
LogiCORE IP
Tri-Mode Ethernet
MAC v5.4
Product Guide

PG051 July 25, 2012

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 2
PG051 July 25, 2012

Table of Contents

SECTION I: SUMMARY

IP Facts

Chapter 1: Overview
Recommended Design Experience . 7
Ethernet Overview. 7
Core Overview . 9
Feature Summary. 12
Applications . 13
Licensing and Ordering Information . 16

Chapter 2: Product Specification
Standards . 19
Performance. 19
Resource Utilization. 20
Port Descriptions . 23
Register Space . 31
System Requirements . 61

Chapter 3: Designing with the Core
General Design Guidelines . 62
Clocking. 65
Resets . 66
Protocol Description . 67
AXI4-Stream User Interface. 73
Flow Control . 88
Statistics Counters . 94
Frame Filter . 96
Ethernet AVB Endpoint . 101
Configuration and Status. 116
TEMAC Configuration Settings . 124

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 3
PG051 July 25, 2012

Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP Core. 125
Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core . 128
Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core 152
Interfacing to Other Xilinx Ethernet Cores . 181

SECTION II: VIVADO DESIGN SUITE

Chapter 4: Customizing and Generating the Core
GUI . 183
Output Generation. 186

Chapter 5: Constraining the Core
Required Constraints . 188
Device, Package, and Speed Grade Selections. 188
Clock Frequencies . 189
I/O Standard and Placement. 189

Chapter 6: Example Design
Detailed Example Design. 192
Demonstration Test Bench . 199
Targeting the Example Design to a Board . 203

SECTION III: ISE DESIGN SUITE

Chapter 7: Customizing and Generating the Core
GUI . 207
Parameter Values in the XCO File . 210
Output Generation. 212
Implementing Your Design . 212

Chapter 8: Constraining the Core
Device, Package, and Speed Grade Selections. 216
Clock Frequencies . 216
General Constraints . 218
I/O Standard and Placement. 219

Chapter 9: Example Design
Example Design Overview . 231
Detailed Example Design. 233

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 4
PG051 July 25, 2012

Directory and File Contents. 234
Demonstration Test Bench . 242
Implementation . 242
Targeting the Example Design to a Board . 243
Simulation . 249

SECTION IV: APPENDICES

Appendix A: Calculating the MMCM Phase Shift or IODelay Tap Setting
MMCM Usage. 252
IODelay Usage . 254

Appendix B: Differences between the Embedded Tri-Mode Ethernet MACs and
the Soft TEMAC Solution IP Core
Virtex-6 Device . 255

Appendix C: Verification, Compliance, and Interoperability
Simulation . 257
Hardware Testing. 257

Appendix D: Migrating to AXI Tri-Mode Ethernet MAC
Host Interface to AXI4-Lite . 258
Client Interface to AXI4-Stream . 268
LocalLink to AXI4-Stream Translation. 270

Appendix E: Debugging
Debug Tools . 272
Simulation Debug. 273
Implementation and Timing Errors. 275
Hardware Debug . 277

Appendix F: Additional Resources
Xilinx Resources . 280
Solution Centers. 280
References . 281
Technical Support . 282
Revision History . 282
Notice of Disclaimer. 282

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 5
PG051 July 25, 2012

SECTION I: SUMMARY

IP Facts

Overview

Product Specification

Designing with the Core

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 6
PG051 July 25, 2012 Product Specification

Introduction
The LogiCORE™ IP Tri-Mode Ethernet Media
Access Controller (TEMAC) solution comprises
the 10/100/1000 Mb/s Ethernet MAC, 1 Gb/s
Ethernet MAC and the 10/100 Mb/s Ethernet
MAC IP core. All cores support half-duplex and
full-duplex operation.

Features
• Designed to IEEE 802.3-2008 specif ication

• Configurable half-duplex and full-duplex
operation

• Supports 10/100 Mb/s-only, 1 Gb/s-only or
full 10/100/1000 Mb/s IP cores

• Supports RGMII, GMII and MII as well as
providing connectivity to

° LogiCORE IP Ethernet 1000BASE-X PCS/
PMA or SGMII using transceiver,
SelectIO™ or Ten-Bit Interface (TBI)

• Optional MDIO interface to managed
objects in PHY layers (MII Management)

• Optional frame filter with selectable
number of table entries and optional
statistics counters

• Supports Flow Control frames, Virtual LAN
(VLAN) frames, jumbo frames and allows a
configurable interframe gap.

• Optional Ethernet Audio Video Bridging
(AVB) Endpoint designed to the following
IEEE specifications

° IEEE802.1AS
Supports clock master functionality,
clock slave functionality and the Best
Master Clock Algorithm (BMCA)

° IEEE802.1Qav
Supports arbitration between different
priority traff ic and implements
bandwidth policing

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family(1)

Zynq™-7000(2), Virtex®-7, Kintex™-7, Artix™-7,
Virtex-6, Spartan-6(3)

Supported
User Interfaces

AXI4-Lite, AXI4-Stream

Resources See Table 2-2 to Table 2-4.

Provided with Core

Design Files
ISE: NGC netlist

Vivado: Encrypted RTL

Example
Design

VHDL and Verilog

Test Bench Demonstration Test Bench

Constraints
File

ISE: UCF
Vivado: XDC

Simulation
Model

Verilog and/or VHDL Behavioral Model

Supported
S/W Driver

N/A

Tested Design Tools(4)

Design Entry
Tools

Vivado™ Design Suite(5)

ISE® Design Suite

Simulation
Mentor Graphics ModelSim

Cadence Incisive Enterprise Simulator (IES)
Synopsys VCS and VCS MX

Synthesis Tools
Xilinx Synthesis Technology (XST)

Vivado Synthesis

Support

Provided by Xilinx @ www.xilinx.com/support

1. For a complete listing of supported devices, see the release
notes for this core.

2. Supported in ISE Design Suite implementations only.
3. Virtex-6 devices support GMII and MII at 2.5 V only; see

[Ref 1] for more information. For Virtex-7, Kintex-7 and
Artix-7 devices, it is I/O dependant with HR I/O supporting
MII/GMII at 3.3V or lower and RGMII at 2.5 V or lower and HP
I/O only supporting 1.8 V or lower.

4. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

5. Supports 7 series devices only.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 7
PG051 July 25, 2012

Chapter 1

Overview
The Tri-Mode Ethernet Media Access Controller (TEMAC) solution comprises the 10/100/
1000 Mb/s, 1 Gb/s and 10/100 Mb/s IP (Intellectual Property) cores along with the optional
Ethernet AVB Endpoint which are fully-verif ied designs. In addition, the example design
provided with the core is in both Verilog-HDL and VHDL. This chapter introduces the
TEMAC solution and provides related information, including recommended design
experience, additional resources, technical support, and submitting feedback to Xilinx.

Recommended Design Experience
Although the TEMAC core is fully-verif ied, the challenge associated with implementing a
complete design varies depending on the configuration and functionality of the
application. For best results, previous experience building high performance, pipelined
FPGA designs using Xilinx implementation software and Constraint Files is recommended.
Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Ethernet Overview
The MAC sublayer provided by this core is part of the Ethernet architecture displayed in
Figure 1-1. The portion of the architecture, from the MAC to the right, is defined in [Ref 9].
This f igure also illustrates where the supported interfaces fit into the architecture.

X-Ref Target - Figure 1-1

Figure 1-1: Typical Ethernet Architecture

TCP IP FIFO
I/F

PCSMAC PMA PMD

GMII/MII
RGMII/
SGMII

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 8
PG051 July 25, 2012

Ethernet Overview

MAC

The Ethernet Medium Access Controller (MAC) is defined in [Ref 9] clauses 2, 3, and 4. A
MAC is responsible for the Ethernet framing protocols and error detection of these frames.
The MAC is independent of, and can be connected to, any type of physical layer.

GMII / MII

The Gigabit Media Independent Interface (GMII) is defined in [Ref 9], clause 35. At 10 Mb/s
and 100 Mb/s, the Media Independent Interface (MII) is used as defined in [Ref 9], clause
22. These are parallel interfaces connecting a MAC to the physical sublayers (PCS, PMA, and
PMD).

RGMII

The Reduced Gigabit Media Independent Interface (RGMII) is an alternative to the GMII.
RGMII achieves a 50-percent reduction in the pin count, compared with GMII, and for this
reason is preferred over GMII by PCB designers. This is achieved with the use of
double-data-rate (DDR) flip-flops. No change in the operation of the core is required to
select between GMII and RGMII. However, the clock management logic and Input/Output
Block (IOB) logic around the core does change. HDL example designs are provided with the
core which implement either the GMII or RGMII protocols.

SGMII

The Serial-GMII (SGMII) is an alternative interface to the GMII, which converts the parallel
interface of the GMII into a serial format, radically reducing the I/O count (and for this
reason often favored by PCB designers).

The TEMAC solution can be extended to include SGMII functionality by internally
connecting its PHY side GMII to the Ethernet 1000BASE-X PCS/PMA or SGMII core from
Xilinx. See Interfacing to Other Xilinx Ethernet Cores.

PCS, PMA, and PMD

The combination of the Physical Coding Sublayer (PCS), the Physical Medium Attachment
(PMA), and the Physical Medium Dependent (PMD) sublayer comprise the physical layers of
the Ethernet protocol.

Two main physical standards are specif ied for Ethernet:

• BASE-T, a copper standard using twisted pair cabling systems

• BASE-X, usually a f ibre optical physical standard using short and long wavelength laser

BASE-T devices, supporting 10 Mb/s, 100 Mb/s, and 1 Gb/s Ethernet speeds, are readily
available as off-the-shelf parts. As illustrated in Figure 1-3, these can be connected using
GMII/MII, RGMII, or SGMII to provide a tri-speed Ethernet port.

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 9
PG051 July 25, 2012

Core Overview

The 1000BASE-X architecture can be provided by connecting the TEMAC core to the
Ethernet 1000BASE-X PCS/PMA or SGMII core.

A more in depth Ethernet Protocol Overview is provided in Chapter 3.

Core Overview
Figure 1-2 identif ies the major functional blocks of the TEMAC solution and optional
Ethernet AVB Endpoint cores. Descriptions of the functional blocks and interfaces are
provided in the subsequent sections.

Ethernet Mac Block
The Ethernet MAC block includes the basic blocks required to use the Ethernet MAC. The
Ethernet MAC Block should be part of any Ethernet MAC based design.

X-Ref Target - Figure 1-2

Figure 1-2: TEMAC Functional Block Diagram

Flow Control

Transmit Engine

Receive Engine

Configuration

Optional
 Frame

Filter

MDIO

AXI4 Stream
RX Interface

To
 P

hy
si

ca
l

S
ub

la
ye

rs

G
M

II
/ M

II
B

lo
ck

Optional Management

 Ethernet MAC

Statistics Counters Interrupt Control

P
H

Y
In

te
rf

ac
e

R
G

M
II/

G
M

II/
M

II

 Ethernet MAC Block

AXI4-Lite
Wrapper

Statistics
Vector

Decode

AXI4-Lite
Interface

AXI4 Stream
TX Interface

Precise Timing
Protocol
(PTP)

Optional AXI4
Stream RX
AV Interface
(AVB only)

TX ArbiterOptional AXI4
Stream TX
AV Interface
(AVB only)

Optional Ethernet AVB Endpoint

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 10
PG051 July 25, 2012

Core Overview

AXI4-Lite Wrapper
The AXI4-Lite Wrapper allows the Ethernet MAC to be connected to an AXI4-Lite Interface
and drives the Ethernet MAC through a processor independent Intellectual Property
Interface (IPIF).

Statistics Vector Decode
The Statistics Vector Decode interprets the rx and tx statistics vectors supplied by the
Ethernet MAC on a per frame basis and generates the Statistics counter increment controls.
This code is provided as editable HDL to enable specific Statistics counter requirements to
be met.

PHY Interface
The PHY Interface provides the required logic to interface to the PHY using either RGMII or
GMII/MII. The core can be generated without the PHY Interface to allow direct connection
to the LogiCORE IP ethernet 1000BASE-X PCS/PMA or SGMII.

Ethernet AVB Endpoint
The TEMAC can be implemented with an optional Ethernet AVB endpoint which itself is
made up of two key functional blocks. When this functionality is not included the
AXI4-Stream TX Data is passed directly to the transmit engine. The AXI4-Stream RX Data is
always passed directly to the user, with the relative tuser signals being used to validate the
data on the required interface.

Precise Timing Protocol (PTP)

The Precise Timing Protocol (PTP) block within the core provides the dedicated hardware to
implement the IEEE 802.1AS specif ication. However, full functionality is only achieved using
a combination of this hardware block coupled with functions provided by the relevant
software drivers (run on an embedded processor). For more information see Precise Timing
Protocol Packet Buffers.

TX Arbiter

Data for transmission over an AVB network can be obtained from three source types:

1. AV Traffic. For transmission from the AV Traffic I/F of the core.

2. Precise Timing Protocol (PTP) Packets. Initiated by the software drivers using the
dedicated hardware

3. Legacy Traffic. For transmission from the Legacy Traffic I/F of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 11
PG051 July 25, 2012

Core Overview

The transmitter (Tx) arbiter selects from these three sources in the following manner. If there
is an AV packet available and the programmed AV bandwidth limitation is not exceeded
then the AV packet is transmitted; otherwise the Tx arbiter checks to see if there are any PTP
packets to be transmitted and if not then it checks to see if there is an available legacy
packet to be transmitted. To comply with the specif ications, the AV Traff ic Interface should
not be configured to exceed 75% of the overall Ethernet bandwidth. The arbiter then
polices this bandwidth restriction for the AV traff ic and ensures that on average, it is never
exceeded. Consequently, despite the AV traffic having a higher priority than the legacy
traffic, there is always remaining bandwidth available to schedule legacy traffic.

Transmit Engine
The transmit engine takes data from the AXI4-Stream TX interface and converts it to GMII
format. Preamble and frame check sequence fields are added and the data is padded if
necessary. The transmit engine also provides the transmit statistics vector for each packet
and transmits the pause frames generated by the flow control module.

Receive Engine
The receive engine takes the data from the GMII/MII interface and checks it for compliance
to [Ref 9]. Padding fields are removed and the AXI4-Stream RX interface is presented with
the frame data along with a good/bad indication. The receive engine also provides the
receive statistics vector for each received packet.

Flow Control
The flow control block is designed to [Ref 9], clause 31. The MAC can be configured to send
pause frames with a programmable pause value and to act on their reception. These two
behaviors can be configured asymmetrically.

GMII/MII Block
The GMII/MII interface, which only operates at speeds below 1 Gb/s, converts between the
4-bit data required by MII and the 8-bit data expected by the Receiver/Transmitter
interfaces.

Management Interface
The optional Management Interface is a processor-independent interface with standard
address, data, and control signals. It is used for the configuration and monitoring of the
MAC and for access to the Management Data Input/Output (MDIO) Interface. It is supplied
with a wrapper to interface to the industry standard AXI4-Lite. This interface is optional. If
it is not present, the device can be configured using configuration vectors.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 12
PG051 July 25, 2012

Feature Summary

MDIO Interface
The optional MDIO interface can be written to and read from using the Management
Interface. The MDIO is used to monitor and configure PHY devices. The MDIO Interface is
defined in [Ref 9], clause 22.

Frame Filter
The TEMAC solution can be implemented with an optional frame filter. If the frame filter is
enabled, the device does not pass frames that do not contain one of a set of known
addresses or match against one of the configurable frame filters. By default, all
configurable frame filters are initialized to match against the [Ref 9] defined Broadcast
Address being observed in the destination address field of the MAC frame.

When the AVB Endpoint is included the frame filter is always present with three filters being
dedicated to identifying AV or PTP data. In this case these f ilters are initialized to identify
the default values for the various frame fields. The number of f ilters selected by the user is
in addition to these three.

Statistics Counters
The TEMAC solution can be implemented with optional Statistics Counters. See Statistics
Counters for more details.

Feature Summary
The key features of the TEMAC solution are:

• Designed to the IEEE Std 802.3-2008 specification

• Supports four separate IP cores

° 10/100/1000 Mb/s Ethernet MAC

° 1 Gb/s Ethernet MAC

° 10/100 Mb/s Ethernet MAC

° Optional Ethernet AVB

• Configurable duplex operation

• Support for Media Independent Interface (MII), Gigabit Media Independent Interface
(GMII), Reduced Gigabit Media Independent Interface (RGMII) and connection to the
Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE™.

• Management Data Input/Output (MDIO) interface to manage objects in the physical
layer

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 13
PG051 July 25, 2012

Applications

• User-accessible raw statistic vector outputs

• Optional built in statistics counters

• Optional built-in Ethernet AVB Endpoint designed to the following IEEE specifications

° IEEE802.1AS

Supports clock master functionality, clock slave functionality and the Best Master
Clock Algorithm (BMCA)

° IEEE802.1Qav

Supports arbitration between different priority traff ic and implements bandwidth
policing

• Support for VLAN frames

• Configurable interframe gap (IFG) adjustment in full-duplex operation

• Configurable in-band Frame Check Sequence (FCS) f ield passing on both transmit and
receive paths

• Auto padding on transmit and stripping on receive paths

• Optional fully memory mapped AXI4-Lite interface for configuration and monitoring

• Configurable flow control through Ethernet MAC Control PAUSE frames; symmetrically
or asymmetrically enabled

• Configurable support for jumbo frames of any length

• Configurable maximum frame length check

• Configurable receive frame filter

• AXI4-Stream user interface for Transmit and Receive frame data path.

Applications
Typical applications for the Ethernet MAC include:

• Ethernet Switch or Router

• Ethernet Communications Port for an Embedded Processor

• Ethernet AVB Endpoint System

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 14
PG051 July 25, 2012

Applications

Ethernet Switch or Router
Figure 1-3 illustrates a typical application for a single Ethernet MAC. The Physical-side
interface (PHY) side of the core is connected to an off-the-shelf Ethernet PHY device, which
performs the BASE-T standard at 1 Gb/s, 100 Mb/s, and 10 Mb/s speeds. The PHY device
can be connected using any of the following supported interfaces: GMII/MII, RGMII, or, by
additionally using the Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE™, SGMII.

The user side of the Ethernet MAC is connected to a FIFO to complete a single Ethernet
port. This port is connected to a Switch or Routing matrix, which can contain several ports.

The TEMAC solution is provided with an example design for any of the supported physical
interfaces. A FIFO example is also generated, which can be used as the FIFO in the
illustration, for a typical application.

Ethernet Communications Port for an Embedded Processor
Figure 1-4 illustrates a typical application for a single Ethernet MAC. The PHY side of the
core is connected to an off-the-shelf Ethernet PHY device, which performs the BASE-T
standard at 1 Gb/s, 100 Mb/s, and 10 Mb/s speeds. The PHY device can be connected using
any of the following supported interfaces: GMII/MII, RGMII, or, by additionally using the
Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE, SGMII.

The user side of the MAC is connected to a processor system through a processor DMA
engine. This processor could be running a communications stack, such as the Transmission
Control Protocol/Internet Protocol (TCP/IP). For applications such as this, see the Xilinx
Platform Studio (XPS), Embedded Development Kit (EDK) IP portfolio. This portfolio
contains additional IP to connect the user interface of the MAC to the DMA port of a
processor. [Ref 12] describes the AXI Ethernet, which can be instantiated for an intended
processor application.

X-Ref Target - Figure 1-3

Figure 1-3: Typical Application: Ethernet Switch or Router

Copper
Medium

GMII/MII,
RGMII,

or SGMII

Ethernet MAC
IOBs

Tri-Speed
BASE-T

PHY

Xilinx FPGA Device

Ethernet MAC Block

Packet FIFO
Switch or

Router

1 Gb/s,
100 Mb/s,

or
10 Mb/s

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm
http://www.xilinx.com/ise/embedded/edk_ip.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 15
PG051 July 25, 2012

Applications

Ethernet AVB Endpoint System
Figure 1-5 illustrates a typical implementation for the TEMAC(100/1000 Mb/s) core when
the optional Ethernet AVB endpoint is included. Endpoint refers to a talker (for example,
DVD player) or listener (for example, TV set) device as opposed to an intermediate bridge
function, which is not supported. In the implementation, the Tri-Mode Ethernet MAC core,
with the AVB front end, is connected to an AVB-capable network.

Figure 1-5 illustrates that the Tri-Mode Ethernet MAC core with the Ethernet AVB Endpoint
logic supports two main data interfaces at the user side:

X-Ref Target - Figure 1-4

Figure 1-4: Typical Application: Ethernet Communications Port for Embedded Processor

Copper
Medium

GMII/MII,
RGMII,

or SGMII

Ethernet MAC IOBs
Tri-Speed

BASE-T
PHY

Xilinx FPGA Device

Ethernet MAC Block

DMA
Engine

1 Gb/s,
100 Mb/s,

or
10 Mb/s

Processor

CPU
Bus

X-Ref Target - Figure 1-5

Figure 1-5: Ethernet AVB Endpoint system

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 16
PG051 July 25, 2012

Licensing and Ordering Information

1. The AV traffic interface is intended for the Quality of Service audio/video data.
Illustrated are several audio/video sources (for example, a DVD player), and several
audio/video sinks (for example, a TV set). The Ethernet AVB Endpoint gives priority to
the AV traffic interface over the legacy traffic interface, as dictated by IEEE 802.1Q
75% bandwidth restrictions.

2. The legacy traffic interface is maintained for best effort Ethernet data: Ethernet as it is
known today (for example, a PC surf ing the internet). Wherever possible, priority is
given to the AV traffic interface (as dictated by IEEE 802.1Q bandwidth restrictions), but
a minimum of 25% of the total Ethernet bandwidth is always available for legacy
Ethernet applications.

The AV traffic interface in Figure 1-5 is shown as interfacing to a 1722 Packet Manager
block. The IEEE1722 is another standard which specif ies the embedding of audio/video data
streams into Ethernet Packets. The 1722 headers within these packets include presentation
timestamp information. Contact Xilinx for an engineering solution and for more
system-level information.

Licensing and Ordering Information
The Tri-Mode Ethernet MAC (TEMAC) solution consists of four Xilinx® LogiCORE™ IP cores.
This section provides licensing instructions for the 10/100/1000 Mb/s Tri-Mode Ethernet
MAC, 1 Gb/s Ethernet MAC, 10/100 Mb/s Ethernet MAC and the Ethernet AVB Endpoint.

You must obtain the appropriate licenses before using the cores in your designs. These IP
cores are provided under the terms of the Xilinx LogiCORE IP Site License Agreement or
Xilinx LogiCORE IP Project License Agreement. Purchase of the Tri-Mode Ethernet MAC core
license includes licensing the 10/100/1000 Mb/s Tri-Mode, 1 Gb/s and the 10/100 Mb/s
Ethernet MAC. Purchase of the 10/100 MAC core license only entitles full access to the 10/
100 Mb/s IP. Purchase of the Ethernet AVB Endpoint license only entitles full access to the
AVB Endpoint IP and the appropriate MAC license needs to be bought in addition. Purchase
of a core entitles you to technical support and access to updates for a period of one year.

Table 1-1 shows the bundle offerings.

Table 1-1: TEMAC Bundle Offerings

Part Number License IP Cores

EF-DI-TEMAC-SITE Xilinx LogiCORE IP Site License 10/100/1000 Mb/s, 1 Gb/s, 10/100 Mb/s

EF-DI-TEMAC-PROJ Xilinx LogiCORE IP Project License 10/100/1000 Mb/s, 1 Gb/s, 10/100 Mb/s

EF-DI-10-100-EMAC-SITE Xilinx LogiCORE IP Site License 10/100 Mb/s

EF-DI-EAVB-SITE Xilinx LogiCORE IP Site License 100/1000 Mb/s Ethernet AVB Endpoint

http://www.xilinx.com
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/ip_license/license_terms/project_license_agreement.htm
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/ip_license/license_terms/project_license_agreement.htm
http://www.xilinx.com/ipcenter/ip_license/license_terms/project_license_agreement.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 17
PG051 July 25, 2012

Licensing and Ordering Information

Before you Begin
This chapter assumes that you have installed all required software specified on the product
page for this core.

License Options
The TEMAC solution provides three licensing options. After installing the required Xilinx
Vivado™ Design Suite or ISE® Design Suite and IP Service Packs, choose a license option.

The two free evaluation licenses, the Simulation Only license and the Full-System Hardware
Evaluation license, which lets you test your designs in hardware for a limited period of time,
can be downloaded from the TEMAC product web page and Ethernet AVB Endpoint product
web page.

Simulation Only

The Simulation Only Evaluation license key is provided with the generated core. This key lets
you assess core functionality with either the example design provided with the TEMAC
solution, or alongside your own design and demonstrates the various interfaces to the core
in simulation. (Functional simulation is supported by a dynamically generated HDL
structural model.)

Full System Hardware Evaluation

The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place and route the design, evaluate timing, and
perform back-annotated gate-level simulation of the TEMAC core and optional Ethernet
AVB Endpoint core using the example design and the demonstration test bench provided
with the core.

In addition, the license lets you generate a bitstream from the placed and routed design,
which can then be downloaded to a supported device and tested in hardware. The core can
be tested in the target device for a limited time before timing out (ceasing to function) at
which time it can be reactivated by reconfiguring the device.

Full

The Full license key is available when you purchase the TEMAC IP core and optional Ethernet
AVB Endpoint IP core and provides full access to all core functionality both in simulation
and in hardware:

• Back annotated gate-level simulation support

• Functional simulation support

• Full implementation support including place and route and bitstream generation

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/TEMAC.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-EAVB-EPT.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-EAVB-EPT.htm
http://www.xilinx.com/products/ipcenter/TEMAC.htm
http://www.xilinx.com/products/ipcenter/TEMAC.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 18
PG051 July 25, 2012

Licensing and Ordering Information

• Full functionality in the programmed device with no time outs

To obtain full access to the TEMAC when built with the optional AVB Endpoint, both the
TEMAC and AVB Endpoint licenses need to be purchased.

Obtaining your License Key
This section contains information about obtaining a simulation, full system hardware, and
full license keys.

Simulation License

No action is required to obtain the Simulation Only Evaluation license key; it is provided by
default when the core is generated.

Full System Hardware Evaluation License

To obtain a Full System Hardware Evaluation license, perform these steps:

1. Navigate to the TEMAC product page and optional Ethernet AVB Endpoint product
page.

2. Click Evaluate.

3. Follow the instructions to install the required Xilinx Vivado Design Suite or ISE® Design
Suite and IP Service Packs.

Obtaining a Full License

To obtain a Full license key, you must purchase licenses for the TEMAC and the optional
Ethernet AVB Endpoint cores. After doing so, click the ‘Access Core’ link on the Xilinx.com IP
core product page for further instructions.

