms N/A

XC6VLX75T 110 ms 18.6 ms N/A

XC6VLX130T 110 ms 31.2 ms N/A

XC6VLX195T 110 ms 45.0 ms N/A

XC6VLX240T 110 ms 54.0 ms N/A

XC6VLX365T 110 ms 75.6 ms N/A

XC6VLX550T 110 ms 113.1 ms N/A

XC6VLX760 110 ms 149.7 ms N/A

XC6VSX315T 110 ms 72.3 ms N/A

XC6VSX475T 110 ms 108.3 ms N/A

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 25
PG036 July 25, 2012 Product Specification

Performance

The start-up latency is the sum of the boot and initialization latency, using the correct 
column of initialization latency data for the selected correction mode. The start-up latency 
at the actual frequency of operation can be estimated using data from Table 2-8 and 
Equation 2-1.

Equation 2-1

Error Detection Latency

Error detection latency is the major component of the total error mitigation latency. Error 
detection latency is a function of the FPGA size (frame count) and the solution clock 
frequency. It is also a function of the type of error and the relative position of the error with 
respect to the position of the silicon readback process. Table 2-9 illustrates full device scan 
times.

Spartan-6

XC6SLX4 110 ms 8.1 ms N/A

XC6SLX9 110 ms 8.1 ms N/A

XC6SLX16 110 ms 11.7 ms N/A

XC6SLX25(T) 110 ms 19.8 ms N/A

XC6SLX45(T) 110 ms 35.7 ms N/A

XC6SLX75(T) 110 ms 60.0 ms N/A

XC6SLX100(T) 110 ms 113.1 ms N/A

XC6SLX150(T) 110 ms 151.8 ms N/A

Table 2-8: Start-Up Latency (Cont’d)

Device Boot Time at
ICAP Fmax

Initialization Time at ICAP
Fmax (Repair / Replace)

Initialization Time at ICAP
Fmax (Enhanced Repair)

StartUpLatencyACTUAL StartUpLatencyICAP_FMAX

ICAP_FMAX
FrequencyACTUAL
----------------------------------------⋅=

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 26
PG036 July 25, 2012 Product Specification

Performance

Table 2-9: Device Scan Times at ICAP Maximum Frequency

 Device Scan Time at ICAP FMAX

7 Series

XC7K70T 5.9 ms

XC7K160T 12.9 ms

XC7K325T 23.5 ms

XC7K355T 26.5 ms

XC7K410T 30.3 ms

XC7K420T 35.3 ms

XC7K480T 35.3 ms

XC7VX330T 25.6 ms

XC7VX415T 32.5 ms

XC7VX485T 38.3 ms

XC7VX550T 54.1 ms

XC7V585T 41.2 ms

XC7VX690T 54.1 ms

XC7VX980T 70.7 ms

Virtex-6

XC6VCX75T 6.2 ms

XC6VCX130T 10.4 ms

XC6VCX195T 15.0 ms

XC6VCX240T 18.0 ms

XC6VHX250T 18.7 ms

XC6VHX255T 18.7 ms

XC6VHX380T 28.0 ms

XC6VHX565T 39.3 ms

XC6VLX75T 6.2 ms

XC6VLX130T 10.4 ms

XC6VLX195T 15.0 ms

XC6VLX240T 18.0 ms

XC6VLX365T 25.2 ms

XC6VLX550T 37.7 ms

XC6VLX760 49.9 ms

XC6VSX315T 24.1 ms

XC6VSX475T 36.1 ms

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 27
PG036 July 25, 2012 Product Specification

Performance

The device scan time for the target device, at the actual frequency of operation, can be 
estimated using data from Table 2-9 and Equation 2-2.

Equation 2-2

The error detection latency can be bounded as follows:

• Absolute minimum error detection latency is effectively zero.

• Average error detection latency for detection by ECC is 0.5 * Scan TimeACTUAL

• Maximum error detection latency for detection by ECC is Scan TimeACTUAL

• Absolute maximum error detection latency for detection by CRC alone is 2.0 * Scan 
TimeACTUAL

The frame-based ECC method used always detects single, double, triple, and all odd-count 
bit errors in a frame. The remaining error types are usually detected by the frame-based ECC 
method as well. It is rare to encounter an error that defeats the ECC and is detected by CRC 
alone.

Spartan-6

XC6SLX4 2.7 ms

XC6SLX9 2.7 ms

XC6SLX16 3.9 ms

XC6SLX25(T) 6.6 ms

XC6SLX45(T) 11.9 ms

XC6SLX75(T) 20.0 ms

XC6SLX100(T) 37.7 ms

XC6SLX150(T) 50.6 ms

Table 2-9: Device Scan Times at ICAP Maximum Frequency (Cont’d)

 Device Scan Time at ICAP FMAX

ScanTimeACTUAL ScanTimeICAP_FMAX

ICAP_FMAX
FrequencyACTUAL
----------------------------------------⋅=

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 28
PG036 July 25, 2012 Product Specification

Performance

Error Correction Latency

After detecting an error, the solution attempts correction. Errors are correctable depending 
on the selected correction mode and error type. Table 2-10 provides error correction 
latency assuming no throttling on the Monitor Interface.

The error correction latency at the actual frequency of operation can be estimated using 
data from Table 2-10 and Equation 2-3.

Equation 2-3

Table 2-10: Error Correction Latency, No Throttling on Monitor Interface

Device
Family

Correction
Mode

Errors in Frame
(Correctability)

Error Correction
State at ICAP_FMAX

7 Series
FPGAs

Repair
1-bit (Correctable) 610 µs

2-bit (Uncorrectable) 20 µs

Enhanced 
Repair

1-bit (Correctable) 610 µs

2-bit (Correctable) 18750 µs

2-bit (Uncorrectable) 9110 µs

BFRa-only (Uncorrectable)

a. BFR is an error condition due to a multi-bit upset in an enhanced repair checksum stored in Block RAM.

10 µs

Replace Any (Correctable) 830 µs

Any CRC-only (Uncorrectable) 10 µs

Virtex-6
FPGAs

Repair
1-bit (Correctable) 490 µs

2-bit (Uncorrectable) 20 µs

Replace Any (Correctable) 660 µs

Any CRC-only (Uncorrectable) 10 µs

Spartan-6
LX4 through LX75(T)

Repair

1-bit (Correctable) 370 µs

2-bit (Uncorrectable) 35 µs

Any CRC-only (Uncorrectable) 15 µs

Spartan-6
LX100(T) through LX150(T)

Repair

1-bit (Correctable) 525 µs

2-bit (Uncorrectable) 50 µs

Any CRC-only (Uncorrectable) 25 µs

CorrectionLatencyACTUAL CorrectionLatencyICAP_FMAX

ICAP_FMAX
FrequencyACTUAL
----------------------------------------⋅=

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 29
PG036 July 25, 2012 Product Specification

Performance

Error Classification Latency

After attempting correction of an error, the solution classif ies the error. The classif ication 
result depends on the correction mode, error type, error location, and selected 
classif ication mode. Table 2-11 provides error classif ication latency assuming no throttling 
on the Monitor Interface.

The error classif ication latency at the actual frequency of operation can be estimated using 
data from Table 2-11 and Equation 2-4.

Equation 2-4

Sources of Additional Latency

It is highly desirable to avoid throttling on the Monitor Interface, because it increases the 
total error mitigation latency:

• After an attempted error correction, but before exiting the error correction state (at 
which time the correctable status flag is updated), the controller issues a detection and 
correction report through the Monitor Interface. If the MON Shim transmit FIFO 
becomes full during this report generation, the controller dwells in this state until it has 
written the entire report into the MON Shim transmit FIFO. When this happens, the 
error correction latency increases.

• After classifying an error, but before exiting the error classif ication state (at which time 
the essential status flag is updated), the controller issues a classif ication report through 
the Monitor Interface. If the MON Shim transmit FIFO becomes full during this report 
generation, the controller dwells in this state until it has written the entire report into 

Table 2-11: Error Classification Latency, No Throttling on Monitor Interface

Device
Family

Correction
Mode

Errors in Frame
(Correctability)

Classification
Mode

Error Classification
State at ICAP_FMAX

7 Series
FPGAs

Any Correctable Enabled 750 µs

Any Uncorrectable Disabled 10 µs

Any Uncorrectable Any 10 µs

Virtex-6
FPGAs

Any Correctable Enabled 610 µs

Any Correctable Disabled 10 µs

Any Uncorrectable Any 10 µs

Spartan-6
LX4 through LX75(T)

Repair Correctable Enabled 435 µs

Correctable Disabled 10 µs

Uncorrectable Any 10 µs

Spartan-6
LX100(T) through LX150(T)

Repair Correctable Enabled 620 µs

Correctable Disabled 15 µs

Any Uncorrectable Any 15 µs

ClassificationLatencyACTUAL ClassificationLatencyICAP_FMAX

ICAP_FMAX
FrequencyACTUAL
----------------------------------------⋅=

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 30
PG036 July 25, 2012 Product Specification

Performance

the MON Shim transmit FIFO. When this happens, the error classif ication latency 
increases.

The approaches to completely eliminate the potential bottleneck are to remove the MON 
Shim and leave the Monitor Interface unused, or use the Monitor Interface with a peripheral 
that never signals a buffer full condition. In the event the Monitor Interface is unused, the 
Status Interface remains available for monitoring activity.

For peripherals where the potential bottleneck is a concern, it can be mitigated. This is 
accomplished by adjusting the transmit FIFO size to accommodate the longest burst of 
status messages that are anticipated so that the transmit FIFO never goes full during error 
mitigation.

If a transmit FIFO full condition does occur, the increase in the total error mitigation latency 
is roughly estimated as shown in Equation 2-5.

Equation 2-5

In Equation 2-5, MessageLength-BufferDepth is in message bytes, and the Transmission 
Rate is in bytes per unit of time.

Sample Latency Estimation
The first sample estimation illustrates the calculation of error mitigation latency for a 
single-bit error by the solution implemented in an XC6VLX240T device with a 66 MHz clock. 
The solution is configured for error correction by repair, with error classif ication disabled. 
The initial assumption is that no throttling occurs on the Monitor Interface.

Equation 2-6

Equation 2-7

Equation 2-8

Equation 2-9

The second sample estimation illustrates the calculation of error mitigation latency for a 
two-bit error by the solution implemented in an XC6VLX240T device with a 66 MHz clock. 
The solution is configured for error correction by replace, with error classif ication enabled. 
Again, it is assumed that no throttling occurs on the Monitor Interface.

Equation 2-10

AdditionalLatency MessageLength BufferDepth–
TransmissionRate

----------------------------------------------------------------------=

DetectionLatency 0.5 ScanTimeACTUAL⋅ 0.5 18.0ms 100MHz
66MHz
------------------⋅ ⋅ 13.636ms= = =

CorrectionLatency 490μs 100MHz
66MHz
------------------⋅ 0.742ms= =

ClassificationLatency 10μs 100MHz
66MHz
------------------⋅ 0.015ms= =

MitigationLatency 13.636ms 0.742ms 0.015ms+ + 14.393ms= =

DetectionLatency 0.5 ScanTimeACTUAL⋅ 0.5 18.0ms 100MHz
66MHz
------------------⋅ ⋅ 13.636ms= = =

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 31
PG036 July 25, 2012 Product Specification

Performance

Equation 2-11

Equation 2-12

Equation 2-13

The final sample estimation illustrates an assessment of the additional latency that would 
result from throttling on the Monitor Interface. Assume the message length in both the first 
and second samples is approximately 80 bytes, but the buffer depth of the MON Shim is 32 
bytes. Further, the MON Shim has been modified to raise the bit rate from 9600 baud to 
460800 baud. The standard 8-N-1 protocol used requires 10 bit times on the serial link to 
transmit a one byte payload:

Equation 2-14

This result illustrates that the additional latency resulting from throttling on the Monitor 
Interface can become signif icant, especially when the data transmission is serialized and 
the data rate is low.

Throughput
The throughput metrics of the SEM Controller are not specified.

Power
The power metrics of the SEM Controller are not specif ied.

CorrectionLatency 660μs 100MHz
66MHz
------------------⋅ 1.000ms= =

ClassificationLatency 610μs 100MHz
66MHz
------------------⋅ 0.924ms= =

MitigationLatency 13.636ms 1.000ms 0.924ms+ + 15.560ms= =

AdditionalLatency 80bytes 32bytes–

460800bittimes
s

----------------------------------- byte
10bittimes
------------------------ s

1000ms
-----------------⋅ ⋅

------------------------------------------------------------------------------------------- 1.042ms= =

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 32
PG036 July 25, 2012 Product Specification

Port Descriptions

Port Descriptions
The SEM Controller is the kernel of the soft error mitigation solution. Figure 2-1 shows the 
SEM Controller ports. The ports are clustered into six groups. Shading indicates port groups 
that only exist in certain configurations.

The SEM Controller has no reset input or output. It automatically initializes itself with an 
internal synchronous reset derived from the de-assertion of the global GSR signal.

The SEM Controller is a fully synchronous design using icap_clk as the single clock. All 
state elements are synchronous to the rising edge of this clock. As a result, all interfaces are 
also synchronous to the rising edge of this clock.

X-Ref Target - Figure 2-1

Figure 2-1: SEM Controller Ports

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 33
PG036 July 25, 2012 Product Specification

Port Descriptions

ICAP Interface
The ICAP Interface is a point-to-point connection between the SEM Controller and the ICAP 
primitive. The ICAP primitive enables read and write access to the registers inside the FPGA 
configuration system. The ICAP primitive and the behavior of the signals on this interface 
are described in UG470, 7 Series FPGAs Configuration User Guide, UG360, Virtex-6 FPGA 
Configuration User Guide, and UG380, Spartan ®-6 FPGA Configuration User Guide.

For 7 series devices, icap_busy is not part of the ICAP Interface.

FRAME_ECC Interface
The FRAME_ECC Interface is a point-to-point connection between the SEM Controller and 
the FRAME_ECC primitive. The FRAME_ECC primitive is an output-only primitive that 
provides a window into the soft error detection function in the FPGA configuration system. 
The FRAME_ECC primitive and the behavior of the signals on this interface are described in 
UG470, 7 Series FPGAs Configuration User Guide, and UG360, Virtex-6 FPGA Configuration 
User Guide.

For Spartan-6 devices, the FRAME_ECC primitive and the soft error detection functionality 
are implemented in soft logic within the SEM Controller. This logic implements the same 

Table 2-12: ICAP Interface Signals

Name Sense Direction Description

icap_busy HIGH IN Receives BUSY output of ICAP. For 7 series devices, 
icap_busy is not part of the ICAP Interface.

icap_o[icap_width-1:0] HIGH IN Receives O output of ICAP. The variable icap_width 
is equal to 32 for 7 series and Virtex-6 devices and 
16 for Spartan-6 devices.

icap_csib / icap_csb LOW OUT Drives CSIB (7 series) / CSB (Virtex-6 and Spartan-6) 
input of ICAP.

icap_rdwrb LOW OUT Drives RDWRB input of ICAP.

icap_i[icap_width-1:0] HIGH OUT Drives I input of ICAP. The variable icap_width is 
equal to 32 for 7 series and Virtex-6 devices and 16 
for Spartan-6 devices.

icap_clk EDGE IN Receives the clock for the design. This same clock 
also must be applied to the CLK input of ICAP. The 
clock frequency must comply with the ICAP input 
clock requirements as specif ied in the target device 
data sheet.

icap_request HIGH OUT This signal is reserved for future use. Leave this port 
OPEN.

icap_grant HIGH IN This signal is reserved for future use. Tie this port to 
VCC.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 34
PG036 July 25, 2012 Product Specification

Port Descriptions

capabilities as present in Virtex-6 FPGAs. As a result, no FRAME_ECC Interface exists on 
implementations of the SEM Controller for Spartan-6 devices.

Advanced users can monitor the FRAME_ECC Interface to provide an early warning of soft 
error detection.

Monitoring of the FRAME_ECC Interface offers additional advantage when the SEM 
Controller is configured for error correction by repair, with error classif ication disabled. In 
this configuration, the user can implement a custom error classif ication algorithm that 
executes in parallel with the SEM Controller error correction algorithm, providing a very low 
delay between error detection and the completion of error classif ication.

Status Interface
The Status Interface provides a convenient set of decoded outputs that indicate, at a high 
level, what the controller is doing.

Table 2-13: FRAME_ECC Interface Signals

Name Sense Direction Description

fecc_crcerr HIGH IN Receives CRCERROR output of FRAME_ECC.

fecc_eccerr HIGH IN Receives ECCERROR output of FRAME_ECC.

fecc_eccerrsingle HIGH IN Receives ECCERRORSINGLE output of FRAME_ECC.

fecc_syndromevalid HIGH IN Receives SYNDROMEVALID output of FRAME_ECC.

fecc_syndrome[12:0] HIGH IN Receives SYNDROME output of FRAME_ECC.

fecc_far[far_width-1:0] HIGH IN Receives FAR output of FRAME_ECC. The variable for 
far_width is 26 for 7 series devices and 24 for 
Virtex-6 devices.

fecc_synbit[4:0] HIGH IN Receives SYNBIT output of FRAME_ECC.

fecc_synword[6:0] HIGH IN Receives SYNWORD output of FRAME_ECC.

Table 2-14: Status Interface Signals

Name Sense Direction Description

status_heartbeat HIGH OUT The heartbeat signal is active while 
status_observation is TRUE. This output issues a 
single-cycle high pulse at least once every 128 clock 
cycles for 7 series and Virtex-6 devices, and at least 
once every 512 clock cycles for Spartan-6 devices. 
This signal can be used to implement an external 
watchdog timer to detect “controller stop” scenarios 
that can occur if the controller or clock distribution 
is disabled by soft errors. When status_observation 
is FALSE, the behavior of the heartbeat signal is 
unspecified.

status_initialization HIGH OUT The initialization signal is active during controller 
initialization, which occurs one time after the design 
begins operation.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 35
PG036 July 25, 2012 Product Specification

Port Descriptions

The status_heartbeat output provides an indication that the controller is active. 
Although the controller mitigates soft errors, it can also be disrupted by soft errors. For 
example, the controller clock can be disabled by a soft error. If the status_heartbeat 
signal stops, the user can take remedial action.

The status_initialization, status_observation, status_correction, 
status_classification, and status_injection outputs indicate the current 
controller state. The status_uncorrectable and status_essential outputs qualify 
the nature of detected errors.

Two additional controller state can be decoded from the f ive controller state outputs. If all 
f ive signals are low, the controller is idle (inactive but ready to resume). If all f ive signals are 
high, the controller is halted (inactive due to fatal error).

status_observation HIGH OUT The observation signal is active during controller 
observation of error detection signals. This signal 
remains active after an error detection while the 
controller queries the hardware for information.

status_correction HIGH OUT The correction signal is active during controller 
correction of an error or during transition through 
this controller state if correction is disabled.

status_classif ication HIGH OUT The classif ication signal is active during controller 
classif ication of an error or during transition 
through this controller state if classif ication is 
disabled.

status_injection HIGH OUT The injection signal is active during controller 
injection of an error. When an error injection is 
complete, and the controller is ready to inject 
another error or return to observation, this signal 
returns inactive.

status_essential HIGH OUT The essential signal is an error classif ication status 
signal. Prior to exiting the classif ication state, the 
controller sets this signal to reflect whether the 
error occurred on an essential bit(s). Then, the 
controller exits classif ication state. 

status_uncorrectable HIGH OUT The uncorrectable signal is an error correction 
status signal. Prior to exiting the correction state, 
the controller sets this signal to reflect the 
correctability of the error. Then, the controller exits 
correction state. 

Table 2-14: Status Interface Signals

Name Sense Direction Description

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 36
PG036 July 25, 2012 Product Specification

Port Descriptions

Error Injection Interface
The Error Injection Interface provides a convenient set of inputs to command the controller 
to inject a bit error into configuration memory.

The user provides an error injection address and command on inject_address and 
asserts inject_strobe to indicate an error injection request.

In response, the controller injects a bit error. The controller confirms receipt of the error 
injection command by asserting status_injection. When the injection command has 
completed, the controller deasserts status_injection. To inject errors affecting 
multiple bits, a sequence of error injections can be performed.

For more information on error injection commands, see Error Injection Interface in 
Chapter 3.

Monitor Interface
The Monitor Interface provides a mechanism for the user to interact with the controller.

The controller is designed to read commands and write status information to this interface 
as ASCII strings. The status and command capability of the Monitor Interface is a superset 
of the Status Interface and the Error Injection Interface. The Monitor Interface is intended 
for use in processor based systems.

Table 2-15: Error Injection Interface Signals

Name Sense Direction Description

inject_strobe HIGH IN The error injection control is used to indicate an 
error injection request. The inject_strobe signal 
should be pulsed high for one cycle concurrent with 
the application of a valid address to the 
inject_address input. The error injection control 
must only be used when the controller is idle.

inject_address
[inject_width-1:0]

HIGH IN The error injection address bus is used to specify the 
parameters for an error injection. The value on this 
bus is captured at the same time inject_strobe is 
sampled active. For 7 series devices, the variable 
inject_width is 40, and for Virtex-6 and Spartan-6 
devices, the variable is 36.

Table 2-16: Monitor Interface Signals

Name Sense Direction Description

monitor_txdata[7:0] HIGH OUT Parallel transmit data from controller.

monitor_txwrite HIGH OUT Write strobe, qualif ies validity of parallel transmit 
data.

monitor_txfull HIGH IN This signal implements flow control on the transmit 
channel, from the shim (peripheral) to the controller.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 37
PG036 July 25, 2012 Product Specification

Port Descriptions

Fetch Interface
The Fetch Interface provides a mechanism for the controller to request data from an 
external source.

During error correction and error classif ication, the controller may need to fetch a frame of 
configuration data or a frame of essential bit data. The controller is designed to write a 
command describing the desired data to the Fetch Interface in binary. The external source 
must use the information to fetch the data and return it to the Fetch Interface.

monitor_rxdata[7:0] HIGH IN Parallel receive data from the shim (peripheral).

monitor_rxread HIGH OUT Read strobe, acknowledges receipt of parallel 
receive data.

monitor_rxempty HIGH IN This signal implements flow control on the receive 
channel, from the shim (peripheral) to the controller.

Table 2-17: Fetch Interface Signals

Name Sense Direction Description

fetch_txdata[7:0] HIGH OUT Parallel transmit data from controller.

fetch_txwrite HIGH OUT Write strobe, qualif ies validity of parallel transmit 
data.

fetch_txfull HIGH IN This signal implements flow control on the transmit 
channel, from the shim (peripheral) to the controller.

fetch_rxdata[7:0] HIGH IN Parallel receive data from the shim (peripheral).

fetch_rxread HIGH OUT Read strobe, acknowledges receipt of parallel 
receive data.

fetch_rxempty HIGH IN This signal implements flow control on the receive 
channel, from the shim (peripheral) to the controller.

fetch_tbladdr[31:0] HIGH IN Used to specify the starting address of the 
controller data in the external source.

Table 2-16: Monitor Interface Signals

Name Sense Direction Description

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 38
PG036 July 25, 2012

Chapter 3

Designing with the Core
This chapter provides details on how to apply the core from three different levels, using a 
bottom-up approach. This chapter includes the following sections:

• Interfaces describes how to connect to the solution. 

• Behaviors describes how to interact with the solution through its interfaces. 

• Systems describes integrating the solution into a larger system.

Interfaces
The system-level design example exposes four to six interfaces, depending on the options 
selected when it is generated. Each interface is described separately. The interface-level 
descriptions are intended to convey how to connect each interface.

Clock Interface
The following recommendations exist for the input clock. These recommendations are 
derived from the FPGA data sheet requirements for clock signals applied to the FPGA 
configuration system:

• Duty Cycle: 45% minimum, 55% maximum

The higher the frequency of the input clock, the lower the mitigation latency of the solution. 
Therefore, faster is better. There are several important factors that must be considered in 
determination of the maximum input clock frequency:

• Frequency must not exceed FPGA configuration system maximum clock frequency. 
Consult the device data sheet for the target device for this information.

• Frequency must not exceed the maximum clock frequency as reported in the static 
timing analyzer. This is generally not a limiting constraint.

Based on the fully synchronous design methodology, additional considerations arise in 
clock frequency selections that relate to the timing of external interfaces, if the system-level 
design example is used:

• For the EXT shim and memory interface:

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 39
PG036 July 25, 2012

Interfaces

° The SPI bus timing budget must be evaluated to determine the maximum SPI bus 
clock frequency; a sample analysis is presented in External Interface, page 42.

° The SPI bus clock is the input clock divided by two; therefore, the input clock cannot 
exceed twice the maximum SPI bus clock frequency.

• For the MON shim and serial interface:

° The input clock and the serial interface baud rate are related by an integer multiple 
of sixteen. For very high baud rates or very low input clock frequencies, the solution 
space may be limited if standard baud rates are desired.

° A sample analysis is presented in Monitor Interface, page 41.

After considering the factors, select an input clock frequency that satisfies all requirements.

Status Interface
Direct, logic-signal-based event reporting is available from the Status Interface. The Status 
Interface can be used for many purposes, but its use is entirely optional. This interface 
reports three different types of information:

• State: Indicates what the controller is doing.

• Flags: Identif ies the type of error detected.

• Heartbeat: Indicates the FPGA configuration system is active.

Only the heartbeat event is unique to the Status Interface. The other information is also 
available on the Monitor Interface.

In most cases, desired signals from the Status Interface should be brought to I/O pins on 
the FPGA. The system-level design example brings all of the signals to I/O pins. The Status 
Interface is the most reliable event reporting mechanism because it has the least amount of 
logic associated with it. Although it is possible to receive and interpret the status signals 
inside the FPGA, this is discouraged because it reduces the overall reliability of the solution.