Installing your License File
The Simulation Only Evaluation license key is provided with the core and does not require
installation of an additional license file. For the Full System Hardware Evaluation license and
the Full license, an email will be sent to you containing instructions for installing your
license f ile. Additional details about IP license key installation can be found in the ISE
Design Suite Installation, Licensing and Release Notes document.

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information on pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/ipcenter/TEMAC.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-EAVB-EPT.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-EAVB-EPT.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 19
PG051 July 25, 2012 Product Specification

Chapter 2

Product Specification
The TEMAC solution is generated through the Xilinx® Vivado™ Design Suite and the ISE®
Design Suite CORE Generator™ tool, included in the latest IP Update on the Xilinx IP Center.
For detailed information about the core, see the TEMAC product page and the Ethernet AVB
Endpoint product page for that optional feature.

Standards
The System Core adheres to the AMBA® AXI4 Interface standard [Ref 13].

Designed to IEEE 802.3-2008 specification.

Performance

Latency
The latency figures given in the following sections apply to all permutations of the core.

Transmit Path Latency

The transmit path latency is measured by counting the number of valid cycles between a
data byte being placed on the user interface (tx_axis_mac_tdata), and it appearing at
the GMII/MII output (gmii_txd) of the core netlist. So latency values do not include any
GMII/MII or RGMII logic within the example design. Transmitter path latency has been
measured as:

• 8 clock-enabled cycles at 1 Gb/s ethernet speed.

• 7 or 7.5 clock-enabled cycles at 10 Mb/s and 100 Mb/s ethernet speeds. This extra half
cycle of uncertainty is due to the conversion of 8-bit user data to 4-bit MII width
conversion: data is presented to the MII at the earliest possible opportunity.

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/TEMAC.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-EAVB-EPT.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 20
PG051 July 25, 2012 Product Specification

Resource Utilization

Receive Path Latency

The receive path latency is measured as the number of valid cycles between a byte being
driven onto the GMII/MII receive interface (gmii_rxd), and it appearing at the user
interface (rx_axis_mac_tdata) of the core netlist. So latency values do not include any
GMII/MII or RGMII logic within the example design. Receiver path latency has been
measured as:

• 15 clock-enabled cycles at 1 Gb/s ethernet speed.

• 15 or 15.5 clock-enabled cycles at 10 Mb/s and 100 Mb/s ethernet speeds. This extra
half cycle of uncertainty is due to the conversion of 4-bit MII data width to 8-bit user
data conversion.

Resource Utilization

Supported Families

Device Utilization
Tables 2-2 to 2-4 provide approximate utilization f igures for various core options when a
single instance of the core is instantiated in a Virtex-7 device. Other families (Spartan®-6,
Virtex-6) have similar utilization f igures.

Utilization f igures are obtained by implementing the block level wrapper for the core.

Table 2-2 does not differentiate between 10/100/1000 Mb/s support and 1 Gb/s only
support or GMII, MII and RGMII Physical Interfaces. The numbers quoted are for GMII

Table 2-1: Interface Support by Family

Spartan-6 Virtex-6 Artix-7 Kintex-7 Virtex-7 Zynq010/020 Zynq030/045

MII Yes Yes(1) Yes Yes(2)(3) Yes(4)(3) Yes Yes(2)(3)

GMII Yes Yes(1) Yes(5) Yes(2)(3) Yes(4)(3) Yes(5) Yes(2)(3)

RGMIIv2.0 Yes(5) Yes(1) Yes(5) Yes(2)(3) Yes(4)(3) Yes(5) Yes(2)(3)

Notes:
1. Virtex-6 devices support MII/GMII and RGMII at 2.5 V or lower only. See the Virtex-6 FPGA data sheet : DC and Switching

Characteristics [Ref 1] for more information.
2. HRIO supports MII/GMII at 3.3 V or lower and RGMII at 2.5 V or lower. See the relevant FPGA Data Sheet for I/O

availability.
3. For HPIO only 1.8 V or lower is supported. An external voltage converter is required to interface to any PHY

requiring 2.5 V or above.
4. HRIO, available in limited parts, supports MII/GMII at 3.3 V or lower and RGMII at 2.5 V or lower. See the relevant FPGA

Data Sheet for I/O availability.
5. 1 Gb/s half-duplex is not supported due to the use of an MMCM/PLL in the receiver clocking logic.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 21
PG051 July 25, 2012 Product Specification

Resource Utilization

10/100/1000 Mb/s support; 1 Gb/s only support Slice, lookup table (LUT) and flip-flop (FF)
f igures will be slightly reduced.

BUFG usage:

• does not consider multiple instantiations of the core, where clock resources can often
be shared.

• does not include the reference clock required for IDELAYCTRL. This clock source can be
shared across the entire device and is not core specific.

Additional Features

As well as the core utilization shown in Table 2-2, there are other features which can also be
selected. Because the utilization of these features are not signif icantly affected by the core
options they have been split out into separate tables.

Table 2-2: 10/100/1000 Mb/s and 1 Gb/s Device Utilization

Core Parameters Device Resources

Management
Interface

AVB
Endpoint

Half- Duplex
Support Slices LUTs FFs LUTRAM BUFGs

AXI4 No Yes 800 1400 1700 30 3-5

AXI4 No No 650 1100 1500 30 3-5

AXI4 Yes No 1300 2700 3200 150 3-6

None No Yes 500 900 1100 30 2-3

None No No 400 600 800 30 2-3

Table 2-3: Statistics Utilization

Core Parameters Device Resources

Statistics Width Statistics Reset Slices LUTs FFs LUTRAM

32 Yes 220 400 600 90

32 No 220 300 550 90

64 Yes 250 550 700 150

64 No 250 450 650 150

Table 2-4: Frame Filter Utilization

Core Parameters Device Resources

Filters Slices LUTs FFs LUTRAM

0 20 50 20 30

1 50 100 40 60

each additional f ilter 30 50 20 30

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 22
PG051 July 25, 2012 Product Specification

Resource Utilization

Performance

Performance in Virtex-6 Lower Power Devices

Ethernet MAC limitations:

• Use of the GMII physical interface for 1 Gb/s operation will not meet the receiver setup
and/or hold time requirements of the GMII specif ication by a total of at least 165 ps.
Sufficient system margin and IODELAY tap settings are necessary for correct operation.
See Xilinx Answer Record 40028 for more details.

• Use of the RGMII physical interface for 1 Gb/s operation is marginal with respect to the
RGMII receiver timing specif ication. Suff icient system margin and IODELAY tap settings
are necessary for correct operation. See Xilinx Answer Record 40028 for more details.

Performance in Virtex-6 HXT Devices

For some Virtex-6 HXT devices, use of the GMII or RGMII physical interface for 1 Gb/s
operation will not meet the receiver setup and/or hold time requirements of the respective
specification. Suff icient system margin and IODELAY tap settings are necessary for correct
operation. See Xilinx Answer Record 40028 for more details. Performance in these devices
improves, and might meet the specif ication, with higher speed grade parts.

Performance in Spartan 6 Devices

Ethernet MAC limitation:

• Use of the GMII physical interface for 1 Gb/s operation will not meet the receiver setup
and/or hold time requirements of the GMII specification. Sufficient system margin and
IODELAY tap settings are necessary for correct operation. See Xilinx Answer Record
40028 for more details.

http://www.xilinx.com
http://www.xilinx.com/support/answers/40028.htm
http://www.xilinx.com/support/answers/40028.htm
http://www.xilinx.com/support/answers/40028.htm
http://www.xilinx.com/support/answers/40028.htm
http://www.xilinx.com/support/answers/40028.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 23
PG051 July 25, 2012 Product Specification

Port Descriptions

Port Descriptions
All ports of the netlist are internal connections in the Field Programmable Gate Array (FPGA)
logic. An example HDL design, provided in both VHDL and Verilog, is delivered with each
core. The example design connects the core to a FIFO-based loopback example design and
adds Input/Output Block (IOB) flip-flops to the external signals of the GMII/MII (or RGMII).

All clock management logic is placed in this example design, allowing you more flexibility in
implementation (for example, in designs using multiple cores). For information about the
example design, see Chapter 9, Example Design.

User Interfaces

Transmitter Interface

Table 2-5 defines the AXI4-Stream transmit signals of the core, which are used to transmit
data from the user to the core. Table 2-6 defines transmit sideband signals. A detailed
description of operation is provided in Transmitting Outbound Frames in Chapter 3.

Table 2-5: Transmit Interface AXI4-Stream Signal Pins

Signal Direction Clock Domain Description

tx_axis_mac_tdata[7:0] Input tx_mac_aclk Frame data to be transmitted.

tx_axis_mac_tvalid Input tx_mac_aclk Control signal for tx_axis_mac_tdata port. Indicates
the data is valid.

tx_axis_mac_tlast Input tx_mac_aclk Control signal for tx_axis_mac_tdata port. Indicates
the final transfer in a frame.

tx_axis_mac_tuser Input tx_mac_aclk Control signal for tx_axis_mac_tdata port. Indicates
an error condition, such as FIFO underrun, in the
frame allowing the MAC to send an error to the PHY.

tx_axis_mac_tready Output tx_mac_aclk Handshaking signal. Asserted when the current data
on tx_axis_mac_tdata has been accepted and
tx_axis_mac_tvalid is high. At 10/100 Mb/s this is
used to meter the data into the core at the correct
rate.

Note: All signals are active-High.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 24
PG051 July 25, 2012 Product Specification

Port Descriptions

Table 2-7 defines the optional AXI4-Stream AV transmit signals included when the AVB
functionality is selected.

Table 2-6: Transmit Interface Sideband Signal Pins

Signal Direction Clock Domain Description

tx_ifg_delay[7:0] Input tx_mac_aclk Control signal for configurable interframe gap

tx_collision Output tx_mac_aclk Asserted by the MAC netlist to signal a collision
on the medium and that any transmission in
progress should be aborted. Always 0 when the
MAC netlist is in full-duplex mode.

tx_retransmit Output tx_mac_aclk When asserted at the same time as the
tx_collision signal, this signals to the client that
the aborted frame should be resupplied to the
MAC netlist for retransmission. Always 0 when the
MAC netlist is in full-duplex mode.

tx_statisitics_vector[31:0] Output tx_mac_aclk A statistics vector that gives information on the
last frame transmitted.

tx_statistics_valid Output tx_mac_aclk Asserted at end of frame transmission, indicating
that the tx_statistics_vector is valid.

Note: All signals are active-High.

Table 2-7: Transmit Interface AXI4-Stream AV Signal Pins

Signal Direction Clock Domain Description

tx_axis_av_tdata[7:0] Input tx_mac_aclk Frame data to be transmitted.

tx_axis_av_tvalid Input tx_mac_aclk Control signal for tx_axis_av_tdata port. Indicates the
data is valid.

tx_axis_av_tlast Input tx_mac_aclk Control signal for tx_axis_av_tdata port. Indicates the
f inal transfer in a frame.

tx_axis_av_tuser Input tx_mac_aclk Control signal for tx_axis_av_tdata port. Indicates an
error condition, such as FIFO underrun, in the frame
allowing the MAC to send an error to the PHY.

tx_axis_av_tready Output tx_mac_aclk Handshaking signal. Asserted when the current data
on tx_axis_av_tdata has been accepted and
tx_axis_av_tvalid is high. At 100 Mb/s this is used to
meter the data into the core at the correct rate.

Note: All signals are active-High.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 25
PG051 July 25, 2012 Product Specification

Port Descriptions

Receiver Interface

Table 2-8 describes the receive AXI4-Stream signals used by the core to transfer data to the
user. Table 2-9 describes the related sideband interface signals. A detailed description of
operation is provided in Receiving Inbound Frames in Chapter 3.

Table 2-10 defines the optional AXI4-Stream AV receive signals included when the AVB
functionality is selected.

Table 2-8: Receive Interface AXI4-Stream Signal Pins

Signal Direction Clock
Domain Description

rx_axis_mac_tdata[7:0] Output rx_mac_aclk Frame data received is supplied on this port.

rx_axis_mac_tvalid Output rx_mac_aclk Control signal for the rx_axis_mac_tdata port.
Indicates the data is valid.

rx_axis_mac_tlast Output rx_mac_aclk Control signal for the rx_axis_mac_tdata port.
Indicates the final byte in the frame.

rx_axis_mac_tuser Output rx_mac_aclk Control signal for rx_axis_mac_tdata. Asserted at end
of frame reception to indicate that the frame had an
error.

rx_axis_f ilter_tuser[x:0] Output rx_mac_aclk Per frame f ilter tuser output. Can be used to send only
data passed by a specif ic frame filter. See Frame Filter
for more information.

Note: All signals are active-High.

Table 2-9: Receive Interface Sideband Signal Pins

Signal Direction Clock
Domain Description

rx_statistics_vector[27:0] Output rx_mac_aclk Provides information about the last frame received.

rx_statistics_valid Output rx_mac_aclk Asserted at end of frame reception, indicating that
the rx_statistics_vector is valid.

Note: All signals are active-High.

Table 2-10: Receive Interface AXI4-Stream AV Signal Pins

Signal Direction Clock
Domain Description

rx_axis_av_tdata[7:0] Output rx_mac_aclk Frame data received is supplied on this port.

rx_axis_av_tvalid Output rx_mac_aclk Control signal for the rx_axis_av_tdata port. Indicates
the data is valid.

rx_axis_av_tlast Output rx_mac_aclk Control signal for the rx_axis_av_tdata port. Indicates
the f inal byte in the frame.

rx_axis_av_tuser Output rx_mac_aclk Control signal for rx_axis_av_tdata. Asserted at end of
frame reception to indicate that the frame had an error.

Note: All signals are active-High.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 26
PG051 July 25, 2012 Product Specification

Port Descriptions

Flow Control Interface

Table 2-11 describes the signals used by the user to request a flow-control action from the
transmit engine. Valid flow control frames received by the MAC are automatically handled
(if the MAC is configured to do so). The pause value in the received frame is used to inhibit
the transmitter operation for the time defined in [Ref 9]. The frame is then passed to the
client with rx_axis_mac_tuser asserted to indicate to the client that it should be
dropped. See Flow Control in Chapter 3.

AXI4-Lite Signal Definition

Table 2-12 describes the optional signals used by the user to access the MAC netlist,
including configuration, status and MDIO access. See The Management Interface in
Chapter 3.

Table 2-11: Flow Control Interface Signal Pinout

Signal Direction Description

pause_req Input Pause request: Upon request the MAC transmits a pause frame upon the
completion of the current data packet. See Transmitting a Pause Control
Frame.

pause_val[15:0] Input Pause value: inserted into the parameter f ield of the transmitted pause
frame.

Note: All signals are active-High.

Table 2-12: Optional AXI4-Lite Signal Pinout

Signal Direction Clock Domain Description

s_axi_aclk Input N/A Clock for AXI4-Lite

s_axi_resetn Input s_axi_aclk Local reset for the clock domain

s_axi_awaddr[31:0] Input s_axi_aclk Write Address

s_axi_awvalid Input s_axi_aclk Write Address Valid

s_axi_awready Output s_axi_aclk Write Address ready

s_axi_wdata[31:0] Input s_axi_aclk Write Data

s_axi_wvalid Input s_axi_aclk Write Data valid

s_axi_wready Output s_axi_aclk Write Data ready

s_axi_bresp[1:0] Output s_axi_aclk Write Response

s_axi_bvalid Output s_axi_aclk Write Response valid

s_axi_bready Input s_axi_aclk Write Response ready

s_axi_araddr[31:0] Input s_axi_aclk Read Address

s_axi_arvalid Input s_axi_aclk Read Address valid

s_axi_arready Output s_axi_aclk Read Address ready

s_axi_rdata[31:0] Output s_axi_aclk Read Data

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 27
PG051 July 25, 2012 Product Specification

Port Descriptions

Configuration Vector Signal Definition

Table 2-13 describes the configuration vectors, which use direct inputs to the core to
replace the functionality of the MAC configuration bits when the Management Interface is
not used. The configuration settings described in Tables 2-24 to 2-30 are included in the
vector.

Note: All bits of the config vectors are registered on input but can be treated as asynchronous
inputs.

Clock, Speed Indication, and Reset Signal Definition

Table 2-14 describes the reset signals, the clock signals that are input to the core, and the
outputs that can be used to select between the three operating speeds. The clock signals
are generated in the top-level wrapper provided with the core.

s_axi_rresp[1:0] Output s_axi_aclk Read Response

s_axi_rvalid Output s_axi_aclk Read Data/Response Valid

s_axi_rready Input s_axi_aclk Read Data/Response ready

Table 2-13: Alternative to the Optional MDIO: Configuration Vector Signal Pinout

Signal Direction Description

rx_mac_config_vector[79:0] Input The RX Configuration Vector is used to replace the
functionality of the MAC RX Configuration Registers when the
Management Interface is not used.

tx_mac_config_vector[79:0] Input The TX Configuration Vector is used to replace the functionality
of the MAC TX Configuration Registers when the Management
Interface is not used.

Table 2-14: Clock and Speed Indication Signals

Signal Direction Description
glbl_rstn Input Active-Low asynchronous reset for entire core.

rx_axi_rstn Input Active-Low RX domain reset

tx_axi_rstn Input Active-Low TX domain reset

rx_reset Output Active-High RX software reset from MAC netlist

tx_reset Output Active-High TX software reset from MAC netlist

gtx_clk Input Global 125 MHz clock

rtc_clk Input Only available when the core is generated with AVB. Reference clock used to
increment the Real Time Clock (RTC). The minimum frequency is 25 MHz.
Xilinx recommends a 125 MHz clock source shared with gtx_clk.

Table 2-12: Optional AXI4-Lite Signal Pinout (Cont’d)

Signal Direction Clock Domain Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 28
PG051 July 25, 2012 Product Specification

Port Descriptions

Interrupt Signals

Table 2-15 describes the interrupt signals provided by the TEMAC core.

tx_mac_aclk Input Clock for the transmission of data on the physical interface. 125 MHz at
1 Gb/s, 25 MHz at 100 Mb/s, and 2.5 MHz at 10 Mb/s. This clock should be
used to clock the physical interface transmit circuitry and the TX AXI4-Stream
transmit circuitry. This clock only exists in GMII or MII. See the appropriate
section:
• Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP

Core
• Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core
• Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet

MAC IP Core

rx_mac_aclk Input Clock for the reception of data on the physical interface. 125 MHz at
1 Gb/s, 25 MHz at 100 Mb/s, and 2.5 MHz at 10 Mb/s. This clock should be
used to clock the physical interface receive circuitry and the RX AXI4-Stream
receive circuitry. See the appropriate section:
• Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP

Core
• Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core
• Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet

MAC IP Core

speedis100 Output This output is asserted when the core is operating at 100 Mb/s. It is derived
from either bits 30 and 31 of the MAC Speed Configuration register. If the
optional Management Interface is not present, this is derived from
configuration vector bits 65 and 66.

speedis10100 Output This output is asserted when the core is operating at either 10 Mb/s or
100 Mb/s. It is derived from either bits 30 and 31 of the MAC Speed
Configuration register. If the Management Interface is not present, this is
derived from configuration vector bits 65 and 66

Table 2-15: Interrupt signals

Signal Direction Description

mac_int Output
This is the interrupt output from the interrupt controller. Currently the
only interrupt source which can be configured is the mdio_ready signal.
See Interrupt Controller for more information.

interrupt_ptp_rx Output
Only available when the core is generated with AVB. This is asserted
following the reception of any PTP packet by the RX PTP Packet Buffers.
See RX PTP Packet Buffer for more information.

interrupt_ptp_tx Output
Only available when the core is generated with AVB. This is asserted
following the transmission of any PTP packet from the TX PTP Packet
Buffers. See TX PTP Packet Buffer for more information.

interrupt_ptp_timer Output

Only available when the core is generated with AVB. This interrupt
asserts every 1/128 seconds as measured by the RTC. This acts as a
timer for the PTP software algorithms. See Real Time Clock for more
information.

Table 2-14: Clock and Speed Indication Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 29
PG051 July 25, 2012 Product Specification

Port Descriptions

Ethernet AVB Endpoint PTP Signals

Table 2-16 defines the signals output from the core by the Precise Timing Protocol (PTP)
block in Figure 1-2. These signals, present only when the AVB Endpoint is included in the
TEMAC, are provided for reference only and can be used by an application.

Physical Interface Signals

MDIO Signal Definition

Table 2-17 describes the MDIO (MII Management) interface signals of the core, which are
typically connected to the MDIO port of a PHY device, either off-chip or an SoC-integrated
core. These signals are present whenever the optional Management Interface is used. The
MDIO format is defined in [Ref 9], clause 2.

PHY Interface Signal Definition

Tables 2-18 to 2-20 describe the three possible interface standards supported, RGMII, GMII
and MII, which are typically attached to a PHY module, either off-chip or internally
integrated. The RGMII is defined in [Ref 10], the GMII is defined in [Ref 9], clause 35, and MII
is defined in [Ref 9], clause 22.

Table 2-16: AVB Specific Signals

Signal Direction Description

rtc_nanosec_field Output This is the synchronised nanoseconds f ield from the RTC.

rtc_sec_field Output This is the synchronised seconds fields from the RTC.

clk8k Output
This is an 8 kHz clock which is derived from, and synchronized in
frequency, to the Real Time Clock. The period of this clock, 125 μs,
can be useful in timing SR class measurement intervals.

rtc_nanosec_field_1722 Output
The IEEE1722 specif ication contains a different format for the Real
Time Clock, provided here as an extra port. This is derived and is in
sync with the IEEE802.1 AS real time clock.

Table 2-17: MDIO Interface Signal Pinout

Signal Direction Description

mdc Output MDIO Management Clock: derived from s_axi_aclk on the basis of supplied
configuration data when the optional Management Interface is used.

mdio_i Input Input data signal for communication with PHY configuration and status. Tie high if
unused.

mdio_o Output Output data signal for communication with PHY configuration and status.

mdio_t Output 3-state control for MDIO signals; 0 signals that the value on MDIO_OUT should be
asserted onto the MDIO bus.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 30
PG051 July 25, 2012 Product Specification

Port Descriptions

.

Table 2-18: Optional GMII Interface Signal Pinout

Signal Direction Clock Domain Description

gmii_txd[7:0] Output tx_mac_aclk Transmit data to PHY

gmii_tx_en Output tx_mac_aclk Data Enable control signal to PHY

gmii_tx_er Output tx_mac_aclk Error control signal to PHY

mii_tx_clk Input Clock from PHY (used for 10/100)

gmii_col Input N/A Control signal from PHY

gmii_crs Input N/A Control signal from PHY

gmii_rxd[7:0] Input gmii_rx_clk Received data from PHY

gmii_rx_dv Input gmii_rx_clk Data Valid control signal from PHY

gmii_rx_er Input gmii_rx_clk Error control signal from PHY

gmii_rx_clk Input Clock from PHY

Table 2-19: Optional MII Interface Signal Pinout

Signal Direction Clock Domain Description

mii_tx_clk Input Clock from PHY

mii_txd[3:0] Output mii_tx_clk Transmit data to PHY

mii_tx_en Output mii_tx_clk Data Enable control signal to PHY

mii_tx_er Output mii_tx_clk Error control signal to PHY

mii_col Input N/A Control signal from PHY

mii_crs Input N/A Control signal from PHY

mii_rxd[3:0] Input rx_mac_aclk Received data from PHY

mii_rx_dv Input rx_mac_aclk Data Valid control signal from PHY

mii_rx_er Input rx_mac_aclk Error control signal from PHY

mii_rx_clk Input Clock from PHY

Table 2-20: Optional RGMII Interface Signal Pinout

Signal Direction Clock Domain Description

rgmii_txd[3:0] Output tx_mac_aclk Transmit data to PHY

rgmii_tx_ctl Output tx_mac_aclk control signal to PHY

rgmii_txc Output Clock to PHY

rgmii_rxd[3:0] Input rgmii_rxc Received data from PHY

rgmii_rx_ctl Input rgmii_rxc Control signal from PHY

rgmii_rxc Input Clock from PHY

inband_link_status Output rgmii_rxc Link Status from the PHY

inband_clock_speed Output rgmii_rxc Link Speed from the PHY

inband_duplex_status Output rgmii_rxc Duplex Status from the PHY

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 31
PG051 July 25, 2012 Product Specification

Register Space

Register Space
When the core is generated with a management interface, all control and Status registers
are memory mapped; if no management interface is used, the key core parameters can be
controlled through the configuration vectors as defined in Configuration Vector Signal
Definition and Configuration Vector. After power up or reset, the user can reconfigure the
core parameters from their defaults, such as flow control support. Configuration changes
can be made at any time. Both the receiver and transmitter logic only sample configuration
changes at the start of frame transmission/reception. The exceptions to this are the
configurable resets which take effect immediately.

Configuration of the core is performed through a register bank accessed through the
AXI4-Lite interface. The configuration registers available in the core are detailed in
Table 2-21 and further detail is provided in the sections:

• Statistics Counters

• MAC Configuration Registers

• MDIO

• Interrupt Controller

• Frame Filter Configuration

• AVB Endpoint

• RTC Configuration

• Configuration Vector

Table 2-21: Core Registers

Address Description

0x000-0x1FC Reserved

0x200 Received Bytes Counter word 0

0x204 Received Bytes Counter word 1 (if 64 bit width)

0x208 Transmitted Bytes Counter word 0

0x20C Transmitted Bytes Counter word 1 (if 64 bit width)

0x210 Undersize Frames Counter word 0

0x214 Undersize Frames Counter word 1 (if 64 bit width)

0x218 Fragment Frames Counter word 0

0x21C Fragment Frames Counter word 1 (if 64 bit width)

0x220 RX 64 Byte Frames Counter word 0

0x224 RX 64 Byte Frames Counter word 1 (if 64 bit width)

0x228 RX 65-127 Byte Frames Counter word 0

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 32
PG051 July 25, 2012 Product Specification

Register Space

0x22C RX 65-127 Byte Frames Counter word 1 (if 64 bit width)

0x230 RX 128-255 Byte Frames Counter word 0

0x234 RX 128-255 Byte Frames Counter word 1 (if 64 bit width)

0x238 RX 256-511 Byte Frames Counter word 0

0x23C RX 256-511 Byte Frames Counter word 1 (if 64 bit width)

0x240 RX 512-1023 byte Frames Counter word 0

0x244 RX 512-1023 Byte Frames Counter word 1 (if 64 bit width)

0x248 RX 1024-Max Frames Size Byte Frames Counter word 0

0x24C RX 1024-Max Frames Size Byte Frames Counter word 1 (if 64 bit width)

0x250 RX Oversize Frames Counter word 0

0x254 RX Oversize Frames Counter word 1 (if 64 bit width)

0x258 TX 64 Byte Frames Counter word 0

0x25C TX 64 Byte Frames Counter word 1 (if 64 bit width)

0x260 TX 65-127 Byte Frames Counter word 0

0x264 TX 65-127 Byte Frames Counter word 1 (if 64 bit width)

0x268 TX 128-255 Byte Frames Counter word 0

0x26C TX 128-255 Byte Frames Counter word 1 (if 64 bit width)

0x270 TX 256-511 Byte Frames Counter word 0

0x274 TX 256-511 Byte Frames Counter word 1 (if 64 bit width)

0x278 TX 512-1023 byte Frames Counter word 0

0x27C TX 512-1023 Byte Frames Counter word 1 (if 64 bit width)

0x280 TX 1024-Max Frames Size Byte Frames Counter word 0

0x284 TX 1024-Max Frames Size Byte Frames Counter word 1 (if 64 bit width)

0x288 TX Oversize Frames Counter word 0

0x28C TX Oversize Frames Counter word 1 (if 64 bit width)

0x290 RX Good Frames Counter word 0

0x294 RX Good Frames Counter word 1 (if 64 bit width)

0x298 RX Frame Check Sequence Errors Counter word 0

0x29C RX Frame Check Sequence Errors Counter word 1 (if 64 bit width)

0x2A0 RX Good Broadcast Frames Counter word 0

0x2A4 RX Good Broadcast Frames Counter word 1 (if 64 bit width)

0x2A8 RX Good Multicast Frames Counter word 0

0x2AC RX Good Multicast Frames Counter word 1 (if 64 bit width)

0x2B0 RX Good Control Frames Counter word 0

0x2B4 RX Good Control Frames Counter word 1 (if 64 bit width)

0x2B8 RX Length/Type Out of Range Errors Counter word 0

Table 2-21: Core Registers (Cont’d)

Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 33
PG051 July 25, 2012 Product Specification

Register Space

0x2BC RX Length/Type Out of Range Errors Counter word 1 (if 64 bit width)

0x2C0 RX Good VLAN Tagged Frames Counter word 0

0x2C4 RX Good VLAN Tagged Frames Counter word 1 (if 64 bit width)

0x2C8 RX Good Pause Frames Counter word 0

0x2CC RX Good Pause Frames Counter word 1 (if 64 bit width)

0x2D0 RX Bad Opcode Frames Counter word 0

0x2D4 RX Bad Opcode Frames Counter word 1 (if 64 bit width)

0x2D8 TX Good Frames Counter word 0

0x2DC TX Good Frames Counter word 1 (if 64 bit width)

0x2E0 TX Good Broadcast Frames Counter word 0

0x2E4 TX Good Broadcast Frames Counter word 1 (if 64 bit width)

0x2E8 TX Good Multicast Frames Counter word 0

0x2EC TX Good Multicast Frames Counter word 1 (if 64 bit width)

0x2F0 TX Underrun Errors Counter word 0

0x2F4 TX Underrun Errors Counter word 1 (if 64 bit width)

0x2F8 TX Good Control Frames Counter word 0

0x2FC TX Good Control Frames Counter word 1 (if 64 bit width)

0x300 TX Good VLAN Frames Counter word 0

0x304 TX Good VLAN Frames Counter word 1 (if 64 bit width)

0x308 TX Good Pause Frames Counter word 0

0x30C TX Good Pause Frames Counter word 1 (if 64 bit width)

0x310 TX Single Collision Frames Counter word 0

0x314 TX Single Collision Frames Counter word 1 (if 64 bit width)

0x318 TX Multiple Collision Frames Counter word 0

0x31C TX Multiple Collision Frames Counter word 1 (if 64 bit width)

0x320 TX Deferred Frames Counter word 0

0x324 TX Deferred Frames Counter word 1 (if 64 bit width)

0x328 TX Late Collision Counter word 0

0x32C TX Late Collision Counter word 1 (if 64 bit width)

0x330 TX Excess Collision Counter word 0

0x334 TX Excess Collision Counter word 1 (if 64 bit width)

0x338 TX Excess Deferral Counter word 0

0x33C TX Excess Deferral Counter word 1 (if 64 bit width)

0x340 TX Alignment Errors Counter word 0

0x344 TX Alignment Errors Counter word 1 (if 64 bit width)

0x348-0x364 User Defined Statistics Counters (if present)

Table 2-21: Core Registers (Cont’d)

Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 34
PG051 July 25, 2012 Product Specification

Register Space

0x368-0x3FC Reserved

0x400 Receiver Configuration word 0

0x404 Receiver Configuration word 1

0x408 Transmitter configuration

0x40C Flow Control Configuration

0x410 Speed configuration

0x414 RX Max Frame Configuration

0x418 TX Max Frame Configuration

0x41C-0x4F4 Reserved

0x4F8 ID Register

0x4FC Ability Register

0x500 MDIO Setup

0x504 MDIO Control

0x508 MDIO Write Data

0x50C MDIO Read Data

0x510-0x5FC Reserved

0x600 Interrupt Status Register

0x604-0x60C Reserved

0x610 Interrupt Pending Register

0x614-0x61C Reserved

0x620 Interrupt Enable Register

0x624-0x62C Reserved

0x630 Interrupt clear Register

0x634-0x6FC Reserved

0x700 Unicast Address word 0

0x704 Unicast Address word 1

0x708 Frame filter Control

0x70C Frame filter Enable

0x710 Frame filter value bytes 3-0

0x714 Frame filter value bytes 7-4

0x718 Frame filter value bytes 11-8

0x71C Frame f ilter value bytes 15-12

0x720 Frame f ilter value bytes 19-16

0x724 Frame f ilter value bytes 23-20

0x728 Frame f ilter value bytes 27-24

0x72C Frame f ilter value bytes 31-28

Table 2-21: Core Registers (Cont’d)

Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 35
PG051 July 25, 2012 Product Specification

Register Space

0x730 Frame f ilter value bytes 35-32

0x734 Frame f ilter value bytes 39-36

0x738 Frame f ilter value bytes 43-40

0x73C Frame filter value bytes 47-44

0x740 Frame f ilter value bytes 51-48

0x744 Frame f ilter value bytes 55-52

0x748 Frame f ilter value bytes 59-56

0x74C Frame f ilter value bytes 63-60

0x750 Frame filter mask value bytes 3-0

0x754 Frame filter mask value bytes 7-4

0x758 Frame filter mask value bytes 11-8

0x75C Frame f ilter mask value bytes 15-12

0x760 Frame f ilter mask value bytes 19-16

0x764 Frame f ilter mask value bytes 23-20

0x768 Frame f ilter mask value bytes 27-24

0x76C Frame f ilter mask value bytes 31-28

0x770 Frame f ilter mask value bytes 35-32

0x774 Frame f ilter mask value bytes 39-36

0x778 Frame f ilter mask value bytes 43-40

0x77C Frame filter mask value bytes 47-44

0x780 Frame f ilter mask value bytes 51-48

0x784 Frame f ilter mask value bytes 55-52

0x788 Frame f ilter mask value bytes 59-56

0x78C Frame f ilter mask value bytes 63-60

0x790-0x7FC Reserved

0x800-0xFFFC Reserved

0x10000-0x100FC RX PTP Buffer 0

0x10100-0x101FC RX PTP Buffer 1

0x10200-0x102FC RX PTP Buffer 2

0x10300-0x103FC RX PTP Buffer 3

0x10400-0x104FC RX PTP Buffer 4

0x10500-0x105FC RX PTP Buffer 5

0x10600-0x106FC RX PTP Buffer 6

0x10700-0x107FC RX PTP Buffer 7

0x10800-0x108FC RX PTP Buffer 8

0x10900-0x109FC RX PTP Buffer 9

Table 2-21: Core Registers (Cont’d)

Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 36
PG051 July 25, 2012 Product Specification

Register Space

0x10A00-0x10AFC RX PTP Buffer 10

0x10B00-0x10BFC RX PTP Buffer 11

0x10C00-0x10CFC RX PTP Buffer 12

0x10D00-0x10DFC RX PTP Buffer 13

0x10E00-0x10EFC RX PTP Buffer 14

0x10F00-0x10FFC RX PTP Buffer 15

0x11000-0x110FC TX PTP Buffer 0

0x11100-0x111FC TX PTP Buffer 1

0x11200-0x112FC TX PTP Buffer 2

0x11300-0x113FC TX PTP Buffer 3

0x11400-0x114FC TX PTP Buffer 4

0x11500-0x115FC TX PTP Buffer 5

0x11600-0x116FC TX PTP Buffer 6

0x11700-0x117FC TX PTP Buffer 7

0x11800-0x11FFC Reserved

0x12000 TX PTP Packet Buffer Control Register

0x12004 RX PTP Packet Control Register

0x12008 Reserved

0x1200C TX Arbiter Send Slope control Register

0x12010 TX Arbiter Idle Slope control Register

0x12014-0x127FC Reserved

0x12800 RTC Nano-seconds Field Offset

0x12804 Reserved

0x12808 RTC Seconds Field Offset[31:0]

0x1280C RTC Seconds Field Offset[47:32]

0x12810 RTC Increment Value Control Register

0x12814 Current RTC Nanoseconds Value

0x12818 Current RTC Seconds Value Bits[31:0]

0x1281C Current RTC Seconds Value Bits[47:32]

0x12820 RTC Interrupt Clear Register

0x12824 RTC Phase Adjustment Register

0x12828-0x13FFC Reserved

Table 2-21: Core Registers (Cont’d)

Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 37
PG051 July 25, 2012 Product Specification

Register Space

Statistics Counters
The Statistics counters can be defined to be either 32 or 64-bits wide, with 64 bits being the
default. When defined as 64-bits wide the counter values are captured across two registers.
In all cases a read of the lower 32-bit value causes the upper 32 bits to be sampled. A
subsequent read of the upper 32-bit location returns this sampled value.

Note: If a different upper 32-bit location is read, an error is returned.

Table 2-22: Statistics Counter Definitions

Name Increment
Bit No. Address Description

Received bytes NA 0x200-0x204
A count of bytes of frames received
(destination address to frame check
sequence inclusive).

Transmitted bytes NA 0x208-0x20C
A count of bytes of frames transmitted
(destination address to frame check
sequence inclusive).

RX Undersize frames NA 0x210-0x214
A count of the number of frames received
that were fewer than 64 bytes in length but
otherwise well formed.

RX Fragment frames NA 0x218-0x21C
A count of the number of frames received
that were fewer than 64 bytes in length and
had a bad frame check sequence field.

RX 64 byte Frames 4 0x220-0x224 A count of error-free frames received 64
bytes in length.

RX 65-127 byte Frames 5 0x228-0x22C A count of error-free frames received
between 65 and 127 bytes in length.

RX 128-255 byte Frames 6 0x230-0x234 A count of error-free frames received
between 128 and 255 bytes in length.

RX 256-511 byte Frames 7 0x238-0x23C A count of error-free frames received
between 256 and 511 bytes in length.

RX 512-1023 byte Frames 8 0x240-0x244 A count of error-free frames received
between 512 and 1023 bytes in length.

RX 1024-MaxFrameSize
byte Frames 9 0x248-0x24C

A count of error-free frames received
between 1024 bytes and the specif ied IEEE
802.3-2008 maximum legal length.

RX Oversize Frames 10 0x250-0x254
A count of otherwise error-free frames
received that exceeded the maximum legal
frame length specif ied in IEEE 802.3-2008.

TX 64 byte Frames 11 0x258-0x25C A count of error-free frames transmitted that
were 64 bytes in length.

TX 65-127 byte Frames 12 0x260-0x264 A count of error-free frames transmitted
between 65 and 127 bytes in length.

TX 128-255 byte Frames 13 0x268-0x26C A count of error-free frames transmitted
between 128 and 255 bytes in length.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 38
PG051 July 25, 2012 Product Specification

Register Space

TX 256-511 byte Frames 14 0x270-0x274 A count of error-free frames transmitted
between 256 and 511 bytes in length.

TX 512-1023 byte Frames 15 0x278-0x27C A count of error-free frames transmitted that
were between 512 and 1023 bytes in length.

TX 1024-MaxFrameSize
byte Frames 16 0x280-0x284

A count of error-free frames transmitted
between 1024 and the specif ied IEEE
802.3-2008 maximum legal length.

TX Oversize Frames 17 0x288-0x28C

A count of otherwise error-free frames
transmitted that exceeded the maximum
legal frame length specif ied in IEEE
802.3-2008.

RX Good Frames 18 0x290-0x294 A count of error-free frames received.

RX Frame Check Sequence
Errors 19 0x298-0x29C

A count of received frames that failed the
CRC check and were at least 64 bytes in
length.

RX Good Broadcast Frames 20 0x2A0-0x2A4 A count of frames successfully received and
directed to the broadcast group address.

RX Good Multicast Frames 21 0x2A8-0x2AC A count of frames successfully received and
directed to a non-broadcast group address.

RX Good Control Frames 22 0x2B0-0x2B4
A count of error-free frames received that
contained the special control frame
identif ier in the length/type field.

RX Length/Type
Out of Range 23 0x2B8-0x2BC

A count of frames received that were at least
64 bytes in length where the length/type
f ield contained a length value that did not
match the number of MAC user data bytes
received. The counter also increments for
frames in which the length/type field
indicated that the frame contained padding
but where the number of MAC user data
bytes received was greater than 64 bytes
(minimum frame size). The exception is
when the Length/Type Error Checks are
disabled in the chosen MAC, in which case
this counter does not increment.

RX Good VLAN Tagged
Frames 24 0x2C0-0x2C4

A count of error-free VLAN frames received.
This counter only increments when the
receiver is configured for VLAN operation.

RX Good Pause Frames 25 0x2C8-0x2CC

A count of error-free frames received that
contained the MAC Control type identif ier
88-08 in the length/type field, contained a
destination address that matched either the
MAC Control multicast address or the
configured source address of the MAC,
contained the PAUSE opcode and were acted
upon by the MAC.

Table 2-22: Statistics Counter Definitions (Cont’d)

Name Increment
Bit No. Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 39
PG051 July 25, 2012 Product Specification

Register Space

RX Bad Opcode 26 0x2D0-0x2D4

A count of error-free frames received that
contained the MAC Control type identif ier
88-08 in the Length/Type f ield but were
received with an opcode other than the
PAUSE opcode.

TX Good Frames 27 0x2D8-0x2DC A count of error-free frames transmitted.

TX Good Broadcast Frames 28 0x2E0-0x2E4 A count of error-free frames that were
transmitted to the broadcast address.

TX Good Multicast Frames 29 0x2E8-0x2EC
A count of error-free frames that were
transmitted to a group destination address
other than broadcast.

TX Good Underrun Errors 30 0x2F0-0x2F4

A count of frames that would otherwise be
transmitted by the core but could not be
completed due to the assertion of
TX_UNDERRUN during the frame
transmission.

TX Good Control Frames 31 0x2F8-0x2FC
A count of error-free frames transmitted that
contained the MAC Control Frame type
identif ier 88-08 in the length/type field.

TX Good VLAN Tagged
Frames 32 0x300-0x304

A count of error-free VLAN frames
transmitted. This counter only increments
when the transmitter is configured for VLAN
operation.

TX Good Pause Frames 33 0x308-0x30C
A count of error-free PAUSE frames
generated and transmitted by the MAC in
response to an assertion of pause_req.

TX Single Collision Frames 34 0x310-0x314
A count of frames involved in a single
collision but subsequently transmitted
successfully (half-duplex mode only).

TX Multiple Collision Frames 35 0x318-0x31C
A count of frames involved in more than one
collision but subsequently transmitted
successfully (half-duplex mode only).

TX Deferred 36 0x320-0x324
A count of frames whose transmission was
delayed on its f irst attempt because the
medium was busy (half-duplex mode only).

TX Late Collisions 37 0x328-0x32C

A count of the times that a collision has been
detected later than one slot Time from the
start of the packet transmission. A late
collision is counted twice— both as a
collision and as a late Collision (half-duplex
mode only).

TX Excess collisions 38 0x330-0x334
A count of the frames that, due to excessive
collisions, are not transmitted successfully
(half-duplex mode only).

Table 2-22: Statistics Counter Definitions (Cont’d)

Name Increment
Bit No. Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 40
PG051 July 25, 2012 Product Specification

Register Space

MAC Configuration Registers
Configuration of the MAC core is performed through a register bank accessed through the
management interface. The configuration registers available in the core are detailed in
Table 2-23.

The contents of each configuration register are shown in Tables 2-24 to 2-32.

TX Excess Deferral 39 0x338-0x33C
A count of frames that deferred transmission
for an excessive period of time (half-duplex
mode only).

TX Alignment Errors 40 0x340-0x344

Asserted for received frames of size
64-bytes and greater which contained an
odd number of received nibbles and which
also contained an invalid FCS f ield.

1. All bits are Read Only.

Table 2-23: Configuration Registers

Address (Hex) Description

0x400 Receiver Configuration Word 0 (0x400)

0x404 Receiver Configuration Word 1 (0x404)

0x408 Transmitter Configuration Word (0x408)

0x40C Flow Control Configuration Word (0x40C)

0x410 MAC Speed Configuration Word (0x410)

0x414 RX Max Frame Configuration Word (0x414)

0x418 TX Max Frame Configuration Word (0x418)

0x41C-0x4F4 Reserved

0x4F8 ID Register (0x4F8)

0x4FC Ability Register (0x4FC)

Table 2-24: Receiver Configuration Word 0 (0x400)

Bit Default
Value Type Description

31-0 All 0s Read/Write
(RW)

Pause frame MAC Source Address[31:0]: This address is used by the
MAC to match against the destination address of any incoming flow
control frames. It is also used by the flow control block as the source
address (SA) for any outbound flow control frames.
The address is ordered so the f irst byte transmitted/received is the
lowest positioned byte in the register; for example, a MAC address of
AA-BB-CC-DD-EE-FF would be stored in Address[47:0] as
0xFFEEDDCCBBAA.

Table 2-22: Statistics Counter Definitions (Cont’d)

Name Increment
Bit No. Address Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 41
PG051 July 25, 2012 Product Specification

Register Space

Table 2-25: Receiver Configuration Word 1 (0x404)

Bit Default
Value Type Description

15-0 All 0s RW Pause frame MAC Source Address[47:32]: See description in Table 2-24.

23-16 N/A RO Reserved

24 0 RW
Control Frame Length Check Disable: When this bit is set to 1, the core does
not mark control frames as ‘bad’ if they are greater than the minimum frame
length.

25 0 RW

Length/Type Error Check Disable: When this bit is set to 1, the core does not
perform the length/type field error checks as described in Length/Type Field
Error Checks. When this bit is set to 0, the length/type f ield checks is
performed: this is normal operation.

26 0 RW Half Duplex: If 1, the receiver operates in half- duplex mode. If 0, the receiver
operates in full- duplex mode.

27 0 RW VLAN Enable: When this bit is set to 1, VLAN tagged frames are accepted by
the receiver.

28 1 RW Receiver Enable: If set to 1, the receiver block is operational. If set to 0, the
block ignores activity on the physical interface RX port.

29 0 RW
In-band FCS Enable: When this bit is 1, the MAC receiver passes the FCS field
up to the client as described in User-Supplied FCS Passing. When it is 0, the
client is not passed to the FCS. In both cases, the FCS is verif ied on the frame.

30 0 RW
Jumbo Frame Enable: When this bit is set to 1, the MAC receiver accepts
frames over the specified IEEE 802.3-2008 maximum legal length. When this
bit is 0, the MAC only accepts frames up to the specified maximum.

31 0 RW
Reset: When this bit is set to 1, the receiver is reset. The bit then automatically
reverts to 0. This reset also sets all of the receiver configuration registers to
their default values.

Table 2-26: Transmitter Configuration Word (0x408)

Bit Default
Value Type Description

24-0 N/A RO Reserved

25 0 RW

Interframe Gap Adjust Enable: If 1, the transmitter reads the value on the port
tx_ifg_delay at the start of frame transmission and adjusts the interframe gap
following the frame accordingly (see Interframe Gap Adjustment: Full-Duplex
Mode Only). If 0, the transmitter outputs a minimum interframe gap of at least
twelve clock cycles, as specif ied in IEEE 802.3-2008.

26 0 RW Half Duplex: If 1, the transmitter operates in half-duplex mode.

27 0 RW VLAN Enable: When this bit is set to 1, the transmitter recognizes the
transmission of VLAN tagged frames.

28 1 RW Transmit Enable: When this bit is 1, the transmitter is operational. When it is
0, the transmitter is disabled.

29 0 RW

In-band FCS Enable: When this bit is 1, the MAC transmitter expects the FCS
f ield to be passed in by the client as described in User-Supplied FCS Passing.
When this bit is 0, the MAC transmitter appends padding as required, computes
the FCS and appends it to the frame.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 42
PG051 July 25, 2012 Product Specification

Register Space

30 0 RW

Jumbo Frame Enable: When this bit is set to 1, the MAC transmitter sends
frames that are greater than the specified IEEE 802.3-2008 maximum legal
length. When this bit is 0, the MAC only sends frames up to the specified
maximum.

31 0 RW
Reset: When this bit is set to 1, the transmitter is reset. The bit then
automatically reverts to ‘0.’ This reset also sets all of the transmitter
configuration registers to their default values.

Table 2-27: Flow Control Configuration Word (0x40C)

Bit Default
Value Type Description

28-0 N/A RO Reserved

29 1 RW
Flow Control Enable (RX): When this bit is 1, received flow control frames inhibits
the transmitter operation as described in Receiving a Pause Control Frame. When
this bit is 0, received flow control frames are always passed up to the client.

30 1 RW
Flow Control Enable (TX): When this bit is 1, asserting the pause_req signal sends
a flow control frame out from the transmitter as described in Transmitting a Pause
Control Frame. When this bit is 0, asserting the pause_req signal has no effect.

31 N/A RO Reserved

Table 2-28: MAC Speed Configuration Word (0x410)

Bits Default
Value Type Description

29-0 N/A RO Reserved

31-30 10 RW

MAC Speed Configuration
00 - 10 Mb/s
01 - 100 Mb/s
10 - 1 Gb/s
When the TEMAC solution has been generated for only 1 Gb/s speed support,
bits 31-30 are hard-coded to the value 10.
When the TEMAC solution has been generated for only 10 Mb/s and 100 Mb/
s speed support, bits 31-30 only accept the values of 00 to configure for
10 Mb/s operation, or 01 to configure for 100 Mb/s operation

1. The setting of the MAC Speed Configuration register is not affected by a reset.

Table 2-29: RX Max Frame Configuration Word (0x414)

Bits Default
Value Type Description

14-0 0x5EE RW RX Max Frame Length

15 N/A RO Reserved

Table 2-26: Transmitter Configuration Word (0x408) (Cont’d)

Bit Default
Value Type Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 43
PG051 July 25, 2012 Product Specification

Register Space

16 0 RW

RX Max Frame Enable: When low, the MAC assumes use of the standard 1518/
1522 depending upon the setting of VLAN enable. When high, the MAC allows
frames up to RX Max Frame Length irrespective of the value of VLAN enable.
If Jumbo Enable is set then this register has no effect. See Maximum Permitted
Frame Length.

31-17 N/A RO Reserved

Table 2-30: TX Max Frame Configuration Word (0x418)

Bits Default
Value Type Description

14-0 0x5EE RW TX Max Frame Length

15 N/A RO Reserved

16 0 RW

TX Max Frame Enable: When low the MAC assumes use of the standard 1518/
1522 depending upon the setting of VLAN enable. When high the MAC allows
frames up to TX Max Frame Length irrespective of the value of VLAN enable.
If Jumbo Enable is set then this register has no effect. See Maximum Permitted
Frame Length.

31-17 N/A RO Reserved

Table 2-31: ID Register (0x4F8)

Bits Default
Value Type Description

7-0 x(1) RO Patch Level (0-No patch, 1-Rev1)

15-8 N/A RO Reserved

23-16 y(1) RO Minor Rev

31-24 z(1) RO Major Rev
1. The default values depend upon the version of the core being used.

Table 2-32: Ability Register (0x4FC)

Bits Default
Value Type Description

0 1(1) RO 10M Ability: If set, the core is 10M capable

1 1(1) RO 100M Ability: If set, the core is 100M capable

2 1(1) RO 1G Ability: If set, the core is 1G capable

3-7 N/A RO Reserved

8 1(1) RO Statistics Counters available

9 1(1) RO Half duplex capable

10 1(1) RO Frame filter available

11-31 N/A RO Reserved
1. Depends on core abilities selected.

Table 2-29: RX Max Frame Configuration Word (0x414)

Bits Default
Value Type Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 44
PG051 July 25, 2012 Product Specification

Register Space

MDIO
Access to the MDIO interface through the management interface is entirely register
mapped. A list of the MDIO registers is shown in Table 2-33. See MDIO Interface for more
detail.

The contents of each configuration register are shown in Tables 2-34 to 2-37.

Table 2-33: MDIO Configuration Registers

Address (Hex) Description

0x500 MDIO Setup Word (0x500)

0x504 MDIO Control Word (0x504)

0x508 MDIO Write Data (0x508)

0x50C MDIO Read Data (0x50C)

Table 2-34: MDIO Setup Word (0x500)

Bits Default
Value Type Description

5-0 0x0 RW Clock Divide[5:0]: See Accessing PHY Configuration Registers, through MDIO
using the Management Interface, page 122

6 0x0 RW

MDIO Enable: When this bit is 1, the MDIO interface can be used to access
attached PHY devices. When this bit is 0, the MDIO interface is disabled and the
MDIO signals remain inactive. A write to this bit only takes effect if Clock Divide
is set to a non-zero value.

31-7 N/A RO Reserved

Table 2-35: MDIO Control Word (0x504)

Bits Default
Value Type Description

6-0 N/A RO Reserved

7 0x0 RO
MDIO ready: When set the MDIO is enabled and ready for a new transfer. This
is also used to identify when a previous transaction has completed (for
example, Read data is valid)

10-8 N/A RO Reserved

11 0x0 WO Initiate: Writing a 1 to this bit starts an MDIO transfer.

13-12 N/A RO Reserved

15-14 0x0 RW TX_OP: This f ield controls the type of access performed when a one is written
to initiate.

20-16 0x0 RW TX_REGAD: This controls the register address being accessed.

23-21 N/A RO Reserved

28-24 0x0 RW TX_PHYAD: This controls the PHY address being accessed.