Externally, the status signals can be connected to indicators for viewing, or to another 
device for observation. To properly capture event reporting, the switching behavior of the 
Status Interface must be accounted for when interfacing to another device.

The signals in the Status Interface are generated by sequential logic processes in the 
controller using the clock supplied to the system-level design example. As a result, the 
pulse widths are always an integer number of clock cycles.

The collective switching behavior of the state signals status_initialization, 
status_observation, status_correction, status_classification, and 
status_injection is illustrated in Figure 3-1. In the f igure, the status_[state] 

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 40
PG036 July 25, 2012

Interfaces

signal represents the five state signals, as a group, which can be considered an indication of 
the controller state.

The switching behavior of the flag signals status_uncorrectable and 
status_essential is relative to the exit from the states where these flags are updated, 
as illustrated in Figure 3-2 and Figure 3-3. The f igures illustrate a window of time when the 
flags are valid with respect to transitions out of the state in which they can be updated. 
Specif ic flag values are not shown in the waveform.

The switching behavior of the heartbeat signal status_heartbeat is illustrated in 
Figure 3-4. This signal is a direct output from the integrated silicon readback process, and 
is active during the observation state. Upon entering the observation state, the heartbeat 
signal will become active when the integrated silicon readback process is scanning for 
errors. The f irst heartbeat pulse observed during the observation state must be used to arm 
any circuit that monitors for loss of heartbeat. In other states, the heartbeat signal will be 
active, but the switching behavior is not guaranteed.

X-Ref Target - Figure 3-1

Figure 3-1: Status Interface State Signals Switching Characteristics

clk

status_[state]

≥ 

X-Ref Target - Figure 3-2

Figure 3-2: Status Interface Uncorrectable Flag Switching Characteristics

clk

status_correction

status_uncorrectable

≥

≥ ≥

X-Ref Target - Figure 3-3

Figure 3-3: Status Interface Essential Flag Switching Characteristics

clk

status_classification

status_essential

≥

≥ ≥

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 41
PG036 July 25, 2012

Interfaces

The first heartbeat after entering the observation state should occur within the one 
readback scan. An entire scan depends on the device and frequency. See Table 2-9 to 
determine how long a readback scan takes for the device being used.

Due to the small pulse widths involved, approaches such as sampling the Status Interface 
signals through embedded processor GPIO using software polling are not likely to work. 
Instead, use other approaches such as using counter/timer inputs, edge sensitive interrupt 
inputs, or inputs with event capture capability.

Monitor Interface
The Monitor Interface consists of two signals implementing an RS-232 protocol compatible, 
full duplex serial port for exchange of commands and status. The following configuration is 
used:

• Baud: 9600

• Settings: 8-N-1

• Flow Control: None

• Terminal Setup: VT100

° TX Newline: CR (Terminal transmits CR [0x0D] as end of line)

° RX Newline: CR+LF (Terminal receives CR [0x0D] as end of line,
and expands to CR+LF [0x0D, 0x0A]) 

° Local Echo: NO

Any external device connected to the Monitor Interface must support this configuration. 
Figure 3-5 shows the switching behavior, and is representative of both transmit and receive.

Transmit and receive timing is derived from a 16x bit rate enable signal which is created 
inside the system-level example design using a counter. The behavior of this counter is to 
start counting from zero, up to and including a terminal count (a condition detected and 

X-Ref Target - Figure 3-4

Figure 3-4: Status Interface Heartbeat Switching Characteristics

clk

status_heartbeat

≤128 Tclk (7 Series and Virtex-6)
512 Tclk (Spartan-6)≤

X-Ref Target - Figure 3-5

Figure 3-5: Monitor Interface Switching Characteristics

monitor_tx
monitor_rx start d0 d1 d2 d3 d4 d5 d6 d7 stop

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 42
PG036 July 25, 2012

Interfaces

used to synchronously reset the counter). The terminal count output is also supplied to 
transmit and receive processes as a time base. 

From a compatibility perspective, the advantages of 9600 baud are that it is a standard bit 
rate, and it is also realizable with a broad range of input clock frequencies. It is used in the 
system-level design example for these reasons.

From a practical perspective, the disadvantage of such a low bit rate is communication 
performance (both data rate and latency). This performance can throttle the controller. For 
this reason, changing to a higher bit rate is strongly encouraged. A wide variety of other bit 
rates are possible, including standard bit rates: 115200, 230400, 460800, and 921600 baud.

In the MON shim system-level example design module, the parameter V_ENABLETIME sets 
the communication bit rate. The value for V_ENABLETIME is calculated using:

V_ENABLETIME= round to integer Equation 3-1

A rounding error as great as +/- 0.5 can result from the computation of V_ENABLETIME. This 
error produces a bit rate that is slightly different than the nominal bit rate. A difference of 
2% between RS-232 devices is considered acceptable, which suggests a bit rate tolerance of 
+/- 1% for each device.

Example: The input clock is 66 MHz, and the desired bit rate is 115200 baud.

V_ENABLETIME= round to integer =35 Equation 3-2

The actual bit rate that results is approximately 114583 baud, which deviates -0.54% from 
the nominal bit rate of 115200 baud. This is acceptable because the difference is within +/
- 1%.

When exploring bit rates, if the difference from nominal exceeds the +/- 1% tolerance, 
select another combination of bit rate and input clock frequency that yields less error. No 
additional switching characteristics are specified.

Electrically, the I/O pins used by the Monitor Interface use LVCMOS signaling, which is 
suitable for interfacing with other devices. No specific I/O mode is required. When full 
electrical compatibility with RS-232 is desired, an external level translator must be used.

External Interface
The External Interface consists of four signals implementing a SPI bus protocol compatible, 
full duplex serial port. This interface is only present when one or both of the following 
controller options are enabled:

• Error Correction by Replacement

• Error Classif ication

input clock frequency
16 nominal  bitrate×
-------------------------------------------------------------- 1–

66000000
16 115200×
-------------------------------- 1–

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 43
PG036 July 25, 2012

Interfaces

The implementations of these functions require external storage. The system-level design 
example provides a f ixed-function SPI bus master in the EXT shim to fetch data from a 
single external SPI flash device. Table 3-1 provides an SPI flash device recommendation for 
each supported FPGA:

Table 3-1: External Storage Requirements

Device Error Classification
Only

Error Correction by
Replacement Only

Error Classification with 
Error Correction by 

Replacement

XC7K70T 32 Mbit 32 Mbit 64 Mbit

XC7K160T 64 Mbit 64Mbit 128 Mbit

XC7K325T 128 Mbit 128 Mbit 256 Mbit

XC7K355T 128 Mbit 128 Mbit 256 Mbit

XC7K410T 128 Mbit 128 Mbit 256 Mbit

XC7K420T 128 Mbit 128 Mbit 256 Mbit

XC7K480T 128 Mbit 128 Mbit 256 Mbit

XC7VX330T 128 Mbit 128 Mbit 256 Mbit

XC7VX415T 128 Mbit 128 Mbit 256 Mbit

XC7VX485T 128 Mbit 128 Mbit 256 Mbit

XC7VX550T 256 Mbit 256 Mbit 512 Mbit

XC7V585T 128 Mbit 128 Mbit 256 Mbit

XC7VX690T 256 Mbit 256 Mbit 512 Mbit

XC7VX980T 256 Mbit 256 Mbit 512 Mbit

XC6VCX75T 32 Mbit 32 Mbit 64 Mbit

XC6VCX130T 32 Mbit 32 Mbit 64 Mbit

XC6VCX195T 64 Mbit 64 Mbit 128 Mbit

XC6VCX240T 64 Mbit 64 Mbit 128 Mbit

XC6VHX250T 64 Mbit 64 Mbit 128 Mbit

XC6VHX255T 64 Mbit 64 Mbit 128 Mbit

XC6VHX380T 128 Mbit 128 Mbit 256 Mbit

XC6VHX565T 128 Mbit 128 Mbit 256 Mbit

XC6VLX75T 32 Mbit 32 Mbit 64 Mbit

XC6VLX130T 32 Mbit 32 Mbit 64 Mbit

XC6VLX195T 64 Mbit 64 Mbit 128 Mbit

XC6VLX240T 64 Mbit 64 Mbit 128 Mbit

XC6VLX365T 128 Mbit 128 Mbit 256 Mbit

XC6VLX550T 128 Mbit 128 Mbit 256 Mbit

XC6VLX760 256 Mbit 256 Mbit 512 Mbit

XC6VSX315T 128 Mbit 128 Mbit 256 Mbit

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 44
PG036 July 25, 2012

Interfaces

The SPI flash device must support the standard “fast read” command 0x0B. If the SPI flash 
density is larger than 128 Mbit, it must also support a 32-bit addressing extension, enabled 
with “enable 32-bit addressing” command 0xB7.

Figure 3-6 shows the connectivity between an FPGA and a SPI Flash device. Note the 
presence of level translators (marked “LT”). These are required because commonly available 
SPI Flash devices use 3.3V I/O, which may not be available depending on the selected FPGA 
or I/O bank voltage.

The level translators must exhibit low propagation delay to maximize the SPI bus 
performance. The SPI bus performance can potentially affect the maximum frequency of 
operation of the entire system-level design example.

XC6VSX475T 128 Mbit 128 Mbit 256 Mbit

XC6SLX4 4 Mbit N/A N/A

XC6SLX9 4 Mbit N/A N/A

XC6SLX16 4 Mbit N/A N/A

XC6SLX25T 8 Mbit N/A N/A

XC6SLX45T 16 Mbit N/A N/A

XC6SLX75T 16 Mbit N/A N/A

XC6SLX100T 32 Mbit N/A N/A

XC6SLX150T 32 Mbit N/A N/A

X-Ref Target - Figure 3-6

Figure 3-6: SPI Flash Device Connection, Including Level Translators

Table 3-1: External Storage Requirements (Cont’d)

Device Error Classification
Only

Error Correction by
Replacement Only

Error Classification with 
Error Correction by 

Replacement

FPGA

external_d

external_q

external_c

external_s_n

LT

LT

d q

s_n

c

SPI Flash

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 45
PG036 July 25, 2012

Interfaces

The following sections illustrate how to analyze the SPI bus timing budgets. This is a critical 
analysis which must be performed to ensure reliable data transfer over the SPI bus. Every 
implementation should be considered unique and be carefully evaluated to ensure the 
timing budgets posed in the example are satisf ied.

SPI Bus Clock Waveform and Timing Budget

The SPI flash device has requirements on the switching characteristics of its input clock. This 
analysis is for the clock signal generated for the SPI flash device by the system-level design 
example. Completion of this analysis requires board-level signal integrity simulation 
capability.

The following parameters, shown in Figure 3-7, are defined as requirements on the clock 
input to the SPI flash device:

• Tclch = SPI bus clock maximum rise time requirement

• Tchcl = SPI bus clock maximum fall time requirement

• Tcl = SPI bus clock minimum low time requirement

• Tch = SPI bus clock minimum high time requirement

Based on the physical construction of the SPI bus, the I/O characteristics of the FPGA, and 
the I/O characteristics of any level translator used, the SPI bus clock signal originating at the 
FPGA will exhibit maximum rise and fall times (Trise and Tfall) at the SPI flash device. 
Satisfaction of Tclch and Tchcl requirements by Trise and Tfall must be verif ied. Should Tclch 
and Tchcl requirements not be satisf ied, avenues of correction include:

• Change I/O slew rate for the system-level design example SPI bus clock output.

• Change I/O drive strength for the system-level design example SPI bus clock output.

• Select an alternate level translator with more suitable I/O characteristics.

Generally, the Tclch and Tchcl requirements are easy to satisfy. They exist to prohibit 
exceptionally long rise and fall times that might occur on a true bus with many loads, rather 
than the point-to-point scheme used with the system-level design example.

X-Ref Target - Figure 3-7

Figure 3-7: SPI Flash Device Input Clock Requirements

c

Tclch

Tchcl

Tcl

Tch

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 46
PG036 July 25, 2012

Interfaces

The SPI bus clock generated by the system-level design example is the input clock divided 
by two. Therefore, the SPI bus clock high and low times are nominally equal to Tclk. 
However, considering actual Trise and Tfall, also ensure satisfaction of the following:

• Tclk ≥  Trise + Tch

• Tclk ≥  Tfall + Tcl

Example:

• Tclch = 33 ns (from SPI flash data sheet)

• Tchcl = 33 ns (from SPI flash data sheet)

• Tcl = 9 ns (from SPI flash data sheet)

• Tch = 9 ns (from SPI flash data sheet)

• Trise = 2 ns (from PCB simulation)

• Tfall = 2 ns (from PCB simulation)

Given this data, perform the following:

1. Check: Is Tclch ≥  Trise? Is 33 ns ≥  2 ns? Yes

2. Check: Is Tchcl ≥  Tfall? Is 33 ns ≥  2 ns? Yes

3. Calculate: Tclk ≥  Trise + Tch requires Tclk ≥  2 ns + 9 ns, or Tclk ≥  11 ns

4. Calculate: Tclk ≥  Tfall + Tcl requires Tclk ≥  2 ns + 9 ns, or Tclk ≥  11 ns

The rise time requirements are satisf ied. These requirements on Tclk indicate that the SPI 
Bus Clock Waveform and Timing Budget will restrict the system-level design example input 
clock cycle time to be 11 ns or larger.

SPI Bus Transmit Waveform and Timing Budget

The SPI flash device has requirements on the switching characteristics of its input data with 
respect to its input clock. This analysis is for data capture at the SPI flash device, when 
receiving data from the system-level design example.
X-Ref Target - Figure 3-8

Figure 3-8: SPI Flash Device Input Data Capture Requirements

c

d

Tchdx
Tdvch

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 47
PG036 July 25, 2012

Interfaces

The following parameters, shown in Figure 3-8, are defined as requirements for successful 
data capture by the SPI flash device:

• Tdvch = SPI flash minimum data setup requirement with respect to clock

• Tchdx = SPI flash minimum data hold requirement with respect to clock

The analysis assumes minimum propagation delays are zero. This analysis also assumes the 
following skews are negligible:

• Skew on input clock distribution to FPGA output flip-flops.

• Skew on output signal paths from FPGA output flip-flops to FPGA pins.

• Skew in PCB level translator channel delays. The level translator on clock and datapaths 
must be matched for this to be true.

• Skew in PCB trace segment delays. The trace delay on clock and datapaths must be 
matched for this to be true

• Duty cycle distortion.

The following parameters are defined as implementation parameters of the EXT shim and 
PCB:

• Tclk = input clock cycle time (icap_clk)

• Tqfpga = FPGA output delay with respect to icap_clk

• Tw1 = FPGA to level translator PCB trace delay

• Tw2 = Level translator to SPI flash PCB trace delay

• Tdly = Level translator channel delay

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 48
PG036 July 25, 2012

Interfaces

The memory system signaling generated by the EXT shim implementation is shown in 
Figure 3-9.

Given the stated assumptions, the delays on both the clock and datapaths are identical and 
track each other over process, voltage, and temperature variations. The following 
relationships exist:

• Tclk ≥  Tdvch

• Tclk ≥  Tchdx

Example:

• Tdvch = 2 ns (from SPI flash data sheet)

• Tchdx = 5 ns (from SPI flash data sheet)

1. Calculate: Tclk ≥  Tdvch requires Tclk ≥  2 ns

2. Calculate: Tclk ≥  Tchdx requires Tclk ≥  5 ns

These requirements on Tclk indicate that the SPI Transmit Waveform and Timing Budget will 
restrict the system-level design example input clock cycle time to be 5 ns or larger.

X-Ref Target - Figure 3-9

Figure 3-9: Input Data Capture Timing

icap_clk

external_c

external_d

c

d

Tdvch Tchdx

Tqfpga

Tclk Tclk

Tw1+Tdly+Tw2

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 49
PG036 July 25, 2012

Interfaces

SPI Bus Receive Waveform and Timing Budget

The SPI flash device will exhibit certain output switching characteristics of its output data 
with respect to its input clock. This analysis is for data capture at the system-level design 
example, when receiving data from the SPI flash device.

The following parameters, shown in Figure 3-10, are defined as the output switching 
behavior of the SPI flash device:

• Tclqv = SPI flash maximum output valid with respect to clock

• Tclqx = SPI flash minimum output hold with respect to clock

The analysis assumes minimum propagation delays are zero. This analysis also assumes the 
following skews are negligible:

• Skew on input clock distribution to FPGA output and input flip-flops.

• Skew in PCB level translator channel delays. The level translator on clock and datapaths 
must be matched for this to be true.

• Duty cycle distortion.

The following parameters are defined as implementation parameters of the EXT shim and 
PCB:

• Tclk = input clock cycle time (icap_clk)

• Tqfpga = FPGA output delay with respect to icap_clk

• Tsfpga = FPGA input setup requirement with respect to icap_clk

• Thfpga = FPGA input hold requirement with respect to icap_clk

• Tw1 = FPGA to level translator PCB trace delay

• Tw2 = Level translator to SPI flash PCB trace delay

• Tw3 = SPI flash to level translator PCB trace delay

• Tw4 = Level translator to FPGA PCB trace delay

• Tdly = Level translator channel delay

X-Ref Target - Figure 3-10

Figure 3-10: SPI Flash Device Output Data Switching Characteristics

c

q

Tclqv

Tclqx Tclqv

Tclqx

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 50
PG036 July 25, 2012

Interfaces

The timing path is a two cycle path for the EXT shim, but a single cycle path to the SPI flash 
device. For the timing analysis, the clock to out of the SPI flash device is modeled as a 
combinational delay. Both setup and hold requirements at the FPGA must be considered.

The memory system signaling generated by the EXT shim implementation is shown in 
Figure 3-11 and Figure 3-12.

The hold path analysis is a pass/fail test. The hold path analysis must be calculated using 
minimum delay values, for which the following relationship must be verif ied:

Thfpga ≤  Tqfpga,min + Tw1 + Tdly + Tw2 + Tclqx + Tw3 + Tdly + Tw4

X-Ref Target - Figure 3-11

Figure 3-11: Output Data Capture Timing (Hold Analysis)

X-Ref Target - Figure 3-12

Figure 3-12: Output Data Capture Timing (Setup Analysis)

icap_clk

external_c

c

q

external_q

Tqfpga

Tw1+Tdly+Tw2

Tclqx

Tw3+Tdly+Tw4

Thfpga

icap_clk

external_c

c

q

external_q

Tqfpga

Tclk Tclk

Tw1+Tdly+Tw2

Tclqv

Tw3+Tdly+Tw4
Tsfpga

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 51
PG036 July 25, 2012

Interfaces

Substituting zero as a conservative minimum delay for Tw1, Tw2, Tw3, Tw4, and Tdly yields:

Thfpga ≤  Tqfpga,min + Tclqx

The setup path analysis must be calculated using maximum delay values:

Tclk ≥  0.5*(Tqfpga,max + Tw1 + Tdly + Tw2 + Tclqv + Tw3 + Tdly + Tw4 + Tsfpga)

Example 1: ISE Design Suite, Virtex-6 FPGA

• Tclqv = 8 ns (from SPI flash data sheet)

• Tclqx = 0 ns (from SPI flash data sheet)

• Tdly = 3 ns (from level translator data sheet)

• Tw1 = 1 ns (from board simulation)

• Tw2 = 1 ns (from board simulation)

• Tw3 = 1 ns (from board simulation)

• Tw4 = 1 ns (from board simulation)

The FPGA timing parameters must be obtained from the timing report that results from the 
implementation of the system-level design example in the FPGA targeted for use in the 
application. To generate the necessary reports, the timing analyzer must be run using the 
“-fastpaths” option.

The examples that follow are excerpts from the timing analyzer report generated from a 
Virtex-6 device implementation of the system-level design example. The purpose of the 
examples are to illustrate where to f ind the required information.

Locate Tqfpga by searching the timing report for flip-flop to pad maximum path timing 
analysis, where the destination pad is identif ied as “external_c”.

• Tqfpga = I/O Datapath Delay (external_c)

• Tqfpga = 3.360 ns, maximum

--------------------------------------------------------------------------------
Slack: 13.042ns (requirement - (clock arrival + clock path + datapath + uncertainty))
 Source:    example_ext/example_ext_byte/ext_c_ofd (FF)
 Destination:   external_c (PAD)
 Source Clock:   icap_clk rising at 0.000ns
 Requirement:   20.000ns
 Datapath Delay:  3.360ns (Levels of Logic = 1)
 Clock Path Delay:  3.573ns (Levels of Logic = 2)
 Clock Uncertainty: 0.025ns

 Clock Uncertainty:   0.025ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.050ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ):  0.000ns
 Phase Error (PE):   0.000ns

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 52
PG036 July 25, 2012

Interfaces

 Maximum Clock Path at Slow Process Corner:
clk to example_ext/example_ext_byte/ext_c_ofd

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 U23.I    Tiopi     0.702 clk clk clk_IBUFG
 BUFGCTRL_X0Y0.I0  net (fanout=1)  0.938 clk_IBUFG
 BUFGCTRL_X0Y0.O  Tbgcko_O    0.092 example_bufg example_bufg
 OLOGIC_X0Y194.CLK net (fanout=283)  1.841 icap_clk
 ------------------------------------------------- ---------------------------
 Total          3.573ns (0.794ns logic, 2.779ns route)
              (22.2% logic, 77.8% route)

 Maximum Datapath at Slow Process Corner:
example_ext/example_ext_byte/ext_c_ofd to external_c

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 OLOGIC_X0Y194.OQ  Tockq     0.625 external_c_OBUF example_ext/example_ext_byte/ext_c_ofd
 E33.O    net (fanout=1)  0.002 external_c_OBUF
 E33.PAD    Tioop     2.733 external_c external_c_OBUF external_c
 ------------------------------------------------- ---------------------------
 Total          3.360ns (3.358ns logic, 0.002ns route)
              (99.9% logic, 0.1% route)
-------------------------------------------------------------------------------

Locate Tqfpga by searching the timing report for flip-flop to pad minimum path timing 
analysis, where the destination pad is identif ied as “external_c”.

• Tqfpga = I/O Datapath Delay (external_c)

• Tqfpga = 1.473 ns, minimum

--------------------------------------------------------------------------------
Delay (fastest paths): 2.951ns (clock arrival + clock path + datapath - uncertainty)
 Source:    example_ext/example_ext_byte/ext_c_ofd (FF)
 Destination:   external_c (PAD)
 Source Clock:   icap_clk rising at 0.000ns
 Datapath Delay:  1.473ns (Levels of Logic = 1)
 Clock Path Delay:  1.503ns (Levels of Logic = 2)
 Clock Uncertainty: 0.025ns

 Clock Uncertainty:   0.025ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.050ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ):  0.000ns
 Phase Error (PE):   0.000ns

 Minimum Clock Path at Fast Process Corner:
clk to example_ext/example_ext_byte/ext_c_ofd

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 U23.I    Tiopi     0.316 clk clk clk_IBUFG
 BUFGCTRL_X0Y0.I0  net (fanout=1)  0.367 clk_IBUFG
 BUFGCTRL_X0Y0.O  Tbgcko_O    0.033 example_bufg example_bufg
 OLOGIC_X0Y194.CLK net (fanout=283)  0.787 icap_clk
 ------------------------------------------------- ---------------------------
 Total          1.503ns (0.349ns logic, 1.154ns route)
              (23.2% logic, 76.8% route)

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 53
PG036 July 25, 2012

Interfaces

 Minimum Datapath at Fast Process Corner:
example_ext/example_ext_byte/ext_c_ofd to external_c

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 OLOGIC_X0Y194.OQ  Tockq     0.215 external_c_OBUF example_ext/example_ext_byte/ext_c_ofd
 E33.O    net (fanout=1)  0.002 external_c_OBUF
 E33.PAD    Tioop     1.256 external_c external_c_OBUF external_c
 ------------------------------------------------- ---------------------------
 Total          1.473ns (1.471ns logic, 0.002ns route)
              (99.9% logic, 0.1% route)
--------------------------------------------------------------------------------

Locate Tsfpga by searching the timing report for pad to flip-flop maximum path timing 
analysis, where the source pad is identif ied as “external_q”.

• Tsfpga = I/O Datapath Delay (external_q)

• Tsfpga = 4.943 ns, maximum

--------------------------------------------------------------------------------
Slack (setup): 18.398ns (requirement - (datapath - clock path - clock arrival + 
uncertainty))
 Source:    external_q (PAD)
 Destination:   example_ext/example_ext_byte/ext_q_ifd (FF)
 Destination Clock: icap_clk rising at 0.000ns
 Requirement:   20.000ns
 Datapath Delay:  4.943ns (Levels of Logic = 1)
 Clock Path Delay:  3.366ns (Levels of Logic = 2)
 Clock Uncertainty: 0.025ns

 Clock Uncertainty:   0.025ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.050ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ):  0.000ns
 Phase Error (PE):   0.000ns

 Maximum Datapath at Slow Process Corner:
external_q to example_ext/example_ext_byte/ext_q_ifd

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 C33.I    Tiopi     0.766 external_q external_q external_q_IBUF
 ILOGIC_X0Y187.DDLY net (fanout=1)  4.046 external_q_IBUF
 ILOGIC_X0Y187.CLK Tidockd    0.131 fetch_rxdata<0> example_ext/example_ext_byte/ext_q_ifd
 ------------------------------------------------- ---------------------------
 Total          4.943ns (0.897ns logic, 4.046ns route)
              (18.1% logic, 81.9% route)

 Minimum Clock Path at Slow Process Corner:
clk to example_ext/example_ext_byte/ext_q_ifd

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 U23.I    Tiopi     0.670 clk clk clk_IBUFG
 BUFGCTRL_X0Y0.I0  net (fanout=1)  0.865 clk_IBUFG
 BUFGCTRL_X0Y0.O  Tbgcko_O    0.087 example_bufg example_bufg
 ILOGIC_X0Y187.CLK net (fanout=283)  1.744 icap_clk
 ------------------------------------------------- ---------------------------
 Total          3.366ns (0.757ns logic, 2.609ns route)

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 54
PG036 July 25, 2012

Interfaces

              (22.5% logic, 77.5% route)
--------------------------------------------------------------------------------

Locate Thfpga by searching the timing report for pad to flip-flop minimum path timing 
analysis, where the source pad is identif ied as “external_q”.