31-29 N/A RO Reserved

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 45
PG051 July 25, 2012 Product Specification

Register Space

Interrupt Controller

Bit 0 of all interrupt registers is used to indicate the MDIO Transaction complete interrupt.
Bits [31:1] are Reserved. AVB Interrupts are handled through the dedicated AVB interrupt
registers.

Frame Filter Configuration
Tables 2-40 to 2-45 describe the registers used to access the optional frame filter
configuration when the TEMAC solution is implemented with a frame filter. In addition to
the unicast address, broadcast address and pause addresses, the frame filter can optionally
be generated to respond to up to eight additional configurable frame filter matches. These
are stored in an address table within the frame filter. See Frame Filter in Chapter 3.

If no frame filter is present, these registers do not exist and return 0s for a read from the
stated addresses.

Table 2-39 shows the frame filter configuration registers.

Table 2-36: MDIO Write Data (0x508)

Bits Default Value Type Description

15-0 0x0000 RW Write Data

31-16 N/A RO Reserved

Table 2-37: MDIO Read Data (0x50C)

Bits Default Value Type Description

15-0 0x0000 RO Read Data: Only valid when MDIO ready is sampled high.

16 0x0 RO MDIO Ready: This is a copy of bit 7 of the MDIO Control Word.

31-17 N/A RO Reserved

Table 2-38: Interrupt Controller Configuration

Address
(Hex)

Default
Value Type Description

0x600 0x00 RO Interrupt status Register. Indicates the status of an interrupt.

0x610 0x00 RO Interrupt Pending Register. Indicates the pending status of an interrupt.
Bits in this register are only set when the corresponding bits in IER and ISR
are set.

0x620 0x00 RW Interrupt Enable Register. Indicates the enable state of an interrupt.
Writing a 1 to any bit enables that particular interrupt.

0x630 0x00 WO Interrupt Clear Register. Writing a 1 to any bit of this register clears that
particular interrupt.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 46
PG051 July 25, 2012 Product Specification

Register Space

Table 2-39: Frame Filter Configuration

Address (Hex) Description
0x700 Unicast Address (Word 0) (0x700)

0x704 Unicast Address (Word 1) (0x704)

0x708 Frame Filter Control (0x708)

0x70C Frame Filter Enable (0x70C)

0x710 Frame Filter value bytes 3-0

0x714 Frame filter value bytes 7-4

0x718 Frame filter value bytes 11-8

0x71C Frame f ilter value bytes 15-12

0x720 Frame f ilter value bytes 19-16

0x724 Frame f ilter value bytes 23-20

0x728 Frame f ilter value bytes 27-24

0x72C Frame f ilter value bytes 31-28

0x730 Frame f ilter value bytes 35-32

0x734 Frame f ilter value bytes 39-36

0x738 Frame f ilter value bytes 43-40

0x73C Frame filter value bytes 47-44

0x740 Frame f ilter value bytes 51-48

0x744 Frame f ilter value bytes 55-52

0x748 Frame f ilter value bytes 59-56

0x74C Frame f ilter value bytes 63-60

0x750 Frame filter mask value bytes 3-0

0x754 Frame filter mask value bytes 7-4

0x758 Frame filter mask value bytes 11-8

0x75C Frame f ilter mask value bytes 15-12

0x760 Frame f ilter mask value bytes 19-16

0x764 Frame f ilter mask value bytes 23-20

0x768 Frame f ilter mask value bytes 27-24

0x76C Frame f ilter mask value bytes 31-28

0x770 Frame f ilter mask value bytes 35-32

0x774 Frame f ilter mask value bytes 39-36

0x778 Frame f ilter mask value bytes 43-40

0x77C Frame filter mask value bytes 47-44

0x780 Frame f ilter mask value bytes 51-48

0x784 Frame f ilter mask value bytes 55-52

0x788 Frame f ilter mask value bytes 59-56

0x78C Frame f ilter mask value bytes 63-60

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 47
PG051 July 25, 2012 Product Specification

Register Space

The contents of each configuration register are shown in Tables 2-40 to 2-45.

Table 2-40: Unicast Address (Word 0) (0x700)

Bits Default Value Type Description

31-0 unicast_address[31-0] RW

Frame filter unicast address[31:0]: This address is used by the
MAC to match against the destination address of any incoming
frames. The address is ordered so the first byte transmitted/
received is the lowest positioned byte in the register; for example,
a MAC address of AA-BB-CC-DD-EE-FF would be stored in
Address[47:0] as 0xFFEEDDCCBBAA.

Table 2-41: Unicast Address (Word 1) (0x704)

Bits Default Value Type Description

15-0 unicast_address[47 downto 32] RW Frame filter unicast address[47:32]: See description in
Table 2-40.

31-16 N/A RO Reserved

Table 2-42: Frame Filter Control (0x708)

Bits Default Value Type Description

31 1 RW
Promiscuous Mode: If this bit is set to 1, the frame filter is set to operate
in promiscuous mode. All frames are passed to the receiver client regardless
of the destination address.

30-9 N/A RO Reserved

8 0 RW AVB Select: If the AVB Endpoint is present this is used to indicate that the
filter to be selected is one of the three dedicated f ilters.

7-3 N/A RO Reserved

2-0 0 RW
Filter Index: All frame f ilters are mapped to the same location with the
filter index and AVB Select specifying which physical f ilter is to be accessed.
When an AVB f ilter is being selected only indexes of 0-2 are allowed.

Table 2-43: Frame Filter Enable (0x70C)

Bits Default Value Type Description

31-3 N/A RO Reserved

0 1 RW
Filter Enable: This enable relates to the physical frame filter pointed to by
the Filter index and take the value of AVB Select into account. If clear, the
filter passes all packets.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 48
PG051 July 25, 2012 Product Specification

Register Space

AVB Specific Frame Filters

This section is only applicable if the TEMAC solution is implemented with the optional
Ethernet AVB Endpoint option.

PTP Frame Filter

The PTP frame filter is at AVB index 0 and is initialized to match the following:

Destination Address = 0x0E0000C28001
Type = 0xf788

This translates to the following register settings:

Table 2-44: Frame Filter Value (0x710-0x74C)

Bits Default Value Type Description

31-0 bits 47:0 =1
All other =0 RW

Filter Value
All f ilter value registers have the same format.
The lower 31 bits of f ilter value, at address 0x710, relating to the f ilter at
physical Frame Filter index, that is to be written to the address table. The
value is ordered so that the first byte transmitted/received is the lowest
positioned byte in the register; for example, a MAC address of
AA-BB-CC-DD-EE-FF would be stored in Filter Value[47:0] as
0xFFEEDDCCBBAA.
By default the frame f ilters are configured to match against the broadcast
address.

Table 2-45: Frame Filter Mask Value (0x750-0x790)

Bits Default Value Type Description

31-0 bits 47:0 =1
All other =0 RW

Mask Value.
All mask value registers have the same format.
If a mask bit is set to 1 then the corresponding bit of the Filter Value is
compared by the frame filter. For example, if a basic Destination
address comparison was desired then bits 47:0 should be written to 1
and all other bits to 0.

Table 2-46: PTP Frame Filter Value (0x710-0x74C)

Address Default Value Description

0x710 0x00C28001 First four bytes of the AVB Special address

0x714 0x00000E00 Final two bytes of the AVB Special Address and f irst two bytes of the
source address

0x718 0x0 Final four bytes of the source address

0x71C 0x0000f788 Type field

0x720-0x74C 0x0 Not Used

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 49
PG051 July 25, 2012 Product Specification

Register Space

SR Classes A and B Frame Filters

Table 2-47: PTP Frame Filter Mask Value (0x750-0x790)

Address Default Value Description

0x750 0xffffffff Match against the Destination address

0x754 0x0000ffff Match against the destination address but not the source address.

0x758 0x0 Do not match against source address.

0x75C 0x0000ffff Match against the Type f ield

0x760-0x790 0x0 Not Used

Table 2-48: SR Class A (Index 1) Frame Filter Value (0x710-0x74C)

Address Default Value Description

0x710-0x718 0x0 Not Used

0x71C 0x02600081 Match against VLAN field with PCP f ield set to 3 and ID field set to 2

0x720-0x74C 0x0 Not Used

Table 2-49: SR Class A (Index 1) Frame Filter Mask Value (0x750-0x790)

Address Default Value Description

0x750-758 0x0 Not Used

0x75C 0xffffffff Match against Type f ield and type info f ield

0x760-0x790 0x0 Not Used

Table 2-50: SR Class B (Index 2) Frame Filter Value (0x710-0x74C)

Address Default Value Description

0x710-0x718 0x0 Not Used

0x71C 0x02400081 Match against VLAN field with PCP f ield set to 2 and ID f ield set to 2

0x720-0x74C 0x0 Not Used

Table 2-51: SR CLass B (Index 2) Frame Filter Mask Value (0x750-0x790)

Address Default Value Description

0x750-758 0x0 Not Used

0x75C 0xffffffff Match against Type f ield and type info f ield

0x760-0x790 0x0 Not Used

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 50
PG051 July 25, 2012 Product Specification

Register Space

AVB Endpoint
This section describes the registers used for setting up and operating the optional AVB
Endpoint functionality.

Rx PTP Packet Buffer Address Space

The RX PTP Packet buffers are only available when the AVB functionality is included in the
TEMAC core. The Address space of the RX PTP Packet Buffer is 4K in total. This represents
the size of a single FPGA block RAM pair (4K). Every byte of this block RAM can be read.

The Address space of the RX PTP Packet Buffers is 4K in total. This represents the size of a
single FPGA block RAM pair (4K). Every byte of this block RAM can be read.

This address space is divided equally into 16 separate buffers of 256 bytes, each of which is
capable of storing a unique PTP frame. When received, a PTP frame is written into one of
these buffers; then the buffer write pointer increments and points to the next buffer in
preparation for subsequent PTP frame reception.

Within each buffer, the entire PTP frame is written in (from MAC Destination Address
through to the last byte from the data f ield), starting at the base address of that buffer.
Following PTP frame reception, the RX timestamp captured for that frame is written into the
top 4 bytes of the buffer used. A list of the RX PTP Buffers is shown in Table 2-52.

Table 2-52: RX PTP Buffers

Address (Hex) Description

0x10000-0x100FC RX PTP Buffer 0

0x10100-0x101FC RX PTP Buffer 1

0x10200-0x102FC RX PTP Buffer 2

0x10300-0x103FC RX PTP Buffer 3

0x10400-0x104FC RX PTP Buffer 4

0x10500-0x105FC RX PTP Buffer 5

0x10600-0x106FC RX PTP Buffer 6

0x10700-0x107FC RX PTP Buffer 7

0x10800-0x108FC RX PTP Buffer 8

0x10900-0x109FC RX PTP Buffer 9

0x10A00-0x10AFC RX PTP Buffer 10

0x10B00-0x10BFC RX PTP Buffer 11

0x10C00-0x10CFC RX PTP Buffer 12

0x10D00-0x10DFC RX PTP Buffer 13

0x10E00-0x10EFC RX PTP Buffer 14

0x10F00-0x10FFC RX PTP Buffer 15

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 51
PG051 July 25, 2012 Product Specification

Register Space

Tx PTP Packet Buffer Address Space

The TX PTP Packet buffers are only available when the AVB functionality is included in the
TEMAC core.

The Address space of the TX PTP Packet Buffer is 2K in total, representing the size of a single
FPGA block 18K RAM. Every byte of this block RAM is accessible by the CPU. This address
space is divided equally into 8 separate buffers of 256 bytes, each of which is capable of
storing a unique PTP frame: 7 of these buffer locations are pre-initialized with standard PTP
frame syntax; however, each byte can be modif ied if desired.

Within each single buffer, the initial byte is used as a length f ield, used to indicate to the
core logic the number of bytes to be transmitted for that frame. An entire PTP frame (from
MAC Destination Address through to the last byte from the data field) is then stored,
starting at the eighth address of that particular buffer. Following PTP frame transmission
from one of these buffers, the TX Timestamp captured for that frame is written into the top
4 bytes of the buffer just used. See TX PTP Packet Buffer for more details. A list of the TX PTP
Buffers is shown in Table 2-53.

AVB Configuration

The AVB configuration registers are only present when the AVB is included in the TEMAC
core. These registers are used by the software drivers to control the AVB functionality.

A list of the AVB Configuration registers is shown in Table 2-54.

Table 2-53: TX PTP Buffers

Address (Hex) Description

0x11000-0x110FC TX PTP Buffer 0 - Initialized for a SYNC frame.

0x11100-0x111FC TX PTP Buffer 1 - Initialized for a Follow up frame.

0x11200-0x112FC TX PTP Buffer 2 - Initialized for a Pdelay request frame.

0x11300-0x113FC TX PTP Buffer 3 - Initialized for a Pdelay response frame.

0x11400-0x114FC TX PTP Buffer 4 - Initialized for a Pdelay response follow up frame.

0x11500-0x115FC TX PTP Buffer 5 - Initialized for an Announce frame.

0x11600-0x116FC TX PTP Buffer 6 - Initialized for a Signaling frame.

0x11700-0x117FC TX PTP Buffer 7

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 52
PG051 July 25, 2012 Product Specification

Register Space

The contents of each configuration register are shown in Tables 2-55 to 2-58.

Tx PTP Packet Buffer Control Register

Table 2-55 defines associated control register of the TX PTP Packet Buffers, used by the
software to request the transmission of the PTP frames.

Table 2-54: AVB Configuration Registers

Address (Hex) Description

0x12000 Tx PTP Packet Buffer Control Register

0x12004 Rx PTP Packet Buffer Control Register

0x12008 Reserved

0x1200C Tx Arbiter Send Slope Control Register

0x12010 Tx Arbiter Idle Slope Control Register

0x12014-0x127FC Reserved

Table 2-55: Tx PTP Packet Buffer Control Register (0x12000)

Bits Default
Value Type Description

7-0 0 WO tx_send_frame Bits. The Tx PTP Packet Buffer is split into 8 regions of 256
bytes, each of which can contain a separate PTP frame. There is 1
tx_send_frame bit for each of the 8 regions.
Each bit, when written to 1, causes a request to be made to the TX Arbiter.
When access is granted the frame contained within the respected region is
transmitted.
If read, always returns 0.

15-8 0 RO tx_frame_waiting Indication. The Tx PTP Packet Buffer is split into 8 regions
of 256 bytes, each of which can contain a separate PTP frame. There is 1
tx_frame_waiting bit for each of the 8 regions.
Each bit, when logic 1, indicates that a request has been made for frame
transmission to the Tx Arbiter, but that a grant has not yet occurred. When the
frame has been successfully transmitted, the bit is set to logic 0.
This bit allows the microprocessor to run off a polling implementation as
opposed to the Interrupts.

18-16 0 RO tx_packet. Indicates the number (block RAM bin position) of the most recently
transmitted PTP packet.

31-19 0 RO Reserved

Note: A read or a write to this register clears the interrupt_ptp_tx interrupt (asserted after each
successful PTP packet transmission).

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 53
PG051 July 25, 2012 Product Specification

Register Space

Rx PTP Packet Buffer Control Register

Table 2-56 defines the associated control register of the RX PTP Packet Buffers used by the
software to monitor the position of the most recently received PTP frame.

Tx Arbiter Send Slope Control Register

The SendSlope variable is defined in IEEE802.1Qav-2009 to be the rate of change of credit,
in bits per second, when the value of credit is decreasing (during AV packet transmission).
Together with Tx Arbiter Idle Slope Control Register, RTC Nanoseconds Field Offset Control
and RTC Seconds Field Offset Control, these registers define the maximum limit of the
bandwidth reserved for AV traff ic, as enforced by the TX Arbiter. The default values allow
the maximum bandwidth proportion of 75% for the AV traff ic. See the IEEE 802.3-2008
specification [Ref 9] for further information.

Tx Arbiter Idle Slope Control Register

The idleSlope variable is defined in IEEE802.1Qav-2009 to be the rate of change of credit, in
bits per second, when the value of credit is increasing (whenever there is no AV packet
transmission). Together with Tx Arbiter Send Slope Control Register, RTC Nanoseconds Field
Offset Control, and RTC Seconds Field Offset Control, these registers define the maximum
limit of the bandwidth reserved for AV traff ic: this is enforced by the TX Arbiter. The default
values allow the maximum bandwidth proportion of 75% for the AV traff ic. See the IEEE
802.3-2008 specification [Ref 9] for further information.

Table 2-56: Rx PTP Packet Buffer Control Register (0x12004)

Bits Default Value Type Description

0 0 WO rx_clear. When written with a 1, forces the buffer to empty, in practice
moving the write address to the same value as the read address.
If read, always returns 0.

7-1 0 RO Reserved

11-8 0 RO rx_packet. Indicates the number (block RAM bin position) of the most
recently received PTP packet.

31-12 0 RO Reserved

Note: A read or a write to this register clears the interrupt_ptp_rx interrupt (asserted after each
successful PTP packet reception).

Table 2-57: Tx Arbiter Send Slope Control Register (0x1200C)

Bits Default Value Type Description

31-20 0 RO Reserved

19-0 2048 R/W The value of sendSlope

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 54
PG051 July 25, 2012 Product Specification

Register Space

RTC Configuration
The RTC configuration registers are only present when the AVB is included in the TEMAC
core. These registers are used by the software drivers to control the RTC functionality.

A list of the RTC Configuration registers is shown in Table 2-59.

The contents of each configuration register are shown in Tables 2-60 to 2-68.

RTC Nanoseconds Field Offset Control

Table 2-60 describes the offset control register for the nano-seconds f ield of the RTC used
to force step changes into the counter. When in PTP clock master mode, this can be used to
set the initial value following power-up. When in PTP clock slave mode, the software drivers
use this register to implement the periodic step corrections.

This register and the registers defined in Table 2-61 and in Table 2-62 are linked. These
three offset values are loaded into the RTC counter logic simultaneously following a write to
this nanosecond offset register.

Table 2-58: Tx Arbiter Idle Slope Control Register (0x12010)

Bits Default Value Type Description

31-20 0 RO Reserved

19-0 6144 R/W The value of idleSlope

Table 2-59: RTC Configuration Registers

Address (Hex) Description

0x12800 RTC Nanoseconds Field Offset Control

0x12804 Reserved

0x12808 RTC Seconds Field Offset Control [31:0]

0x1280C RTC Seconds Field Offset Control [47:32]

0x12810 RTC Increment Value Control Register

0x12814 Current RTC Nanoseconds Value

0x12818 Current RTC Seconds Value Bits [31:0]

0x1281C Current RTC Seconds Value Bits [47:32]

0x12820 RTC Interrupt Clear Register

0x12824 RTC Phase Adjustment Register

0x12828-0x13FFC Reserved

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 55
PG051 July 25, 2012 Product Specification

Register Space

RTC Seconds Field Offset Control

Table 2-61 describes the offset control register for the lower 32-bits of seconds f ield of the
RTC, used to force step changes into the counter. When in PTP clock master mode, this can
be used to set the initial value following power-up. When in PTP clock slave mode, the
software drivers use this register to implement the periodic step corrections.

This register and the registers defined in Table 2-60 and in Table 2-62 are linked. These
three offset values are loaded into the RTC counter logic simultaneously following a write to
the nanosecond offset register defined in Table 2-60.

Table 2-62 describes the offset control register for the upper 16-bits of seconds field of the
RTC, used to force step changes into the counter. When in PTP clock master mode, this can
be used to set the initial value following power-up. When in PTP clock slave mode, the
software drivers use this register to implement the periodic step corrections.

This register and the registers defined in Table 2-60 and in Table 2-61 are linked. These
three offset values are loaded into the RTC counter logic simultaneously following a write to
the nanosecond offset register defined in Table 2-60.

Table 2-60: RTC Nano-seconds Field Offset (0x12800)

Bits Default
Value Type Description

29-0 0 R/W 30-bit offset value for the RTC nano seconds. Used by the
microprocessor to initialize the RTC, then afterwards to perform the
regular RTC corrections (when in slave mode).

31-30 0 RO Reserved

Table 2-61: Seconds Field Offset Bits [31:0] (0x12808)

Bits Default
Value Type Description

31-0 0 R/W 32-bit offset value for the RTC seconds field (bits 31-0). Used by the
microprocessor to initialize the RTC, then afterwards to perform the regular
RTC corrections (when in slave mode).

Table 2-62: Seconds Field Offset Bits [47:32] (0x1280C)

Bits Default
Value Type Description

15-0 0 R/W 16-bit offset value for the RTC seconds field (bits 47-32). Used by the
microprocessor to initialize the RTC, then afterwards to perform the regular
RTC corrections (when in slave mode).

31-16 0 RO Reserved

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 56
PG051 July 25, 2012 Product Specification

Register Space

RTC Increment Value Control Register

Table 2-63 describes the RTC Increment Value Control Register, which provides a
configurable increment rate for the RTC counter. This increment register should take the
value of the clock period being used to increment the RTC; however, the resolution of this
increment register is very f ine (in units of 1/1048576 (1/220) fraction of one nanosecond)
and for this reason the RTC increment rate can be adjusted to a very f ine degree of accuracy,
thus providing the following features:

• The RTC can be incremented from any available clock frequency that is greater than the
IEEE802.1AS defined minimum of 25 MHz.

• When acting as a clock slave, the rate adjustment of the RTC can be matched to that of
the network clock master to an exceptional level of accuracy.

Current RTC Value Registers

Table 2-64 describes the nanoseconds f ield value register for the nano-seconds f ield of the
RTV. When read, this returns the latest value of the counter. This register and the registers
defined in Table 2-65 and in Table 2-66 are linked. When this nanoseconds value register is
read, the entire RTC (including the seconds f ield) is sampled.

Table 2-65 describes the lower 32-bits of the seconds value register for the seconds f ield of
the RTC. When read, this returns the latest value of the counter. This register and the
registers defined in Table 2-64 and in Table 2-66 are linked. When the nanoseconds value
register is read (see Table 2-64), the entire RTC is sampled.

Table 2-63: RTC Increment Value Control Register (0x12810)

Bits Default Value Type Description

25-0 0 R/W Per rtc_clk clock period Increment Value for the RTC.

31-26 0 RO Reserved

Table 2-64: Current RTC Nanoseconds Value (0x12814)

Bits Default
Value Type Description

29-
0

0 RO Current Value of the synchronized RTC nanoseconds f ield.
Note: A read from this register samples the entire RTC counter (synchronized)
so that the Epoch and Seconds f ield are held static for a subsequent read.

31-
30

0 RO Reserved

Table 2-65: Current RTC Seconds Field Value Bits [31:0] (0x12818)

Bits Default Value Type Description

31-0 0 RO Sampled Value of the synchronized RTC Seconds f ield (bits 31-0).

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 57
PG051 July 25, 2012 Product Specification

Register Space

Table 2-66 describes the upper 16-bits of the seconds value register for the seconds f ield of
the RTC. When read, this returns the latest value of the counter. This register and the
registers defined in Table 2-64 and in Table 2-65 are linked. When the nanoseconds value
register is read (see Table 2-64), the entire RTC is sampled.

RTC Interrupt Clear Register

Table 2-67 describes the control register defined for the interrupt_ptp_timer signal,
the periodic interrupt signal which is raised by the RTC.

RTC Phase Adjustment Register

Table 2-68 describes the Phase Adjustment Register which has units of nanoseconds. This
value is added to the synchronized value of the RTC nanoseconds f ield, and the RTC timing
signals are then derived from the result. This phase offset is therefore applied to the clk8k
signal. As an example, writing the value of the decimal 62500 (half of an 8 kHz clock period)
to this register would invert the clk8k signal with respect to a value of 0. For this reason,
this register can provide f ine grained phase alignment of these signals to a 1 ns resolution.

Table 2-66: Current RTC Seconds Field Value Bits [47:32] (0x1281C)

Bits Default
Value Type Description

15-0 0 RO Sampled Value of the synchronized RTC Seconds field (bits 47-32).

32-16 0 RO Reserved

Table 2-67: RTC Interrupt Clear Register (0x12820)

Bits Default Value Type Description

0 0 WO Write ANY value to bit 0 of this register to clear the interrupt_ptp_timer
Interrupt signal. This bit always returns 0 on read.

31-1 0 RO Reserved

Table 2-68: RTC Phase Adjustment Register (0x12824)

Bits Default
Value Type Description

29-0 0 R/W ns value relating to the phase offset for all RTC derived timing
signals (clk8k).

31-30 0 RO Reserved

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 58
PG051 July 25, 2012 Product Specification

Register Space

Configuration Vector
If the optional management interface is omitted from the core, all of the relevant
configuration signals are brought out of the core. These signals are bundled into the
rx_configuration_vector and the tx_configuration_vector signals. The bit
mapping of these signals is defined in Table 2-69 and Table 2-70.

You can permanently set the vector bits to logic 0 or 1 or change the configuration vector
signals at any time; however, with the exception of the reset signals, they do not take effect
until the current frame has completed transmission or reception.

Table 2-69: tx_configuration_vector Bit Definitions

Bit(s) Description

0
Transmitter Reset. When this bit is 1, the MAC transmitter is held in reset.
This signal is an input to the reset circuit for the transmitter block.

1 Transmitter Enable. When this bit is set to 1, the transmitter is operational. When set
to 0, the transmitter is disabled.

2 Transmitter VLAN Enable. When this bit is set to 1, the transmitter allows the
transmission of VLAN tagged frames up to 1522 bytes in size.

3

Transmitter In-Band FCS Enable. When this bit is 1, the MAC transmitter expects the
FCS field and any padding to take the frame up to 64 bytes to be passed in by the user
as described in User-Supplied FCS Passing. When it is 0, the MAC transmitter appends
padding as required, compute the FCS and append it to the frame.

4

Transmitter Jumbo Frame Enable. When this bit is 1, the MAC transmitter allows
frames larger than the maximum legal frame length specif ied in IEEE 802.3-2008 to be
sent. When set to 0, the maximum frame size is dependant upon the setting of
Transmitter Max Frame Enable and Transmitter Max Frame Length.

5

Transmitter Flow Control Enable. When this bit is 1, asserting the pause_req signal
causes the MAC core to send a flow control frame out from the transmitter as described
in Transmitting a Pause Control Frame. when this bit is 0, asserting the pause_req signal
has no effect.

6

Transmitter Half-Duplex If 1, the transmitter operates in half-duplex mode. If 0, the
transmitter operates in full-duplex mode.
If the TEMAC solution has been generated without half-duplex support, this input to the
core is unused.

7 Reserved

8

Transmitter Interframe Gap Adjust Enable. If 1, and the MAC is set to operate in
full-duplex mode, then the transmitter reads the value of the tx_ifg_delay port and set
the Interframe Gap accordingly. If 0, the transmitter always inserts at least the legal
minimum interframe gap.

11:9 Reserved

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 59
PG051 July 25, 2012 Product Specification

Register Space

13:12

Transmitter Speed Configuration
00 - 10 Mb/s
01 - 100 Mb/s
10 - 1 Gb/s
When the TEMAC solution is generated for only 1 Gb/s speed support, these inputs are
unused.
When the TEMAC solution is generated for only 10 Mb/s or 100 Mb/s speed support,
only bit 12 is used to differentiated the speed: bit 13 is unused.

CAUTION! Issue the core with a system-wide reset following a speed change.

14

Transmitter Max Frame Enable. When this bit is set to 1 and Transmitter Jumbo Frame
Enable is set to 0, the MAC transmitter allows frames larger than the maximum legal
frame length specif ied in IEEE 802.3-2008 to be sent, provided they are smaller than the
size specif ied in Transmitter Max Frame Length. This is described in Maximum Permitted
Frame Length. When set to 0, the MAC transmitter only allows frames up to the legal
maximum to be sent.

15 Reserved

31:16
Transmitter Max Frame Size[15:0]. This specifies the maximum frame size supported
when Transmitter Max Frame Enable is set to 1 and Transmitter Jumbo Frame Enable is
set to 0. This should always be set to 1518 or more.

79:32

Transmitter Pause Frame Source Address[47:0]. This MAC Address is used by the
MAC core to match against the destination address of any incoming flow control
frames, and as the source address for any outbound flow control frames.
The bits in this vector f ield are ordered so that the least signif icant bit of the MAC
Address (IEEE802.3 definition) is stored in the least significant bit of this vector f ield.
Consequently, bit 0 of this f ield differentiates between an individual or group
(multicast) address.
The transmission order within a MAC frame is to send the least signif icant bit of the
MAC Address f irst. Consequently, bits 7-0 of this vector field represent the f irst byte to
appear in frame transmission

Table 2-69: tx_configuration_vector Bit Definitions (Cont’d)

Bit(s) Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 60
PG051 July 25, 2012 Product Specification

Register Space

.

Table 2-70: rx_configuration_vector Bit Definitions

Bit(s) Description

0
Receiver Reset. When this bit is 1, the MAC receiver is held in reset.
This signal is an input to the reset circuit for the receiver block.

1 Receiver Enable. When this bit is set to 1, the receiver is operational. When set to 0,
the receiver is disabled.

2 Receiver VLAN Enable. When this bit is set to 1, the receiver allows the reception of
VLAN tagged frames up to 1522 bytes in size.

3
Receiver In-Band FCS Enable. When this bit is 1, the MAC receiver pass the FCS f ield
to the user as described in User-Supplied FCS Passing. When it is 0, the MAC receiver
does not pass the FCS f ield. In both cases, the FCS f ield is verif ied on the frame.

4

Receiver Jumbo Frame Enable. When this bit is 1, the MAC receiver passes frames
larger than the maximum legal frame length specified in IEEE 802.3-2008. When set to
0, the maximum frame size is dependant upon the setting of Receiver Max Frame Enable
and Receiver Max Frame Length.

5
Receiver Flow Control Enable. When this bit is 1, received flow control frames inhibit
the transmitter operation as described in Receiving a Pause Control Frame. When it is
0, received flow frames are passed up to the user.

6

Receiver Half-Duplex If 1, the receiver operates in half-duplex mode. If 0, the receiver
operates in full-duplex mode.
If the TEMAC has been generated without half-duplex support then this input to the
core is unused.

7 Reserved

8

Receiver Length/Type Error Check Disable When this bit is 1, the core does not
perform the length/type f ield error checks as described in Length/Type Field Error
Checks. When it is set to 0, the length/type field checks are performed; this is normal
operation.

9 Receiver Control Frame Length Check Disable When this bit is set so 1, the core does
not mark control frames as ‘bad’ if they are greater than the minimum frame length.

10 Reserved

11
Promiscuous Mode: When this bit is set to 1, the frame filter is set to operate in
promiscuous mode. All frames are passed to the receiver client regardless of the
destination address.

13:12

Receiver Speed Configuration
00 - 10 Mb/s
01 - 100 Mb/s
10 - 1 Gb/s
When the TEMAC solution is generated for only 1 Gb/s speed support, these inputs are
unused.
When the TEMAC solution is generated for only 10 Mb/s or 100 Mb/s speed support,
only bit 12 is used to differentiated the speed: bit 13 is unused.

CAUTION! Issue the core with a system-wide reset following a speed change.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 61
PG051 July 25, 2012 Product Specification

System Requirements

System Requirements

Windows
• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit

Linux
• Red Hat Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)

• SUSE Linux Enterprise (SLE) desktop and server v10.1 32-bit/64-bit

Software
• ISE software v14.2

• Vivado software 2012.2

14

Receiver Max Frame Enable. When this bit is set to 1 and Receiver Jumbo Frame Enable
is set to 0, the MAC receiver passes frames larger than the maximum legal frame length
specif ied in IEEE 802.3-2008, provided they are smaller than the size specified in
Receiver Max Frame Length. This is described in Maximum Permitted Frame Length.
When set to 0, the MAC receiver only passes frames up to the legal maximum.

15 Reserved

31:16
Receiver Max Frame Size[15:0]. This specifies the maximum frame size supported when
Receiver Max Frame Enable is set to 1 and Receiver Jumbo Frame Enable is set to 0. This
should always be set to 1518 or more.

79:32

Receiver Pause Frame Source Address[47:0]. This MAC Address is used by the MAC
core to match against the destination address of any incoming flow control frames, and
as the source address for any outbound flow control frames.
The bits in this vector f ield are ordered so that the least signif icant bit of the MAC
Address (IEEE802.3 definition) is stored in the least significant bit of this vector f ield.
Consequently, bit 0 of this f ield differentiates between an individual or group
(multicast) address.
The reception order within a MAC frame is to receive the least significant bit of the MAC
Address first. Consequently, bits 7-0 of this vector f ield represent the f irst byte to
appear in frame reception.

Table 2-70: rx_configuration_vector Bit Definitions (Cont’d)

Bit(s) Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 62
PG051 July 25, 2012

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

General Design Guidelines
This section describes the steps required to turn the TEMAC solution into a
fully-functioning design integrated with user application logic. It is important to recognize
that not all designs require all the design steps defined in this chapter. The following
sections discuss the design steps required for various implementations; follow the logic
design guidelines carefully.

Design Steps
Generate the core using the Vivado™ Design Suite. See Chapter 4, Customizing and
Generating the Core. Or, generate the core using the CORE Generator™ in the ISE® Design
Suite. See Chapter 7, Customizing and Generating the Core.

Using the Example Design as a Starting Point

The core is delivered through the Vivado or ISE Design Suite with an HDL example design
built around the core, allowing the functionality of the core to be demonstrated using either
a simulation package or in hardware, if placed on a suitable board. Figure 3-1 is a block
diagram of the example design. For details about the Vivado example design, see
Chapter 6, Example Design or for the ISE example design, see Chapter 9, Example Design.

The example design illustrates how to:

• Instantiate the core from HDL.

• Source and use the user-side interface ports of the core from application logic.

• Connect the physical-side interface of the core (GMII/MII or RGMII) to device IOBs
creating an external interface. (See the Physical Interface chapters in this document)

• Derive the clock logic, required for the core (See the Physical Interface chapters in this
document).

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 63
PG051 July 25, 2012

General Design Guidelines

X-Ref Target - Figure 3-1

Using the example design as a starting point, you can do the following:

• Edit the HDL top level of the example design f ile to:

° Change the clocking scheme.

° Add/remove IOBs as required.

° Replace the basic pattern generator logic with your specif ic application logic.

° Adapt the 10 Mb/s, 100 Mb/s, 1 Gb/s Ethernet FIFO to suit your specif ic application
(see 10 Mb/s /100 Mb/s/1 Gb/s Ethernet FIFO).

° Remove the AXI4-Lite Control State machine and directly drive the AXI4-Lite bus
from a processor.

• Synthesize the entire design.

• Implement the entire design.

° Once implementation is complete you can also create a bitstream that can be
downloaded to a Xilinx device.

• Simulate the entire design using the demonstration test bench provided.

• Download the bitstream to a target device.

Figure 3-1: Tri-Mode Ethernet MAC Core Example Design

<component_name>_block

<component_name>_example_design

Pattern
Generator
& Checker

Physical
Interface

<component_name>_fifo_block

Statistics Vectors
Interface

Clock
Generation

MII/GMII/RGMII
Interface
Logic and

Clocks

 TEMAC Core
&

AVB Endpoint

Tx FIFO

Rx FIFO

10 Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

Interface

MDIO

Statistics
Vector Decode

AXI4-Lite
to IPIF

AXI4-Lite
Control
State

Machine

AVB
Pattern

Generator
& Checker

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 64
PG051 July 25, 2012

General Design Guidelines

Implementing the Tri-Mode Ethernet MAC in Your Application
The example design can be studied as an example of how to do the following:

• Instantiate the core from HDL.

• Source and use the user-side interface ports of the core from application logic.

• Connect the physical-side interface of the core (GMII/MII or RGMII) to device IOBs to
create an external interface.

• Derive the required clock logic.

After working with the example design and this User Guide, you can write your own HDL
application, using single or multiple instances of the core.

Care must be taken to constrain the design correctly, and the constraints provided with the
core should be used as the basis for the your own. See the constraint chapters in either the
Vivado Design Suite or ISE Design Suite sections as appropriate.

You can simulate the entire design and download the bitstream to the target device.

Keep it Registered
To simplify timing and increase system performance in an FPGA design, keep all inputs and
outputs registered between your application and the core. This means that all inputs and
outputs from your application should come from, or connect to, a flip-flop. While
registering signals might not be possible for all paths, it simplif ies timing analysis and
makes it easier for the Xilinx tools to place-and-route the design.

Recognize Timing Critical Signals
The constraints provided with the example design identif ies the critical signals and timing
constraints that should be applied. For ISE Design Suite constraints see Chapter 8,
Constraining the Core, for Vivado Design Suite constraints see Chapter 5, Constraining the
Core.

Make Only Allowed Modifications
You should not modify the core. Any modifications can have adverse effects on system
timing and protocol compliance. Supported user configurations of the core can only be
made by selecting the options in the customization GUI when the core is generated. For ISE
DEsign Suite see Chapter 7, Customizing and Generating the Core, for Vivado Design Suite
see Chapter 4, Customizing and Generating the Core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 65
PG051 July 25, 2012

Clocking

Clocking
The TEMAC solution has a complicated clocking structure which varies depending upon the
specific configuration and the selected FPGA family. The majority of these changes are
specific to the physical interface and this clocking is described in the following sections:

• Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP Core

• Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

• Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

The remainder of the clocking for the TEMAC solution is shown in Figure 3-2. These clocks
are all dependant on the core configuration:

• s_axi_aclk and mdc are only present if the Management type is set to AXI4-Lite

• refclk is only present if IODELAYs are used in the physical interface (GMII or RGMII)

• stats_clk is only required if the statistics counter is present

• rtc_clk is only required if the optional AVB endpoint logic is included

When the core is generated with the internal interface it is assumed that it is connected to
the Ethernet 1000BASE-X PCS/PMA or SGMII core. See the LogiCORE IP Ethernet
1000BASE-X PCS/PMA or SGMII Product Guide [Ref 2].

X-Ref Target - Figure 3-2

Figure 3-2: Clocking Architecture (Not Including the Physical Interface Clocking)

<component_name>_block

 TEMAC Core

refclk

s_axi_aclk mdcbus2ip_clk

axi_ipif

iodelay
logic

statistics
logic

gtx_clk

optional
AVB
logic

configuration
logic

stats_clk

rtc_clk

gtx_clk90

PHY clocks

Physical
Interface
clocking

logic

vector
decode

tx_mac_aclk

rx_mac_aclk

rx_axi_clk

tx_axi_clk

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 66
PG051 July 25, 2012

Resets

Resets
Due to the number of clock domains in this IP core the reset structure is not simple and
involves a number of separate reset regions, with the number of regions being dependant
upon the particular parameterization of the core.

Figure 3-3 shows the most common reset structure for the core. Since the rx_reset and
tx_reset outputs have dependancies on the glbl_rstn and the tx/rx_axi_rstn
inputs they cannot be used in their creation.

X-Ref Target - Figure 3-3

Figure 3-3: Reset Architecture

<component_name>_block

 TEMAC Core

glbl_rstn

rx_axi_rstn

s_axi_resetn

tx_axi_rstn

rx_reset

tx_reset

Reset
sync

Reset
sync

Reset
sync

Reset
sync

Reset
sync

bus2ip_reset

int_rx_rst

int_tx_rst

axi_ipif

block
level logic

gtx_clk region

rx_mac_aclk region

tx_mac_aclk region

s_axi_aclk region

iodelay
logic

statistics
logic

rx
logic

configuration
logic

tx
logic

refclk region

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 67
PG051 July 25, 2012

Protocol Description

Protocol Description

Ethernet Protocol Overview
This section gives an overview of where the Ethernet MAC fits into an Ethernet system and
provides a description of some basic Ethernet terminology.

Ethernet Sublayer Architecture

Figure 3-4 illustrates the relationship between the Open Systems Interconnection (OSI)
reference model and the Ethernet MAC, as defined in [Ref 9]. The grayed-in layers show the
functionality that the Ethernet MAC handles. Figure 3-4 also shows where the supported
physical interfaces fit into the architecture.

X-Ref Target - Figure 3-4

Figure 3-4: IEEE Std 802.3-2008 Ethernet Model

PCS
PMA

OSI
Reference

Model
Layers

Application

Presentation

Session

Transport

Network

Data Link

PHY - Physical

LLC-Logical Link Control

MAC Control (Optional)

MAC - Media Access Control

Reconciliation

PMD

Medium

LAN
CSMA/CD

Layers

Higher Layers

PMD - Physical Medium Dependent

PMA - Physical Medium Attachment

PCS - Physical Coding Sublayer

PCS
PMA
PMD

Medium

1000BASE-X
(e.g., Optical Fiber Medium)

1000BASE-T
100BASE-T
10BASE-T

(e.g., Copper Medium)

GMII/MII
RGMII
SGMII

RGMII - Reduced Gigabit Media Independent Interface

GMII - Gigabit Media Independent Interface

MII - Media Independent Interface

SGMII - Serial Gigabit Media Independent Interface

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 68
PG051 July 25, 2012

Protocol Description

MAC and MAC CONTROL Sublayer

The Ethernet MAC is defined in IEEE Std 802.3-2008, clauses 2, 3, and 4. A MAC is
responsible for the Ethernet framing protocols described in Ethernet Data Format and error
detection of these frames. The MAC is independent of and can connect to any type of
physical layer device.

The MAC Control sublayer is defined in IEEE Std 802.3-2008, clause 31. This provides
real-time flow control manipulation of the MAC sublayer.

Both the MAC CONTROL and MAC sublayers are provided by the Ethernet MAC in all modes
of operation.

Physical Sublayers PCS, PMA, and PMD

The combination of the Physical Coding Sublayer (PCS), the Physical Medium Attachment
(PMA), and the Physical Medium Dependent (PMD) sublayer constitute the physical layers
for the protocol. Two main physical standards are specified:

• BASE-T PHYs provide a link between the MAC and copper mediums. This functionality
is not offered within the TEMAC. However, external BASE-T PHY devices are readily
available on the market. These can connect to the Ethernet MAC, using GMII/MII,
RGMII, or, by additionally using the Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE,
SGMII interfaces.

• BASE-X PHYs provide a link between the MAC and (usually) f iber optic mediums. The
TEMAC is capable of supporting the 1 Gb/s BASE-X standard; 1000BASE-X PCS and
PMA sublayers can be offered by connecting the TEMAC to the Ethernet 1000BASE-X
PCS/PMA or SGMII LogiCORE.

Ethernet Data Format

Ethernet data is encapsulated in frames, as shown in Figure 3-5, for standard Ethernet
frames. The f ields in the frame are transmitted from left to right. The bytes within the fields
are transmitted from left to right (from least significant bit to most signif icant bit unless
specified otherwise). The Ethernet MAC can handle jumbo Ethernet frames where the data
f ield can be much larger than 1500 bytes.

The Ethernet MAC can also accept Virtual LAN (VLAN) frames. The VLAN frame format is
shown in Figure 3-6. If the frame is a VLAN type frame, the Ethernet MAC accepts four
additional bytes.

X-Ref Target - Figure 3-5

Figure 3-5: Standard Ethernet Frame Format

Preamble Start of Frame
Delimiter (SFD)

Destination
Address

Source
Address

Length/
Type

Data Pad

64 - 1518 Bytes

7 1 6 6 2 0 - 1500 0 - 46 4
Number
of Bytes

FCS

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 69
PG051 July 25, 2012

Protocol Description

.

Ethernet PAUSE/flow control frames can be transmitted and received by the Ethernet MAC.
Figure 3-27, page 89 shows how a PAUSE/flow control frame differs from the standard
Ethernet frame format.

The following subsections describe the individual f ields of an Ethernet frame and some
basic functionality of the Ethernet MAC.

Preamble

For transmission, this f ield is automatically inserted by the Ethernet MAC. The preamble
f ield was historically used for synchronization and contains seven bytes with the pattern
0x55, transmitted from left to right. For reception, this f ield is always stripped from the
incoming frame, before the data is passed to the user. The Ethernet MAC can receive
Ethernet frames, even if the preamble does not exist, as long as a valid start of frame
delimiter is available.

Start of Frame Delimiter

The start of frame delimiter f ield marks the start of the frame and must contain the pattern
0xD5. For transmission on the physical interface, this f ield is automatically inserted by the
Ethernet MAC. For reception, this f ield is always stripped from the incoming frame before
the data is passed to the user.

MAC Address Fields

MAC Address

The least significant bit of the f irst octet of a MAC address determines if the address is an
individual/unicast (0) or group/multicast (1) address. Multicast addresses are used to group
logically related stations. The broadcast address (destination address field is all 1s) is a
multicast address that addresses all stations on the Local Area Network (LAN). The Ethernet
MAC supports transmission and reception of unicast, multicast, and broadcast packets.

The address is transmitted in an Ethernet frame least significant bit f irst: so the bit
representing an individual or group address is the first bit to appear in an address field of
an Ethernet frame.

X-Ref Target - Figure 3-6

Figure 3-6: Ethernet VLAN Frame Format

Preamble Start of Frame
Delimiter (SFD)

Destination
Address

Source
Address

0x
8100

Data Pad

64 - 1522 bytes

7 1 6 6 2 0 - 1500 0 - 46 4
Number
of Bytes

FCS

2 2

Len/
Type

VLAN
Tag

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 70
PG051 July 25, 2012

Protocol Description

Destination Address

This MAC Address f ield is the f irst f ield of the Ethernet frame that is always provided in the
packet data for transmissions and is always retained in the receive packet data. It provides
the MAC address of the intended recipient on the network.

Source Address

This MAC Address field is the second field of the Ethernet frame that is always provided in
the packet data for transmissions and is always retained in the receive packet data. It
provides the MAC address of the frame’s initiator on the network.

For transmission, the source address of the Ethernet frame should always be provided by
the user because it is unmodified by the TEMAC.

Length/Type

The value of this f ield determines if it is interpreted as a length or a type f ield, as defined
by IEEE Std 802.3-2008. A value of 1536 decimal or greater is interpreted by the Ethernet
MAC as a type f ield.

When used as a length field, the value in this f ield represents the number of bytes in the
following data field. This value does not include any bytes that can be inserted in the pad
f ield following the data f ield.

A length/type f ield value of 0x8100 indicates that the frame is a VLAN frame, and a value
of 0x8808 indicates a PAUSE MAC control frame.

For transmission, the Ethernet MAC does not perform any processing of the length/type
f ield.

For reception, if this f ield is a length field, the Ethernet MAC receive engine interprets this
value and removes any padding in the pad f ield (if necessary). If the f ield is a length field
and length/type checking is enabled, the Ethernet MAC compares the length against the
actual data f ield length and flags an error if a mismatch occurs. If the f ield is a type f ield, the
Ethernet MAC ignores the value and passes it along with the packet data with no further
processing. The length/type f ield is always retained in the receive packet data.

Data

The data f ield can vary from 0 to 1,500 bytes in length for a normal frame. The Ethernet
MAC can handle jumbo frames of any length.

This f ield is always provided in the packet data for transmissions and is always retained in
the receive packet data.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 71
PG051 July 25, 2012

Protocol Description

Pad

The pad field can vary from 0 to 46 bytes in length. This f ield is used to ensure that the
frame length is at least 64 bytes in length (the preamble and SFD fields are not considered
part of the frame for this calculation), which is required for successful CSMA/CD operation.
The values in this f ield are used in the frame check sequence calculation but are not
included in the length f ield value, if it is used. The length of this f ield and the data field
combined must be at least 46 bytes. If the data field contains 0 bytes, the pad field is
46 bytes. If the data field is 46 bytes or more, the pad f ield has 0 bytes.

For transmission, this f ield can be inserted automatically by the Ethernet MAC or can be
supplied by the user. If the pad f ield is inserted by the Ethernet MAC, the FCS field is
calculated and inserted by the Ethernet MAC. If the pad f ield is supplied by the user, the FCS
can be either inserted by the Ethernet MAC or provided by the user, as indicated by a
configuration register bit.

For reception, if the length/type field has a length interpretation, any pad f ield in the
incoming frame is not be passed to the user, unless the Ethernet MAC is configured to pass
the FCS f ield on to the user.

FCS

The value of the FCS field is calculated over the destination address, source address, length/
type, data, and pad f ields using a 32-bit Cyclic Redundancy Check (CRC), as defined in IEEE
Std 802.3-2008 para. 3.2.8:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0

The CRC bits are placed in the FCS field with the x31 term in the left-most bit of the f irst
byte, and the x0 term is the right-most bit of the last byte (that is, the bits of the CRC are
transmitted in the order x31, x30,..., x1, x0).

For transmission, this f ield can be either inserted automatically by the Ethernet MAC or
supplied by the user, as indicated by a configuration register bit.

For reception, the incoming FCS value is verif ied on every frame. If an incorrect FCS value is
received, the Ethernet MAC indicates to the user that it has received a bad frame. The FCS
f ield can either be passed on to the user or be dropped by the Ethernet MAC, as indicated
by a configuration register bit.

Frame Transmission and Interframe Gap

Frames are transmitted over the Ethernet medium with an interframe gap, as specified by
the IEEE Std 802.3-2008, to be 96 bit times (9.6 µs for 10 Mb/s, 0.96 µs for 100 Mb/s, and
96 ns for 1 Gb/s). This value is a minimum and can be increased with a resulting decrease in
throughput. The process for frame transmission is different for half-duplex and full-duplex
systems.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 72
PG051 July 25, 2012

Protocol Description

Half-Duplex Frame Transmission

In a half-duplex system, the CSMA/CD media access method defines how two or more
stations share a common medium.

1. Even when it has nothing to transmit, the Ethernet MAC monitors the Ethernet medium
for traff ic by watching the carrier sense signal (CRS) from the external PHY. Whenever
the medium is busy (CRS = 1), the Ethernet MAC defers to the passing frame by
delaying any pending transmission of its own.

2. After the last bit of the passing frame (when the carrier sense signal changes from TRUE
to FALSE), the Ethernet MAC starts the timing of the interframe gap.

3. The Ethernet MAC resets the interframe gap timer if the carrier sense becomes TRUE
during the period defined by “interframe gap part 1 (IFG1).” IEEE Std 802.3-2008 states
that this should be the first 2/3 of the interframe gap timing interval (64 bit times) but
can be shorter and as small as zero. The purpose of this option is to support a possible
brief failure of the carrier sense signal during a collision condition and is described in
paragraph 4.2.3.2.1 of the IEEE standard.

4. The Ethernet MAC does not reset the interframe gap timer if carrier sense becomes
TRUE during the period defined by “interframe gap part 2 (IFG2)” to ensure fair access
to the bus. IEEE Std 802.3-2008 states that this should be the last 1/3 of the interframe
gap timing interval.

If, after initiating a transmission, the message collides with the message of another station
(COL = 1), then each transmitting station intentionally continues to transmit (jam) for an
additional predefined period (32 bit times for 10/100 Mb/s) to ensure propagation of the
collision throughout the system. The station remains silent for a random amount of time
(back off) before attempting to transmit again.

A station can experience a collision during the beginning of its transmission (the collision
window) before its transmission has had time to propagate to all stations on the bus. After
the collision window has passed, a transmitting station has acquired the bus. Subsequent
collisions (late collisions) are avoided because all other (properly functioning) stations are
assumed to have detected the transmission and are deferring to it.

Full-Duplex Frame Transmission

In a full-duplex system, there is a point-to-point dedicated connection between two
Ethernet devices, capable of simultaneous transmit and receive with no possibility of
collisions. The Ethernet MAC does not use the carrier sense signal from the external PHY
because the medium is not shared, and the Ethernet MAC only needs to monitor its own
transmissions. After the last bit of an Ethernet MAC frame transmission, the Ethernet MAC
starts the interframe gap timer and defers transmissions until the IFG count completes. The
minimum value supported for the IFG depends on the TEMAC solution options and the
current mode of operation. If the TEMAC solution has been built with half-duplex support
then the IFG delay is 96 bit times, or when IFG Adjustment is enabled, the greater of 64 bit

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 73
PG051 July 25, 2012

AXI4-Stream User Interface

times, and the value presented on tx_ifg_delay. If the TEMAC solution has been built
with only full-duplex support then the IFG delay is 96 bit times, or when IFG Adjustment is
enabled, the greater of 32 bit times, and the value presented on tx_ifg_delay.

AXI4-Stream User Interface
This section provides a detailed description of the AXI4-Stream user-side interface. This
interface must be used by the user-side logic to initiate frame transmission and accept
frame reception to and from the core. The definitions and abbreviations used in this
chapter are described in Table 3-1.

.

Receiving Inbound Frames
Received Ethernet frames are presented to the user logic on the receiver subset of the
AXI4-Stream interface. For port definition, see Receiver Interface. All receiver signals are
synchronous to the rx_mac_aclk clock.

Normal Frame Reception

Figure 3-7 shows the timing of a normal inbound frame transfer at 1 Gb/s. Figure 3-8 shows
the timing at 10/100 Mb/s when the core is configured for MII/GMII or RGMII, For the
Internal option the timing for 100 Mb/s is shown in Figure 3-9, for 10 Mb/s the
rx_axis_mac_tvalid is only enabled once every 100 cycles. The user must be prepared to
accept data at any time; there is no buffering within the MAC to allow for latency in the
receive logic. When frame reception begins, data is transferred on consecutive validated
cycles to the receive logic until the frame is complete. The MAC asserts the
rx_axis_mac_tlast signal to indicate that the frame has completed with
rx_axis_mac_tuser being used to indicate any errors.