• Thfpga = I/O Datapath Delay (external_q)

• Thfpga = -1.800 ns, minimum

--------------------------------------------------------------------------------
Slack (hold): 0.131ns (requirement - (clock path + clock arrival + uncertainty - datapath))
 Source:    external_q (PAD)
 Destination:   example_ext/example_ext_byte/ext_q_ifd (FF)
 Destination Clock: icap_clk rising at 0.000ns
 Requirement:   0.000ns
 Datapath Delay:  1.800ns (Levels of Logic = 1)
 Clock Path Delay:  1.644ns (Levels of Logic = 2)
 Clock Uncertainty: 0.025ns

 Clock Uncertainty:   0.025ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.050ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ):  0.000ns
 Phase Error (PE):   0.000ns

 Minimum Datapath at Fast Process Corner:
external_q to example_ext/example_ext_byte/ext_q_ifd

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 C33.I    Tiopi     0.371 external_q external_q external_q_IBUF
 ILOGIC_X0Y187.DDLY net (fanout=1)  1.432 external_q_IBUF
 ILOGIC_X0Y187.CLK Tiockdd  (-Th)  0.003 fetch_rxdata<0> example_ext_byte/ext_q_ifd
 ------------------------------------------------- ---------------------------
 Total          1.800ns (0.368ns logic, 1.432ns route)
              (20.4% logic, 79.6% route)

 Maximum Clock Path at Fast Process Corner:
clk to example_ext/example_ext_byte/ext_q_ifd

 Location    Delay type   Delay(ns) Physical Resource Logical Resource(s)
 ------------------------------------------------- -------------------
 U23.I    Tiopi     0.371 clk clk clk_IBUFG
 BUFGCTRL_X0Y0.I0  net (fanout=1)  0.397 clk_IBUFG
 BUFGCTRL_X0Y0.O  Tbgcko_O    0.035 example_bufg example_bufg
 ILOGIC_X0Y187.CLK net (fanout=283)  0.841 icap_clk
 ------------------------------------------------- ---------------------------
 Total          1.644ns (0.406ns logic, 1.238ns route)
              (24.7% logic, 75.3% route)
--------------------------------------------------------------------------------

Check:

• Is Thfpga ≤  Tqfpga,min + Tclqx?

• Is -1.800 ns ≤  1.473 ns + 0 ns?

• Is -1.800 ns ≤  1.473 ns? YES

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 55
PG036 July 25, 2012

Interfaces

Calculate:

Tclk ≥  0.5*(Tqfpga,max + Tw1 + Tdly + Tw2 + Tclqv + Tw3 + Tdly + Tw4 + Tsfpga)

requires

Tclk ≥  0.5*(3.360 ns + 1 ns + 3 ns + 1 ns + 8 ns + 1 ns + 3 ns + 1 ns + 4.943 ns)

or

Tclk ≥  13.152 ns

The hold requirement is satisf ied, and the requirement on Tclk indicates that the SPI Receive 
Waveform and Timing Budget will restrict the system-level design example input clock cycle 
time to be 13.152 ns or larger.

Example 2: Vivado Design Suite, Kintex-7 FPGA

• Tclqv = 8 ns (from SPI flash data sheet)

• Tclqx = 0 ns (from SPI flash data sheet)

• Tdly = 3 ns (from level translator data sheet)

• Tw1 = 1 ns (from board simulation)

• Tw2 = 1 ns (from board simulation)

• Tw3 = 1 ns (from board simulation)

• Tw4 = 1 ns (from board simulation)

The FPGA timing parameters must be obtained from the timing report from the 
implementation of the system-level design example in the FPGA targeted for use in the 
application. To generate the necessary report, use "report_timing_summary" to generate a 
report using the "min_max" option.

The examples that follow are excerpts from the timing report generated from a Kintex-7 
device implementation of the system-level example design. The purpose of the example is 
to illustrate where to f ind the required information. If the information is not easily located 
in the report, increase the maximum number of paths reported.

Locate Tqfpga by searching the timing report for flip-flop to pad path analysis at Max at Slow 
Process Corner, where the destination is identif ied as "external_c".

• Tqfpga = I/O Datapath Delay (external_c)

• Tqfpga = 3.211 ns, maximum

Slack (MET) :             20.670ns
  Source:                 example_ext/example_ext_byte/ext_c_ofd/C
                            (rising edge-triggered cell FDRE clocked by clk  {rise@0.000ns 
fall@7.576ns period=15.151ns})

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 56
PG036 July 25, 2012

Interfaces

  Destination:            external_c
                            (output port clocked by clk  {rise@0.000ns fall@7.576ns 
period=15.151ns})
  Path Group:             clk
  Path Type:              Max at Slow Process Corner
  Requirement:            15.151ns
  Data Path Delay:        3.211ns  (logic 3.211ns (100.000%)  route 0.000ns (0.000%))
  Logic Levels:           1  (OBUF=1)
  Output Delay:           -15.151ns
  Clock Path Skew:        -6.385ns (DCD - SCD + CPR)
    Destination Clock Delay (DCD):    0.000ns
    Source Clock Delay      (SCD):    6.385ns
    Clock Pessimism Removal (CPR):    0.000ns
  Clock Uncertainty:      0.035ns  ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
    Total System Jitter     (TSJ):    0.071ns
    Total Input Jitter      (TIJ):    0.000ns
    Discrete Jitter          (DJ):    0.000ns
    Phase Error              (PE):    0.000ns

    Location             Delay type                Incr(ns)  Path(ns)    Netlist Resource(s)
  -------------------------------------------------------------------    
-------------------
                         (clock clk rise edge)        0.000     0.000 r  
    R24                                               0.000     0.000 r  clk
                         net (fo=0)                   0.000     0.000    clk
    R24                                                               r  example_ibuf/I
    R24                  IBUF (Prop_ibuf_I_O)         1.176     1.176 r  example_ibuf/O
                         net (fo=1, routed)           3.130     4.305    clk_ibufg
    BUFGCTRL_X0Y0                                                     r  example_bufg/I
    BUFGCTRL_X0Y0        BUFG (Prop_bufg_I_O)         0.093     4.398 r  example_bufg/O
                         net (fo=477, routed)         1.987     6.385    example_ext/
example_ext_byte/icap_clk
    OLOGIC_X0Y37                                                      r  example_ext/
example_ext_byte/ext_c_ofd/C
  -------------------------------------------------------------------    
-------------------
    OLOGIC_X0Y37         FDRE (Prop_fdre_C_Q)         0.366     6.751 r  example_ext/
example_ext_byte/ext_c_ofd/Q
                         net (fo=1, routed)           0.000     6.751    n_96_example_ext
    AB20                                                              r  external_c_OBUF_inst/I
    AB20                 OBUF (Prop_obuf_I_O)         2.845     9.596 r  external_c_OBUF_inst/O
                         net (fo=0)                   0.000     9.596    external_c
    AB20                                                              r  external_c
  -------------------------------------------------------------------    
-------------------

                         (clock clk rise edge)       15.151    15.151 r
                         clock pessimism              0.000    15.151
                         clock uncertainty           -0.035    15.116
                         output delay                15.151    30.267
  -------------------------------------------------------------------
                         required time                         30.267
                         arrival time                          -9.596
  -------------------------------------------------------------------
                         slack                                 20.670

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 57
PG036 July 25, 2012

Interfaces

Locate Tqfpga by searching the timing report for flip-flop to pad path analysis at Min at Fast 
Process Corner, where the destination is identif ied as "external_c".

• Tqfpga = I/O Datapath Delay (external_c)

• Tqfpga = 1.379 ns, minimum

Slack (MET) :             4.460ns
  Source:                 example_ext/example_ext_byte/ext_c_ofd/C
                            (rising edge-triggered cell FDRE clocked by clk  {rise@0.000ns 
fall@7.576ns period=15.151ns})
  Destination:            external_c
                            (output port clocked by clk  {rise@0.000ns fall@7.576ns 
period=15.151ns})
  Path Group:             clk
  Path Type:              Min at Fast Process Corner
  Requirement:            0.000ns
  Data Path Delay:        1.379ns  (logic 1.379ns (100.000%)  route 0.000ns (0.000%))
  Logic Levels:           1  (OBUF=1)
  Output Delay:           0.000ns
  Clock Path Skew:        -3.117ns (DCD - SCD - CPR)
    Destination Clock Delay (DCD):    0.000ns
    Source Clock Delay      (SCD):    3.117ns
    Clock Pessimism Removal (CPR):    -0.000ns
  Clock Uncertainty:      0.035ns  ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
    Total System Jitter     (TSJ):    0.071ns
    Total Input Jitter      (TIJ):    0.000ns
    Discrete Jitter          (DJ):    0.000ns
    Phase Error              (PE):    0.000ns

    Location             Delay type                Incr(ns)  Path(ns)    Netlist Resource(s)
  -------------------------------------------------------------------    
-------------------
                         (clock clk rise edge)        0.000     0.000 r  
    R24                                               0.000     0.000 r  clk
                         net (fo=0)                   0.000     0.000    clk
    R24                                                               r  example_ibuf/I
    R24                  IBUF (Prop_ibuf_I_O)         0.616     0.616 r  example_ibuf/O
                         net (fo=1, routed)           1.675     2.291    clk_ibufg
    BUFGCTRL_X0Y0                                                     r  example_bufg/I
    BUFGCTRL_X0Y0        BUFG (Prop_bufg_I_O)         0.026     2.317 r  example_bufg/O
                         net (fo=477, routed)         0.800     3.117    example_ext/
example_ext_byte/icap_clk
    OLOGIC_X0Y37                                                      r  example_ext/
example_ext_byte/ext_c_ofd/C
  -------------------------------------------------------------------    
-------------------
    OLOGIC_X0Y37         FDRE (Prop_fdre_C_Q)         0.192     3.309 r  example_ext/
example_ext_byte/ext_c_ofd/Q
                         net (fo=1, routed)           0.000     3.309    n_96_example_ext
    AB20                                                              r  external_c_OBUF_inst/I
    AB20                 OBUF (Prop_obuf_I_O)         1.187     4.495 r  external_c_OBUF_inst/O
                         net (fo=0)                   0.000     4.495    external_c
    AB20                                                              r  external_c
  -------------------------------------------------------------------    
-------------------

                         (clock clk rise edge)        0.000     0.000 r

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 58
PG036 July 25, 2012

Interfaces

                         clock pessimism              0.000     0.000
                         clock uncertainty            0.035     0.035
                         output delay                -0.000     0.035
  -------------------------------------------------------------------
                         required time                         -0.035
                         arrival time                           4.495
  -------------------------------------------------------------------
                         slack                                  4.460

Locate Tsfpga by searching the timing report for pad to flip-flop path analysis at Max at Slow 
Process Corner, where the source pad is identif ied as "external_q".

• Tsfpga = I/O Datapath Delay (external_q)

• Tsfpga = 7.813 ns, maximum

Slack (MET) :             28.041ns
  Source:                 external_q
                            (input port clocked by clk  {rise@0.000ns fall@7.576ns 
period=15.151ns})
  Destination:            example_ext/example_ext_byte/ext_q_ifd/D
                            (rising edge-triggered cell FDRE clocked by clk  {rise@0.000ns 
fall@7.576ns period=15.151ns})
  Path Group:             clk
  Path Type:              Max at Slow Process Corner
  Requirement:            15.151ns
  Data Path Delay:        7.813ns  (logic 7.813ns (100.000%)  route 0.000ns (0.000%))
  Logic Levels:           2  (IBUF=1 ZHOLD_DELAY=1)
  Input Delay:            -15.151ns
  Clock Path Skew:        5.588ns (DCD - SCD + CPR)
    Destination Clock Delay (DCD):    5.588ns
    Source Clock Delay      (SCD):    0.000ns
    Clock Pessimism Removal (CPR):    0.000ns
  Clock Uncertainty:      0.035ns  ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
    Total System Jitter     (TSJ):    0.071ns
    Total Input Jitter      (TIJ):    0.000ns
    Discrete Jitter          (DJ):    0.000ns
    Phase Error              (PE):    0.000ns

    Location             Delay type                Incr(ns)  Path(ns)    Netlist Resource(s)
  -------------------------------------------------------------------    
-------------------
                         (clock clk rise edge)        0.000     0.000 r  
                         input delay                -15.151   -15.151    
    AD21                                              0.000   -15.151 r  external_q
                         net (fo=0)                   0.000   -15.151    external_q
    AD21                                                              r  external_q_IBUF_inst/I
    AD21                 IBUF (Prop_ibuf_I_O)         1.161   -13.990 r  external_q_IBUF_inst/O
                         net (fo=1, routed)           0.000   -13.990    example_ext/
example_ext_byte/external_q_IBUF
    ILOGIC_X0Y30                                                      r  example_ext/
example_ext_byte/ext_q_ifd_OPT_INSERTED/DLYIN
    ILOGIC_X0Y30         ZHOLD_DELAY (Prop_zhold_delay_DLYIN_DLYIFF)
                                                      6.797    -7.193 r  example_ext/
example_ext_byte/ext_q_ifd_OPT_INSERTED/DLYIFF
                         net (fo=1, routed)           0.000    -7.193    example_ext/
example_ext_byte/OPT_ZHD_N_ext_q_ifd

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 59
PG036 July 25, 2012

Interfaces

    ILOGIC_X0Y30                                                      r  example_ext/
example_ext_byte/ext_q_ifd/D
    ILOGIC_X0Y30         FDRE (Setup_fdre_C_D)       -0.145    -7.338    example_ext/
example_ext_byte/ext_q_ifd
  -------------------------------------------------------------------    
-------------------

                         (clock clk rise edge)       15.151    15.151 r  
    R24                                               0.000    15.151 r  clk
                         net (fo=0)                   0.000    15.151    clk
    R24                                                               r  example_ibuf/I
    R24                  IBUF (Prop_ibuf_I_O)         1.113    16.264 r  example_ibuf/O
                         net (fo=1, routed)           2.604    18.868    clk_ibufg
    BUFGCTRL_X0Y0                                                     r  example_bufg/I
    BUFGCTRL_X0Y0        BUFG (Prop_bufg_I_O)         0.083    18.951 r  example_bufg/O
                         net (fo=477, routed)         1.788    20.739    example_ext/
example_ext_byte/icap_clk
    ILOGIC_X0Y30                                                      r  example_ext/
example_ext_byte/ext_q_ifd/C
                         clock pessimism              0.000    20.739
                         clock uncertainty           -0.035    20.703
  -------------------------------------------------------------------
                         required time                         20.703
                         arrival time                           7.338
  -------------------------------------------------------------------
                         slack                                 28.041

Locate Thfpga by searching the timing report for pad to flip-flop path analysis at Min at Fast 
Process Corner, where the source pad is identif ied as "external_q".

• Thfpga = I/O Datapath Delay (external_q)

• Thfpga = -3.386 ns, minimum

Slack (MET) :             29.797ns
  Source:                 external_q
                            (input port clocked by clk  {rise@0.000ns fall@7.576ns 
period=15.151ns})
  Destination:            example_ext/example_ext_byte/ext_q_ifd/D
                            (rising edge-triggered cell FDRE clocked by clk  {rise@0.000ns 
fall@7.576ns period=15.151ns})
  Path Group:             clk
  Path Type:              Min at Fast Process Corner
  Requirement:            0.000ns
  Data Path Delay:        3.386ns  (logic 3.386ns (100.000%)  route 0.000ns (0.000%))
  Logic Levels:           2  (IBUF=1 ZHOLD_DELAY=1)
  Input Delay:            30.302ns
  Clock Path Skew:        3.856ns (DCD - SCD - CPR)
    Destination Clock Delay (DCD):    3.856ns
    Source Clock Delay      (SCD):    0.000ns
    Clock Pessimism Removal (CPR):    -0.000ns
  Clock Uncertainty:      0.035ns  ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
    Total System Jitter     (TSJ):    0.071ns
    Total Input Jitter      (TIJ):    0.000ns
    Discrete Jitter          (DJ):    0.000ns
    Phase Error              (PE):    0.000ns

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 60
PG036 July 25, 2012

Interfaces

    Location             Delay type                Incr(ns)  Path(ns)    Netlist Resource(s)
  -------------------------------------------------------------------    
-------------------
                         (clock clk rise edge)        0.000     0.000 r  
                         input delay                 30.302    30.302    
    AD21                                              0.000    30.302 r  external_q
                         net (fo=0)                   0.000    30.302    external_q
    AD21                                                              r  external_q_IBUF_inst/I
    AD21                 IBUF (Prop_ibuf_I_O)         0.601    30.903 r  external_q_IBUF_inst/O
                         net (fo=1, routed)           0.000    30.903    example_ext/
example_ext_byte/external_q_IBUF
    ILOGIC_X0Y30                                                      r  example_ext/
example_ext_byte/ext_q_ifd_OPT_INSERTED/DLYIN
    ILOGIC_X0Y30         ZHOLD_DELAY (Prop_zhold_delay_DLYIN_DLYIFF)
                                                      2.939    33.842 r  example_ext/
example_ext_byte/ext_q_ifd_OPT_INSERTED/DLYIFF
                         net (fo=1, routed)           0.000    33.842    example_ext/
example_ext_byte/OPT_ZHD_N_ext_q_ifd
    ILOGIC_X0Y30                                                      r  example_ext/
example_ext_byte/ext_q_ifd/D
    ILOGIC_X0Y30         FDRE (Hold_fdre_C_D)        -0.154    33.688    example_ext/
example_ext_byte/ext_q_ifd
  -------------------------------------------------------------------    
-------------------

                         (clock clk rise edge)        0.000     0.000 r  
    R24                                               0.000     0.000 r  clk
                         net (fo=0)                   0.000     0.000    clk
    R24                                                               r  example_ibuf/I
    R24                  IBUF (Prop_ibuf_I_O)         0.782     0.782 r  example_ibuf/O
                         net (fo=1, routed)           1.984     2.765    clk_ibufg
    BUFGCTRL_X0Y0                                                     r  example_bufg/I
    BUFGCTRL_X0Y0        BUFG (Prop_bufg_I_O)         0.030     2.795 r  example_bufg/O
                         net (fo=477, routed)         1.061     3.856    example_ext/
example_ext_byte/icap_clk
    ILOGIC_X0Y30                                                      r  example_ext/
example_ext_byte/ext_q_ifd/C
                         clock pessimism              0.000     3.856    
                         clock uncertainty            0.035     3.892    
  -------------------------------------------------------------------
                         required time                         -3.892
                         arrival time                          33.688
  -------------------------------------------------------------------
                         slack                                 29.797

Check:

• Is Thfpga ≤ Tqfpga,min + Tclqx?

• Is -3.386 ns ≤ 1.379 ns + 0 ns?

• Is -3.386 ns ≤ 1.379 ns? YES

Calculate:

Tclk ≥ 0.5*(Tqfpga,max + Tw1 + Tdly + Tw2 + Tclqv + Tw3 + Tdly + Tw4 + Tsfpga)

requires

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 61
PG036 July 25, 2012

Interfaces

Tclk ≥ 0.5*(3.211 ns + 1 ns + 3 ns + 1 ns + 8 ns + 1 ns + 3 ns + 1 ns + 7.813 ns)

or

Tclk ≥ 14.512 ns

The hold requirement is satisfied, and the requirement on Tclk indicates that the SPI Receive 
Waveform and Timing Budget will restrict the system-level design example input clock cycle 
time to be 14.512 ns or larger.

SPI Bus Timing Budget Conclusions

When the EXT shim and external memory system are present, the SPI bus timing budget 
must be analyzed to ensure a robust implementation. The result of the analysis confirms 
that the external memory system is functional, and reveal any constraints it may pose on 
the maximum frequency of the system-level design example input clock.

Example 1 Conclusion

Using the example data from the ISE Design Suite timing report for a Virtex-6 SEM IP 
implementation, the memory interface is functional. The most stringent requirement on 
Tclk is that Tclk ≥ 13.152 ns, as the memory interface only works when the input clock 
frequency is 76.037 MHz or lower. Other input clock frequency limits, such as the ICAP 
maximum clock frequency and the system-level example maximum clock frequency, must 
also be considered.

Example 2 Conclusion

Using the example data from the Vivado Design Suite timing report for a Kintex-7 SEM IP 
implementation, the memory interface is functional. The most stringent requirement on 
Tclk is that Tclk ≥ 14.512 ns, as the memory interface only works when the input clock 
frequency is 68.908 MHz or lower. Other input clock frequency limits, such as the ICAP 
maximum clock frequency and the system-level example maximum clock frequency, must 
also be considered.

Error Injection Interface
The Error Injection Interface consists of an input bus and input strobe, implementing a 
simple parallel input port. This interface is only present when Error Injection is enabled and 
I/O Pins are selected. Direct, logic-signal-based error injection is possible from the Error 
Injection Interface. The use of this interface is entirely optional. This interface accepts four 
types of commands:

• Command to enter Idle state (halt normal scanning to inject errors)

• Command to enter Observation state (resume normal scanning)

• Inject error at physical frame address

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 62
PG036 July 25, 2012

Behaviors

• Inject error at linear frame address

These commands are not unique to the Error Injection Interface; they are also available on 
the Monitor Interface.

In many cases, desired signals from the Error Injection Interface can be brought to I/O pins 
on the FPGA. In one configuration, the system-level design example brings all of the signals 
to I/O pins. It is possible to generate and drive the error injection signals inside the FPGA; 
in fact, this is exactly what is done when the ChipScope analyzer is selected rather than I/O 
pins.

Externally, the error injection signals can be connected to another device for control. To 
properly capture supplied commands, the timing requirements of the Error Injection 
Interface must be accounted for when interfacing to another device.

The signals in the Error Injection Interface are received by a sequential logic process in the 
controller using the strobe to enable an input register. The timing requirements shown in 
Figure 3-13 must be observed to ensure successful data capture.

The clock signal shown in Figure 3-13 is meant only to illustrate the waveform time scale. 
While the pulse widths are specif ied in terms of clock cycles, the external device generating 
and driving the error injection signals need not be synchronous to the clock signal.

If an error is injected into a frame that is masked or beyond the supported address range for 
a device or SEU coverage, the error injection command will be ignored and no error will be 
detected in the observation state.

Behaviors
The system-level design example exhibits certain high-level functional behaviors during 
operation, based on the controller design. This section is intended to convey expected 
behaviors and how to interact with the system-level design example.

X-Ref Target - Figure 3-13

Figure 3-13: Error Injection Interface Timing Requirements

clk

inject_strobe

inject_address

≤≥ ≥ ≥

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 63
PG036 July 25, 2012

Behaviors

Controller Activity

Initialization

During FPGA configuration, the controller is held in reset by the FPGA global set/reset 
signal. At the completion of configuration, the FPGA configuration system deasserts the 
global set/reset signal and the controller initializes. During initialization state, 
status_initialization is TRUE.

This initialization includes some internal housekeeping, as well as directly observable 
events such as the generation of a status report on the Monitor Interface. Initialization 
includes:

• A delay to wait for availability of the configuration system through ICAP

• A f irst readback cycle where the frame-level ECC checksums are computed

• A second readback cycle where the device-level CRC checksum is computed

• An additional readback cycle where an additional checksum is computed (only 
executed if Virtex-6 or 7 series devices are targeted)

• An additional readback cycle where the frame-level CRC checksums are computed and 
stored in Block RAM (only executed if correction by enhanced repair is used)

At the completion of initialization, the controller transitions to the observation state.

Observation

The controller spends virtually all of its time in the observation state. During the 
observation state, status_observation is TRUE and the controller observes the FPGA 
configuration system for indication of error conditions. If no error exists, and the controller 
receives a command (from either the Error Injection Interface or the Monitor Interface), 
then the controller processes the received command. Only two commands are supported in 
the observation state, the “enter idle” and “status report” commands. The controller ignores 
all other commands.

The “enter idle” command can be applied through either the Error Injection Interface or the 
Monitor Interface, and is used to idle the controller so that error injections can be 
performed. This command causes the controller to transition to the idle state.

The “status report” command is not frequently used; it provides some diagnostic 
information, and can be helpful as a mechanism to “ping” the controller without idling it. 
This command is only supported on the Monitor Interface.

In the event an error is detected, the controller reads additional information from the 
hardware in preparation for a correction attempt. After the controller has gathered the 
available information, it transitions to the correction state.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 64
PG036 July 25, 2012

Behaviors

Correction

The controller attempts to correct errors in the correction state. The controller always 
passes through the correction state, even if correction is disabled. During the correction 
state, status_correction is TRUE.

If the error is a CRC-only error, the controller sets status_uncorrectable and generates 
a report on the Monitor Interface. It then transitions to the classif ication state. If the error 
is not a CRC-only error, then the behavior of the controller depends on how it has been 
configured to correct errors.

If the controller is configured for correction by replace, it generates a replacement data 
request on the Fetch Interface. In the system-level design example, the EXT shim translates 
this request into a read of the external memory. The return data is provided to the controller 
by the EXT shim. The controller then performs active partial reconfiguration to re-write the 
frame with the correct contents. The controller clears status_uncorrectable and 
generates a report on the Monitor Interface. It then transitions to the classif ication state.

If the controller is configured for correction by repair or correction by enhanced repair, it 
attempts to correct the error using algorithmic methods. If the error is correctable, the 
controller performs active partial reconfiguration to re-write the frame with the corrected 
contents and clears status_uncorrectable. Otherwise, the controller sets 
status_uncorrectable. In either case, the controller generates a report and then 
transitions to the classif ication state.

Classification

The controller classif ies errors in the classif ication state. The controller always passes 
through the classif ication state, even if classif ication is disabled. During the classif ication 
state, status_classification is TRUE.

All errors signaled as uncorrectable during the correction state are signaled as essential. 
The only reason an error can be uncorrectable is because it cannot be located. And, if this 
is the case, the controller cannot look up the error to determine whether it is essential. In 
these cases, the controller sets status_essential, generates a report, and then 
transitions to the idle state. After an uncorrectable error is encountered, the controller does 
not continue looking for errors. At this point, the FPGA must be reconfigured.

The treatment of errors signaled as correctable during the correction state depends on the 
controller option setting. If error classif ication is disabled, all correctable errors are 
unconditionally signaled as essential. If error classif ication is enabled, the controller 
generates a classif ication data request on the Fetch Interface. In the system-level design 
example, the EXT shim translates this request into a read of the external memory. The return 
data is provided to the controller by the EXT shim. With this data, the controller then 
determines whether it is essential. In all cases, the controller generates a report, changes 
status_essential as appropriate, and then transitions to the observation state to 
resume looking for errors.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 65
PG036 July 25, 2012

Behaviors

Idle

The idle state is similar to the observation state, except that the controller does not observe 
the FPGA configuration system for indication of error conditions. The idle state is indicated 
by the de-assertion of all f ive state bits on the Status Interface. If the controller receives a 
command (from either the Error Injection Interface or the Monitor Interface), then the 
controller processes the received command. The error injection commands are only 
supported in the idle state.

The “enter observation” command can be applied through either the Error Injection 
Interface or the Monitor Interface, and is used to return the controller to the observation 
state so that errors can be detected.

The “status report” command is not frequently used; it provides some diagnostic 
information, and can be helpful as a mechanism to “ping” the controller. This command is 
only supported on the Monitor Interface.

Any desired set of “error injection” commands can be applied through either the Error 
Injection Interface or the Monitor Interface. These commands direct the controller to 
perform error injections. The primary reason the idle state exists is to halt actions taken in 
response to error detections so that multi-bit errors can be constructed.

Injection

The controller performs error injections in the injection state. The controller always passes 
through the injection state in response to a valid error injection command issued from the 
idle state, even if error injection is disabled; this can occur if error injection commands are 
presented on the Monitor Interface, as the Monitor Interface exists even when error 
injection is disabled. During the injection state, status_injection is TRUE.

The error injection process is a simple read-modify-write to invert one configuration 
memory bit at an address specif ied as part of the error injection command.

The controller always transitions from the injection state back to the idle state. Multi-bit 
errors can be constructed by repeated error injections commands, each resulting in a 
transition through the injection state. At the end of error injection, the controller must be 
moved from the idle state back into the observation state.

Fatal Error

The controller enters the fatal error state when it detects an internal inconsistency. 
Although very unlikely, it is possible for the controller to halt due to soft errors that affect 
the controller-related configuration memory or the controller design state elements.

The fatal error state is indicated by the assertion of all f ive state bits on the Status Interface, 
along with a fatal error report message. This condition is non-recoverable, and the FPGA 
must be reconfigured.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 66
PG036 July 25, 2012

Behaviors

Error Injection Interface Commands
The Error Injection Interface commands define what a user can send to the controller 
through the Error Injection Interface. This command set offers basic capability to inject 
errors.

Commands are presented by applying a value to the inject_address bus, and then 
asserting the inject_strobe signal. After a command is presented, do not present 
another command until the Status Interface has confirmed completion of the previous 
command.

Directed State Changes

The controller can be moved between observation and idle states by a directed state 
change. The command format is shown in Figure 3-14 through Figure 3-17, with “X” 
representing a “don’t care.”

X-Ref Target - Figure 3-14

Figure 3-14: 7 Series Enter Idle State Command

X-Ref Target - Figure 3-15

Figure 3-15: 7 Series Enter Observation State Command

X-Ref Target - Figure 3-16

Figure 3-16: Virtex-6 and Spartan-6 Enter Idle State Command

X-Ref Target - Figure 3-17

Figure 3-17: Virtex-6 and Spartan-6 Enter Observation State Command

Completion of the command is indicated on the Status Interface by a change in the state 
outputs indicating the controller has entered the requested state.

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 1 1 0 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 0 1 0 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 1 1 0 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 0 1 0 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 67
PG036 July 25, 2012

Behaviors

Error Injection

There are two addressing schemes to specify the frame address for an error injection. These 
are linear frame addressing and physical frame addressing. Linear frame addressing is 
simple, but the addresses do not provide information about type and physical location of 
the frame. The error injection command formats for linear frame address are shown in 
Figure 3-18 through Figure 3-20, with borders marking nibble boundaries and shading 
marking separate bit f ields in the command.

X-Ref Target - Figure 3-18

Figure 3-18: 7 Series Error Injection Command (Linear Frame Address)

Where:

• SS = SLR number (2-bit)

• LLLLLLLLLLLLLLLLL = linear frame address (17-bit)

• WWWWWWW = word address (7-bit)

• BBBBB = bit address (5-bit)
X-Ref Target - Figure 3-19

Figure 3-19: Virtex-6 Error Injection Command (Linear Frame Address)

Where:

• LLLLLLLLLLLLLLLLL = linear frame address (17-bit)

• WWWWWWW = word address (7-bit)

• BBBBB = bit address (5-bit)
X-Ref Target - Figure 3-20

Figure 3-20: Spartan-6 Error Injection Command (Linear Frame Address)

Where:

• LLLLLLLLLLLLLLL = linear frame address (15-bit)

• WWWWWWW = word address (7-bit)

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 0 S S L L L L L L L L L L L L L L L L L W W W W W W W B B B B B

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 L L L L L L L L L L L L L L L L L W W W W W W W B B B B B

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 0 L L L L L L L L L L L L L L L W W W W W W W 0 B B B B

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 68
PG036 July 25, 2012

Behaviors

• BBBB = bit address (4-bit)

An error injection command using physical frame address has the form shown in 
Figure 3-21 through Figure 3-23.

X-Ref Target - Figure 3-21

Figure 3-21: 7 Series Error Injection Command (Physical Frame Address)

Where:

• SS = SLR number (2-bit)

• TT = block type (2-bit)

• H = half address (1-bit)

• RRRRR = row address (5-bit)

• CCCCCCCCCC = column address (10-bit)

• MMMMMMM = minor address (7-bit)

• WWWWWWW = word address (7-bit)

• BBBBB = bit address (5-bit)
X-Ref Target - Figure 3-22

Figure 3-22: Virtex-6 Error Injection Command (Physical Frame Address)

Where:

• TT = block type (2-bit)

• H = half address (1-bit)

• RRRRR = row address (5-bit)

• CCCCCCCC = column address (8-bit)

• MMMMMMM = minor address (7-bit)

• WWWWWWW = word address (7-bit)

• BBBBB = bit address (5-bit)

Completion of the command is indicated on the Status Interface by the de-assertion of the 
status_injection output indicating the controller has exited the error injection state.

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 S S T T H R R R R R C C C C C C C C C C M M M M M M M W W W W W W W B B B B B

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 T T H R R R R R C C C C C C C C M M M M M M M W W W W W W W B B B B B

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 69
PG036 July 25, 2012

Behaviors

X-Ref Target - Figure 3-23

Figure 3-23: Spartan-6 Error Injection Command (Physical Frame Address)

Where:

• RRRR = row address (4-bit)

• MMMMMMMM = major address (8-bit)

• mmmmmmmm = minor address (8-bit) 

• WWWWWWW = word address (7-bit)

• BBBB = bit address (4-bit)

Monitor Interface Commands
The Monitor Interface commands define what a user can send to the controller through the 
Monitor Interface. This command set is intended to offer a superset of the “command 
capability” available from the Error Injection Interface.

Directed State Changes

The controller can be moved between observation and idle states by a directed state 
change. “I” command is used to enter idle state. “O” command is used to enter observation 
state.

Status Report

“S” command is used to request a status report from the controller. The status report format 
is detailed in the next section which describes status messages generated by the controller. 
The controller accepts this command when in idle or observation states.

Error Injection

“N” command is used to perform an error injection. The controller only accepts this 
command when in the idle state. The format of the command is:

N {9-digit hex value} Virtex-6 and Spartan-6
N {10-digit hex value} 7 Series

Issuing this command is analogous to presenting an error injection command on the Error 
Injection Interface. The hex value supplied with this command represents the same value 
that would be applied to the Error Injection Interface.

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 R R R R M M M M M M M M 0 0 m m m m m m m m W W W W W W W 0 B B B B

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 70
PG036 July 25, 2012

Behaviors

Monitor Interface Messages
The Monitor Interface messages define what messages a user can expect from the 
controller through the Monitor Interface. This message set is intended to offer a superset of 
the “reporting” available from the Status Interface.

Initialization Report

As the controller performs the initialization sequence, it generates the initialization report. 
This report contains diagnostic information. This report is generated only once when the 
controller f irst starts. The 7 series device initialization report looks like this:

X7_SEM_V3_3 Name and Version
SC 01 State Change, Initialization
FS {2-digit hex value} Core Configuration Information
ICAP OK Status: ICAP Available
RDBK OK Status: Readback Active
INIT OK Status: Completed Setup
SC 02 State Change, Observation

The Virtex-6 and Spartan-6 device initialization reports are virtually identical except the 
controller reports its name and version as V6_SEM_V3_3 and S6_SEM_V3_3, respectively.

Command Prompt

The command prompt issued by the controller is one of two characters, depending on the 
controller state. If the controller is in observation state (the default state after initialization 
completes) the prompt issued is O>. If the controller is in idle state, the prompt issued is I>.

State Change Report

Any time the controller changes state, the controller also issues a state change report. The 
report is a single line with the following format:

SC {2-digit hex value}

The 2-digit hex value is the representation of the Status Interface outputs.

Table 3-2: State Change Report Decoding

Report String State Name

SC 00 Idle

SC 01 Initialization

SC 02 Observation

SC 04 Correction

SC 08 Classif ication

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 71
PG036 July 25, 2012

Behaviors

Entry into the fatal error state can occur at anytime, even without an explicit state change 
report. Upon entering this state, the controller issues the following fatal error message:

HALT

Flag Change Report

Any time the controller changes flags, the controller also issues a flag change report. The 
report is a single line with the following format:

FC {2-digit hex value}

The 2-digit hex value is the representation of the Status Interface outputs.

Status Report

A status report provides more information about the controller state. It is a multiple-line 
report that is generated in response to the S command, provided the controller is in the 
observation or idle states. The 7 series device status report has the following format:

MF {8-digit hex value} Maximum Frame (linear count)
SN {2-digit hex value} SLR Number
SC {2-digit hex value} Current State
FC {2-digit hex value} Current Flags
FS {2-digit hex value} Feature Set

The Virtex-6 and Spartan-6 device status reports are virtually identical except that the 
Maximum Frame is reported as a 6-digit hex value and the SLR Number is not reported.

Error Detection Report

Upon detection of an error condition, the controller corrects the error as quickly as possible. 
Therefore, the report information is actually generated after the correction has taken place, 
assuming it is possible to correct the error. The following scenarios exist:

SC 10 Injection

SC 1F Fatal Error

Table 3-3: Flag Change Report Decoding

Report String Condition Name

FC 00 Correctable, Non-Essential

FC 20 Uncorrectable, Non-Essential

FC 40 Correctable, Essential

FC 60 Uncorrectable, Essential

Table 3-2: State Change Report Decoding

Report String State Name

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 72
PG036 July 25, 2012

Behaviors

Diagnosis: CRC error only [cannot identify location or number bits in error]

SC 04
CRC

Diagnosis: Enhanced repair checksum buffer uncorrectable error

SC 04
BFR

Diagnosis: 1-bit ECC error, SYNDROME is valid. Controller reports physical frame address, 
linear frame address, word in frame, and bit in word.

SC 04
SED OK
PA {8-digit hex value}
LA {8-digit hex value}
WD {2-digit hex value} BT {2-digit hex value}

Diagnosis: 1-bit ECC error, SYNDROME is invalid. Controller reports physical frame address 
and linear frame address.

SC 04
SED NG
PA {8-digit hex value}
LA {8-digit hex value}

Diagnosis: 2-bit ECC error. Controller reports physical frame address and linear frame 
address.

SC 04
DED
PA {8-digit hex value}
LA {8-digit hex value}

The Virtex-6 and Spartan-6 device error detection reports are virtually identical except that 
frame addresses are reported as 6-digit hex values.

Error Correction Report

The error correction process varies depending on the controller configuration and the 
nature of what has been detected and what can be corrected.

The general form of the report for an uncorrectable error, or when correction is disabled is:

COR
END

Followed by:

FC 20 Bit 5, uncorrectable set (stale essential flag)

or

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 73
PG036 July 25, 2012

Behaviors

FC 60 Bit 5, uncorrectable set (stale essential flag)

The general form of the report for a correctable error is:

COR
{correction list}
END

Followed by:

FC 00 Bit 5, uncorrectable cleared (stale essential flag)

or

FC 40 Bit 5, uncorrectable cleared (stale essential flag)

The {correction list} is one or more lines providing the word in frame and bit in word of each 
corrected bit. The list can potentially be thousands of lines. This is the same notation used 
for the error detection report. Each line of the list is formatted as follows:

WD {2-digit hex value} BT {2-digit hex value}

Error Classification Report

The error classif ication process involves looking up each of the errors in a frame to 
determine if any of them are essential. If one or more are identif ied as essential, the entire 
event is considered essential.

The general form of the report for a correctable, non-essential event is:

SC 08
CLA
END
FC 00 Bit 6, essential is cleared

The general form of the report for a correctable, essential event is:

SC 08
CLA
{classification list}
END
FC 40 Bit 6, essential is set

The {classif ication list} is one or more lines providing the word in frame and bit in word of 
each essential bit. The list can potentially be thousands of lines. This is the same notation 
used for the error detection report. Each line of the list is formatted as follows:

WD {2-digit hex value} BT {2-digit hex value}

The general form of the report for an uncorrectable event, or when classif ication is disabled, 
is shorter. In these cases, the error is assumed to be essential because no information is 
available to suggest otherwise, and there is little to report:

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 74
PG036 July 25, 2012

Systems

SC 08
FC 60 Bit 6, essential is set

Systems
Although the soft error mitigation solution can operate autonomously, most applications 
use the solution in conjunction with an application-level supervisory function. This 
supervisory function monitors the event reporting from the controller and determines if 
additional actions are necessary (for example, reconfigure the device or reboot the 
application). The nature of application-level supervisory functions varies from design to 
design.

As noted previously, there is a small, yet f inite possibility that the soft error mitigation 
solution is disrupted by a soft error. The solution has indicators of general health that the 
application-level supervisory function can elect to monitor:

• The controller heartbeat, status_heartbeat: This signal is a direct output from the 
soft error mitigation solution. This signal exhibits pulses which indicate the FPGA 
configuration system readback process is active. If, during the observation state, these 
pulses cease for no apparent reason, the application-level supervisory function should 
conclude that the FPGA configuration system readback process has experienced a fault. 
This is an uncorrectable, essential error.

• The hardware CRC failure indicator, INIT_B (7 series and Virtex-6 devices only): This 
signal is a direct output from the hardware readback process. If the readback process 
detects a hardware CRC failure, it asserts INIT_B. A transient assertion of INIT_B is 
expected during FPGA configuration and the controller initialization process, after error 
injections, and in some cases when soft error events occur. If, during observation state, 
INIT_B indicates an error and the controller does not transition into correction state 
after the expected duration of a complete readback cycle, the application-level 
supervisory function should conclude the controller has experienced a fault. This is an 
uncorrectable, essential error.

The recommended interface between the soft error mitigation solution and the 
application-level supervisory function for normal communication is the serial interface 
supported by the MON shim. Using the MON shim introduces a small amount of logic, but 
drastically reduces the number of I/O required. As a result, the MON shim offers higher 
reliability than using the direct logic signal based interfaces.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 75
PG036 July 25, 2012

Customizations

Customizations
The system-level design example encapsulates the controller and various shims that serve 
to interface the controller to other devices. These shims can include I/O Pins, ChipScope, 
I/O Interfaces, Memory Controllers, or application-specif ic system management interfaces.

As delivered, the system-level design example is not a reference design, but an integral part 
of the total solution and fully verif ied by Xilinx. While designers do have the flexibility to 
modify the system-level design example, the recommended approach is to use it as 
delivered. However, if modifications are desired, this chapter provides additional detail 
required for success.

This chapter does not describe customization of the user application that exists in the 
system-level design example. This portion of the system-level design example is for 
demonstration purposes only and not functionally involved in soft error mitigation. The 
only anticipated customization of the user application is to remove it.

HID Shim Customizations
The HID shim is a bridge between the controller and an interface device. The resulting 
interface can be used to exchange commands and status with the controller. The HID shim 
is only present in certain controller configurations. When present, it exports access to the 
Status Interface and Error Injection Interface through the use of ChipScope analyzer. When 
absent, the Status Interface and Error Injection Interface are only accessible through I/O 
pins.

If desired, the Status Interface and Error Injection Interface can be connected in other ways. 
These interfaces are easy to disconnect from the HID shim or I/O Pins and reconnect to 
other logic, such as register f iles or f inite state machines. See the Status Interface, page 39 
and Error Injection Interface, page 61.

MON Shim Customizations
The MON shim is a bridge between the controller and a standard RS-232 port. The resulting 
interface can be used to exchange commands and status with the controller. This interface 
is designed for connection to processors.

Increase Bit Rate

If the RS-232 interface is needed, changing to the highest feasible bit rate is strongly 
encouraged. This reduces the potential for throttling of the controller due to status report 
transmission. See Monitor Interface, page 41 for more information.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 76
PG036 July 25, 2012

Customizations

Increase Buffer Depth

Increasing the MON shim bit rate is the easiest method to reduce the potential for 
throttling of the controller due to status report transmission. Another method is to increase 
the buffer depth. The MON shim contains two FIFOs, a transmit buffer and a receive buffer.

There is no need for the buffer depths to be symmetric and little advantage is gained from 
increasing the depth of the receive buffer. However, increasing the depth of the transmit 
buffer reduces the potential for throttling of the controller due to status report 
transmission.

The Xilinx LogiCORE IP FIFO Generator can be used to create replacements for the MON 
shim FIFOs. The FIFO configuration must be for a common clock (that is, fully synchronous 
to a single clock) with f irst word fall through enabled. The data width must be eight, with 
the depth as great as desired. When making a FIFO replacement, note that an “empty” flag 
is the logical inverse of a “data present” flag.

Replace with Alternate Function

If an interface other than RS-232 is desired, the MON shim can be replaced with an 
alternate function. For example, the MON shim could be replaced with a custom processor 
interface or other scheme for inter-process communication. When replacing the MON shim 
with an alternate function, it becomes critical to understand the behavior of the controller 
monitor interface.

For an overview of the signals, see Monitor Interface, page 41. The data exchanged over this 
interface is ASCII. For a summary of the status and command formats, see Monitor Interface 
Commands, page 69 and Monitor Interface Messages, page 70.

Figure 3-24 illustrates the protocol used on the transmit portion of the Monitor Interface. 
When the controller wants to transmit a byte of data, it f irst samples the monitor_txfull 
signal to determine if the transmit buffer is capable of accepting a byte of data. Provided 
that monitor_txfull is low, the controller transmits the byte of data by applying the data 
to monitor_txdata[7:0] and asserting monitor_txwrite for a single clock cycle.

The controller can perform burst writes by applying a data sequence to 
monitor_txdata[7:0] and asserting monitor_txwrite for multiple cycles. However, 
the controller observes monitor_txfull so that it never over-runs the transmit buffer.

X-Ref Target - Figure 3-24

Figure 3-24: Monitor Interface Transmit Protocol

icap_clk

monitor_txdata[7:0]

monitor_txwrite

monitor_txfull

d0 d1 d2 d3 d4

write burst write 3 bytes write

data buffer full

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 77
PG036 July 25, 2012

Customizations

It is the responsibility of the peripheral receiving the data to correctly track its buffer 
availability and report it through monitor_txfull. In the cycle after the peripheral 
samples monitor_txwrite high, it must assert monitor_txfull if the data written 
completely f ills the buffer. 

Further, the peripheral must only assert monitor_txfull in response to 
monitor_txwrite from the controller. Under no circumstances can the peripheral assert 
monitor_txfull based on events internal to the peripheral. This requirement exists 
because the controller can sample monitor_txfull several cycles in advance of 
performing a write.

While monitor_txfull is asserted by the peripheral, the controller stalls if it is waiting to 
transmit additional data. This can have negative side effects on the error mitigation 
performance of the controller. For example, if a correction takes place, the controller 
successfully corrects (or handles) the error and then send a status report. If the entire 
message cannot be accepted by the peripheral, the controller will stall, preventing it from 
returning to the observation state. Therefore, a custom peripheral must have an adequate 
balance of buffer depth and data consumption rate.

Figure 3-25 illustrates the protocol used on the receive portion of the monitor interface. 
When the controller wants to receive a byte of data, it f irst samples the monitor_rxempty 
signal to determine if the receive buffer is providing a byte of data. Provided that 
monitor_rxempty is low, the controller receives the byte of data from 
monitor_rxdata[7:0] and acknowledges reception by asserting monitor_rxread for 
a single clock cycle.

The controller can perform burst reads by obtaining a data sequence from 
monitor_rxdata[7:0] and asserting monitor_rxread for multiple cycles. However, 
the controller observes monitor_rxempty so that it never under-runs the receive buffer.

It is the responsibility of the peripheral providing the data to correctly track its buffer status 
and report it through monitor_rxempty. In the cycle after the peripheral samples 
monitor_rxread high, it must assert monitor_rxempty if the data written completely 
f ills the buffer. 

Further, the peripheral must only assert monitor_rxempty in response to 
monitor_rxread from the controller. Under no circumstances can the peripheral assert 
monitor_rxempty based on events internal to the peripheral. This requirement exists 

X-Ref Target - Figure 3-25

Figure 3-25: Monitor Interface Receive Protocol

icap_clk

monitor_rxdata[7:0]

monitor_rxread

monitor_rxempty

d0 d1 d2 d3 d4

read burst read 3 bytes read

data buffer empty empty

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 78
PG036 July 25, 2012

Customizations

because the controller can sample monitor_rxempty several cycles in advance of 
performing a read.

During the initialization state, the controller purges the receive buffer by reading and 
discarding data until it is empty. The controller assumes the transmit buffer is ready 
immediately and does not wait for the transmit buffer to empty, as it has no way to observe 
this condition.

Removal

Although it is possible to remove the MON shim, Xilinx strongly discourages this 
customization. If removing the MON shim, Xilinx recommends preserving the two I/O pins 
used by the MON shim and making those accessible for probing at test points. Even though 
the MON shim may not be necessary in certain applications, it offers a critical debugging 
capability that is required when obtaining assistance from Xilinx technical support teams.

To eliminate the MON shim, disconnect and remove it, including any related signals and 
ports used to bring the RS-232 signals to I/O pins at the design top level. Then, address the 
exposed monitor interface on the controller:

• Leave all controller monitor interface outputs “open” or “unconnected.”

• Connect the controller’s monitor_txfull input to logic zero.

• Connect the controller’s monitor_rxempty input to logic one.

• Connect the controller’s monitor_rxdata[7:0] input to logic zero.

Elimination of the MON shim reduces the size of the solution and also prevents throttling of 
the controller due to status report transmission.

EXT Shim Customizations
The EXT shim is a bridge between the controller and a standard SPI bus. The resulting 
interface can be used to fetch data by the controller. This shim is only present in certain 
controller configurations and is designed for connection to standard SPI flash.

Replace with Alternate Function

If an interface other than SPI bus is needed, the EXT shim can be replaced with an alternate 
function. For example, the EXT shim could be replaced with a parallel flash memory 
controller or other scheme for inter-process communication. When replacing the EXT shim 
with an alternate function, it becomes critical to understand the behavior of the Controller 
Fetch Interface.

For an overview of the signals, Fetch Interface in Chapter 2. The byte transfer protocols for 
the Fetch Interface are identical to those of the Monitor Interface.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 79
PG036 July 25, 2012

Customizations

Figure 3-26 illustrates the protocol used on the transmit portion of the Fetch Interface. 
When the controller wants to transmit a byte of data, it f irst samples the fetch_txfull 
signal to determine if the transmit buffer is capable of accepting a byte of data. Provided 
that fetch_txfull is low, the controller transmits the byte of data by applying the data to 
fetch_txdata[7:0] and asserting fetch_txwrite for a single clock cycle.

The controller can perform burst writes by applying a data sequence to 
fetch_txdata[7:0] and asserting fetch_txwrite for multiple cycles. However, the 
controller observes fetch_txfull so that it never over-runs the transmit buffer.

It is the responsibility of the peripheral receiving the data to correctly track its buffer 
availability and report it through fetch_txfull. In the cycle after the peripheral samples 
fetch_txwrite high, it must assert fetch_txfull if the data written completely f ills 
the buffer. 

Further, the peripheral must only assert fetch_txfull in response to fetch_txwrite 
from the controller. Under no circumstances can the peripheral assert fetch_txfull 
based on events internal to the peripheral. This requirement exists because the controller 
can sample fetch_txfull several cycles in advance of performing a write.

While fetch_txfull is asserted by the peripheral, the controller stalls if it is waiting to 
transmit additional data. This can have negative side effects on the error mitigation 
performance of the controller. 