Table 3-1: Abbreviations Used in Timing Diagrams

Abbreviation Definition

DA Destination address; 6 bytes

SA Source address; 6 bytes

L/T Length/type f ield; 2 bytes

FCS Frame check sequence; 4 bytes

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 74
PG051 July 25, 2012

AXI4-Stream User Interface

Frame parameters (destination address, source address, length/type and optionally FCS) are
supplied on the data bus according to the timing diagram. The abbreviations are described
in Table 3-1.

If the length/type field in the frame has the length interpretation, and this indicates that the
inbound frame has been padded to meet the Ethernet minimum frame size specif ication,
then this padding is not passed to the user in the data payload. The exception to this is in
the case where FCS passing is enabled. See User-Supplied FCS Passing.

When user-supplied FCS passing is disabled, rx_axis_mac_tvalid= 0 between frames
for the duration of the padding f ield (if present), the FCS field, carrier extension (if present),
the interframe gap following the frame, and the preamble field of the next frame. When
user-supplied FCS passing is enabled, rx_axis_mac_tvalid = 0 between frames for the
duration of carrier extension (if present), the interframe gap, and the preamble field of the
following frame.

rx_axis_mac_tlast and rx_axis_mac_tuser Timing

Although Figure 3-7 illustrates the rx_axis_mac_tlast signal asserted immediately
after a cycle containing valid data on rx_axis_mac_tdata, this is not usually the case.

X-Ref Target - Figure 3-7

Figure 3-7: Normal Frame Reception at 1 Gb/s

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

DA SA L/T DATA

X-Ref Target - Figure 3-8

Figure 3-8: Normal Frame Reception at 10/100 Mb/s

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_ltast

tx_axis_mac_tuser

DA

X-Ref Target - Figure 3-9

Figure 3-9: Normal Frame reception at 100 Mb/s for Internal interface

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_ltast

rx_axis_mac_tuser

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 75
PG051 July 25, 2012

AXI4-Stream User Interface

The rx_axis_mac_tlast and rx_axis_mac_tuser signals are asserted, along with
the f inal byte of the transfer, only after all frame checks are completed. This is after the FCS
f ield has been received (and after reception of carrier extension, if present). This is shown in
Figure 3-10.

Therefore, rx_axis_mac_tlast and possibly rx_axis_mac_tuser are asserted
following frame reception at the beginning of the interframe gap.

Frame Reception with Errors

Figure 3-11 illustrates an unsuccessful frame reception (for example, a fragment frame or a
frame with an incorrect FCS). In this case, the rx_axis_mac_tuser signal is asserted to
the user at the end of the frame. It is then the responsibility of the user to drop the data
already transferred for this frame.

The following conditions cause the assertion of rx_axis_mac_tuser:

• FCS errors occur.

• Packets are shorter than 64 bytes (undersize or fragment frames).

• Jumbo frames are received when jumbo frames are not enabled.

• VLAN frames of length 1519-1522 are received when VLAN frames are not enabled.

• A frame above the programmed Max Frame Size is received when Max frame length
checking is enabled.

X-Ref Target - Figure 3-10

Figure 3-10: Frame Reception TLast Timing

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

X-Ref Target - Figure 3-11

Figure 3-11: Frame Reception with Error

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

DA SA L/T DATA

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 76
PG051 July 25, 2012

AXI4-Stream User Interface

• A value of 0x0000 to 0x002D is in the type/length field. In this situation, the frame
should be padded to minimum length. If it is not padded to exactly minimum frame
length, the frame is marked as bad (when length/type checking is enabled).

• A value of 0x002E to 0x0600 is in the type/length field, but the real length of the
received frame does not match this value (when length/type checking is enabled).

• Any control frame that is received is not exactly the minimum frame length (unless
control frame length checks are disabled: see Receiving a Pause Control Frame).

• An error is indicated on the phy interface at any point during frame reception.

• An error code is received in the 1 Gigabit frame extension f ield.

• A valid pause frame, addressed to the MAC, is received when flow control is enabled.
See Overview of Flow Control.

• A frame does not match against any of the enabled frame filters, if present.

User-Supplied FCS Passing

If the MAC core is configured to pass the FCS f ield to the user. It is handled as displayed in
Figure 3-12.

In this case, any padding inserted into the frame to meet Ethernet minimum frame length
specifications is left intact and passed to the user.

Even though the FCS is passed up to the user, it is also verif ied by the MAC core, and
rx_axis_mac_tuser is asserted if the FCS check fails.

VLAN Tagged Frames

The reception of a VLAN tagged frame can be seen in Figure 3-13. This frame is identif ied
as being a VLAN frame by the inclusion of the VLAN type tag (81-00), located in the first
two bytes following the Source Address. This is followed by the Tag Control Information
bytes, V1 and V2. The length/type f ield after the tag control information is not checked for
errors. More information on the interpretation of these bytes can be found in the IEEE
802.3-2008 standard.

X-Ref Target - Figure 3-12

Figure 3-12: Frame Reception with In-Band FCS Field

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

DA SA L/T DATA FCS

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 77
PG051 July 25, 2012

AXI4-Stream User Interface

Maximum Permitted Frame Length

The maximum legal length of a frame specified in IEEE 802.3-2008 is 1518 bytes for
non-VLAN tagged frames. VLAN tagged frames can be extended to 1522 bytes. When
jumbo frame handling is disabled and the core receives a frame which exceeds the
maximum legal length, rx_axis_mac_tuser is asserted. When jumbo frame handling is
enabled, frames which are longer than the legal maximum are received in the same way as
shorter frames.

It is also possible to specify a different maximum frame size. If this is enabled and the frame
exceeds the configured value then the frame is rejected, that is, rx_axis_mac_tuser is
asserted at the end of the frame. In this case VLAN frames are not treated separately. If
jumbo frame handling is enabled, that takes precedence and the configured value is
ignored.

Length/Type Field Error Checks

Enabled

Default operation is with the length/type error checking enabled. In this mode, the
following checks are made on all frames received. If either of these checks fail, the frame is
marked as bad.

• A value in the length/type f ield that is greater than or equal to decimal 46 but less than
decimal 1536 (a Length interpretation) is checked against the actual data length
received.

• A value in the length/type f ield that is less than decimal 46 is checked to see that the
data field is padded to exactly 46 bytes (so that the resultant frame is minimum frame
size: 64 bytes total in length).

Furthermore, if padding is indicated (the length/type field is less than decimal 46) and
User-Supplied FCS Passing is disabled, then the length value in the length/type field is used
to deassert rx_axis_mac_tvalid after the indicated number of data bytes so that the
padding bytes are removed from the frame.

X-Ref Target - Figure 3-13

Figure 3-13: Reception of a VLAN Tagged Frame

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

81 00 V1 V2

DA SA VLAN L/T DATA

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 78
PG051 July 25, 2012

AXI4-Stream User Interface

Disabled

When the length/type error checking is disabled and the length/type f ield has a length
interpretation, the MAC does not check the length value against the actual data length
received. A frame containing only this error is marked as good. However, if the length/type
f ield is less than decimal 46, the MAC marks a frame as bad if it is not the minimum frame
size of 64 bytes.

Furthermore, if padding is indicated and User-Supplied FCS Passing is disabled, then a
length value in the length/type f ield is not used to deassert rx_axis_mac_tvalid.
Instead rx_axis_mac_tvalid is deasserted before the start of the FCS f ield; in this way
any padding is not removed from the frame.

Frame Filter

If the optional frame filter is included in the core, the MAC is able to reject frames that do
not match against a recognized pattern, that is, a specif ied destination address. If a frame
is rejected within the destination address, the rx_axis_mac_tvalid signal is not
asserted for the duration of the frame. The statistics vectors are still output with a valid
pulse at the end of the rejected frame. If a frame is not rejected during the destination
address then rx_axis_mac_tvalid is asserted as normal through the frame though the frame
can still be rejected at a later point through the assertion of rx_axis_mac_tuser at the end of
the frame. This is described in more detail in Frame Filter.

Receiver Statistics Vector

The statistics for the frame received are contained within the rx_statistics_vector
output. Table 3-2 defines the bit f ield for the vector.

All bit f ields, with the exception of BYTE_VALID are valid only when the
rx_statistics_valid is asserted, as illustrated in Figure 3-14. BYTE_VALID is signif icant
on every validated receiver cycle.

X-Ref Target - Figure 3-14

Figure 3-14: Receiver Statistics Vector Timing

rx_statistics_valid

rx_statistics_vector

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 79
PG051 July 25, 2012

AXI4-Stream User Interface

Table 3-2: Bit Definition for the Receiver Statistics Vector

emacclient
rxstats Name Description

27 ADDRESS_MATCH If the optional address f ilter is included in the core, this bit is
asserted if the address of the incoming frame matches one of
the stored or pre-set addresses in the address f ilter. If the
address f ilter is omitted from the core or is configured in
promiscuous mode, this line is held high.

26 ALIGNMENT_ERROR Asserted at speeds less than 1 Gb/s if the frame contains an odd
number of nibbles and the FCS for the frame is invalid.

25 LENGTH/TYPE
Out of Range

If the length/type f ield contained a length value that did not
match the number of MAC client data bytes received and the
length/type field checks are enabled, then this bit is asserted.
This bit is also asserted if the length/type f ield is less than 46,
and the frame is not padded to exactly 64 bytes. This is
independent of whether or not the length/type f ield checks are
enabled.

24 BAD_OPCODE Asserted if the previous frame was error-free and contained the
special control frame identif ier in the length/type field, but
contained an opcode that is unsupported by the MAC (any
opcode other than PAUSE).

23 FLOW_CONTROL_FRAME Asserted if the previous frame was error-free, contained the
special control frame identif ier in the length/type field,
contained a destination address that matched either the MAC
Control multicast address or the configured source address of
the MAC, contained the supported PAUSE opcode, and was
acted upon by the MAC.

22 BYTE_VALID Asserted if a MAC frame byte (destination address to FCS
inclusive) is in the process of being received. This is valid on
every clock cycle.
Do not use this as an enable signal to indicate that data is
present on emacclientrxd[7:0].

21 VLAN_FRAME Asserted if the previous frame contained a VLAN identif ier in
the length/type field when receiver VLAN operation is enabled.

20 OUT_OF_BOUNDS Asserted if the previous frame exceeded the specif ied IEEE
802.3-2008 maximum legal length (see Maximum Permitted
Frame Length, page 77). This is only valid if jumbo frames are
disabled.

19 CONTROL_FRAME Asserted if the previous frame contained the special control
frame identif ier in the length/type f ield.

18 down
to 5

FRAME_LENGTH_COUNT The length of the previous frame in number of bytes. The count
stays at 16368 for any jumbo frames larger than this value.

4 MULTICAST_FRAME Asserted if the previous frame contained a multicast address in
the destination address f ield.

3 BROADCAST_FRAME Asserted if the previous frame contained the broadcast address
in the destination address f ield.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 80
PG051 July 25, 2012

AXI4-Stream User Interface

Transmitting Outbound Frames
Ethernet frames to be transmitted are presented to the user logic on the transmitter subset
of the AXI4-Stream user-side interface. For port definition, see Transmitter Interface. All
transmitter signals are synchronous to the tx_mac_aclk clock if present or gtx_clk if
not.

Normal Frame Transmission

The timing of a normal outbound frame transfer a 1 Gb/s can be seen in Figure 3-15, with
the timing at 100 Mb/s shown in Figure 3-16 and Figure 3-17. When the user wants to
transmit a frame, it places the f irst column of data onto the tx_axis_mac_tdata port and
asserts a 1 onto tx_axis_mac_tvalid.

The TEMAC core accepts the f irst two bytes of data by asserting tx_axis_mac_tready
and then waits until it is allowed to transmit and it then accepts the remainder of the frame.
The user must be capable of supplying new data on the following cycle when data has been
taken, indicated by the assertion of tx_axis_mac_tready. The end of frame is signalled
to the MAC core by asserting tx_axis_mac_tlast on the final byte of the frame.

At 1 Gb/s, data can be taken every 8 ns; at 100 Mb/s, data is taken, on average, every 80 ns;
at 10 Mb/s, data is taken, on average, every 800 ns. In all cases tx_axis_mac_tready
qualif ies when data is taken by the MAC. Figure 3-16 shows the use of
tx_axis_mac_tready to throttle the data when the core has been generated with either
an MII or GMII interface, in this mode the timing at 100 Mb/s and 10 Mb/s is identical as
tx_mac_aclk is sourced by the PHY at the required frequency (25 MHz or 2.5 MHz). When
the core is generated with an RGMII interface or the Internal interface the timing at 10/
100 Mb/s is very different as shown in Figure 3-17. In this mode the tx_mac_aclk remains
at 125 MHz at all MAC speeds and the tx_axis_mac_tready is activated once every 10
cycles as shown in Figure 3-17 or once every 100 cycles at 10 Mb/s. This is not true for the
f irst 2 bytes of frame data where the data pipeline fills at full rate.

For maximum flexibility in switching applications, the Ethernet frame parameters
(destination address, source address, length/type and optionally FCS) are encoded within

2 FCS_ERROR Asserted if the previous frame received was correctly aligned
but had an incorrect FCS value or the MAC detected error codes
during frame reception.

1 BAD_FRAME(1) Asserted if the previous frame received contained errors.

0 GOOD_FRAME(1) Asserted if the previous frame received was error-free.
1. If the length/type f ield error checks are disabled, a frame which has an actual data length that does not match the

length/type f ield value is marked as a GOOD_FRAME providing no additional errors were detected. See Length/
Type Field Error Checks, page 77.

Table 3-2: Bit Definition for the Receiver Statistics Vector (Cont’d)

emacclient
rxstats Name Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 81
PG051 July 25, 2012

AXI4-Stream User Interface

the same data stream that the frame payload is transferred upon, rather than on separate
ports.

Padding

When fewer than 46 bytes of data are supplied by the user to the MAC core, the transmitter
module adds padding up to the minimum frame length. The exception to this is when the
MAC core is configured for user-passed FCS; in this case the user must also supply the
padding to maintain the minimum frame length.

User-Supplied FCS Passing

If the MAC core is configured to have the FCS f ield passed in by the user, the transmission
timing is as depicted in Figure 3-18. In this case, it is the responsibility of the user to ensure
that the frame meets the Ethernet minimum frame length requirements. If frame length
requirements are not met, the core appends zeroes at the end of the supplied frame to
meet the minimum frame length. Although this does not cause the Transmitter Statistics

X-Ref Target - Figure 3-15

Figure 3-15: Normal Frame Transmission at 1 Gb/s Across User Interface

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tuser

tx_axis_mac_tready

DA SA L/T DATA

X-Ref Target - Figure 3-16

Figure 3-16: Normal Frame Transmission at 100 Mb/s Across User Interface (MII/GMII)

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tready

tx_axis_mac_ltast

tx_axis_mac_tuser

DA

X-Ref Target - Figure 3-17

Figure 3-17: Normal Frame Transmission at 100 Mb/s Across User Interface (RGMII)

tx_mac_aclk
tx_axis_mac_tdata

tx_axis_mac_tvalid
tx_axis_mac_tready

tx_axis_mac_ltast
tx_axis_mac_tuser

DA

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 82
PG051 July 25, 2012

AXI4-Stream User Interface

Vector to indicate a bad frame, it results in an errored frame as received by the link partner
MAC (due to the detection of an FCS error).

User Error Indication

Figure 3-19 shows an example of the timing for an aborted transfer. This can occur, for
example, if a FIFO connected to the AXI4-Stream TX interface empties before a frame is
completed. When the user asserts tx_axis_mac_tuser during a frame transmission, the
MAC core inserts an error code to corrupt the current frame and then falls back to idle
transmission. It is the responsibility of the user to re-queue the aborted frame for
transmission. It is also possible to abort a frame by deasserting tx_axis_mac_tvalid before
the final byte of the frame. It is classed by the MAC as a frame underrun as it does not buffer
the data and any gap is passed directly to the PHY; to avoid incorrect data being output this
is therefore classed as an implicit error condition and the frame is aborted.

The tx_axis_mac_tuser signal can be asserted at any time during active frame
transmission. If it occurs prior to the MAC accepting the third byte of the frame, indicating
it is actively transmitting to the PHY, it is possible to provide new frame data to the MAC
and avoid the transmission of the aborted frame entirely. If this new data is not provided or
arrives too late then a minimum sized errored frame is output.

Back-to-Back Transfers

Figure 3-20 shows the MAC user immediately ready to transmit a second frame of data
following completion of its f irst frame. In this f igure, the end of the first frame is shown on
the left with the assertion of tx_axis_mac_tlast. On the cycle immediately following

X-Ref Target - Figure 3-18

Figure 3-18: Frame Transmission with User-Supplied FCS

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tuser

tx_axis_mac_tready

DA SA L/T DATA FCS

X-Ref Target - Figure 3-19

Figure 3-19: Frame Transmission with Underrun

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tuser

tx_axis_mac_tready

DA SA L/T DATA

implicit error condition explicit error condition

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 83
PG051 July 25, 2012

AXI4-Stream User Interface

the f inal byte of the first frame, tx_axis_mac_tvalid remains high to indicate that the
f irst byte of the destination address of the second frame is on tx_axis_mac_tdata
awaiting transmission.

When the MAC core is ready to accept data, tx_axis_mac_tready is asserted and the
transmission continues in the same manner as in the case of the single frame. The MAC core
defers the assertion of tx_axis_mac_tready appropriately to comply with inter-packet
gap requirements and flow control requests.

If the MAC core is operating at 1 Gb/s in half-duplex mode, the timing shown in Figure 3-20
is required to take advantage of frame bursting; the MAC core is only guaranteed to retain
control of the medium if the tx_axis_mac_tvalid signal is high immediately after the
end of the previous packet. For details on frame bursting, see IEEE 802.3-2008.

VLAN Tagged Frames

Transmission of a VLAN tagged frame (if enabled) can be seen in Figure 3-21. The
handshaking signals across the interface do not change; however, the VLAN type tag 81-00
must be supplied by the user to signify that the frame is VLAN tagged. The user also
supplies the two bytes of Tag Control Information, V1 and V2, at the appropriate times in
the data stream. More information on the contents of these two bytes can be found in IEEE
802.3-2008.

X-Ref Target - Figure 3-20

Figure 3-20: Back-to-Back Frame Transmission

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tuser

tx_axis_mac_tready

X-Ref Target - Figure 3-21

Figure 3-21: Transmission of a VLAN Tagged Frame

TX_MAC_ACLK

TX_AXIS_MAC_TDATA

TX_AXIS_MAC_TVALID

TX_AXIS_MAC_TLAST

TX_AXIS_MAC_TUSER

TX_AXIS_MAC_TREADY

81 00 V1 V2

DA SA VLAN L/T DATA

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 84
PG051 July 25, 2012

AXI4-Stream User Interface

Maximum Permitted Frame Length

The maximum legal length of a frame specified in IEEE 802.3-2008 is 1518 bytes for
non-VLAN tagged frames. VLAN tagged frames can be extended to 1522 bytes. When
jumbo frame handling is disabled and the user attempts to transmit a frame which exceeds
the maximum legal length, the MAC core inserts an error code to corrupt the current frame
and the frame is truncated to the maximum legal length. When jumbo frame handling is
enabled, frames which are longer than the legal maximum are transmitted error-free.

It is also possible to specify a different maximum frame size. If this is enabled and the frame
exceeds the configured value then the frame is corrupted. In this case VLAN frames are not
treated separately. If jumbo frame handling is enabled, that takes precedence and the
configured value is ignored.

Frame Collisions: Half-Duplex Operation Only

In half-duplex Ethernet operation, collisions occur on the medium as a matter of course; this
is how the arbitration algorithm is fulfilled. In the case of a collision, the MAC core signals
to the user that data might need to be resupplied as follows.

• If there is a collision, the tx_collision signal is set to 1 by the MAC core. If a frame
is in progress, the user must abort the transfer asserting tx_axis_mac_tlast and
tx_axis_mac_tuser.

• If the tx_retransmit signal is 1 in the same cycle that the tx_collision signal is
1, the user must then resubmit the previous frame to the MAC core for retransmission;
tx_axis_mac_tvalid must be asserted to the MAC core within 6 cycles of the
tx_retransmit signal: if tx_axis_mac_tvalid is asserted later than this, the MAC
assumes that the frame is not retransmitted and the number of retransmission attempts
counter within the MAC is reset. This case is illustrated in Figure 3-22.

If any frame presented to the user interface is shorter than the collision window (slot
time) as defined in IEEE Std 802.3-2008, a retransmission request can occur after the
end of the frame as observed on the user interface. Therefore, the user logic (which
might have queued a subsequent frame for transmission) might then have to rewind
back to the previous frame. In this case the current frame has to be aborted by asserting
tx_axis_mac_tlast in conjunction with tx_axis_mac_tuser and the previous
frame data should be re-supplied on the tx_axis_mac_tdata[7:0] port within the
same 8 cycles illustrated in Figure 3-22.

For reference only: the collision window (slot time) is 64 validated clock cycles when
operating at 10 Mb/s and 100 Mb/s speeds (corresponding to 64-bytes of frame data),
and 512 clock cycles when operating at 1 Gb/s speed (corresponding to 512-bytes of
frame data).

• If the tx_retransmit signal is 0 in the same cycle that the tx_collision signal is
1, the number of retries for this frame has exceeded the Ethernet specification or the
collision has been classed as late, and the frame should be dropped by the user. The

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 85
PG051 July 25, 2012

AXI4-Stream User Interface

user can then make any new frame available to the MAC for transmission without
timing restriction. This case is illustrated in Figure 3-23.

Interframe Gap Adjustment: Full-Duplex Mode Only

A configuration bit in the transmitter control register allows you to control the length of the
interframe gap transmitted by the MAC on the physical interface. If this function is selected,
the MAC exerts back pressure on the user interface to delay the transmission of the next
frame until the requested number of idle cycles has elapsed. The number of idle cycles is
controlled by the value on the tx_ifg_delay port seen at the start of frame transmission
on the user interface. Figure 3-24 shows the MAC operating in this mode.

The minimum interframe gap supported is dependent upon the support of half-duplex
operation. If half-duplex is supported, the minimum IFG possible is 8 transmit clock cycles.
If the MAC only supports full-duplex operation then this reduces the minimum possible IFG
to 4 transmit clock cycles. In both cases the interframe gap used when the Interframe Gap
Adjust Enable bit is set to 0 is the minimum value as specified in the IEEE 802.3-2008
standard. This corresponds to 12 transmit clock cycles on the GMMI/MII interface. The value
on the tx_ifg_delay port must be equal to or larger than 4 or 8 to have an effect as
described previously.

X-Ref Target - Figure 3-22

Figure 3-22: Collision Handling: Frame Retransmission Required

X-Ref Target - Figure 3-23

Figure 3-23: Collision Handling: No Frame Retransmission Required

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tuser

tx_axis_mac_tready

tx_collision

tx_retransmit

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 86
PG051 July 25, 2012

AXI4-Stream User Interface

Transmitter Statistics Vector

The statistics for the frame transmitted are contained within the tx_statistics_vector
output. The bit f ield definition for the Vector is defined in Table 3-3. All bit f ields, with the
exception of BYTE_VALID are valid only when the tx_statistics_valid is asserted, as
illustrated in Figure 3-25. BYTE_VALID is signif icant on every transmitter cycle that clock
enable is high. tx_statistics_vector bits 28 down to 20 inclusive are for half-duplex
only and are set to logic 0 when operating in full-duplex mode.

X-Ref Target - Figure 3-24

Figure 3-24: Interframe Gap Adjustment

tx_mac_aclk

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tready

tx_ifg_delay NO IFG ADJUST VALUE NEW IFG ADJUST VALUE

DA DA.

minimum IFG inserted tx_axis_mac_tready held off to allow requested number of idles between frames

X-Ref Target - Figure 3-25

Figure 3-25: Transmitter Statistics Vector Timing

Table 3-3: Bit Definition for the Transmitter Statistics Vector

emacclient
txstats Name Description

31 PAUSE_FRAME_TRANSMITTED Asserted if the previous frame was a pause frame that
the MAC itself initiated in response to a pause_req
assertion.

30 BYTE_VALID Asserted if a MAC frame byte (DA to FCS inclusive) is in
the process of being transmitted. This is valid on every
clock cycle.
Do not use this as an enable signal to indicate that data
is present on (R)(G)MII_TXD.

29 Reserved Returns logic 0.

28 down to
25

TX_ATTEMPTS[3:0] The number of attempts that have been made to
transmit the previous frame. This is a 4-bit number: 0
should be interpreted as 1 attempt; 1 as 2 attempts, up
until 15 as 16 attempts.

24 Reserved Returns logic 0.

23 EXCESSIVE_COLLISION Asserted if a collision has been detected on each of the
last 16 attempts to transmit the previous frame.

tx_statistics_valid

tx_statistics_vector[31:0]

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 87
PG051 July 25, 2012

AXI4-Stream User Interface

22 LATE_COLLISION Asserted if a late collision occurred during frame
transmission.

21 EXCESSIVE_DEFERRAL Asserted if the previous frame was deferred for an
excessive amount of time as defined by the constant
“maxDeferTime” in IEEE 802.3-2008.

20 TX_DEFERRED Asserted if transmission of the frame was deferred.

19 VLAN_FRAME Asserted if the previous frame contained a VLAN
identif ier in the length/type field when transmitter VLAN
operation is enabled.

18 down to 5 FRAME_LENGTH_COUNT The length of the previous frame in number of bytes. The
count stays at 16368 for any jumbo frames larger than
this value.

4 CONTROL_FRAME Asserted if the previous frame had the special MAC
Control Type code 88-08 in the length/type f ield.

3 UNDERRUN_FRAME Asserted if the previous frame contained an underrun
error.

2 MULTICAST_FRAME Asserted if the previous frame contained a multicast
address in the destination address f ield.

1 BROADCAST_FRAME Asserted if the previous frame contained a broadcast
address in the destination address f ield.

0 SUCCESSFUL_FRAME Asserted if the previous frame was transmitted without
error.

Table 3-3: Bit Definition for the Transmitter Statistics Vector (Cont’d)

emacclient
txstats Name Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 88
PG051 July 25, 2012

Flow Control

Flow Control
This section describes the operation of the flow control logic of the TEMAC solution. The
flow control block is designed to clause 31 of the IEEE 802.3-2008 [Ref 9] standard. In full
duplex mode the MAC can be configured to transmit pause requests and to act on their
reception; these modes of operation can be independently enabled or disabled.