Figure 3-27 illustrates the protocol used on the receive portion of the fetch interface. When 
the controller wants to receive a byte of data, it f irst samples the fetch_rxempty signal to 
determine if the receive buffer is providing a byte of data. Provided that fetch_rxempty 
is low, the controller receives the byte of data from fetch_rxdata[7:0] and 
acknowledges reception by asserting fetch_rxread for a single clock cycle.

X-Ref Target - Figure 3-26

Figure 3-26: Fetch Interface Transmit Protocol

X-Ref Target - Figure 3-27

Figure 3-27: Fetch Interface Receive Protocol

icap_clk

fetch_txdata[7:0]

fetch_txwrite

fetch_txfull

d0 d1 d2 d3 d4

write burst write 3 bytes write

data buffer full full

icap_clk

fetch_rxdata[7:0]

fetch_rxread

fetch_rxempty

d0 d1 d2 d3 d4

read burst read 3 bytes read

data buffer empty empty

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 80
PG036 July 25, 2012

Customizations

The controller can perform burst reads by obtaining a data sequence from 
fetch_rxdata[7:0] and asserting fetch_rxread for multiple cycles. However, the 
controller observes fetch_rxempty so that it never under-runs the receive buffer.

It is the responsibility of the peripheral providing the data to correctly track its buffer status 
and report it through fetch_rxempty. In the cycle after the peripheral samples 
fetch_rxread high, it must assert fetch_rxempty if the data written completely f ills 
the buffer. 

Further, the peripheral must only assert fetch_rxempty in response to fetch_rxread 
from the controller. Under no circumstances can the peripheral assert fetch_rxempty 
based on events internal to the peripheral. This requirement exists because the controller 
can sample fetch_rxempty several cycles in advance of performing a read.

During the initialization state, the controller purges the receive buffer by reading and 
discarding data until it is empty. It then performs two more reads. Reads with an empty 
buffer condition are decoded as a reset signal. The controller assumes the reset signal 
initializes the transmit buffer and therefore does not wait for the transmit buffer to empty, 
as it has no way to observe this condition.

The data exchanged is binary and represents a command-response pair. The controller 
transmits a 6-byte command sequence to initiate a data fetch. The command sequence is:

• Byte 1: ADD[31:24]

• Byte 2: ADD[23:16]

• Byte 3: ADD[15:8]

• Byte 4: ADD[7:0]

• Byte 5: LEN[15:8]

• Byte 6: LEN[7:0]

In response, the peripheral must fetch LEN[15:0] bytes of data starting from address 
ADD[31:0], and return this data to the controller. After the controller has issued a command, 
the peripheral must fulf ill the command with the exact number of requested bytes. For 
additional information about the organization of the data in the address space, see External 
Memory Programming File in Chapter 9.

During the initialization state, the controller purges the receive buffer by reading and 
discarding data until it is empty. The controller then performs two more reads “beyond 
empty.” The condition of a receive buffer read while the receive buffer is empty is a signal 
for the peripheral to reset itself. This provides a mechanism to synchronize the 
command-response protocol. The controller assumes the transmit buffer is ready 
immediately and does not wait for the transmit buffer to empty, as it has no way to observe 
this condition.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 81
PG036 July 25, 2012

Data Consistency

Data Consistency
When using optional features such as error correction by replacement and error 
classif ication, the controller requires access to externally stored data. This data is created by 
bitgen at the same time the programming file for the FPGA is created. The f iles are related.

Any time the FPGA design is changed and a new programming file is created, the additional 
data files used by the controller must also be updated. When the hardware design is 
updated with the new programming f ile, the externally stored data must also be updated.

Failure to maintain data consistency can result in unpredictable controller behavior. Xilinx 
recommends use of an update methodology which ensures that the programming f ile and 
the additional data files are always synchronized.

Configuration Memory Masking
By design, certain configuration memory bits can change value during design operation. 
This is frequently the case where logic slice resources are configured to implement LUTRAM 
functions such as Distributed RAM or Shift Registers. It also occurs when other resource 
types with Dynamic Reconfiguration Ports are updated during design operation.

The memory bits associated with these resources must be masked so that they are excluded 
from CRC and ECC calculations to prevent false error detections. Xilinx FPGA devices 
implement configuration memory masking to prevent these false error detections. A global 
control signal, GLUTMASK, selects if masking is enabled or disabled. The controller always 
enables masking.

7 Series FPGAs
7 series FPGAs implement f ine grain masking at a resource level. This means individual 
resources, when configured for dynamic operation, have their configuration memory bits 
masked. Only the required memory bits are masked, without impacting unrelated memory 
bits. The masked bits are no longer monitored by the controller.

Configuration memory reads of bits associated with masked resources return constant 
values (either logic one or logic zero). This prevents false error detections. Configuration 
memory writes to bits associated with masked resources are discarded. This prevents 
over-writing the contents of dynamic state elements with stale data. A side effect is that 
error injections into masked resources do not result in error detections.

In many cases (for example, LUTRAM functions) it is possible for the user design to 
implement data protection on these bits for purposes of soft error mitigation. Another 

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 82
PG036 July 25, 2012

Configuration Memory Masking

approach is to modify the user design to eliminate the use of features that introduce 
configuration memory masking.

Virtex-6 FPGAs
Virtex-6 FPGAs implement fine grain masking at a resource level. This means individual 
resources, when configured for dynamic operation, have their configuration memory bits 
masked. Only the required memory bits are masked, without impacting unrelated memory 
bits. The masked bits are no longer monitored by the controller.

Configuration memory reads of bits associated with masked resources return constant 
values (either logic one or logic zero). This prevents false error detections. Configuration 
memory writes to bits associated with masked resources are discarded. This prevents 
over-writing the contents of dynamic state elements with stale data. A side effect is that 
error injections into masked resources do not result in error detections.

In many cases (for example, LUTRAM functions) it is possible for the user design to 
implement data protection on these bits for purposes of soft error mitigation. Another 
approach is to modify the user design to eliminate the use of features that introduce 
configuration memory masking.

Spartan-6 FPGAs
Spartan-6 FPGAs implement coarse grain masking at a frame level. This means individual 
resources, when configured for dynamic operation, result in one or more frames of 
configuration memory being masked. The masked bits are no longer monitored by the 
controller.

This over-masking can compromise error detection and error injection capability of the 
controller. The easiest way to avoid over-masking is to reduce the use of functions that 
involve dynamic memory bits. However, complete elimination may not be possible, and it 
can be undesirable because it prohibits use of powerful Spartan-6 FPGA features. Generally, 
a better approach is to understand the masking rules and then apply placement constraints 
to cluster resources that involve dynamic memory bits into the same configuration memory 
frames. Consult UG380, Xilinx Spartan-6 FPGA Configuration User Guide for additional 
information.

Configuration memory reads of bits associated with masked resources return constant 
values (either logic one or logic zero). This prevents false error detections. Configuration 
memory writes to bits associated with masked resources overwrite the contents of dynamic 
state elements. A side effect is that error injections into masked resources do not result in 
error detections, although the memory contents have changed.

In many cases (for example, LUTRAM functions) it is possible for the user design to 
implement data protection on these bits for purposes of soft error mitigation. Another 
approach is to modify the user design to eliminate the use of features that introduce 
configuration memory masking.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 83
PG036 July 25, 2012

Clocking

Clocking
The master clock is absolutely critical to the controller and therefore needs to be provided 
from the most reliable source possible. To achieve the very highest reliability, the clock must 
be connected as directly as possible to the controller. This means the use of an external 
oscillator of the desired frequency, connected directly to a pin associated directly with a 
global clock buffer.

The inclusion of any additional logic or interconnect into the clock path results in additional 
configuration memory being used to control the connection of the clock to the controller. 
This additional memory has a negative effect on the estimated controller FIT. Although the 
impact is small, it is best to strive for high reliability unless it poses a significant burden.

When additional logic exists on the clock path (for example, clock management blocks, or 
logic-based clock division) care must be taken to guarantee by design that the maximum 
clock frequency the FPGA configuration system and the maximum clock frequency of the 
system-level design example and controller are not transiently violated. For example, the 
clock output of a DLL or PLL may be “out of specif ication” while those functions lock. One 
method of handling this is to use a global clock buffer with enable. Only enable the global 
clock buffer after lock is achieved.

The system-level design example, the controller, and the configuration system are all static. 
This means, any clock frequency can be used up to the specified maximum allowed by the 
FPGA configuration system or the maximum clock frequency of the system-level design 
example and controller (whichever is lower). However, higher clock rates result in faster 
mitigation of errors, which is desirable.

Resets
There is deliberately no reset for the controller because the entire configuration of the 
device cannot be reset. The controller is a monitor of the device configuration from the 
point when the device is configured until the power is removed (or it is reconfigured). The 
task of the SEM Controller is to monitor and maintain the original configuration state and 
not restart from some interim (potentially erroneous) state.

Additional Considerations
Design limitations of the SEM core include the following:

• EasyPath devices are not compatible with the error correction by replace method.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 84
PG036 July 25, 2012

Additional Considerations

• The SEM Controller initializes and manages the FPGA integrated silicon features for soft 
error mitigation. When the controller is included in a design, do not include any design 
constraints or options that would enable the built-in detection functions. Enabling the 
necessary functions to provide detection is performed autonomously by the SEM 
Controller. For example, do not set POST_CRC, POST_CONFIG_CRC, or any other related 
constraints. Similarly, do not include options to disable GLUTMASK. The default value 
of YES is required to prevent false error detections by the SEM core.

• Software computed ECC and CRC values are not supported.

• Simulation of designs that instantiate the controller is supported. However, it is not 
possible to observe the controller behaviors in simulation. Simulation of a design 
including the controller compiles, but the controller will not exit the initialization state. 
Hardware-based evaluation of the controller behaviors is required. Alternatively, 
customers can use ISim Hardware Co-simulation to simulate their design.

• Use of bitstream security (encryption and authentication) is not supported by the 
controller.

• Use of SelectMAP persistence is not supported by the controller.

• When the controller requires storage of configuration data for correction by replace, 
this data must be available to the controller through the Fetch Interface, typically 
through the EXT shim. This decouples the controller from the FPGA configuration 
method and allows customers flexibility in selection of configuration method, 
configuration data storage, and soft error mitigation solution data storage.

• The EXT shim implementation supports only one SPI flash read command (fast read) in 
SPI Mode 0 (CPOL = 0, CPHA = 0) to a single SPI flash device.

• Due to potential I/O voltage incompatibility between the FPGA device and standard SPI 
flash devices, level translation may be required in the design of the SPI memory system.

• ICAP Arbitration, ICAP Switchover, and Partial Reconfiguration are not supported. Only 
a single ICAP instance is supported, and it must reside at the primary/top physical 
location.

• Use of design capture, including the use of the capture primitive and related 
functionality, is not supported by the controller.

• In implementations for Spartan-6 FPGAs, neither Suspend mode nor PLL DRP can be 
used.

• Controller implementations for Spartan-6 FPGAs operate only on soft errors in Type 0 
configuration frames. See UG380, Xilinx Spartan-6 FPGA Configuration User Guide for 
information on Spartan-6 configuration frame types.

• Controller implementations for Virtex-6 FPGAs operate on soft errors in Type 0, Type 2, 
and Type 3 configuration frames. See UG360, Xilinx Virtex-6 FPGA Configuration User 
Guide for information on Virtex-6 configuration frame types.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 85
PG036 July 25, 2012

Additional Considerations

• Controller implementations for 7 series FPGAs operate on soft errors in Type 0, Type 2, 
and Type 3 configuration frames. See UG470, Xilinx 7 Series FPGA Configuration User 
Guide, for information on 7 series configuration frame types.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 86
PG036 July 25, 2012

SECTION II:  VIVADO DESIGN SUITE

Customizing and Generating the Core

Constraining the Core

Detailed Example Design

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 87
PG036 July 25, 2012

Chapter 4

Customizing and Generating the Core
This chapter includes information on using Xilinx tools to customize and generate the core.

Documentation on the Vivado Design suite is available at:

www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+userguides

GUI
To customize and generate the core, locate the IP core in the IP Catalog at FPGA Features 
and Design > Soft Error Mitigation > Soft Error Mitigation and click it once to select it. 
Important information regarding the solution is displayed in the Details pane of the Project 
Manager window. Review this information before proceeding.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+userguides


Soft Error Mitigation Controller v3.3 www.xilinx.com 88
PG036 July 25, 2012

GUI

Double-click on the IP core in the IP catalog to open the customization dialog box, shown 
in Figure 4-1.

Review each of the available options, and modify them as desired so that the SEM 
Controller solution meets the requirements of the larger project into which it will be 
integrated. The following sub-sections discuss the options in detail to serve as a guide.

Component Name and Symbol
The name of the generated component is set by the Component Name field. The name 
“sem_v3_3_0” is used in this example.

X-Ref Target - Figure 4-1

Figure 4-1: Solution Customization Dialog Box Tab 1

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 89
PG036 July 25, 2012

GUI

The Component Symbol occupies the left half of the dialog box and provides a visual 
indication of the ports that will exist on the component, given the current option settings. 
This diagram is automatically updated when the option settings are modified.

Controller Options: Enable Error Injection
The Enable Error Injection checkbox is used to enable or disable the error injection feature. 
Error injection is a design verif ication function that provides a mechanism for users to 
create errors in Configuration Memory that model a soft error event. This is useful during 
integration or system level testing to verify that the controller has been properly interfaced 
with system supervisory logic and that the system responds as desired when a soft error 
event occurs.

If error injection is enabled, the Error Injection Interface is generated (as indicated by the 
Component Symbol) and the controller performs error injections in response to commands 
from the user. These commands can be applied to the Error Injection Interface or to the 
Monitor Interface.

If error injection is disabled, the Error Injection Interface is removed (as indicated by the 
Component Symbol) and the controller will not perform any error injections. Note that the 
Monitor Interface continues to exist even if the Error Injection Interface is removed. If error 
injection commands are applied to the Monitor Interface, the controller parses the 
commands but otherwise ignore them.

Controller Options: Enable Error Correction
The Enable Error Correction checkbox is used to enable or disable the error correction 
feature. No matter what setting is used, the controller monitors the error detection circuits 
and reports error conditions.

If error correction is enabled, the controller attempts to correct errors that are detected. The 
method by which corrections are performed is selectable. Most errors are correctable, and 
upon successful correction, the controller signals that a correctable error has occurred and 
was corrected. For errors that are not correctable, the controller signals that an 
uncorrectable error has occurred.

If error correction is disabled, the controller does not attempt to correct errors. At the f irst 
error event, the controller stops scanning after reporting the error condition. Further, when 
error correction is disabled, the error classif ication feature is also disabled.

Controller Options: Error Correction Method
With error correction enabled, the error correction method is selectable. The available 
methods are correction by repair, correction by enhanced repair, and correction by replace. 
The controller corrects errors using the method selected by the user. The correction 
possibilities are:

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 90
PG036 July 25, 2012

GUI

Correction by Repair

• Correction by repair for one-bit errors. The ECC syndrome is used to identify the exact 
location of the error in a frame. The frame containing the error is read, the relevant bit 
inverted, and the frame is written back. This is signaled as correctable.

Correction by Enhanced Repair

• Correction by repair for one-bit and two-bit adjacent errors. For one-bit errors, the 
behavior is identical to correction by repair. For two-bit errors, an enhanced CRC-based 
algorithm capable of correcting two-bit adjacent errors is used. The frame containing 
the error is read, the relevant bits inverted, and the frame is written back. This is 
signaled as correctable.

Correction by Replace

• Correction by replace for one-bit and multi-bit errors. The frame containing the error is 
read. The controller requests replacement data for the entire frame from the Fetch 
Interface. When the replacement data is available, the controller compares the 
damaged frame with the replacement frame to identify the location of the errors. Then, 
the replacement data is written back. This is signaled as correctable.

The difference between repair, enhanced repair, and replace methods becomes clear when 
considering what happens in the uncommon case of errors involving more bits than can be 
corrected by the repair or enhanced repair methods. In these cases, the repair or enhanced 
repair methods will not yield a successful correction. However, if such errors are corrected 
by the replace method, the error is correctable regardless of how many bits were affected. 

The fundamental trade-off between the methods is error correction success rate versus the 
cost of adding or increasing data storage requirements. Using correction by repair as the 
baseline for comparison:

• Correction by enhanced repair provides superior correction capability through use of 
additional Block RAM to store frame-level CRCs.

• Correction by replace provides ultimate correction capability through the addition of 
external SPI Flash to store “golden” frame replacement data.

EasyPath devices are not compatible with the error correction by replace method.

Controller Options: Enable Error Classification
The Enable Error Classif ication checkbox is used to enable or disable the error classif ication 
feature. Error classif ication is automatically disabled if error correction is disabled.

The error classif ication feature uses the Xilinx Essential Bits technology to determine 
whether a detected and corrected soft error has affected the function of a user design. 
Essential Bits are those bits that have an association with the circuitry of the design. If an 

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 91
PG036 July 25, 2012

GUI

Essential Bit changes, it changes the design circuitry. However it may not necessarily affect 
the function of the design.

Without knowing which bits are essential, the system must assume any detected soft error 
has compromised the correctness of the design. The system level mitigation behavior often 
results in disruption or degradation of service until the FPGA configuration is repaired and 
the design is reset or restarted.

For example, if the Vivado Bitstream Generator reports that 20% of the Configuration 
Memory is essential to an operation of a design, then only 2 out of every 10 soft errors (on 
average) actually merits a system-level mitigation response. The error classif ication feature 
is a table lookup to determine if a soft error event has affected essential Configuration 
Memory locations. Use of this feature reduces the effective FIT of the design. The cost of 
enabling this feature is the external storage required to hold the lookup table. When error 
classif ication is enabled, the Fetch Interface is generated (as indicated by the Component 
Symbol) so that the controller has an interface through which it can retrieve external data.

If error classif ication is enabled, and a detected error has been corrected, the controller will 
look up the error location. Depending on the information in the table, the controller will 
either report the error as essential or non-essential. If a detected error cannot be corrected, 
this is because the error cannot be located. Therefore, the controller conservatively reports 
the error as essential because it has no way to look up data to indicate otherwise.

If error classif ication is disabled, the controller unconditionally reports all errors as essential 
because it has no data to indicate otherwise.

Note that error classif ication need not be performed by the controller. It is possible to 
disable error classif ication by the controller, and implement it elsewhere in the system using 
the essential bit data provided by the implementation tools and the error report messages 
issued by the controller through the Monitor Interface.

Controller Options: Controller Clock Frequency
The controller clock frequency is set by the Clock Frequency field. The error mitigation time 
decreases as the controller clock frequency increases. Therefore, the frequency should be as 
high as practical. The dialog box warns if the desired frequency exceeds the capability of the 
target device.

For designs that require a data retrieval interface to fetch external data for error 
classif ication or error correction by replace, an additional consideration exists. The example 
design implements an external memory interface that is synchronous to the controller. The 
controller clock frequency therefore also determines the external memory cycle time. The 
external memory system must be analyzed to determine its minimum cycle time, as it can 
limit the maximum controller clock frequency.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 92
PG036 July 25, 2012

GUI

Instructions on how to perform this analysis are located in Interfaces in Chapter 3. However, 
this analysis requires timing data from implementation results. Therefore, Xilinx 
recommends the following:

1. Generate the solution using the desired frequency setting.

2. Extract the required timing data from the implementation results.

3. Complete the timing budget analysis to determine maximum frequency.

4. Re-generate the solution with a frequency at or below the calculated maximum 
frequency of operation.

Example Design Options: Error Injection Shim
For customizations that include error injection, the example design provides two options 
for a shim to external control of the Error Injection Interface:

• Direct control through physical pins

• Indirect control through JTAG using Xilinx ChipScope tool

When selecting ChipScope analyzer to control the Error Injection Interface, the ChipScope 
tool ICON and ChipScope tool VIO cores are not included. Generation of the ICON and VIO 
core from within the example project automatically adds the necessary sources to the 
project. The necessary ChipScope tool core settings are described in Generating and Using 
ChipScope Tool Files.

Example Design Options: Data Retrieval Shim
For customizations that require a data retrieval interface to fetch external data for error 
classif ication or error correction by replace, the controller Fetch Interface must be bridged 
to an external storage device. The example design provides a shim to an external SPI Flash 
device as the only option. If the data retrieval interface is not required, no shim is 
generated.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 93
PG036 July 25, 2012

GUI

Reviewing the Customizations
Proceed to the second tab of the solution customization dialog box. This tab is shown in 
Figure 4-2.

Review the summary to confirm each option is correct. Return to the previous tab, if 
necessary, to correct or change the selected options. After the options are reviewed and 
correct, click OK to complete the IP customization.

X-Ref Target - Figure 4-2

Figure 4-2: Solution Customization Dialog Box Tab 2

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 94
PG036 July 25, 2012

Output Generation

Output Generation
The SEM IP solution delivers f iles into a number of f ile groups. The f ile groups generated 
can be seen in the IP Sources tab of the Sources window where they are listed for each IP in 
the project. The file groups available for the SEM core are:

• Examples: Includes all source required to be able to open and implement the IP 
example design project, (Example design HDL and the example design XDC file).

• Synthesis: Includes all synthesis sources required by the core. For the SEM core, this is 
a mix of both encrypted and unencrypted source. Only the unencrypted sources are 
visible.

• Instantiation Template: Example instantiation template.

Generating and Using ChipScope Tool Files
This section describes requirements for ChipScope tool f iles necessary to support the 
optional error injection feature in the specif ic customizations where the ChipScope tool is 
selected as the error injection shim.

ChipScope Tool Files for 7 Series FPGAs
The ChipScope tool ICON core must be generated for the target device, using the default 
core name “chipscope_icon”, with the following parameters:

ENABLE_JTAG_BUFG = TRUE
NUMBER_CONTROL_PORTS = 1
USE_EXT_BSCAN = FALSE
USE_SOFTBSCAN= FALSE
USE_UNUSED_BSCAN = FALSE

The USER_SCAN_CHAIN can be set as desired. Generation of the ICON core from within the 
example project automatically adds the necessary sources to the project.

The ChipScope tool VIO core must be generated for the target device, using the default 
core name “chipscope_vio”, with the following parameters:

ENABLE_ASYNCHRONOUS_INPUT_PORT = FALSE
ENABLE_ASYNCHRONOUS_OUTPUT_PORT = FALSE
ENABLE_SYNCHRONOUS_INPUT_PORT = TRUE
ENABLE_SYNCHRONOUS_OUTPUT_PORT = TRUE
INVERT_CLOCK_INPUT = FALSE
SYNCHRONOUS_INPUT_PORT_WIDTH = 8
SYNCHRONOUS_OUTPUT_PORT_WIDTH = 41

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 95
PG036 July 25, 2012

Generating and Using ChipScope Tool Files

Generation of the VIO core from within the example project automatically adds the 
necessary sources to the project. The instantiation and interconnection of the ICON and VIO 
components inside the HID shim can be inspected, if desired. The mapping of the VIO 
synchronous input and synchronous output ports is:

sync_in[7] receives status_heartbeat
sync_in[6] receives status_uncorrectable
sync_in[5] receives status_essential
sync_in[4] receives status_injection
sync_in[3] receives status_classification
sync_in[2] receives status_correction
sync_in[1] receives status_observation
sync_in[0] receives status_initialization
sync_out[40] drives inject_strobe
sync_out[39:0] drives inject_address[39:0]

Using ChipScope Analyzer
A project must be created in the ChipScope Analyzer software. The status signals received 
by the synchronous input port should be represented with LEDs. The inject_address 
output value should be represented as HEX for data entry. The inject_strobe control 
output must be represented as a three-cycle PULSE output for proper operation.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 96
PG036 July 25, 2012

Chapter 5

Constraining the Core
This chapter contains details about applicable constraints.

Required Constraints
The SEM Controller and the system-level design example require the specif ication of 
physical implementation constraints to yield a functional result that meets performance 
requirements. These constraints are provided with the system-level design example in an 
XDC file. The XDC file, <component name>_sem_example.xdc, can be found in the IP 
Sources tab of the Sources window in the Examples file group.

To achieve consistent implementation results, the XDC provided with the solution must be 
used. For additional details on the definition and use of a XDC or specific constraints, see 
the Constraints Guide available through the documentation page for the Vivado Design 
Suite.

Constraints may require modification to integrate the solution into a larger project, or as a 
result of changes made to the system-level design example. Modif ications should only be 
made with a thorough understanding of the effect of each constraint. Additionally, support 
is not provided for designs that deviate from the provided constraints.

Contents of the Xilinx Design Constraints File
Although the XDC delivered with each generated solution shares the same overall structure 
and sequence of constraints, the contents may vary based on options set at generation. The 
sections that follow define the structure and sequence of constraints using a Kintex™-7 
device implementation as an example.

Controller Constraints
The controller, considered in isolation and regardless of options at generation, is a fully 
synchronous design. Fundamentally, it only requires a clock period constraint on the master 
clock input. In the generic XDC, this constraint is placed on the system-level design example 
clock input and propagated into the controller. The constraint is discussed in Example 

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+docs


Soft Error Mitigation Controller v3.3 www.xilinx.com 97
PG036 July 25, 2012

Contents of the Xilinx Design Constraints File

Design Constraints.

The signal paths between the controller and the FPGA configuration system primitives must 
be considered as synchronous paths. By default, the paths between the ICAP primitive and 
the controller are analyzed as part of a clock period constraint on the master clock, because 
the ICAP clock pin is required to be connected to the same master clock signal.

However, the situation is different for the FRAME_ECC primitive (when present), as it does 
not have a clock pin. Based on the specific use of the FRAME_ECC primitive with the ICAP 
primitive, it is known that FRAME_ECC primitive pins are synchronous to the master clock 
signal. Therefore, additional constraints with values derived from the clock period 
constraint are added:

set_max_delay 12.151 -from [get_pins example_cfg/example_frame_ecc/*] -quiet
set_max_delay 30.302 -from [get_pins example_cfg/example_frame_ecc/*] -to [all_outputs] 
-quiet

Example Design Constraints
The example design constraints are organized by interface, rather than constraint type. The 
f irst group is for the master clock input to the entire design. It applies an I/O standard and 
a period constraint. The period constraint value is based on options set at generation:

create_clock -name clk -period 15.151 [get_ports clk]
set_property IOSTANDARD LVCMOS25 [get_ports clk]

The second group is for the Status Interface, applying an I/O standard and an output timing 
constraint to the interface. The output timing constraint is set at two times the period 
constraint.

set_property DRIVE 8 [get_ports status_initialization]
set_property SLEW FAST [get_ports status_initialization]
set_property IOSTANDARD LVCMOS25 [get_ports status_initialization]

set_property DRIVE 8 [get_ports status_observation]
set_property SLEW FAST [get_ports status_observation]
set_property IOSTANDARD LVCMOS25 [get_ports status_observation]

set_property DRIVE 8 [get_ports status_correction]
set_property SLEW FAST [get_ports status_correction]
set_property IOSTANDARD LVCMOS25 [get_ports status_correction]

set_property DRIVE 8 [get_ports status_classification]
set_property SLEW FAST [get_ports status_classification]
set_property IOSTANDARD LVCMOS25 [get_ports status_classification]

set_property DRIVE 8 [get_ports status_injection]
set_property SLEW FAST [get_ports status_injection]
set_property IOSTANDARD LVCMOS25 [get_ports status_injection]

set_property DRIVE 8 [get_ports status_uncorrectable]
set_property SLEW FAST [get_ports status_uncorrectable]
set_property IOSTANDARD LVCMOS25 [get_ports status_uncorrectable]

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 98
PG036 July 25, 2012

Contents of the Xilinx Design Constraints File

set_property DRIVE 8 [get_ports status_essential]
set_property SLEW FAST [get_ports status_essential]
set_property IOSTANDARD LVCMOS25 [get_ports status_essential]

set_property DRIVE 8 [get_ports status_heartbeat]
set_property SLEW FAST [get_ports status_heartbeat]
set_property IOSTANDARD LVCMOS25 [get_ports status_heartbeat]

set_output_delay -clock clk -15.151 [get_ports [list status_observation 
status_correction status_classification status_injection status_uncorrectable 
status_essential status_heartbeat status_initialization]] -max
set_output_delay -clock clk 0 [get_ports [list status_observation status_correction 
status_classification status_injection status_uncorrectable status_essential 
status_heartbeat status_initialization]] -min

The third group is for the MON shim, applying an I/O standard and input/output timing 
constraints to the interface. The input and output timing constraints are set at two times the 
period constraint.

set_property IOB TRUE [get_cells example_mon/example_mon_sipo/sync_reg]
set_property IOB TRUE [get_cells example_mon/example_mon_piso/pipeline_serial]

set_property DRIVE 8 [get_ports monitor_tx]
set_property SLEW FAST [get_ports monitor_tx]
set_property IOSTANDARD LVCMOS25 [get_ports monitor_tx]

set_property IOSTANDARD LVCMOS25 [get_ports monitor_rx]

set_input_delay -clock clk -max -15.151 [get_ports monitor_rx]
set_input_delay -clock clk -min 30.302 [get_ports monitor_rx]
set_output_delay -clock clk -15.151 [get_ports monitor_tx] -max
set_output_delay -clock clk 0 [get_ports monitor_tx] -min

The following group is for the EXT shim, and is only present when the EXT shim is generated 
based on options set at generation. It applies an I/O standard and input/output timing 
constraints to the interface. The input and output timing is of considerable importance, as 
the actual timing must be used in the analysis of the SPI bus timing budget. However, there 
is no hard requirement for the input and output timing of the FPGA implementation. It 
varies based on the selected device and speed grade.

As such, the input and output timing constraints are arbitrarily set at two times the period 
constraint. The additional constraint to use IOB flip-flops yields substantially better input 
and output timing than the constraint values suggest. It is the actual timing obtained from 
the timing report that should be used in the analysis of the SPI bus timing budget, not the 
constraint value.

set_property IOB TRUE [get_cells example_ext/example_ext_byte/ext_c_ofd]
set_property IOB TRUE [get_cells example_ext/example_ext_byte/ext_d_ofd]
set_property IOB TRUE [get_cells example_ext/example_ext_byte/ext_q_ifd]
set_property IOB TRUE [get_cells example_ext/ext_s_ofd]

set_property DRIVE 8 [get_ports external_c]
set_property SLEW FAST [get_ports external_c]
set_property IOSTANDARD LVCMOS25 [get_ports external_c]

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 99
PG036 July 25, 2012

Contents of the Xilinx Design Constraints File

set_property DRIVE 8 [get_ports external_d]
set_property SLEW FAST [get_ports external_d]
set_property IOSTANDARD LVCMOS25 [get_ports external_d]

set_property DRIVE 8 [get_ports external_s_n]
set_property SLEW FAST [get_ports external_s_n]
set_property IOSTANDARD LVCMOS25 [get_ports external_s_n]

set_property IOSTANDARD LVCMOS25 [get_ports external_q]

set_input_delay -clock clk -max -15.151 [get_ports external_q]
set_input_delay -clock clk -min 30.302 [get_ports external_q]
set_output_delay -clock clk -15.151 [get_ports [list external_d external_s_n 
external_c]] -max
set_output_delay -clock clk 0 [get_ports [list external_d external_s_n external_c]] 
-min

The following group is for the HID shim, and is only present when the HID shim is I/O Pins. 
It applies an I/O standard and input timing constraint to the interface. The input timing 
constraint is set at two times the period constraint.

set_property IOSTANDARD LVCMOS25 [get_ports inject_strobe]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[0]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[1]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[2]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[3]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[4]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[5]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[6]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[7]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[8]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[9]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[10]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[11]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[12]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[13]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[14]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[15]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[16]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[17]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[18]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[19]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[20]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[21]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[22]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[23]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[24]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[25]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[26]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[27]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[28]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[29]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[30]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[31]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[32]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[33]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[34]}]

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 100
PG036 July 25, 2012

Contents of the Xilinx Design Constraints File

set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[35]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[36]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[37]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[38]}]
set_property IOSTANDARD LVCMOS25 [get_ports {inject_address[39]}]

set_input_delay -clock clk -max -14.285 [get_ports [list {inject_address[0]} 
{inject_address[1]} {inject_address[2]} {inject_address[3]} {inject_address[4]} 
{inject_address[5]} {inject_address[6]} {inject_address[7]} {inject_address[8]} 
{inject_address[9]} {inject_address[10]} {inject_address[11]} {inject_address[12]} 
{inject_address[13]} {inject_address[14]} {inject_address[15]} {inject_address[16]} 
{inject_address[17]} {inject_address[18]} {inject_address[19]} {inject_address[20]} 
{inject_address[21]} {inject_address[22]} {inject_address[23]} {inject_address[24]} 
{inject_address[25]} {inject_address[26]} {inject_address[27]} {inject_address[28]} 
{inject_address[29]} {inject_address[30]} {inject_address[31]} {inject_address[32]} 
{inject_address[33]} {inject_address[34]} {inject_address[35]} {inject_address[36]} 
{inject_address[37]} {inject_address[38]} {inject_address[39]} inject_strobe]]
set_input_delay -clock clk -min 28.57 [get_ports [list {inject_address[0]} 
{inject_address[1]} {inject_address[2]} {inject_address[3]} {inject_address[4]} 
{inject_address[5]} {inject_address[6]} {inject_address[7]} {inject_address[8]} 
{inject_address[9]} {inject_address[10]} {inject_address[11]} {inject_address[12]} 
{inject_address[13]} {inject_address[14]} {inject_address[15]} {inject_address[16]} 
{inject_address[17]} {inject_address[18]} {inject_address[19]} {inject_address[20]} 
{inject_address[21]} {inject_address[22]} {inject_address[23]} {inject_address[24]} 
{inject_address[25]} {inject_address[26]} {inject_address[27]} {inject_address[28]} 
{inject_address[29]} {inject_address[30]} {inject_address[31]} {inject_address[32]} 
{inject_address[33]} {inject_address[34]} {inject_address[35]} {inject_address[36]} 
{inject_address[37]} {inject_address[38]} {inject_address[39]} inject_strobe]]

The following constraints in the XDC implement a pblock to place portions of the 
system-level design example into a bounded region of the selected device. The instances 
included in the pblock depend on the options set at generation. The range values vary 
depending on device selection. 

The  pblock forces packing of the soft error mitigation logic into an area physically adjacent 
to the ICAP site in the device. Most importantly, this maintains reproducibility in timing 
results. It also improves resource usage; the  pblock forces tighter packing and generates a 
resource usage summary that is helpful in estimating the FIT of the system-level design 
example.

create_pblock SEM_CONTROLLER
resize_pblock -pblock SEM_CONTROLLER -add RAMB18_X2Y50:RAMB18_X4Y59
resize_pblock -pblock SEM_CONTROLLER -add RAMB36_X2Y25:RAMB36_X4Y29
resize_pblock -pblock SEM_CONTROLLER -add SLICE_X36Y125:SLICE_X47Y149
add_cells_to_pblock -pblock SEM_CONTROLLER -cells [get_cells example_controller/*]
add_cells_to_pblock -pblock SEM_CONTROLLER -cells [get_cells example_mon/*]
add_cells_to_pblock -pblock SEM_CONTROLLER -cells [get_cells example_ext/*]

set_property LOC FRAME_ECC_X0Y0 [get_cells example_cfg/example_frame_ecc]
set_property LOC ICAP_X0Y1 [get_cells example_cfg/example_icap]

The final constraints in the XDC are a template for assigning I/O pin locations to the 
top-level ports of the system-level example design. These assignments are necessarily 
board-specif ic and therefore cannot be automatically generated. To apply these 
constraints, uncomment them and fill in valid I/O pin locations for the target board.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 101
PG036 July 25, 2012

Contents of the Xilinx Design Constraints File

## set_property LOC <pin loc> [get_ports clk]

## set_property LOC <pin loc> [get_ports status_initialization]
## set_property LOC <pin loc> [get_ports status_observation]
## set_property LOC <pin loc> [get_ports status_correction]
## set_property LOC <pin loc> [get_ports status_classification]
## set_property LOC <pin loc> [get_ports status_injection]
## set_property LOC <pin loc> [get_ports status_uncorrectable]
## set_property LOC <pin loc> [get_ports status_essential]
## set_property LOC <pin loc> [get_ports status_heartbeat]

## set_property LOC <pin loc> [get_ports monitor_tx]
## set_property LOC <pin loc> [get_ports monitor_rx]

## set_property LOC <pin loc> [get_ports external_c]
## set_property LOC <pin loc> [get_ports external_d]
## set_property LOC <pin loc> [get_ports external_q]
## set_property LOC <pin loc> [get_ports external_s_n]

## set_property LOC <pin loc> [get_ports inject_strobe]
## set_property LOC <pin loc> [get_ports {inject_address[0]}]
## set_property LOC <pin loc> [get_ports {inject_address[1]}]
## set_property LOC <pin loc> [get_ports {inject_address[2]}]
## set_property LOC <pin loc> [get_ports {inject_address[3]}]
## set_property LOC <pin loc> [get_ports {inject_address[4]}]
## set_property LOC <pin loc> [get_ports {inject_address[5]}]
## set_property LOC <pin loc> [get_ports {inject_address[6]}]
## set_property LOC <pin loc> [get_ports {inject_address[7]}]
## set_property LOC <pin loc> [get_ports {inject_address[8]}]
## set_property LOC <pin loc> [get_ports {inject_address[9]}]
## set_property LOC <pin loc> [get_ports {inject_address[10]}]
## set_property LOC <pin loc> [get_ports {inject_address[11]}]
## set_property LOC <pin loc> [get_ports {inject_address[12]}]
## set_property LOC <pin loc> [get_ports {inject_address[13]}]
## set_property LOC <pin loc> [get_ports {inject_address[14]}]
## set_property LOC <pin loc> [get_ports {inject_address[15]}]
## set_property LOC <pin loc> [get_ports {inject_address[16]}]
## set_property LOC <pin loc> [get_ports {inject_address[17]}]
## set_property LOC <pin loc> [get_ports {inject_address[18]}]
## set_property LOC <pin loc> [get_ports {inject_address[19]}]
## set_property LOC <pin loc> [get_ports {inject_address[20]}]
## set_property LOC <pin loc> [get_ports {inject_address[21]}]
## set_property LOC <pin loc> [get_ports {inject_address[22]}]
## set_property LOC <pin loc> [get_ports {inject_address[23]}]
## set_property LOC <pin loc> [get_ports {inject_address[24]}]
## set_property LOC <pin loc> [get_ports {inject_address[25]}]
## set_property LOC <pin loc> [get_ports {inject_address[26]}]
## set_property LOC <pin loc> [get_ports {inject_address[27]}]
## set_property LOC <pin loc> [get_ports {inject_address[28]}]
## set_property LOC <pin loc> [get_ports {inject_address[29]}]
## set_property LOC <pin loc> [get_ports {inject_address[30]}]
## set_property LOC <pin loc> [get_ports {inject_address[31]}]
## set_property LOC <pin loc> [get_ports {inject_address[32]}]
## set_property LOC <pin loc> [get_ports {inject_address[33]}]
## set_property LOC <pin loc> [get_ports {inject_address[34]}]
## set_property LOC <pin loc> [get_ports {inject_address[35]}]
## set_property LOC <pin loc> [get_ports {inject_address[36]}]
## set_property LOC <pin loc> [get_ports {inject_address[37]}]
## set_property LOC <pin loc> [get_ports {inject_address[38]}]

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 102
PG036 July 25, 2012

Device, Package, and Speed Grade

## set_property LOC <pin loc> [get_ports {inject_address[39]}]

Device, Package, and Speed Grade
There are no additional device, package or speed grade constraints.

Clock Frequency
There are no additional clock frequency constraints.

Clock Management
There are no additional clock management constraints.

Clock Placement
There are no additional clock placement constraints.

I/O Pins
This section contains details about I/O pins constraints.

I/O Standard
There are no additional I/O standard constraints. 

I/O Banking
There are no additional I/O banking constraints.

I/O Placement
There are no additional I/O placement constraints.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 103
PG036 July 25, 2012

I/O Pins

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 104
PG036 July 25, 2012

Chapter 6

Detailed Example Design
This section provides an overview of the SEM Controller system-level example design and 
the interfaces it exposes. The system-level example design encapsulates the controller and 
various shims that serve to interface the controller to other devices. These shims can 
include I/O Pins, ChipScope, I/O Interfaces, Memory Controllers, or application-specific 
system management interfaces.

The system-level example design is verif ied along with the controller. As delivered, the 
system-level example design is not a “reference design,” but an integral part of the total 
solution. While users do have the flexibility to modify the system-level example design, the 
recommended approach is to use it as delivered.

Functions
In addition to serving as an instantiation vehicle for the controller itself, the system-level 
design example incorporates five main functions:

• The FPGA configuration system primitives and their connection to the controller.

• The MON shim, a bridge between the controller and a standard RS-232 port. The 
resulting interface can be used to exchange commands and status with the controller. 
This interface is designed for connection to processors.

• The EXT shim, a bridge between the controller and a standard SPI bus. The resulting 
interface can be used to fetch data by the controller. This shim is only present in certain 
controller configurations and is designed for connection to standard SPI flash.

• The HID shim, a bridge between the controller and an interface device. The resulting 
interface can be used to exchange commands and status with the controller. This shim 
is only present in certain controller configurations.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 105
PG036 July 25, 2012

Functions

Figure 6-1 shows a block diagram of the system-level design example. The blocks drawn in 
gray only exist in certain configurations.

The system-level design example is provided to allow flexibility in system-level interfacing. 
To support this goal, the system-level design example is provided as RTL source code, 
unlike the controller itself.

X-Ref Target - Figure 6-1

Figure 6-1: Example Design Block Diagram

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 106
PG036 July 25, 2012

Port Descriptions

Port Descriptions
Figure 6-2 shows the example design ports. The ports are clustered into six groups. The 
groups shaded in gray only exist in certain configurations.

The system-level design example has no reset input or output. The controller automatically 
initializes itself. The controller then initializes the shims, as required.

The system-level design example is a fully synchronous design using clk as the single 
clock. All state elements are synchronous to the rising edge of this clock. As a result, the 
interfaces are generally synchronous to the rising edge of this clock.

Status Interface
The Status Interface is a direct pass-through from the controller. See Chapter 2, Status 
Interface for a description of this interface.

X-Ref Target - Figure 6-2

Figure 6-2: Example Design Ports

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 107
PG036 July 25, 2012

Port Descriptions

Clock Interface
The Clock Interface is used to provide a clock to the system-level design example. Internally, 
the clock signal is distributed on a global clock buffer to all synchronous logic elements.

Monitor Interface
The Monitor Interface is always present. The MON shim in the system-level design example 
is a UART. This shim serializes status information generated by the controller (a byte stream 
of ASCII codes) for serial transmission. Similarly, the shim de-serializes command 
information presented to the controller (a bitstream of ASCII codes) for parallel 
presentation to the controller.

The shim uses a standard serial communication protocol. The shim contains synchronization 
and over sampling logic to support asynchronous serial devices that operate at the same 
nominal baud rate. See Chapter 3, Designing with the Core for additional information.

The resulting interface is directly compatible with a wide array of devices ranging from 
embedded microcontrollers to desktop computers. External level translators may be 
necessary depending on system requirements.

External Interface
The External Interface is present when the controller requires access to external data. When 
present, the EXT shim in the system-level design example is a f ixed-function SPI bus master. 
This shim accepts commands from the controller that consist of an address and a byte 
count. The shim generates SPI bus transactions to fetch the requested data from an external 
SPI flash. The shim formats the returned data for the controller to pick up.

The shim uses standard SPI bus protocol, implementing the most common mode (CPOL = 
0, CPHA = 0, often referred to as “Mode 0”). The SPI bus clock frequency is locked to one 
half of the master clock for the system-level design example. See Chapter 3, Designing with 
the Core for information on external timing budgets.

Table 6-1: Clock Interface Details

Name Sense Direction Description

clk EDGE IN Receives the master clock for the system-level 
design example.

Table 6-2: Monitor Interface Details

Name Sense Direction Description

monitor_tx LOW OUT Serial transmit data from system-level design 
example.

monitor_rx LOW IN Serial receive data to system-level design example.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 108
PG036 July 25, 2012

Demonstration Test Bench

The resulting interface is directly compatible with a wide array of standard SPI flash. 
External level translators may be necessary depending on system requirements.

Error Injection Interface
The Error Injection Interface is present when the controller supports error injection and the 
HID shim is set to I/O Pins. This interface is a direct pass-through from the controller. See 
Chapter 2, Error Injection Interface for a description of this interface.

When the controller supports error injection and the HID shim is set to ChipScope, or when 
error injection is disabled, this interface is absent.

Demonstration Test Bench
No simulation test bench is provided with the example design.

Implementation
The example design is not generated by default. The example design is generated by user 
request and can be opened in a new instance of Vivado. This allows users to view and 
modify the example of various cores being used without touching their own design. To 
generate the example design, right click on the sem_v3_3_0.xci f ile under Design Sources 
and select "Open IP Example Design." 

Implementation of the controller, when configured to use the optional error classif ication 
function or the optional correction by replace function, requires a large amount of system 
RAM. Xilinx recommends the use of a 64-bit operating system with 16 Gb or more of system 
RAM.

Table 6-3: External Interface Details

Name Sense Direction Description

external_c EDGE OUT SPI bus clock for an external SPI flash.

external_d HIGH OUT SPI bus “master out, slave in” signal for an external 
SPI flash.

external_s_n LOW OUT SPI bus select signal for an external SPI flash.

external_q HIGH IN SPI bus “master in, slave out” signal for an external 
SPI flash.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 109
PG036 July 25, 2012

Implementation

Run Synthesis and Implementation
Synthesis and implementation can be run separately by clicking on the appropriate option 
in the left side menu.

Generate the Bitstream
If error classif ication or correction by replace options are enabled, additional 
write_bitstream options must be specified prior to bitstream generation to create 
supplemental f iles. Select Bitstream Settings from the left hand Flow Navigator menu and  
enter -ise -bitgen_options {-g essentialbits:yes} in the More Options f ield.

Create the bitstream by selecting Generate Bitstream in the left side menu. 

Creating the External Memory Programming File
If the solution requires external data storage to support error classif ication or error 
correction by replace, an additional TCL script is called to post-process special bitgen 
output f iles into a SPI Flash programming f ile. Select Window > Design Runs, then select 
the implementation design run, impl_1.  The Implementation Run Properties window 
specifies the directory where the implementation results were captured. 

At a terminal prompt, go to the implementation results directory containing the EBC and 
EBD files created during bitstream generation. Depending on which options are enabled, 

X-Ref Target - Figure 6-3

Figure 6-3: Bitstream Generation

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 110
PG036 July 25, 2012

External Memory Programming File

the following command generates the necessary files. These examples show the general 
path and the specif ic instances used in this example flow.

If classif ication and correction by replace are enabled (used in the example outlined in 
these steps):

xtclsh ../../../project_1.srcs/sources_1/ip/<component name>/<component name>/
implement/makedata.tcl -ebc <ebc filename> -ebd <ebd filename> datafile

xtclsh ../../../project_1.srcs/sources_1/ip/sem_v3_3_0/sem_v3_3_0/implement/
makedata.tcl -ebc sem_v3_3_0_sem_example.ebc -ebd sem_v3_3_0_sem_example.ebd 
datafile

If correction by replace is enabled:

xtclsh ../../../project_1.srcs/sources_1/ip/<component name>/<component name>/
implement/makedata.tcl -ebc <ebc filename> datafile

xtclsh ../../../project_1.srcs/sources_1/ip/sem_v3_3_0/sem_v3_3_0/implement/
makedata.tcl -ebc sem_v3_3_0_sem_example.ebc datafile

If classif ication is enabled:

xtclsh ../../../project_1.srcs/sources_1/ip/<component name>/<component name>/
implement/makedata.tcl -ebd <ebd filename> datafile

xtclsh ../../../project_1.srcs/sources_1/ip/sem_v3_3_0/sem_v3_3_0/implement/
makedata.tcl -ebd sem_v3_3_0_sem_example.ebd datafile

The command creates the VMF, BIN and MCS files. 

External Memory Programming File
When error correction by replace is enabled, an image of the configuration data is required. 
When error classif ication is enabled, an image of the essential bit lookup data is required. 
As a result, one or both of these data sets may be required. The data sets are identical in 
size, with their size a function of the target device. The data sets are generated by the 
bitgen application.

The format of the data is required to be binary, using the full data set(s) generated by 
bitgen. The external storage must be byte addressable. A small table is required at the 
address specified to the SEM Controller through fetch_tbladdr[31:0]. By default, 
fetch_tbladdr[31:0] is zero.

• Byte 0: 32-bit pointer to start of replacement data, byte 0 (least signif icant byte)

• Byte 1: 32-bit pointer to start of replacement data, byte 1

• Byte 2: 32-bit pointer to start of replacement data, byte 2

• Byte 3: 32-bit pointer to start of replacement data, byte 3 (most signif icant byte)

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 111
PG036 July 25, 2012

Simulation

• Byte 4: 32-bit pointer to start of essential bit data, byte 0 (least signif icant byte)

• Byte 5: 32-bit pointer to start of essential bit data, byte 1

• Byte 6: 32-bit pointer to start of essential bit data, byte 2

• Byte 7: 32-bit pointer to start of essential bit data, byte 3 (most significant byte)

• The remaining bytes are reserved, f illed with zero

A pointer value of 0x00000000 is used if a particular block of data is not present. After the 
table, the essential bit data and replacement data can be located at any address provided 
each data set is contiguous.

The TCL script, which post processes the bitgen output f iles, generates three outputs:

• An Intel hex data f ile (MCS) for programming SPI Flash devices

• A raw binary data file (BIN) for programming SPI Flash devices

• An initialization f ile (VMF) for loading SPI Flash simulation models

Simulation
Simulation of designs that instantiate the controller is supported. In other words, including 
the controller in a larger project does not adversely affect ability to run simulations of 
functionality unrelated to the controller. However, it is not possible to observe the 
controller behaviors in simulation. Simulation of a design including the controller will 
compile, but the controller will not exit the initialization state.

Hardware-based evaluation of the controller behaviors is required. Alternatively, customers 
can use ISim Hardware Co-simulation to evaluate their design.

Messages and Warnings

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 112
PG036 July 25, 2012

SECTION III:  ISE DESIGN SUITE

Customizing and Generating the Core

Constraining the Core

Example Design

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 113
PG036 July 25, 2012

Chapter 7

Customizing and Generating the Core
This chapter provides instructions for generating the SEM Controller. The generation 
instructions are annotated with detailed information about each of the available options.

Creating a Project in ISE Design Suite
First, create a project using the Xilinx CORE Generator software. For detailed information on 
starting and using the CORE Generator software, see the Xilinx CORE Generator User Guide. 
Perform the following steps:

1. Start the CORE Generator software.

2. Choose File > New Project from the menu.

3. Using the f ile requestor dialog box:

a. Navigate to the desired project directory.

b. Modify the project f ile name, if desired.

c. Click Save.

4. Set the Part Options in the Project Options dialog box:

a. Select the target family, device, package, and speed grade.

Example: Kintex-7, xc7k325t-ffg900-1

Note: If an unsupported family is selected, the IP core will not appear in the IP 
Catalog.

b. Click Apply.