Overview of Flow Control

Flow Control Requirement
X-Ref Target - Figure 3-26

Figure 3-26 illustrates the requirement for Flow Control at 1 Gb/s. The MAC on the right
side of the f igure has a reference clock slightly faster than the nominal 125 MHz. The MAC
on the left side of the figure has a reference clock slightly slower than the nominal
125 MHz. This results in the MAC on the left side of the f igure not being able to match the
full line rate of the MAC on the right side (due to clock tolerances). The MAC at the left is
illustrated as performing a loopback implementation, which results in the FIFO filling up
over time. Without Flow Control, this FIFO eventually f ills and overflows, resulting in the
corruption or loss of Ethernet frames. Flow Control is one solution to this issue.

Figure 3-26: Requirement for Flow Control

MAC

FIFO

User Logic

Tx

Rx

MAC

Tx

Rx

125MHz -100ppm

125MHz +100ppm

A
pp

lic
at

io
n

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 89
PG051 July 25, 2012

Flow Control

Flow Control Basics

A MAC can transmit a Pause Control frame to request that its link partner cease
transmission for a specif ic period of time. For example, the left MAC in Figure 3-26 can
initiate a pause request when its user FIFO (illustrated) reaches a nearly full state.

A MAC should respond to received Pause Control frames by ceasing transmission of frames
for the period of time defined in the received pause control frame. For example, the right
MAC of Figure 3-26 can cease transmission after receiving the Pause Control frame
transmitted by the left MAC. In a well designed system, the right MAC ceases transmission
before the user FIFO of the left MAC overflows to provide time to empty the FIFO to a safe
level before resuming normal operation. This practice safeguards the system against FIFO
overflow conditions and frame loss.

Pause Control Frames

Control frames are a special type of Ethernet frame defined in clause 31 of the IEEE 802.3
standard. Control frames are identif ied from other frame types by a defined value placed
into the length/type f ield (the MAC Control Type code). Figure 3-27 illustrates control
frame format.

A Pause Control frame is a special type of Control frame, identif ied by a defined value
placed into the MAC Control opcode field.

X-Ref Target - Figure 3-27

Figure 3-27: MAC Control Frame Format

DESTINATION
ADDRESS

SOURCE
ADDRESS

LENGTH/TYPE

MAC CONTROL
OPCODE

MAC CONTROL
PARAMETERS

RESERVED
(transmitted as zeroes)

6 OCTETS

6 OCTETS

2 OCTETS

2 OCTETS

(minFrameSize - 160) /8
OCTETS

OCTETS WITIHIN
FRAME TRANSMITTED
TOP-TO-BOTTOM

LSB MSB

BITS WITHIN
FRAME TRANSMITTED

LEFT-TO-RIGHT

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 90
PG051 July 25, 2012

Flow Control

Note: MAC Control OPCODES other than for Pause (Flow Control) frames have also been defined for
Ethernet Passive Optical Networks.

The MAC Control Parameter f ield of the Pause Control frame contains a 16-bit f ield which
contains a binary value directly relating to the duration of the pause. This defines the
number of pause_quantum (512 bit times of the particular implementation). At 1 Gb/s, a
single pause_quantum corresponds to 512 ns. At 100 Mb/s, a single pause_quantum
corresponds to 5120 ns, and at 10 Mb/s, a single pause_quantum corresponds to 51200 ns.

Flow Control Operation of the TEMAC

Transmitting a Pause Control Frame

Core-Initiated Pause Request

If the core is configured to support transmit flow control, the user can initiate a flow control
frame by asserting pause_req while the pause value is on the pause_val bus.
Figure 3-28 illustrates this timing. Pause request signals are synchronous to the gtx_clk
clock.

This action causes the core to construct and transmit a Pause Control frame on the link with
the following MAC Control frame parameters (see Figure 3-27):

• The destination address used is an IEEE 802.3 globally assigned multicast address
(which any Flow Control capable MAC responds to).

• The source address used is the configurable Pause Frame MAC Address.

• The value sampled from the pause_val[15:0] port at the time of the pause_req
assertion is encoded into the MAC Control Parameter f ield to select the duration of the
pause (in units of pause_quantum).

If the transmitter is currently inactive at the time of the pause request, this Pause Control
frame is transmitted immediately. If the transmitter is currently busy, the current frame
being transmitted is allowed to complete; the Pause Control frame then follows in
preference to any pending user supplied frame. A Pause Control frame initiated by this
method is transmitted even if the transmitter itself has ceased transmission in response to
receiving an inbound pause request.

Note: Only a single pause control frame request is stored by the transmitter. If the pause_req
signal is asserted numerous times in a short time period (before the control pause frame
transmission has had a chance to begin), only a single pause control frame is transmitted. The
pause_val[15:0] value used is the most recent value sampled.

X-Ref Target - Figure 3-28

Figure 3-28: Pause Request Timing

pause_req

pause_val

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 91
PG051 July 25, 2012

Flow Control

User-Initiated Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the user logic connected to the core. Any type of Control frame can be
transmitted through the core through the TX AXI4-Stream interface using the same
transmission procedure as a standard Ethernet frame (see Transmitting Outbound Frames).

Receiving a Pause Control Frame

Core-Initiated Response to a Pause Request

An error-free Control frame is a received frame matching the format of Figure 3-27. It must
pass all standard receiver frame checks (for example,. FCS f ield checking); in addition, the
control frame received must be exactly 64-bytes in length (from destination address
through to the FCS f ield inclusive). This is minimum legal Ethernet MAC frame size and the
defined size for control frames.

Any Control frame received that does not conform to these checks contains an error, and it
is passed to the RX AXI4-Stream as an errored packet (rx_axis_mac_tuser asserted)

Pause Frame Reception Disabled

When pause control reception is disabled, an error-free control frame is received through
the RX AXI4-Stream interface. In this way, the frame is passed to the user logic for
interpretation (see User-Initiated Response to a Pause Request, page 92).

Pause Frame Reception Enabled

When pause control reception is enabled and an error-free frame is received by the MAC
core, the following frame decoding functions are performed:

1. The destination address field is matched against the IEEE 802.3 globally assigned
control multicast address (01-80-C2-00-00-01) or the configurable Pause Frame MAC
Address.

2. The length/type field is matched against the MAC Control Type code.

3. If the second match is TRUE, the OPCODE field contents are matched against the
Ethernet MAC control OPCODE for pause frames.

If all the previously listed checks are TRUE, and the frame is of minimum legal size OR larger
and control frame length checking is disabled, the 16-bit binary value in the MAC control
parameters f ield of the control frame is then used to inhibit transmitter operation for the
required number of pause_quantum. This inhibit is implemented by delaying the assertion
of tx_axis_mac_tready at the TX AXI4-Stream interface until the requested pause
duration has expired. Because the received pause frame has been acted upon, it is passed to
the RX AXI4-Stream interface as an errored packet to indicate to the user that it can now be
dropped.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 92
PG051 July 25, 2012

Flow Control

If the second match is TRUE and the frame is not exactly 64 bytes in length (when control
frame length checking is enabled), the reception of any frame is considered to be an invalid
control frame. This frame is ignored by the flow control logic and passed to the RX
AXI4-Stream interface as an errored frame. In this case the frame is errored even if flow
control is not enabled.

If any of the previously listed checks are FALSE, the frame is ignored by the Flow Control
logic and passed up to the user logic for interpretation by marking it as a good frame. It is
then the responsibility of the MAC user logic to decode, act on (if required) and drop this
control frame.

Note: Any frame in which the length/type f ield contains the MAC Control Type in the length/type
f ield should be dropped by the receiver user logic. All Control frames are indicated by
rx_statistics_vector bit 19 (see Receiver Statistics Vector).

User-Initiated Response to a Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the user logic connected to the core. Any type of error-free Control frame
is then passed through the core without error. In this way, the frame is passed to the user for
interpretation. It is then the responsibility of the user to drop this control frame and to act
on it by ceasing transmission through the core, if applicable.

Flow Control Implementation Example
This explanation is intended to describe a simple (but crude) example of a Flow Control
implementation to introduce the concept.

Consider the system illustrated in Figure 3-26. To summarize the example, the MAC on the
left-hand side of the figure cannot match the full line rate of the right-hand MAC due to
clock tolerances. Over time, the FIFO illustrated f ills and overflows. The aim is to implement
a Flow Control method which, over a long time period, reduces the full line rate of the
right-hand MAC to average that of the lesser full line rate capability of the left-hand MAC.

Method

1. Choose a FIFO nearly full to occupancy threshold (7/8 occupancy is used in this
description). When the occupancy of the FIFO exceeds this occupancy, initiate a single
pause control frame with 0xFFFF used as the pause_quantum duration (0xFFFF is placed
on pause_val[15:0]). This is the maximum pause duration. This causes the
right-hand MAC to cease transmission and the FIFO of the left-hand MAC starts to
empty.

2. Choose a second FIFO occupancy threshold (3/4 is used in this description). When the
occupancy of the FIFO falls below this occupancy, initiate a second pause control frame
with 0x0000 used as the pause_quantum duration (0x0000 is placed on
pause_val[15:0]). This indicates a zero pause duration, and upon receiving this

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 93
PG051 July 25, 2012

Flow Control

pause control frame, the right-hand MAC immediately resumes transmission (it does not
wait for the original requested pause duration to expire). This pause control frame can
therefore be considered a “pause cancel” command.

Operation

Figure 3-29 illustrates the FIFO occupancy over time.

The following text describes the sequence of flow control operation in this example.

1. The average FIFO occupancy of the left-hand MAC gradually increases over time due to
the clock tolerances. At point A, the occupancy has reached the threshold of 7/8
occupancy. This triggers the maximum duration pause control frame request.

2. Upon receiving the pause control frame, the right-hand MAC ceases transmission.

3. After the right-hand MAC ceases transmission, the occupancy of the FIFO attached to
the left-hand MAC rapidly empties. The occupancy falls to the second threshold of 3/4
occupancy at point B. This triggers the zero duration pause control frame request (the
pause cancel command).

X-Ref Target - Figure 3-29

Figure 3-29: Flow Control Implementation Triggered from FIFO Occupancy
time

FI
FO

 o
cc

u
p

an
cy

3/4

7/8

5/8

1/2

Full

A

B

C

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 94
PG051 July 25, 2012

Statistics Counters

4. Upon receiving this second pause control frame, the right-hand MAC resumes
transmission.

5. Normal operation resumes and the FIFO occupancy again gradually increases over time.
At point C, this cycle of Flow Control repeats.

Statistics Counters
The Statistics counters (Table 2-22), which are only available when the management
interface is enabled, can be defined to be either 32 or 64-bits wide, with 64 bits being the
default. When defined as 64-bits wide the counter values are captured across two registers.
In all cases a read of the lower 32-bit value causes the upper 32 bits to be sampled. A
subsequent read of the upper 32-bit location returns this sampled value. If an upper
location for a different counter is read, the access returns an error condition to indicate that
the returned data value is incorrect.

Note: All statistics counters are Read Only. A write to any location is ignored and returns an error.

The Statistics counters can optionally be reset upon a global reset, with this being enabled
using the GUI. They do not reset upon a read and wrap around when the maximum count
value is reached. It is the responsibility of the user to ensure the counters are read
frequently enough to guarantee a wraparound is not missed.

The TEMAC core always outputs RX and TX statistics vectors and, when the statistics
counters are present, these are decoded in the Vector Decode block, provided in the Block
level, which in turn, provides the “increment vector” bus to the TEMAC core. It is the
contents of the increment vector which dictate which statistic counters are to increment.
The Vector Decode block is provided in plain text HDL, allowing you the ability to customize
the statistic counters provided. The following sections therefore describe the operation of
the statistic counter logic and its interfaces in detail to allow for a custom implementation.
To use the default statistic counters as provided, these sections can be skipped.

Increment Interface Overview

The Increment Interface has two main logical sections:

• A low-frequency increment component controlled by the increment vector input. This
accommodates the majority of the statistical counters, which only increment at (or less
frequently than) a standard minimum Ethernet frame period. These are decoded in the
Vector Decode block and therefore can be edited by the user if desired though this is
not recommended for the pre-defined counters.

• A high-frequency increment component. These are generated internally to the netlist
and as such cannot be edited or monitored by the user. These are used to
accommodate those counters which can increment on every cycle and these are
captured in counters 0-3.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 95
PG051 July 25, 2012

Statistics Counters

Low-Frequency Statistical Counters

The increment_vector[4:43] is an input bus signal which provides the predefined counters
as described in Table 2-22 and 3 user defined counters. This accommodates the vast
majority of the statistical counters which only increment at (or less frequently than) a
minimum Ethernet frame period.

Figure 3-30 illustrates the increment_vector bus provided by the vector decode block.
There is an increment bit for each counter from counter 4 upwards. A toggle on a particular
increment bit causes the corresponding counter to increment. The mapping of the
increment vector bits to the various register mapped counter is shown in Table 2-22.

The increment_vector is input to the core and edge detection circuitry (toggle
detection) is placed on each bit. The toggle detection circuitry is synchronous to
stats_ref_clk . Within the core, the current counter values are stored in distributed
memory. The Statistics core accesses each of the counters within this memory in a round
robin fashion and if an increment has been requested since the last access the relative value
is incremented prior to being written back to memory.

Bandwidth Requirements

The frequency of stats_ref_clk is flexible but depends upon both the number of
counters and the maximum frequency supported by the MAC. The low-frequency increment
vectors can update at a maximum rate of once per minimum sized Ethernet frame. This
translates to 584 ns when running at 1 Gb/s (64 bytes of minimum Ethernet frame size, plus
1 byte of minimum received preamble, plus 8 bytes of minimum received interframe gap, at
a byte rate of 1 byte per 8 ns).

With stats_ref_clk set to 125 MHz, 36 statistical counters can be safely updated
between successive Ethernet frames (584 ns divided by the 8 ns clock period of
stats_ref_clk , divided by 2 because a counter update requires two accesses). As this is
less than the provided 44 counters extra decode logic is included to take advantage of the
frame size counters one-hot status (that is, only one of the seven RX and one of the seven
TX frame size counters can update on a per packet basis. The round-robin function which

X-Ref Target - Figure 3-30

Figure 3-30: Increment Vector Timing Diagram

increment_vector[17]

Do not toggle more frequently than
the low frequency increment period

Will cause an increment
to counter number 17

Will cause an increment
to counter number 17

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 96
PG051 July 25, 2012

Frame Filter

controls which counter is being accessed only accesses the required frame size counter and
skips the other 5. This means the 44 counters supported only require 32 counter accesses.
However, this does mean that the stats_ref_clk should be at least as fast as the clock
used for the maximum rate supported by the MAC (125 MHz at 1 Gb/s or 12.5 MHz at 10/
100 Mb/s).

Frame Filter
The MAC can be configured with an optional frame filter. This is available irrespective of the
use of the management interface but has much reduced functionality if no management
interface is present; this use model is described in The Configuration Vector.

The frame filter performs two functions:

• It checks any received packet matches of one of the predefined Destination Address
values: Pause Address, Broadcast Address, User Defined Unicast Address and the
special multicast Pause Address.

• Compares the f irst 64 bytes of a received packet against a user defined pattern.

In the case of the Destination Address comparisons, the results are used in other blocks
within the MAC, such as flow control and in the generation of statistics vectors.

The other function of the frame filter is much more flexible and allows the user to specify
any match pattern within the f irst 64 bytes whilst ignoring any other byte or bit values. This
is extremely flexible as it enables packets to be f iltered based on almost any header field or
combination of header f ields. Each frame filter contains two 512 bit registers (64 bytes):

• Frame Filter Value register. This pattern is compared to the f irst 512 bits received in a
frame with bit 0 being the f irst bit within a frame to be received.

• Frame Filter Mask Value register. Each bit within this register refers to the same bit
number within the Frame Filter Value register. when a bit in the Mask Value Register is
set to

° logic 1, The same bit number within the Frame Filter Value register is compared with
the respective bit in the received frame and must match if the overall frame filter is
to obtain a match.

° logic 0, the same bit number within the Frame Filter Value register is not compared.
This effectively turns the respective bit in the Frame Filter Value register into a don’t
care bit: the overall frame filter is capable of obtaining a match even if this bit does
not match.

This is described in more detail in Using the Frame Filter.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 97
PG051 July 25, 2012

Frame Filter

The user can specify up to 8 frame filters in the MAC netlist, with an additional three being
used if the AVB Endpoint is present. Each is accessed through address mapped registers.
However, because each f ilter requires 32 registers to access the pattern and mask values
there is a control register which specif ies which of the f ilters is being accessed with all
f ilters being accessed through the same register set. When 1 or more frame filters are
specified the rx_axis_filter_tuser output is available from the netlist. This is sized
depending upon the number of f ilters selected and provides a direct pass/fail indication on
a per f ilter basis, this does not include a AVB specific f ilters. See Using the Frame Filter for
more detail.

Table 2-39 shows the frame filter configuration registers.

Using the Frame Filter
The Configurable frame filters can be used to perform simple Destination Address filtering,
Multicast Group matching, Source Address matching and VLAN field matching. The use of
the Mask register enables any field or combination of f ields in the f irst 64 bytes to be
isolated and matched. The Frame Filter Control register, shown in Table 2-42, allows the
user to enable or disable the frame filter by setting the promiscuous Mode bit which has the
following functionality:

• when enabled, all good frames are marked as good

• when disabled, only frames which match one or more of the pre-defined Destination
Address filters or the configurable frame filters are marked good.

When more than one frame filter is generated it is necessary to write to the Frame Filter
Control register to specify which frame filter is being accessed prior to writing to any of the
f ilter specif ic registers. It is then possible to enable each frame filter individually. While a
particular f ilter is disabled it does not match any packets. It is recommended that frame
filters are disabled prior to updating the match pattern to avoid unexpected packets being
accepted.

By default all non-AVB frame filters are configured with all 1s in the bottom 48 bits in both
the Frame Filter Value registers and the Frame Filter Mask Value registers; this results in a
broadcast frame match, which has no effect as they are already accepted by the pre-defined
Destination Address filters. After the frame filter value and mask value have been updated
to the desired values the f ilter should be enabled.

In Figure 3-31 the reception of an error free frame which matches against f ilter 0 is shown.
When one or more f ilters are generated, the rx_axis_filter_tuser bus is generated
with one extra bit; for example if four f ilters are selected, rx_axis_filter_tuser would
be a 5-bit bus. This extra bit (always the upper bit) is used to provide the ‘else’ case. It is
asserted if any of the user-defined filters match a frame. If using the
rx_axis_filter_tuser outputs this would mean the frame is being serviced by a
dedicated output and should therefore be dropped by the else output. This is shown in
Figure 3-32 where a good frame has matched against a pre-defined Destination Address

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 98
PG051 July 25, 2012

Frame Filter

f ilter but failed to match any of the configurable f ilters.

This extra bit allows the rx_axis_filter_tuser bus to be used to directly drive FIFOs
for particular f ilter matches, such as VLAN priority. When the frame filter is configured in
Promiscuous Mode the rx_axis_filter_tuser bits continue to operate as normal.

Frame Filter Example Application
This section describes the usage of the frame filter to implement VLAN priority based
f iltering.

X-Ref Target - Figure 3-31

Figure 3-31: Received Frame with a Match on Filter 0

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

rx_axis_filter_tuser[0]

rx_axis_filter_tuser[x]

DA SA L/T DATA

X-Ref Target - Figure 3-32

Figure 3-32: Received Frame with No Match on Configurable Frame Filters

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

rx_axis_filter_tuser[0]

rx_axis_filter_tuser[x]

DA SA L/T DATA

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 99
PG051 July 25, 2012

Frame Filter

In Figure 3-33 the MAC is shown connected to priority FIFOs. In this case frame filter 0 is set
up to match on the VLAN Type and the VLAN Priority f ield with a value of 7. In a standard
VLAN Ethernet frame, the VLAN type value of 0x8100 is found in bytes 13-14, with the
priority f ield being the upper 3 bits of byte 15. This required these register settings:

• Frame Filter Value bytes 15-12 set to 0xE0008100

• Frame Filter Mask Value bytes 15-12 set to 0xE0FFFF00

• All other Frame Filter Mask Value bytes set to 0x0

In this case the FIFO, which is using rx_axis_filter_tuser, is only passing good VLAN
frames which have a priority f ield set to 7. The default FIFO, which is using
rx_axis_filter_tuser[4], only accepts good frames which are either not VLAN
frames or have a priority f ield with a value other than 7. This is illustrated in Figure 3-34.

X-Ref Target - Figure 3-33

Figure 3-33: Priority FIFO Connections

 Ethernet MAC

rx_mac_aclk

rx_axis_mac_tdata[7:0]

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

rx_axis_filter_tuser[0]

rx_axis_filter_tuser[n]

rx_axis_mac_tvalid

rx_axis_mac_tdata[7:0]

rx_mac_aclk

rx_mac_aclk

rx_axis_mac_tdata[7:0]

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tlast

rx_axis_mac_tuser

rx_axis_mac_tuser

 High Priority FIFO

 Low Priority FIFO

rx_fifo_aclk

rx_axis_fifo_tdata[7:0]

rx_axis_fifo_tvalid

rx_axis_fifo_tlast

rx_axis_fifo_tuser

rx_fifo_aclk

rx_axis_fifo_tdata[7:0]

rx_axis_fifo_tvalid

rx_axis_fifo_tlast

rx_axis_fifo_tuser

X-Ref Target - Figure 3-34

Figure 3-34: Filtering of VLAN Frames with VLAN priority of 7

rx_mac_aclk

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

Frame Filter Value

Frame Filter Mask

X X X X X X X X X X X X 81 00 E0 X X

0 0 0 0 0 0 0 0 0 0 0 0 FF FF E0 0 0

DA SA VLAN L/T DATA

Don’t Care Check Don’t Care

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 100
PG051 July 25, 2012

Frame Filter

Using the AVB Specific Frame Filters
This section is only applicable if the TEMAC solution is implemented with the optional
Ethernet AVB Endpoint functionality.

The three AVB frame filters are initialized to identify PTP frames and AV frames of both
priorities. These initial values can be adjusted to change the VLAN field values used by the
software drivers as required.

The Frame Filter Control register (Table 2-42) allows you to access each of the AVB frame
filters by setting bit 8, AVB Select. When set, bits 1:0 are used to specify the required AVB
frame filter with the value of 3 being ignored. See AVB Specif ic Frame Filters for the register
definitions of the PTP Frame filter.

SR Classes A and B Frame Filters

Two frame filters are provided to identify frames belonging to either SR Class A or SR Class
B. The SR Class A frame filter can be accessed by setting Filter Index to 1 in the Frame Filter
Control register (see Table 2-42) and the SR Class B frame filter can be accessed by setting
Filter Index to 2.

The output of the two filters is combined so that a match against either filter allows AV
traffic to pass. If only one SR Class is supported then either disable the undesired f ilter or
set both f ilters to the same value.

The default behavior of the SR Class frame filters is to match both the default VLAN PCP
and VLAN ID values for that SR Class, as follows:

SR Class A:

Type = 0x0081 (VLAN)

Type_info = 0x0260 (VLAN PCP= 3 VLAN ID= 2)

SR Class B:

Type = 0x0081 (VLAN)

Type_info = 0x0240 (VLAN PCP= 2VLAN ID= 2)

This translates to the register settings in Tables 2-48 to 2-51.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 101
PG051 July 25, 2012

Ethernet AVB Endpoint

Ethernet AVB Endpoint
This section provides information about the key functional blocks which are introduced
when the optional AVB Endpoint is included in the core.

Ethernet AVB Endpoint Transmission
As illustrated in Figure 3-35, data for transmission over an AVB network can be obtained
from three types of sources:

1. AV Traffic. For transmission from the TX AV Traff ic Interface of the core.

2. Precise Timing Protocol (PTP) Packets. Initiated by the software drivers using the
dedicated hardware TX PTP Packet Buffer.

3. Legacy Traffic. For transmission from the TX Legacy Traffic Interface of the core.

TX Legacy Traffic Interface

The legacy traff ic interface is maintained for best effort Ethernet data: Ethernet as it is
known today (for example, a PC surf ing the internet). The signals forming the TX Legacy

X-Ref Target - Figure 3-35

Figure 3-35: Ethernet AVB Endpoint Data Path

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 102
PG051 July 25, 2012

Ethernet AVB Endpoint

Traffic interface are defined in Table 2-5. The timing of this interface is as described in
Transmitting Outbound Frames, with the interface functionality limited to full-duplex, no
jumbo support, VLAN frames enabled and flow control disabled.

TX AV Traffic Interface

The AV traff ic interface is intended for the Quality of Service audio/video data. The Ethernet
AVB Endpoint gives priority to the AV traff ic interface over the legacy traff ic interface, as
dictated by IEEE 802.1Q 75% bandwidth restrictions. The signals forming the TX AV Traffic
interface are defined in Table 2-7. The timing of this interface is exactly the same as for the
TX Legacy Traff ic with the only difference being how the tvalid signal is handled between
frames.

In Figure 3-36, following the end of frame transmission, the tx_axis_av_tvalid signal is
held high, which indicates to the Credit Based Traffic Shaping Algorithm that another AV
frame is queued. Unless the configurable bandwidth restrictions have been exceeded, this
parks the Credit Based Traff ic Shaping Algorithm onto the AV traff ic queue and the
following frame can immediately be taken. However, if no further AV traff ic frames are
queued, the tx_axis_av_tvalid signal should be set to low immediately following the
end of frame transmission. This then allows the Credit Based Traffic Shaping Algorithm to
schedule legacy traffic transmission (if any legacy frames are queued).

If, following the end of frame reception, the bandwidth allocation for AV traff ic has been
exceeded, the Credit Based Traffic Shaping Algorithm switches to service the legacy traffic
regardless of the state of the tx_axis_av_tvalid signal.

Transmitter AXI4-Stream AV specifics

One of the key functions of the Ethernet AVB Endpoint is the configurable bandwidth
allocation for the AV user data. Because this bandwidth is managed over time this is done
using credits which are gained when non-AV data is sent and lost when AV data is sent, with
a positive or zero balance of credits enabling the AV path. When no data is present at the AV
input, any credits available are removed thus preventing bursty AV traffic getting an
artif icially high bandwidth. The tx_axis_av_tvalid indicates that data is available, but
at the end of a frame, if another frame is available, the tx_axis_av_tvalid should
remain asserted and the first byte of the new frame should be presented. This is shown in

X-Ref Target - Figure 3-36

Figure 3-36: TX AV Traffic Timing

tx_mac_aclk

tx_axis_av_tdata

tx_axis_av_tvalid

tx_axis_av_tlast

tx_axis_av_tready

tx_axis_av_tuser

Frame 1 Frame 2

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 103
PG051 July 25, 2012

Ethernet AVB Endpoint

Figure 3-36. If tx_axis_av_tvalid is dropped between frames then any positive credit
balance is lost whereas a negative balance remains, which results in a lower overall
bandwidth allowance for the AV path.