5. Set the Generation Options in the Project Options dialog box:

a. For Flow, select Design Entry in either VHDL or Verilog.

b. For Flow Settings, select either ISE (for XST) or Synplicity (for Synplify Pro).

c. Click Okay.

After creating the project, the IP core will be available for selection in the IP Catalog, located 
at FPGA Features and Design > Soft Error Mitigation > Soft Error Mitigation.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 114
PG036 July 25, 2012

Customizing and Generating the Core in ISE Design Suite

Customizing and Generating the Core in ISE 
Design Suite
Locate the IP core in the IP Catalog and click it once to select it. Important information 
regarding the solution is displayed in the main window. Review this information before 
proceeding.

In the Actions section of the main window, click the Customize and Generate link. This 
launches page one of the solution customization dialog box, shown in Figure 7-1.

Review each of the available options, and modify them as desired so that the SEM 
Controller solution meets the requirements of the larger project into which it will be 
integrated. The following sub-sections discuss the options in detail to serve as a guide.

Component Name and Symbol
The name of the generated component is set by the Component Name field. The name 
“sem_v3_3” is used in this example.

The Component Symbol occupies the left half of the dialog box and provides a visual 
indication of the ports that will exist on the component, given the current option settings. 
Ports that will be generated are drawn in black. This diagram is automatically updated when 
the option settings are modif ied.

X-Ref Target - Figure 7-1

Figure 7-1: Solution Customization Dialog Box Page 1

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 115
PG036 July 25, 2012

Customizing and Generating the Core in ISE Design Suite

Controller Options: Enable Error Injection
The Enable Error Injection checkbox is used to enable or disable the error injection feature. 
Error injection is a design verif ication function that provides a mechanism for users to 
create errors in Configuration Memory that model a soft error event. This is useful during 
integration or system level testing to verify that the controller has been properly interfaced 
with system supervisory logic and that the system responds as desired when a soft error 
event occurs.

If error injection is enabled, the Error Injection Interface is generated (as indicated by the 
Component Symbol) and the controller performs error injections in response to commands 
from the user. These commands can be applied to the Error Injection Interface or to the 
Monitor Interface.

If error injection is disabled, the Error Injection Interface is removed (as indicated by the 
Component Symbol) and the controller will not perform any error injections. Note that the 
Monitor Interface continues to exist even if the Error Injection Interface is removed. If error 
injection commands are applied to the Monitor Interface, the controller parses the 
commands but otherwise ignore them.

Controller Options: Enable Error Correction
The Enable Error Correction checkbox is used to enable or disable the error correction 
feature. No matter what setting is used, the controller monitors the error detection circuits 
and reports error conditions.

If error correction is enabled, the controller attempts to correct errors that are detected. The 
method by which corrections are performed is selectable. Most errors are correctable, and 
upon successful correction, the controller signals that a correctable error has occurred and 
was corrected. For errors that are not correctable, the controller signals that an 
uncorrectable error has occurred.

If error correction is disabled, the controller does not attempt to correct errors. At the f irst 
error event, the controller stops scanning after reporting the error condition. Further, when 
error correction is disabled, the error classif ication feature is also disabled.

Controller Options: Error Correction Method
With error correction enabled, the error correction method is selectable. The available 
methods are correction by repair, correction by enhanced repair, and correction by replace. 
The controller corrects errors using the method selected by the user. The correction 
possibilities are:

Correction by Repair

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 116
PG036 July 25, 2012

Customizing and Generating the Core in ISE Design Suite

• Correction by repair for one-bit errors. The ECC syndrome is used to identify the exact 
location of the error in a frame. The frame containing the error is read, the relevant bit 
inverted, and the frame is written back. This is signaled as correctable.

Correction by Enhanced Repair

• Correction by repair for one-bit and two-bit adjacent errors. For one-bit errors, the 
behavior is identical to correction by repair. For two-bit errors, an enhanced CRC-based 
algorithm capable of correcting two-bit adjacent errors is used. The frame containing 
the error is read, the relevant bits inverted, and the frame is written back. This is 
signaled as correctable.

Correction by Replace

• Correction by replace for one-bit and multi-bit errors. The frame containing the error is 
read. The controller requests replacement data for the entire frame from the Fetch 
Interface. When the replacement data is available, the controller compares the 
damaged frame with the replacement frame to identify the location of the errors. Then, 
the replacement data is written back. This is signaled as correctable.

The difference between repair, enhanced repair, and replace methods becomes clear when 
considering what happens in the uncommon case of errors involving more bits than can be 
corrected by the repair or enhanced repair methods. In these cases, the repair or enhanced 
repair methods will not yield a successful correction. However, if such errors are corrected 
by the replace method, the error is correctable regardless of how many bits were affected. 

The fundamental trade-off between the methods is error correction success rate versus the 
cost of adding or increasing data storage requirements. Using correction by repair as the 
baseline for comparison:

• Correction by enhanced repair provides superior correction capability through use of 
additional Block RAM to store frame-level CRCs.

• Correction by replace provides ultimate correction capability through the addition of 
external SPI Flash to store “golden” frame replacement data.

EasyPath devices are not compatible with the error correction by replace method.

Controller Options: Enable Error Classification
The Enable Error Classif ication checkbox is used to enable or disable the error classif ication 
feature. Error classif ication is automatically disabled if error correction is disabled.

The error classif ication feature uses the Xilinx Essential Bits technology to determine 
whether a detected and corrected soft error has affected the function of a user design. 
Essential Bits are those bits that have an association with the circuitry of the design. If an 
Essential Bit changes, it changes the design circuitry. However it may not necessarily affect 
the function of the design.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 117
PG036 July 25, 2012

Customizing and Generating the Core in ISE Design Suite

Without knowing which bits are essential, the system must assume any detected soft error 
has compromised the correctness of the design. The system level mitigation behavior often 
results in disruption or degradation of service until the FPGA configuration is repaired and 
the design is reset or restarted.

For example, if bitgen reports that 20% of the Configuration Memory is essential to an 
operation of a design, then only 2 out of every 10 soft errors (on average) actually merits a 
system-level mitigation response. The error classif ication feature is a table lookup to 
determine if a soft error event has affected essential Configuration Memory locations. Use 
of this feature reduces the effective FIT of the design. The cost of enabling this feature is the 
external storage required to hold the lookup table. When error classif ication is enabled, the 
Fetch Interface is generated (as indicated by the Component Symbol) so that the controller 
has an interface through which it can retrieve external data.

If error classif ication is enabled, and a detected error has been corrected, the controller will 
look up the error location. Depending on the information in the table, the controller will 
either report the error as essential or non-essential. If a detected error cannot be corrected, 
this is because the error cannot be located. Therefore, the controller conservatively reports 
the error as essential because it has no way to look up data to indicate otherwise.

If error classif ication is disabled, the controller unconditionally reports all errors as essential 
because it has no data to indicate otherwise.

Note that error classif ication need not be performed by the controller. It is possible to 
disable error classif ication by the controller, and implement it elsewhere in the system using 
the essential bit data provided by the implementation tools and the error report messages 
issued by the controller through the Monitor Interface.

Controller Options: Controller Clock Frequency
The controller clock frequency is set by the Clock Frequency field. The error mitigation time 
decreases as the controller clock frequency increases. Therefore, the frequency should be as 
high as practical. The dialog box warns if the desired frequency exceeds the capability of the 
target device.

For designs that require a data retrieval interface to fetch external data for error 
classif ication or error correction by replace, an additional consideration exists. The example 
design implements an external memory interface that is synchronous to the controller. The 
controller clock frequency therefore also determines the external memory cycle time. The 
external memory system must be analyzed to determine its minimum cycle time, as it can 
limit the maximum controller clock frequency.

Instructions on how to perform this analysis are located in Interfaces in Chapter 3. However, 
this analysis requires timing data from implementation results. Therefore, Xilinx 
recommends the following:

1. Generate the solution using the desired frequency setting.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 118
PG036 July 25, 2012

Customizing and Generating the Core in ISE Design Suite

2. Extract the required timing data from the implementation results.

3. Complete the timing budget analysis to determine maximum frequency.

4. Re-generate the solution with a frequency at or below the calculated maximum 
frequency of operation.

Example Design Options: Error Injection Shim
For customizations that include error injection, the example design provides two options 
for a shim to external control of the Error Injection Interface:

• Direct control through physical pins

• Indirect control through JTAG using Xilinx ChipScope tool

When selecting ChipScope analyzer to control the Error Injection Interface, the ChipScope 
tool ICON and ChipScope tool VIO cores are not included. They must be generated 
(separately) with their output products placed in the example design directory. The 
necessary ChipScope tool core settings are described at the end of this chapter.

Example Design Options: Data Retrieval Shim
For customizations that require a data retrieval interface to fetch external data for error 
classif ication or error correction by replace, the controller Fetch Interface must be bridged 
to an external storage device. The example design provides a shim to an external SPI Flash 
device as the only option. If the data retrieval interface is not required, no shim is 
generated.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 119
PG036 July 25, 2012

Output Generation

Reviewing the Customizations
Proceed to page two of the of the solution customization dialog box by clicking Next. This 
page is shown in Figure 7-2.

Review the summary to confirm each option is correct. Return to the previous page, if 
necessary, to correct or change options prior to generation. After the options are reviewed 
and correct, proceed to generate the solution.

Generating the Solution
Click Generate to begin the generation process. The CORE Generator software will generate 
and deliver a customized solution based on the provided option settings. When this process 
has completed, a f inal dialog box with important information regarding the solution will 
appear. Review this information before exiting the CORE Generator software to review the 
delivered f iles.

Output Generation
The directory contents are the same as the files shown in Directory and File Contents in 
Chapter 9.

X-Ref Target - Figure 7-2

Figure 7-2: Solution Customization Dialog Box Page 2

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 120
PG036 July 25, 2012

Generating and Using ChipScope Tool Files

Generating and Using ChipScope Tool Files
This section describes requirements for ChipScope tool f iles necessary to support the 
optional error injection feature in the specif ic customizations where the ChipScope tool is 
selected as the error injection shim.

ChipScope Tool Files for 7 Series FPGAs
The ChipScope tool ICON core must be generated for the target device, using the default 
core name “chipscope_icon”, with the following parameters:

ENABLE_JTAG_BUFG = TRUE
NUMBER_CONTROL_PORTS = 1
USE_EXT_BSCAN = FALSE
USE_SOFTBSCAN= FALSE
USE_UNUSED_BSCAN = FALSE

The USER_SCAN_CHAIN can be set as desired. After the ICON core is generated, the 
chipscope_icon.ngc and chipscope_icon.{v|vhd} f iles must be copied to the 
example design directory.

The ChipScope tool VIO core must be generated for the target device, using the default 
core name “chipscope_vio”, with the following parameters:

ENABLE_ASYNCHRONOUS_INPUT_PORT = FALSE
ENABLE_ASYNCHRONOUS_OUTPUT_PORT = FALSE
ENABLE_SYNCHRONOUS_INPUT_PORT = TRUE
ENABLE_SYNCHRONOUS_OUTPUT_PORT = TRUE
INVERT_CLOCK_INPUT = FALSE
SYNCHRONOUS_INPUT_PORT_WIDTH = 8
SYNCHRONOUS_OUTPUT_PORT_WIDTH = 41

After the VIO core is generated, chipscope_vio.ngc and chipscope_vio.{v|vhd} 
f iles must be copied to the example design directory. The instantiation and interconnection 
of the ICON and VIO components inside the HID shim can be inspected, if desired. The 
mapping of the VIO synchronous input and synchronous output ports is:

sync_in[7] receives status_heartbeat
sync_in[6] receives status_uncorrectable
sync_in[5] receives status_essential
sync_in[4] receives status_injection
sync_in[3] receives status_classification
sync_in[2] receives status_correction
sync_in[1] receives status_observation
sync_in[0] receives status_initialization
sync_out[40] drives inject_strobe
sync_out[39:0] drives inject_address[39:0]

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 121
PG036 July 25, 2012

Generating and Using ChipScope Tool Files

ChipScope Tool Files for Virtex-6 and Spartan-6 FPGAs
The ChipScope ICON core must be generated for the target device, using the default core 
name “chipscope_icon”, with the following parameters:

ENABLE_JTAG_BUFG = TRUE
NUMBER_CONTROL_PORTS = 1
USE_EXT_BSCAN = FALSE
USE_SOFTBSCAN= FALSE
USE_UNUSED_BSCAN = FALSE

The USER_SCAN_CHAIN can be set as desired. After the ICON core is generated, the 
chipscope_icon.ngc and chipscope_icon.{v|vhd} f iles must be copied to the 
example design directory.

The ChipScope tool VIO core must be generated for the target device, using the default 
core name “chipscope_vio”, with the following parameters:

ENABLE_ASYNCHRONOUS_INPUT_PORT = FALSE
ENABLE_ASYNCHRONOUS_OUTPUT_PORT = FALSE
ENABLE_SYNCHRONOUS_INPUT_PORT = TRUE
ENABLE_SYNCHRONOUS_OUTPUT_PORT = TRUE
INVERT_CLOCK_INPUT = FALSE
SYNCHRONOUS_INPUT_PORT_WIDTH = 9
SYNCHRONOUS_OUTPUT_PORT_WIDTH = 37

After the VIO core is generated, chipscope_vio.ngc and chipscope_vio.{v|vhd} 
f iles must be copied to the example design directory.

The instantiation and interconnection of the ICON and VIO components inside the HID shim 
can be inspected, if desired. The mapping of the VIO synchronous input and synchronous 
output ports is:

sync_in[8] is reserved, and is tied low
sync_in[7] receives status_heartbeat
sync_in[6] receives status_uncorrectable
sync_in[5] receives status_essential
sync_in[4] receives status_injection
sync_in[3] receives status_classification
sync_in[2] receives status_correction
sync_in[1] receives status_observation
sync_in[0] receives status_initialization
sync_out[36] drives inject_strobe
sync_out[35:0] drives inject_address[35:0]

Using ChipScope Analyzer
A project must be created in the ChipScope Analyzer software. The status signals received 
by the synchronous input port should be represented with LEDs. The inject_address 
output value should be represented as HEX for data entry. The inject_strobe control 
output must be represented as a three-cycle PULSE output for proper operation.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 122
PG036 July 25, 2012

Chapter 8

Constraining the Core

Required Constraints
The SEM Controller and the system-level design example require the specif ication of 
physical implementation constraints to yield a functional result that meets performance 
requirements. These constraints are provided with the system-level design example in a 
user constraints f ile (UCF).

To achieve consistent implementation results, the UCF provided with the solution must be 
used. For additional details on the definition and use of a UCF or specif ic constraints, see 
the Constraints Guide available through the documentation page for the ISE Design Suite.

Constraints may require modification to integrate the solution into a larger project, or as a 
result of changes made to the system-level design example. Modif ications should only be 
made with a thorough understanding of the effect of each constraint. Additionally, support 
is not provided for designs that deviate from the provided constraints.

Contents of the User Constraints File
Although the UCF delivered with each generated solution shares the same overall structure 
and sequence of constraints, the contents may vary based on options set at generation. The 
sections that follow define the structure and sequence of constraints using a Virtex-6 
device implementation as an example.

Device Selection Constraint
The first section of the UCF specifies the device for the implementation tools to target, 
including the part, package, and speed grade. The device in the UCF reflects the device 
chosen in the CORE Generator software project. An example device selection constraint is:

CONFIG PART = XC6VLX240T-FF1156-1 ;

Although the controller itself is designed to function in any of the supported devices, some 
details of the system-level example design depend on the selected part. For this reason, this 

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise.htm


Soft Error Mitigation Controller v3.3 www.xilinx.com 123
PG036 July 25, 2012

Contents of the User Constraints File

constraint should not be modified. To target a different device, return to the CORE 
Generator software project, change the device, and re-generate the solution.

Controller Constraints
The controller, considered in isolation and regardless of options at generation, is a fully 
synchronous design. Fundamentally, it only requires a clock period constraint on the master 
clock input. In the generic UCF, this constraint is placed on the system-level design example 
clock input and propagated into the controller. The constraint is discussed in Example 
Design Constraints.

The signal paths between the controller and the FPGA configuration system primitives must 
be considered as synchronous paths. By default, the paths between the ICAP primitive and 
the controller are analyzed as part of a clock period constraint on the master clock, because 
the ICAP clock pin is required to be connected to the same master clock signal.

However, the situation is different for the FRAME_ECC primitive (when present), as it does 
not have a clock pin. Based on the specific use of the FRAME_ECC primitive with the ICAP 
primitive, it is known that FRAME_ECC primitive pins are synchronous to the master clock 
signal. Therefore, additional constraints with values derived from the clock period 
constraint are added:

INST “example_cfg/example_frame_ecc” TPSYNC = FECC_SPECIAL;
TIMESPEC “TS_FECC_SYNC” = FROM “FECC_SPECIAL” TO FFS(*) 7000 ps;
TIMESPEC “TS_FECC_PADS” = FROM “FECC_SPECIAL” TO PADS(*) 20000 ps;

Example Design Constraints
The example design constraints are organized by interface, rather than constraint type. The 
f irst group is for the master clock input to the entire design. It applies an I/O standard and 
a period constraint. The period constraint value is based on options set at generation:

NET “clk” IOSTANDARD=LVCMOS25 | PERIOD=10000 ps;

The second group is for the Status Interface, applying an I/O standard and time name, so 
that an output timing constraint can be applied to the interface. The output timing 
constraint is set at two times the period constraint.

NET “status_initialization” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_observation” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_correction” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_classification” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_injection” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_uncorrectable” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_essential” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;
NET “status_heartbeat” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=STAPINS;

TIMEGRP “STAPINS” OFFSET = OUT 20000 ps AFTER “clk”;

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 124
PG036 July 25, 2012

Contents of the User Constraints File

The third group is for the MON shim, applying an I/O standard and time name, so that input 
and output timing constraints can be applied to the interface. The input and output timing 
constraints are set at two times the period constraint.

INST “example_mon/example_mon_sipo/sync_reg” IOB = TRUE;
INST “example_mon/example_mon_piso/pipeline_serial” IOB = TRUE;

NET “monitor_tx” IOSTANDARD=LVCMOS25 | DRIVE=4 | SLEW=SLOW | TNM=SERPINS;
NET “monitor_rx” IOSTANDARD=LVCMOS25 | TNM=SERPINS;

TIMEGRP “SERPINS” OFFSET = IN 20000 ps VALID 40000 ps BEFORE “clk”;
TIMEGRP “SERPINS” OFFSET = OUT 20000 ps AFTER “clk”;

The following group is for the EXT shim, and is only present when the EXT shim is generated 
based on options set at generation. It applies an I/O standard and time name, so that input 
and output timing constraints can be applied to the interface. The input and output timing 
is of considerable importance, as the actual timing must be used in the analysis of the SPI 
bus timing budget. However, there is no hard requirement for the input and output timing 
of the FPGA implementation. It varies based on the selected device and speed grade.

As such, the input and output timing constraints are arbitrarily set at two times the period 
constraint. The additional constraint to use IOB flip-flops yields substantially better input 
and output timing than the constraint values suggest. It is the actual timing obtained from 
the timing report that should be used in the analysis of the SPI bus timing budget, not the 
constraint value.

INST “example_ext/example_ext_byte/ext_c_ofd” IOB = TRUE;
INST “example_ext/example_ext_byte/ext_d_ofd” IOB = TRUE;
INST “example_ext/example_ext_byte/ext_q_ifd” IOB = TRUE;
INST “example_ext/ext_s_ofd” IOB = TRUE;

NET “external_c” IOSTANDARD=LVCMOS25 | DRIVE=8 | SLEW=FAST | TNM=SPIPINS;
NET “external_d” IOSTANDARD=LVCMOS25 | DRIVE=8 | SLEW=FAST | TNM=SPIPINS;
NET “external_s_n” IOSTANDARD=LVCMOS25 | DRIVE=8 | SLEW=FAST | TNM=SPIPINS;
NET “external_q” IOSTANDARD=LVCMOS25 | TNM=SPIPINS ;

TIMEGRP “SPIPINS” OFFSET = IN 20000 ps VALID 40000 ps BEFORE “clk”;
TIMEGRP “SPIPINS” OFFSET = OUT 20000 ps AFTER “clk”;

The following group is for the HID shim, and is only present when the HID shim is I/O Pins. 
It applies an I/O standard and time name, so that an input timing constraint can be applied 
to the interface. The input timing constraint is set at two times the period constraint.

NET “inject_strobe” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[0]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[1]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[2]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[3]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[4]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[5]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[6]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[7]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[8]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[9]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 125
PG036 July 25, 2012

Contents of the User Constraints File

NET “inject_address[10]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[11]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[12]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[13]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[14]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[15]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[16]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[17]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[18]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[19]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[20]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[21]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[22]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[23]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[24]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[25]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[26]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[27]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[28]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[29]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[30]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[31]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[32]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[33]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[34]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;
NET “inject_address[35]” IOSTANDARD=LVCMOS25 | TNM=INJPINS;

TIMEGRP “INJPINS” OFFSET = IN 20000 ps VALID 40000 ps BEFORE “clk”;

The following constraints in the UCF implement an area group to place portions of the 
system-level design example into a bounded region of the selected device. The instances 
included in the area group depend on the options set at generation. The range values vary 
depending on device selection. The area group is defined so that component packing is 
closed to resources from outside the group, but the unused component locations are open 
to placement of unrelated logic.

The area group forces packing of the soft error mitigation logic into an area physically 
adjacent to the ICAP site in the device. Most importantly, this maintains reproducibility in 
timing results. It also improves resource usage; the area group forces tighter packing and 
generates a resource usage summary that is helpful in estimating the FIT of the 
system-level design example.

INST “example_wrapper/*” AREA_GROUP = “SEM_CONTROLLER” ;
INST “example_mon/*” AREA_GROUP = “SEM_CONTROLLER” ;
INST “example_ext/*” AREA_GROUP = “SEM_CONTROLLER” ;

AREA_GROUP “SEM_CONTROLLER” RANGE = SLICE_X84Y115:SLICE_X99Y124 ;
AREA_GROUP “SEM_CONTROLLER” RANGE = RAMB18_X4Y46:RAMB18_X4Y49 ;
AREA_GROUP “SEM_CONTROLLER” GROUP = CLOSED ;
AREA_GROUP “SEM_CONTROLLER” PLACE = OPEN ;

The final constraints in the UCF are a template for assigning I/O pin locations to the 
top-level ports of the system-level example design. These assignments are necessarily 
board-specif ic and therefore cannot be automatically generated. To apply these 
constraints, uncomment them and fill in valid I/O pin locations for the target board.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 126
PG036 July 25, 2012

Contents of the User Constraints File

## NET “clk” LOC = “ ”;

## NET “external_c” LOC = “ ” ;
## NET “external_d” LOC = “ ” ;
## NET “external_q” LOC = “ ”;
## NET “external_s_n” LOC = “ ”;

## NET “monitor_tx” LOC = “ ”;
## NET “monitor_rx” LOC = “ ”;

## NET “status_initialization” LOC = “ ”;
## NET “status_observation” LOC = “ ”;
## NET “status_correction” LOC = “ ”;
## NET “status_classification” LOC = “ ”;
## NET “status_injection” LOC = “ ”;
## NET “status_uncorrectable” LOC = “ ”;
## NET “status_essential” LOC = “ ”;
## NET “status_heartbeat” LOC = “ ”;

## NET “inject_strobe” LOC = “ ”;
## NET “inject_address[0]” LOC = “ ”;
## NET “inject_address[1]” LOC = “ ”;
## NET “inject_address[2]” LOC = “ ”;
## NET “inject_address[3]” LOC = “ ”;
## NET “inject_address[4]” LOC = “ ”;
## NET “inject_address[5]” LOC = “ ”;
## NET “inject_address[6]” LOC = “ ”;
## NET “inject_address[7]” LOC = “ ”;
## NET “inject_address[8]” LOC = “ ”;
## NET “inject_address[9]” LOC = “ ”;
## NET “inject_address[10]” LOC = “ ”;
## NET “inject_address[11]” LOC = “ ”;
## NET “inject_address[12]” LOC = “ ”;
## NET “inject_address[13]” LOC = “ ”;
## NET “inject_address[14]” LOC = “ ”;
## NET “inject_address[15]“ LOC = “ ”;
## NET “inject_address[16]“ LOC = “ ”;
## NET “inject_address[17]” LOC = “ ”;
## NET “inject_address[18]” LOC = “ ”;
## NET “inject_address[19]” LOC = “ ”;
## NET “inject_address[20]” LOC = “ ”;
## NET “inject_address[21]” LOC = “ ”;
## NET “inject_address[22]” LOC = “ ”;
## NET “inject_address[23]” LOC = “ ”;
## NET “inject_address[24]” LOC = “ ”;
## NET “inject_address[25]” LOC = “ ”;
## NET “inject_address[26]” LOC = “ ”;
## NET “inject_address[27]” LOC = “ ”;
## NET “inject_address[28]” LOC = “ ”;
## NET “inject_address[29]” LOC = “ ”;
## NET “inject_address[30]” LOC = “ ”;
## NET “inject_address[31]” LOC = “ ”;
## NET “inject_address[32]” LOC = “ ”;
## NET “inject_address[33]” LOC = “ ”;
## NET “inject_address[34]” LOC = “ ”;
## NET “inject_address[35]” LOC = “ ”;

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 127
PG036 July 25, 2012

Device, Package, and Speed Grade

Device, Package, and Speed Grade
There are no additional device, package or speed grade constraints.

Clock Frequency
There are no additional clock frequency constraints.

Clock Management
There are no additional clock management constraints.

Clock Placement
There are no additional clock placement constraints.

I/O Pins
This section contains details about I/O pins constraints.

I/O Standard
There are no additional I/O standard constraints. 

I/O Banking
There are no additional I/O banking constraints.

I/O Placement
There are no additional I/O placement constraints.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 128
PG036 July 25, 2012

Chapter 9

Example Design
This section overviews the function of the SEM Controller system-level design example and 
the interfaces it exposes. The system-level design example encapsulates the controller and 
various shims that serve to interface the controller to other devices. These shims can 
include I/O Pins, ChipScope, I/O Interfaces, Memory Controllers, or application-specific 
system management interfaces.

The system-level design example is verif ied along with the controller. As delivered, the 
system-level design example is not a “reference design” but an integral part of the total 
solution. While users do have the flexibility to modify the system-level design example, the 
recommended approach is to use it as delivered.

Functions
In addition to serving as an instantiation vehicle for the controller itself, the system-level 
design example incorporates five main functions:

• The FPGA configuration system primitives and their connection to the controller.

• The MON shim, a bridge between the controller and a standard RS-232 port. The 
resulting interface can be used to exchange commands and status with the controller. 
This interface is designed for connection to processors.

• The EXT shim, a bridge between the controller and a standard SPI bus. The resulting 
interface can be used to fetch data by the controller. This shim is only present in certain 
controller configurations and is designed for connection to standard SPI flash.

• The HID shim, a bridge between the controller and an interface device. The resulting 
interface can be used to exchange commands and status with the controller. This shim 
is only present in certain controller configurations.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 129
PG036 July 25, 2012

Functions

Figure 9-1 shows a block diagram of the system-level design example. The blocks drawn in 
gray only exist in certain configurations.

The system-level design example is provided to allow flexibility in system-level interfacing. 
To support this goal, the system-level design example is provided as RTL source code, 
unlike the controller itself.

X-Ref Target - Figure 9-1

Figure 9-1: Example Design Block Diagram

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 130
PG036 July 25, 2012

Port Descriptions

Port Descriptions
Figure 9-2 shows the example design ports. The ports are clustered into six groups. The 
groups shaded in gray only exist in certain configurations.

The system-level design example has no reset input or output. The controller automatically 
initializes itself. The controller then initializes the shims, as required.

The system-level design example is a fully synchronous design using clk as the single 
clock. All state elements are synchronous to the rising edge of this clock. As a result, the 
interfaces are generally synchronous to the rising edge of this clock.

Status Interface
The Status Interface is a direct pass-through from the controller. See Chapter 2, Status 
Interface for a description of this interface.

X-Ref Target - Figure 9-2

Figure 9-2: Example Design Ports

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 131
PG036 July 25, 2012

Port Descriptions

Clock Interface
The Clock Interface is used to provide a clock to the system-level design example. Internally, 
the clock signal is distributed on a global clock buffer to all synchronous logic elements.

Monitor Interface
The Monitor Interface is always present. The MON shim in the system-level design example 
is a UART. This shim serializes status information generated by the controller (a byte stream 
of ASCII codes) for serial transmission. Similarly, the shim de-serializes command 
information presented to the controller (a bitstream of ASCII codes) for parallel 
presentation to the controller.

The shim uses a standard serial communication protocol. The shim contains synchronization 
and over sampling logic to support asynchronous serial devices that operate at the same 
nominal baud rate. See Chapter 3, Designing with the Core for additional information.

The resulting interface is directly compatible with a wide array of devices ranging from 
embedded microcontrollers to desktop computers. External level translators may be 
necessary depending on system requirements.

External Interface
The External Interface is present when the controller requires access to external data. When 
present, the EXT shim in the system-level design example is a f ixed-function SPI bus master. 
This shim accepts commands from the controller that consist of an address and a byte 
count. The shim generates SPI bus transactions to fetch the requested data from an external 
SPI flash. The shim formats the returned data for the controller to pick up.

The shim uses standard SPI bus protocol, implementing the most common mode (CPOL = 
0, CPHA = 0, often referred to as “Mode 0”). The SPI bus clock frequency is locked to one 
half of the master clock for the system-level design example. See Chapter 3, Designing with 
the Core for information on external timing budgets.

Table 9-1: Clock Interface Details

Name Sense Direction Description

clk EDGE IN Receives the master clock for the system-level 
design example.

Table 9-2: Monitor Interface Details

Name Sense Direction Description

monitor_tx LOW OUT Serial transmit data from system-level design 
example.

monitor_rx LOW IN Serial receive data to system-level design example.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 132
PG036 July 25, 2012

Simulation

The resulting interface is directly compatible with a wide array of standard SPI flash. 
External level translators may be necessary depending on system requirements.

Error Injection Interface
The Error Injection Interface is present when the controller supports error injection and the 
HID shim is set to I/O Pins. This interface is a direct pass-through from the controller. See 
Chapter 2, Error Injection Interface for a description of this interface.

When the controller supports error injection and the HID shim is set to ChipScope, or when 
error injection is disabled, this interface is absent.

Simulation
Simulation of designs that instantiate the controller is supported. In other words, including 
the controller in a larger project does not adversely affect ability to run simulations of 
functionality unrelated to the controller. However, it is not possible to observe the 
controller behaviors in simulation. Simulation of a design including the controller will 
compile, but the controller will not exit the initialization state.

Hardware-based evaluation of the controller behaviors is required. Alternatively, customers 
can use ISim Hardware Co-simulation to evaluate their design.

Demonstration Test Bench
No simulation test bench is provided with the example design.

Table 9-3: External Interface Details

Name Sense Direction Description

external_c EDGE OUT SPI bus clock for an external SPI flash.

external_d HIGH OUT SPI bus “master out, slave in” signal for an external 
SPI flash.

external_s_n LOW OUT SPI bus select signal for an external SPI flash.

external_q HIGH IN SPI bus “master in, slave out” signal for an external 
SPI flash.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 133
PG036 July 25, 2012

Implementation in ISE Design Suite

Implementation in ISE Design Suite
After generating the solution, the resulting controller netlist and example design f iles can 
be used with a standard design flow.

Synthesis of designs that instantiate the controller is supported for Synopsys Synplify Pro 
and Xilinx XST. The synthesis output can be processed using the Xilinx implementation 
tools. This chapter outlines the example design synthesis and implementation scripts.

Implementation of the controller, when configured to use the optional error classif ication 
function or the optional correction by replace function, requires a large amount of system 
RAM. Xilinx recommends the use of a 64-bit operating system with 16 Gb or more of system 
RAM.

To synthesize and implement the example design, open a console window and type the 
following:

Windows

ms-dos> cd <project directory>\<component name>\implement
ms-dos> implement.bat

Linux

% cd <project directory>/<component name>/implement
% ./implement.sh

These commands change directory and execute an implementation script. The script 
synthesizes the design, performs physical implementation, and generates programming 
files. The result f iles are placed in the results directory. The following is an outline of the 
scripted processing sequence:

1. If the solution requires ChipScope analyzer f iles in the example design directory, the 
script verif ies the files exist. If they do not exist, the script exits.

2. The script removes intermediate and result f iles from previous implementation runs.

3. The script synthesizes the project using Synopsys Synplify Pro or Xilinx XST based on the 
project option settings used when the solution was generated.

4. The script performs a physical implementation:

a. Xilinx ngdbuild application builds a design database

b. Xilinx map application maps the design to the target device

c. Xilinx par application places and routes the design

d. Xilinx trce application performs static timing analysis

e. Xilinx netgen application generates a timing simulation model

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 134
PG036 July 25, 2012

External Memory Programming File

f. Xilinx bitgen application generates programming files

5. If the solution requires external data storage to support error classif ication or error 
correction by replace, an additional TCL script is called to post-process special bitgen 
output f iles into a SPI Flash programming file.

6. The script removes some intermediate f iles to clean up the results directory.

The script f ile starts from the example design source and the controller netlist and results in 
programming files. It is possible to use the Xilinx ISE Design Suite graphical design 
environment to implement the example design, provided the implementation tool options 
used in the script are preserved and the additional TCL script is invoked manually, if it is 
required.

External Memory Programming File
When error correction by replace is enabled, an image of the configuration data is required. 
When error classif ication is enabled, an image of the essential bit lookup data is required. 
As a result, one or both of these data sets may be required. The data sets are identical in 
size, with their size a function of the target device. The data sets are generated by the 
bitgen application.

The format of the data is required to be binary, using the full data set(s) generated by 
bitgen. The external storage must be byte addressable. A small table is required at the 
address specified to the SEM Controller through fetch_tbladdr[31:0]. By default, 
fetch_tbladdr[31:0] is zero.

• Byte 0: 32-bit pointer to start of replacement data, byte 0 (least signif icant byte)

• Byte 1: 32-bit pointer to start of replacement data, byte 1

• Byte 2: 32-bit pointer to start of replacement data, byte 2

• Byte 3: 32-bit pointer to start of replacement data, byte 3 (most signif icant byte)

• Byte 4: 32-bit pointer to start of essential bit data, byte 0 (least signif icant byte)

• Byte 5: 32-bit pointer to start of essential bit data, byte 1

• Byte 6: 32-bit pointer to start of essential bit data, byte 2

• Byte 7: 32-bit pointer to start of essential bit data, byte 3 (most significant byte)

• The remaining bytes are reserved, f illed with zero

A pointer value of 0x00000000 is used if a particular block of data is not present. After the 
table, the essential bit data and replacement data can be located at any address provided 
each data set is contiguous.

The TCL script, which post processes the bitgen output f iles, generates three outputs:

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 135
PG036 July 25, 2012

Directory and File Contents

• An Intel hex data f ile (MCS) for programming SPI Flash devices

• A raw binary data file (BIN) for programming SPI Flash devices

• An initialization f ile (VMF) for loading SPI Flash simulation models

Directory and File Contents
The SEM Controller deliverables are organized in the directory structure shown below. Click 
a directory name to go to the description of the directory and the files it contains.

<project directory> topdirectory

Top-level project directory; name is user-defined

 <project directory>/<component name> 
Release notes f ile

 <component name>/doc 
Product documentation 

 <component name>/example design
Verilog or VHDL design f iles

<component name>/implement
Implementation script f iles

 <component name>/implement/results 
Results directory, created after implementation scripts 
are run, and contains implement script results

 <component name>/implement/synplify
Synthesis results when Synplify Pro is used

 <component name>/implement/xst
Synthesis results when XST is used

<project directory> 
The <project directory> contains all the CORE Generator project f iles. 

Table 9-4: Project Directory 

Name Description

<project_dir>

<component_name>.xco Configuration options f ile.

<component_name>.ngc SEM Controller implementation netlist.

<component_name>.{v|vhd} SEM Controller simulation netlist.

<component_name>.{veo|vho} SEM Controller instantiation template.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 136
PG036 July 25, 2012

Directory and File Contents

<project directory>/<component name>
The component name directory contains the release notes in the readme file provided with 
the core, which can include tool requirements, updates, and issue resolution.

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

<component name>/example design
The example design directory contains the example design f iles provided with the core.

<component_name>_flist.txt List of f iles delivered with the solution.

Back to Top

Table 9-5: Component Name Directory 

Name Description

<project_dir>/<component_name>

sem_v3_3_readme.txt Release notes f ile.

Back to Top

Table 9-6: Doc Directory 

Name Description

<project_dir>/<component_name>/doc

pg036_sem.pdf SEM Controller Product Guide

Back to Top

Table 9-7: Example Design Directory 

Name Description

<project_dir>/<component_name>/example_design

<component_name>_sem_cfg.{v|vhd} Example design configuration logic.

<component_name>_sem_example.{v|vhd} Example design top level.

<component_name>_sem_example.ucf Example design constraints f ile.

<component_name>_sem_mon.{v|vhd} Example design MON shim.

<component_name>_sem_mon_fifo.{v|vhd} Example design MON shim FIFO sub-block.

<component_name>_sem_mon_piso.{v|vhd} Example design MON shim PISO sub-block.

<component_name>_sem_mon_sipo.{v|vhd} Example design MON shim SIPO sub-block.

Table 9-4: Project Directory  (Cont’d)

Name Description

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 137
PG036 July 25, 2012

Directory and File Contents

<component name>/implement
The implement directory contains the core implementation script f iles. 

<component name>/implement/results
The results directory is created by the implement script. The implementation results are 
placed in the results directory.

<component name>/implement/synplify
The synplify directory is created by the implementation script. The synthesis results are 
placed in the synplify directory.

<component_name>_sem_ext.{v|vhd} Example design EXT shim. This f ile is only generated if 
error classif ication or error correction by replace are 
enabled.

<component_name>_sem_ext_byte.{v|vhd} Example design EXT shim byte transfer sub-block. This 
f ile is only generated if error classif ication or error 
correction by replace are enabled.

<component_name>_sem_hid.{v|vhd} Example design HID shim. This f ile is only generated if 
error injection using the ChipScope tool is enabled.

icon_bscan_bufg.{v|vhd} Example design HID shim sub-block. This f ile is only 
generated for Virtex-6 or Spartan-6 devices if error 
injection using the ChipScope tool is enabled.

Back to Top

Table 9-8: Implement Directory 

Name Description

<project_dir>/<component_name>/implement

implement.bat Windows batch file implementation script.

implement.sh Linux batch f ile implementation script.

makedata.tcl Bitgen data formatter for essential bit lookup table and 
correction by replace data. This f ile is only generated if error 
classif ication or error correction by replace are enabled.

synplify.prj Synplify Pro synthesis script, only generated if the project 
option flow setting is Synplicity.

xst.prj XST synthesis project, only generated if the project option 
flow setting is ISE Design Suite.

xst.scr XST synthesis script, only generated if the project option 
flow setting is ISE Design Suite.

Back to Top

Table 9-7: Example Design Directory  (Cont’d)

Name Description

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 138
PG036 July 25, 2012

Directory and File Contents

<component name>/implement/xst
The xst directory is created by the implementation script. The synthesis results are placed in 
the xst directory.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 139
PG036 July 25, 2012

SECTION IV:  APPENDICES

Verification, Compliance, and Interoperability

Migrating

Debugging

Additional Resources

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 140
PG036 July 25, 2012

Appendix A

Verification, Compliance, and 
Interoperability

The controller and example design are verif ied together, using several methods including 
an automated hardware test bench and hardware co-simulation tools. The controller and 
example design are validated together, in an accelerated particle beam, to ensure the 
solution responds correctly to naturally injected, random error events.

Xilinx completely verif ies this LogiCORE IP product for production use in production 
Virtex-6 and Spartan-6 FPGA devices. 

For the Vivado Design Suite 2012.2 and ISE Design Suite 14.2 release, this LogiCORE IP 
product targeting 7 series devices (excluding devices implemented with stacked silicon 
interconnect (SSI) technology) is in pre-production. Verif ication and validation activities are 
on-going and will be completed in a future release. 

Verification
The SEM verif ication objectives are derived from the functional specif ication of the product. 
Verif ication is performed to ensure a high-quality product with a methodology that uses a 
hybrid approach. Testing included an emphasis on hardware verif ication and was 
complemented by a co-simulation test bench.  The techniques and tools used were:

• Dynamic checks, through a hardware test bench

° Functional Coverage: Compares design behavior against expected behavior

• Dynamic checks, through a co-simulation test bench

° Functional Coverage: Compares design behavior against expected behavior

° Code Coverage: Records execution trace of controller FSM for analysis

• Static checks, through a checking tool suite

° Linting

° Clock Domain Crossing

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 141
PG036 July 25, 2012

Validation

Validation
Hardware validation is a key f inal test and gates the release of the product. Hardware 
validation adds value by conducting the following tests:

• External Interface Evaluation

° Timing budget evaluation for external memory system

• Integration and Implementation

° Hardware testing of all possible generated core netlists

• Operating Environment Robustness

° Sample testing across the supported device list (Virtex-6 devices)

° Complete testing across the supported device list (Spartan-6 devices)

° Sample testing across the supported device list for all sub-families (7 series devices)

Conformance Testing
No industry standard certif ication testing is defined. The generated core netlists must be 
put through testing while exposed to a beam of accelerated particles. This testing:

• Validates that detection, correction, and classif ication take place separate from 
injection. The verif ication methodology relies on error injection by the solution itself, 
and does not test detection, correction, and classif ication processes separate from 
injection. Errors during beam testing occur separate from injection by the solution 
itself.

• Validates that the solution exhibits normal and expected behaviors, including 
detection, correction, and classif ication of errors.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 142
PG036 July 25, 2012

Appendix B

Migrating
This appendix describes migrating from the previous version of the IP to the current 
version.

Note: For details on migration from the ISE Design Suite to the Vivado Design Suite, see UG911, 
Vivado Design Suite Migration Methodology Guide.

Customization and Generation Changes
There are no customization or core generation changes for this version.

Port Changes
There are no port changes for this version.

Functionality Changes
There are no functionality changes for this version.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 143
PG036 July 25, 2012

Appendix C

Debugging
This appendix contains details about resolving problems and issues with the SEM core.

Release Notes
Always check the online release notes for the most up to date information regarding any 
potential known issues discovered with the IP. The release notes are at: 

www.xilinx.com/support/answers/44541.htm

Monitor Interface
While using the monitor interface is optional, Xilinx strongly recommends having a method 
in place to  connect the monitor interface. The monitor interface provides information that 
is crucial in debugging potential problems or answering questions that might arise. The 
MON shim in the system-level design example is a UART that can be connected to a 
standard RS232 port, or to USB through a USB-to-UART bridge.

To confirm the SEM controller is operational, observe the initialization report issued by the 
SEM controller over the monitor interface.  It generally has the following form:

X7_SEM_V3_3
SC 01
FS 02
ICAP OK
RDBK OK
INIT OK
SC 02
O>

The f irst line lists the device and core version, and it varies depending on the target device 
used.  For example, the Virtex-6 SEM controller would issue V6_SEM_V3_3 while the 
Spartan-6 SEM controller would issue S6_SEM_V3_3. The second line indicates the SEM 
controller feature set, which is a summary of the SEM controller core options selected when 
the core was generated.

http://www.xilinx.com
http://www.xilinx.com/support/answers/44541.htm


Soft Error Mitigation Controller v3.3 www.xilinx.com 144
PG036 July 25, 2012

Clocking

If the MON shim is used, and the initialization report appears scrambled or garbage 
characters appear, verify that the terminal program communication settings match those 
listed in Monitor Interface in Chapter 3.  Also verify that the frequency of the actual clock 
provided to the SEM controller, coupled with the MON shim V_ENABLE_TIME parameter 
value, yield a standard baud rate and that the terminal program communication settings 
match the bit rate.  This is described in Equation 3-1 and Equation 3-2.

If the SEM controller cannot achieve communication with the FPGA configuration logic 
through the ICAP primitive, the initialization report does not get past the ICAP line, and OK 
is not present because the controller cannot communicate with the FPGA configuration 
logic. In such a scenario, the initialization report will look like this: 

X7_SEM_V3_3
SC 01
FS 02
ICAP

If this happens, it is necessary to determine why the ICAP is not responding. Some possible 
items to check:

• Ensure the instantiation of the ICAP is correct for the device being used.

° Use the example design to get the correct instantiation.

• Ensure that no other process is blocking the ICAP.

° Ensure no JTAG access is occurring and that SelectMAP persist is not set.

• The connection between the SEM controller and the ICAP must be direct, unless the 
ICAP sharing method documented in XAPP517 is used.  Never add pipelining between 
the SEM controller and the ICAP.

Clocking
Xilinx recommends the clock to be sourced from an oscillator and brought in from a pin 
directly to the SEM controller. While the likelihood of an SEU event hitting the configuration 
cells associated with creating the clock internally from a PLL or DCM is very small, it is best 
to strive for the highest reliability possible. However, if a PLL or DCM output or other logic 
is used to generate the clock, ensure the clock never violates the SEM controller minimum 
period at any time, including during design start up or prior to PLL/DCM lock.

When clock management is used, suppress the clock toggling to the SEM controller until 
after the clock is stable.  For example use a BUFGMUX or BUFGCE to keep the SEM controller 
clock from toggling until PLL/DCM lock is achieved.

http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 145
PG036 July 25, 2012

Appendix D

Additional Resources

Xilinx Resources
For support resources such as answers, documentation, downloads, and forums, see the 
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips. 

References
These documents provide supplemental material useful with this user guide:

1. UG470, 7 Series FPGAs Configuration User Guide

2. UG360, Xilinx Virtex-6 FPGA Configuration User Guide

3. UG380, Xilinx Spartan-6 FPGA Configuration User Guide

4. UG116, Xilinx Device Reliability Report

5. WP286, Continuing Experiments of Atmospheric Neutron Effects on Deep Submicron 
Integrated Circuits

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm


Soft Error Mitigation Controller v3.3 www.xilinx.com 146
PG036 July 25, 2012

Technical Support

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product 
when used as described in the product documentation. Xilinx cannot guarantee timing, 
functionality, or support of product if implemented in devices that are not defined in the 
documentation, if customized beyond that allowed in the product documentation, or if 
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core, 
there is a master Answer Record that contains the Release Notes and Known Issues list for 
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Revision History
The following table shows the revision history for this document.

 

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the 
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS 
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether 
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related 
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, 
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage 
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had 
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to 
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display 
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties 
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in 
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring 
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.

Date Version Revision

4/24/12 1.0 Initial Xilinx release. Replaces DS796, LogiCORE IP Soft Error 
Mitigation Controller Data Sheet, and UG764, LogiCORE IP 
Soft Error Mitigation Controller User Guide.

7/25/12 2.0 Added support for Vivado Design Suite.

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com


Soft Error Mitigation Controller v3.3 www.xilinx.com 147
PG036 July 25, 2012

Notice of Disclaimer

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands 
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their 
respective owners.

http://www.xilinx.com

	LogiCORE IP Soft Error Mitigation Controller v3.3
	Table of Contents
	Section I: Summary
	IP Facts
	Overview
	Memory Types
	Mitigation Approaches
	Reliability Estimation
	Feature Summary
	Applications
	Unsupported Features
	Licensing

	Product Specification
	Features
	Standards Compliance
	Resource Utilization
	Performance
	Solution Reliability
	Maximum Frequency
	Solution Latency
	Sample Latency Estimation
	Throughput
	Power

	Port Descriptions
	ICAP Interface
	FRAME_ECC Interface
	Status Interface
	Error Injection Interface
	Monitor Interface
	Fetch Interface


	Designing with the Core
	Interfaces
	Clock Interface
	Status Interface
	Monitor Interface
	External Interface
	Error Injection Interface

	Behaviors
	Controller Activity
	Error Injection Interface Commands
	Monitor Interface Commands
	Monitor Interface Messages

	Systems
	Customizations
	HID Shim Customizations
	MON Shim Customizations
	EXT Shim Customizations

	Data Consistency
	Configuration Memory Masking
	7 Series FPGAs
	Virtex-6 FPGAs
	Spartan-6 FPGAs

	Clocking
	Resets
	Additional Considerations


	Section II: Vivado Design Suite
	Customizing and Generating the Core
	GUI
	Component Name and Symbol
	Controller Options: Enable Error Injection
	Controller Options: Enable Error Correction
	Controller Options: Error Correction Method
	Controller Options: Enable Error Classification
	Controller Options: Controller Clock Frequency
	Example Design Options: Error Injection Shim
	Example Design Options: Data Retrieval Shim
	Reviewing the Customizations

	Output Generation
	Generating and Using ChipScope Tool Files
	ChipScope Tool Files for 7 Series FPGAs
	Using ChipScope Analyzer


	Constraining the Core
	Required Constraints
	Contents of the Xilinx Design Constraints File
	Controller Constraints
	Example Design Constraints

	Device, Package, and Speed Grade
	Clock Frequency
	Clock Management
	Clock Placement
	I/O Pins
	I/O Standard
	I/O Banking
	I/O Placement


	Detailed Example Design
	Functions
	Port Descriptions
	Status Interface
	Clock Interface
	Monitor Interface
	External Interface
	Error Injection Interface

	Demonstration Test Bench
	Implementation
	Run Synthesis and Implementation
	Generate the Bitstream
	Creating the External Memory Programming File

	External Memory Programming File
	Simulation
	Messages and Warnings


	Section III: ISE Design Suite
	Customizing and Generating the Core
	Creating a Project in ISE Design Suite
	Customizing and Generating the Core in ISE Design Suite
	Component Name and Symbol
	Controller Options: Enable Error Injection
	Controller Options: Enable Error Correction
	Controller Options: Error Correction Method
	Controller Options: Enable Error Classification
	Controller Options: Controller Clock Frequency
	Example Design Options: Error Injection Shim
	Example Design Options: Data Retrieval Shim
	Reviewing the Customizations
	Generating the Solution

	Output Generation
	Generating and Using ChipScope Tool Files
	ChipScope Tool Files for 7 Series FPGAs
	ChipScope Tool Files for Virtex-6 and Spartan-6 FPGAs
	Using ChipScope Analyzer


	Constraining the Core
	Required Constraints
	Contents of the User Constraints File
	Device Selection Constraint
	Controller Constraints
	Example Design Constraints

	Device, Package, and Speed Grade
	Clock Frequency
	Clock Management
	Clock Placement
	I/O Pins
	I/O Standard
	I/O Banking
	I/O Placement


	Example Design
	Functions
	Port Descriptions
	Status Interface
	Clock Interface
	Monitor Interface
	External Interface
	Error Injection Interface

	Simulation
	Demonstration Test Bench
	Implementation in ISE Design Suite
	External Memory Programming File
	Directory and File Contents
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example design
	<component name>/implement
	<component name>/implement/results
	<component name>/implement/synplify
	<component name>/implement/xst



	Section IV: Appendices
	Verification, Compliance, and Interoperability
	Verification
	Validation
	Conformance Testing

	Migrating
	Customization and Generation Changes
	Port Changes
	Functionality Changes

	Debugging
	Release Notes
	Monitor Interface
	Clocking

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Revision History
	Notice of Disclaimer





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