TX Arbiter

Overview

As illustrated in Figure 3-35, data for transmission over an AVB network can be obtained
from three types of sources.

The transmitter (TX) arbiter selects from these three sources in the following manner.

• If there is AV data available and the programmed AV bandwidth limitation is not
exceeded, then the AV packet is transmitted

• otherwise the TX arbiter checks to see if there are any PTP packets to be transmitted

• otherwise if there is an available legacy packet then this is transmitted.

The Ethernet AVB Endpoint uses configuration registers to set up the percentage of
available Ethernet bandwidth reserved for AV traff ic. To comply with the IEEE802.1Q
specification these should not be configured to exceed 75%. The arbiter then polices this
bandwidth restriction for the AV traff ic and ensures that on average, it is never exceeded.
Consequently, despite the AV traff ic having a higher priority than the legacy traff ic, there is
always remaining bandwidth available to schedule legacy traff ic.

The relevant configuration registers for programming the bandwidth percentage dedicated
to AV traff ic are defined in Configuration and Status and are:

• Tx Arbiter Send Slope Control Register

• Tx Arbiter Idle Slope Control Register

These registers are defaulted to values which dedicate up to 75% of the overall bandwidth
to the AV traff ic. This is the maximum legal percentage that is defined in the IEEE802.1 AVB
standards.

In many implementations, it might be unnecessary to change these register values. Correct
use of the tx_axis_av_tvalid signal, as defined in TX AV Traffic Interface, allows the TX
Arbiter to share the bandwidth allocation eff iciently between the AV and Legacy sources
(even in the situations where the AV traffic requires less than 75% of the overall bandwidth).
However, for the cases that require less than 75% of the overall bandwidth, careful
configuration can result in a smoother (less bursty) transmission of the AV traffic, which
should prevent frame bunching across the AVB network.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 104
PG051 July 25, 2012

Ethernet AVB Endpoint

Credit Based Traffic Shaping Algorithm

To enforce the bandwidth policing of the AV Traff ic, a credit-based shaper algorithm has
been implemented in the TX Arbiter. Figure 3-37 illustrates the basic operation of the
algorithm and indicates how the TX Arbiter decides which Ethernet frame to transmit.

Figure 3-37 illustrates the key features of the credit based algorithm, which are:

• The TX Arbiter schedules queued transmission from the TX AV Traff ic Interface if the
algorithm is in credit (greater or equal to 0).

• If there is less than 0 credit (not shown in Figure 3-37, but the credit can sink below 0),
then the TX Arbiter does not allow AV traff ic to be transmitted; legacy traff ic, if queued,
is scheduled instead.

• When no AV traff ic is queued, any positive credit is lost and the credit is reset to 0.

• When AV traff ic is queued, and until the time at which the TX Arbiter is able to schedule
it (while waiting for an in-progress legacy frame to complete transmission), credit can
be gained at a rate defined by the idleSlope.

• During AV traff ic transmission, credit is removed at a rate defined by the sendSlope.

• The hiLimit and loLimit settings impose a f ixed range on the possible values of credit.
If the available credit hits one of these limits, it does not exceed, but saturates at the
magnitude of that limit. These limits are f ixed in the netlist to ensure that the interface
is not used incorrectly.

X-Ref Target - Figure 3-37

Figure 3-37: Credit-based Shaper Operation

hiLimit

loLimit

0 increasing
time

credit=0
when no frames

are waiting

idleSlope sendSlope

credits withdrawn
when no frames

are waiting

increasing
credit

number of AV
queued frames

0

transmitting
AV frame

transmitting
Legacy frame

TRUE

TRUE

FALSE

FALSE

1

conflicting legacy traffic present, so queued AV frame is not
transmitted until conflicting legacy frame has been transmitted

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 105
PG051 July 25, 2012

Ethernet AVB Endpoint

The overall intention of the two settings idleSlope and sendSlope is to spread out the AV
traffic transmission as evenly as possible over time, preventing periods of bursty AV
transmission surrounded by idle AV transmission periods. No further background
information is provided in this document with regard to the credit-based algorithm. The
remainder of this section describes the idleSlope, and sendSlope variables from the
perspective of the TX Arbiter.

TX Arbiter Bandwidth Control

The configuration register settings, used for setting the cores local definitions of idleSlope
and sendSlope, are described in general, and then from the point of view of a single
example which describes the calculations made to set the register default values. This
example dedicates up to 75% of the overall bandwidth to be reserved for the AV traffic
(leaving at least 25% for the Legacy Traffic).

The calculations described are independent of Ethernet operating speed (no re-calculation
is required when changing between Ethernet speeds of 1 Gb/s and 100 Mb/s).

idleSlope

The general equation is:

idleSlopeValue=(AV percentage / 100) x 8192

In this example, dedicating up to 75% of the total bandwidth to the AV traffic:

idleSlopeValue=(75 / 100) x 8192 = 6144

The calculated value for the idleSlopeValue should be written directly to the Tx Arbiter
Send Slope Control Register. This provides a per-byte increment value when relating this to
Legacy Ethernet frame transmission.

sendSlope

The general equation is:

sendSlopeValue=((100 - AV percentage) / 100) x 8192

In this example, dedicating up to 75% of the total bandwidth to the AV traffic, we obtain:

sendSlopeValue=((100 - 75) / 100) x 8192 = 2048

The calculated value for the sendSlopeValue should be written directly to the Tx Arbiter
Idle Slope Control Register. This provides a per-byte decrement value when relating this to
AV Ethernet frame transmission.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 106
PG051 July 25, 2012

Ethernet AVB Endpoint

Ethernet AVB Endpoint Reception
When the AVB Endpoint is present the optional frame filter is always present with three
dedicated f ilters for the identif ication of AVB specific frames. As shown in Figure 3-35
received data from an AVB network can be of three types:

• Precise Timing Protocol (PTP) Packets. Routed to the dedicated hardware RX PTP
Packet Buffer which can be accessed by the software drivers. PTP packets are identif ied
by searching for a specif ic MAC Destination Address and Type f ield.

• AV Traffic. Routed to the RX AV Traff ic Interface of the core. These packets are
identif ied by searching for MAC packets containing a MAC VLAN field with one of two
possible configurable VLAN PCP and VID combinations.

• Legacy Traffic:. Routed to the RX Legacy Traff ic Interface of the core. All packet types
which are not identif ied as PTP or AV Traffic are considered legacy traff ic.

RX Legacy Traffic Interface

The signals forming the RX Legacy Traffic Interface are defined in Table 2-8. The timing of
this interface is as described in Receiving Inbound Frames, with the interface functionality
limited to full-duplex, no jumbo support, VLAN frames enabled and no flow control.

RX AV Traffic Interface

The signals forming the RX AV Traff ic Interface are defined in Table 2-10. The timing of this
interface is exactly the same as for the RX Legacy Traffic (there is a one-to-one
correspondence between signal names when the axis_mac is exchanged for axis_av).

The RX AV traff ic is identif ied using the dedicated AVB frame filters. These are only present
when the AVB Endpoint is include in the TEMAC core and are initialized to match against the
default AV VLAN p and VLAN Q values. These are described in more detail in Using the AVB
Specif ic Frame Filters.

Real Time Clock and Time Stamping
This chapter considers two of the logical components that are partially responsible for the
AVB timing synchronization protocol.

• Real Time Clock

• Time Stamping Logic

These are both described in this chapter as they are closely related.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 107
PG051 July 25, 2012

Ethernet AVB Endpoint

Real Time Clock

A signif icant component of the PTP network wide timing synchronization mechanism is the
Real Time Clock (RTC), which provides the common time of the network. Every device on the
network maintains its own local version.

The RTC is effectively a large counter which consists of a 32-bit nanoseconds f ield (the unit
of this f ield is 1 nanosecond and this f ield counts the duration of exactly one second, then
resets back to zero) and a 48-bit seconds field (the unit of this f ield is one second; this f ield
increments when the nanosecond field saturates at 1 second). The seconds field only wraps
around when its count fully saturates. The entire RTC is therefore designed never to wrap
around in our lifetime. The RTC is summarized in Figure 3-38.

Conceptually, the RTC is not related to the frequency of the clock used to increment it. A
configuration register within the core provides a configurable increment rate for this
counter: this increment register,RTC Increment Value Control Register, is for this reason
programmed with the value of the RTC reference clock period which is being used to
increment the RTC. The resolution of this increment register is very f ine (in units of 1/
1048576 (1/220) fraction of one nanosecond). Therefore, the RTC increment rate can be
adjusted to a very f ine degree of accuracy which provides the following features:

• The RTC can be incremented from any available clock frequency that is greater than the
AVB standards defined minimum of 25 MHz. However, the faster the frequency of the
clock, the smaller the step increment and the smoother the overall RTC increment rate.
Xilinx recommends clocking the RTC logic at 125 MHz because this is a readily available
clock source: this frequency significantly exceeds the minimum performance of the
IEEE802.1AS specification.

• When acting as a clock slave, the rate adjustment of the RTC can be matched to that of
the network clock master to an exceptional level of accuracy (by slightly increasing or
decreasing the value within the RTC Increment Value Control Register). The software
drivers (available separately) periodically calculate the increment rate error between
themselves and the master, and update the RTC increment value accordingly.

X-Ref Target - Figure 3-38

Figure 3-38: Real Time Clock (RTC)

Seconds field (48 bits unsigned) Nano Seconds field (32 bits unsigned)

counts from 0 until fully saturated,
then wraps around to 0

counts from 0 to 1 x 109 -1,
then resets to 0

IEEE802.1AS Real Time Counter (RTC)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 108
PG051 July 25, 2012

Ethernet AVB Endpoint

The core also contains configuration registers, RTC Seconds Field Offset Control and RTC
Nanoseconds Field Offset Control, which allow a large step change to be made to the RTC.
This can be used to initialize the RTC, after power-up. It is also used to make periodic
corrections, as required, by the software drivers when operating as a clock slave; however,
if the increment rates are closely matched, these periodic step corrections will be small.

RTC Implementation

Increment of Nanoseconds Field

Figure 3-39 shows the implementation used to create the RTC nanoseconds f ield. This is
performed by the use of an implementation-specif ic 20-bit sub-nanoseconds field. The
nanoseconds and sub-nanoseconds fields can be considered to be concatenated together.
All RTC logic within the core is synchronous to the RTC Reference clock, rtc_clk .

X-Ref Target - Figure 3-39

Figure 3-39: Increment of Sub-nanoseconds and Nanoseconds Field

Nano Seconds (32 bits unsigned) Sub-Nano Seconds
(20 bits unsigned)

RTC Increment Value (26 bits)
(written by processor)

fill with zero’s

RTC Nano Seconds Offset (30 bits)
(written by processor)

Step 1

Step 2

controlled frequency RTC

Synchronised RTC

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 109
PG051 July 25, 2012

Ethernet AVB Endpoint

There are two stages to the implementation:

1. Controlled Frequency RTC

The RTC Increment Value illustrated in Figure 3-39 is set directly from the RTC Increment
Value Control Register. The upper 6 bits of this register align with the lower 6 bits of the RTC
nanoseconds field. The lower 20-bits of the RTC Increment Value align with the 20-bit
sub-nanoseconds field. It is assumed that the frequency of the RTC reference clock is known
by the processor to enable the increment value to be programmed correctly. For example,
if the RTC is being clocked from a 125 MHz clock source, a nominal increment value of 8 ns
should be programmed (by writing the value 0x800000 into the RTC Increment Value
Control Register). However, if the microprocessor determines that this clock is drifting with
respect to the grand master clock, it can revise this nominal 8 ns up or down by a very f ine
degree of accuracy.

The ‘step 1’ addition illustrated in Figure 3-39 (of current counter value plus increment)
occurs on every clock cycle of the RTC reference clock. The result from this addition forms
the new value of the ‘controlled frequency RTC’ nanoseconds field. This controlled
frequency RTC initializes to zero, following reset, and continues to increment smoothly on
every RTC reference clock cycle by the current value contained in the RTC Increment Value
Control Register.

Figure 3-39 illustrates that 26 bits have been reserved for the Increment Value, the upper
6-bits of which overlap into the nanoseconds f ield. For this reason, the largest per-cycle
increment = 1ns * 2^6 = 64 ns. The lowest clock period which is expected to increment this
counter is 40 ns (corresponding to the 25 MHz MAC clock used at 100 Mb/s speeds). So this
should satisfy all allowable clock periods.

2. Synchronized RTC

The value contained in the RTC Seconds Field Offset Control and RTC Nanoseconds Field
Offset Control written by the microprocessor, is then applied to the free running ‘controlled
frequency RTC’ counter. This is used by the microprocessor to:

• Initialize the power-up value of the Synchronized RTC.

• Apply step corrections to the Synchronized RTC (when a slave), based on the timing PTP
packets received from the Grand Master Clock RTC.

The ‘step 2’ addition illustrated in Figure 3-39 (of controlled frequency RTC value plus
offset) occurs on every clock cycle of the RTC reference clock. The result from this addition
forms the new value of the Synchronized RTC nanoseconds field. It is this version of the RTC
nanoseconds field which is made available as an output of the core - the
rtc_nanosec_field[31:0] port.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 110
PG051 July 25, 2012

Ethernet AVB Endpoint

Increment of the Seconds Field

The RTC seconds f ield is, conceptually, implemented in a similar way to the nanoseconds
f ield. The seconds f ield should be incremented by a value of one whenever the
synchronized RTC nanoseconds field saturates at one-second. The RTC Seconds Field Offset
Control and RTC Nanoseconds Field Offset Control allow the software to make large step
corrections to the seconds f ield in a similar manner. Again, the step correction capability
can be used to either initialize the RTC counter following reset, or to synchronize the local
RTC to that of the Grand Master Clock (when the local device is acting as a clock slave).

Clock Outputs Based on the Synchronized RTC Nanoseconds Field

The clk8k (8 kHz clock) output, derived from the Synchronized RTC, is provided as an
output from the core. The synchronized RTC counter, unlike the controlled frequency
version, has no long-term drift (assuming the provided software drivers are used correctly).
Therefore, the clk8k signal is synchronized exactly to the network RTC frequency.

The 8 kHz clock is the period of the shortest class measurement interval for an SR class as
specified in IEEE802.1Q. This clock could also be useful for external applications (for
example, a 1722 implementation of the AV traff ic).

Time Stamping Logic
Whenever a PTP packet, used with the Precise Timing Protocol (PTP), is transmitted or
received (see Precise Timing Protocol Packet Buffers), a sample of the current value of the
RTC is taken and made available for the software drivers to read. The hardware makes no
distinction between frames carrying event or general PTP messages (as defined in IEEE
802.1AS); it always stores a timestamp value for Ethernet frames containing the Ethertype
specified for PTP messages.

This time stamping of packets is a key element of the tight timing synchronization across
the AVB network wide RTC, and these samples must be performed in hardware for accuracy.
The hardware in this core therefore samples and captures the local nanoseconds RTC f ield
for every PTP frame transmitted or received. These captured time stamps are stored in the
Precise Timing Protocol Packet Buffers alongside the relevant PTP frame, and are read and
used by the PTP software drivers.

It is important to realize that is it actually the ‘controlled frequency RTC’ nanoseconds field
which is sampled by the time stamping logic rather than the synchronized RTC (see
Figure 3-39). This is important when operating as a clock slave: the controlled frequency
RTC always acts as a smooth counter whereas the synchronized RTC might suffer from

occasional step changes (whenever a new offset adjustment is periodically applied by the
software drivers). These step changes, avoided by using the controlled frequency RTC, could
otherwise lead to errors in the various PTP calculations which are performed by the
software drivers.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 111
PG051 July 25, 2012

Ethernet AVB Endpoint

Note: The software drivers can themselves obtain (when required) the local synchronized RTC value
by summing the captured time stamp with the current nanoseconds offset value of the RTC
Nanoseconds Field Offset Control (effectively performing the step 2 calculation of Figure 3-39 in
software).

Time Stamp Sampling Position of MAC Frames

A time stamp value should be sampled at the beginning of the f irst symbol following the
Start of Frame Delimiter (SFD) of the Ethernet MAC frame.

Figure 3-40 illustrates the time stamp sampling position that is used by the core. Time
stamps are taken after the MAC frame SFD is seen on the GMII.

Note: If the PHY specif ic latency values are available the software drivers can use them to adjust the
timestamps and improve overall system accuracy.

IEEE1722 Real Time Clock Format
The IEEE1722 specification defines the avbtp_timestamp f ield. This is derived by sampling
the IEEE802.1 AS Real Time Clock and converting the low order time to nanoseconds. This
conversion is performed in the core and an alternative RTC, in the 1722 format, is output on
the rtc_nanosec_field_1722[31:0] port.

This port contains a 32-bit word representing nanosecond values. Unlike the IEEE802.1 AS
nanosecond field (which resets back to zero when it reaches 1 second), the IEEE1722

X-Ref Target - Figure 3-40

Figure 3-40: Time Stamping Position

Tri-Mode
Ethernet

MAC
LogiCORE

with
AVB Endpoint

legacy
traffic

AV
traffic

Ethernet
PHYGMII

Tx

Rx

PHY Media

Xilinx Rx
sample position

Xilinx Tx
sample position

 PHY-specific
Tx latency

PHY-specific
Rx latency

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 112
PG051 July 25, 2012

Ethernet AVB Endpoint

nanosecond f ield counts fully to 0xFFFFFFFF before wrapping around. The f ield therefore
wraps around approximately every 4 seconds.

If the system is using the IEEE1722 functionality, this port can be sampled to create the
avbtp_timestamp f ield. Otherwise this port can be ignored.

Precise Timing Protocol Packet Buffers
This chapter considers two of the logical components which are partly responsible for the
AVB timing synchronization protocol.

• TX PTP Packet Buffer

• RX PTP Packet Buffer

These are both described in this chapter as they are closely related.

TX PTP Packet Buffer

The TX PTP packet buffer is illustrated in Figure 3-41. This packet buffer provides working
memory to hold the PTP frames which are required for transmission. The software drivers,
through the AXI4-Lite configuration bus, can read/modify/write the PTP frame contents,
and whenever required, can request transmission of the appropriate PTP frames.

The PTP packet buffer is implemented in dual-port block RAM. Port A of the block RAM is
connected to the configuration bus and all addresses in the buffer are read/writable. Port B
of the block RAM is connected to the TX Arbiter module, allowing PTP frames to be read out
of the block RAM and transmitted.

The TX PTP Packet Buffer is divided into eight identical buffer sections as illustrated. Each
section contains 256 bytes, which are formatted as follows:

• the first byte, at address zero, contains a frame length f ield. This indicates how many
bytes make up the PTP frame that is to be transmitted from this particular PTP buffer.

• The next seven bytes, from address 1 to 7, are reserved for future use.

• The PTP frame data itself is stored from address 8 onwards. The amount of addresses
used is dependent on the indicated frame length f ield, which is different for each PTP
frame type. Each PTP buffer provides a maximum of 244 bytes (more than that required
for the largest PTP frame). Each PTP frame holds the entire MAC frame (with the
exception of any required MAC padding or CRC - these are automatically inserted by
the transmit logic) from the Destination Address f ield onwards.

• The top four addresses of each buffer, from address 0xFC to 0xFF are reserved for a
time stamp field. At the beginning of PTP frame transmission from any of the eight
buffers, the Time Stamping Logic samples the Real Time Clock. Following the end of
PTP frame transmission, this captured timestamp is automatically written into this
location to accompany the frame for which it was taken.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 113
PG051 July 25, 2012

Ethernet AVB Endpoint

Despite the logic and formatting of each individual PTP buffer being identical, the block
RAM is pre-initialized at device configuration to hold template copies of each of the PTP
frames, as indicated in Figure 3-41. This shows that the f irst seven memory segments are in
use. PTP Buffer number 8 is currently unused and could therefore be used by proprietary
applications.

The Tx PTP Packet Buffer Control Register is defined for the purpose of requesting which of
the eight TX PTP Buffers are to be transmitted. It is possible to request more than a single
frame at one time (indeed it is possible to request all 8). When more than one frame is
requested, the TX PTP Buffer logic gives a priority order to the lowest PTP Buffer Number
that has been requested.

The Tx PTP Packet Buffer Control Register also contains a frame waiting f ield. This can be
read by the software drivers to determine which of the previously requested PTP frames
have been sent, and which are still queued.

Following transmission completion of each requested PTP frame, a dedicated interrupt
signal, interrupt_ptp_tx, is generated by the core. On the assertion of the interrupt,
the captured timestamp is already available in the upper four bytes of the buffer, and the
tx_packet f ield of theTx PTP Packet Buffer Control Register indicates the most recently
transmitted Buffer Number.

The software drivers, available from Xilinx, using the AXI4-Lite and dedicated interrupts, use
this interface to, as defined by the IEEE802.1AS protocol, periodically update specific f ields
within the PTP packets, and request transmission of these packets.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 114
PG051 July 25, 2012

Ethernet AVB Endpoint

RX PTP Packet Buffer

The RX PTP packet buffer is illustrated in Figure 3-42. This provides working memory to
hold each received PTP frame. The software drivers, using the AXI4-Lite configuration bus,
can then read and decode the contents of the received PTP frames. The PTP packet buffer is
implemented in dual-port block RAM. Port A of the block RAM is connected to the
configuration bus and all addresses in the buffer can be read (writes are not allowed). Port
B of the block RAM is connected to the PTP frame filter, which routes all received PTP
frames into the RX PTP Packet Buffer. The RX PTP Packet Buffer is divided into sixteen
identical buffer sections as illustrated. Each section contains 256 bytes, which are formatted
as follows:

• The PTP frame data itself is stored from address 0 onwards: the entire MAC frame from
the Destination Address onwards is written (with the exception of the FCS f ield which
has been removed by the receive logic). The number of addresses used is dependent on
the particular PTP frame size, which is different for each PTP frame type. Each PTP
buffer provides a maximum of 252 bytes (more than that required for the largest PTP
frame). Should an oversized PTP frame be received, the f irst 252 bytes is captured and
stored - other bytes are lost.

X-Ref Target - Figure 3-41

Figure 3-41: TX PTP Packet Buffer Structure

Tx PTP Packet Buffers

Buffer Number Buffer Base Address

0

1

2

3

4

5

6

7

0x1000

0x1100

0x1200

0x1300

0x1400

0x1500

0x1600

0x1700

Single Tx PTP Packet Buffer

Address (+ Buffer Base Address)

byte-wide data

0xFF

0xFE

0xFD

0xFC

0x00

0x08

0x08 + frame_length_field

frame_length_field

reserved

PTP Frame Data

unused

timestamp[7:0]

timestamp[15:8]

timestamp[23:16]

timestamp[31:24]

Sync Frame

Follow_Up Frame

Pdelay_Req Frame

Pdelay_Resp Frame

Pdelay_Resp_Follow_Up
Frame

Announce Frame

Signaling Frame

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 115
PG051 July 25, 2012

Ethernet AVB Endpoint

• The top four addresses of each buffer, from address 0xFC to 0xFF are reserved for a
timestamp field. At the beginning of PTP frame reception, the Time Stamping Logic
samples the Real Time Clock. Following the end of PTP frame reception, this captured
timestamp is automatically written into this location to accompany the frame for which
it was taken.

Following reset, the first received PTP frame is written into Buffer Number 0. The next
subsequent received PTP frame is written into the next available buffer - in this case number
1. This process continues with buffer number 2, 3, then 4, and so forth, being used. After
receiving the 16th PTP frame (which would have been stored into buffer number 15), the
count is reset, and then buffer number 0 is overwritten with the next received PTP frame.
For this reason, at any one time, the RX PTP Packet Buffer is capable of storing the most
recently received sixteen PTP frames. Following the completion of PTP frame reception, a
dedicated interrupt signal, interrupt_ptp_rx, is generated by the core. On the assertion
of the interrupt, the captured timestamp is already available in the upper four bytes of the
buffer, and the rx_packet f ield of the Rx PTP Packet Buffer Control Register indicates the
most recently f illed Buffer Number. The software drivers, available from Xilinx, using the
AXI4-Lite and dedicated interrupt, use this interface to decode, and then act on, the
received PTP packet information.

X-Ref Target - Figure 3-42

Figure 3-42: RX PTP Packet Buffer

Rx PTP Packet Buffers

Buffer Number Buffer Base Address

0

1

2

3

4

5

6

7

0x0000

0x0100

0x0200

0x0300

0x0400

0x0500

0x0600

0x0700

Single Rx PTP Packet Buffer

Address (+ Buffer Base Address)

byte-wide data

0xFF

0xFE

0xFD

0xFC

0x00

frame size

PTP Frame Data

unused

timestamp[7:0]

timestamp[15:8]

timestamp[23:16]

timestamp[31:24]

0x0800

0x0900

0x0A00

0x0B00

0x0C00

0x0D00

0x0E00

0x0F00

8

9

10

11

12

13

14

15

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 116
PG051 July 25, 2012

Configuration and Status

Configuration and Status
This section provides general guidelines for configuring and monitoring the core, including
a detailed description of the user-side management interface. It also describes the
alternative to the optional management interface which is the Configuration Vector. See the
appropriate section:

• The Management Interface

• The Configuration Vector

The Management Interface
The management interface uses the industry standard AXI4-Lite to allow access to the MAC
netlist. This interface is used for these operations:

• Configuring the MAC core

• Configuring the frame filter

• Configuring the Interrupts

• Accessing Statistics information

• Providing access to the MDIO interface to configure Ethernet PHY devices

Table 2-12 describes the optional signals used by the user to access the MAC netlist.

Figure 3-43 and Figure 3-44 show the basic AXI4-Lite transactions supported by the MAC
solution. Illegal accesses results in an error indication. See [Ref 13] for more information
about this standard.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 117
PG051 July 25, 2012

Configuration and Status

Address Map

The MAC address map, as shown in Table 3-4, has been updated to fully memory map all
registers and provide the same interface in all cases. Where possible, gaps have been left to
allow for future expansion. The Address Map has been split into distinct functional blocks.
Each of these blocks is described in more detail in the following sections. For full details of
the registers see Register Space in Chapter 2.

X-Ref Target - Figure 3-43

Figure 3-43: Management Register Write Timing
X-Ref Target - Figure 3-44

Figure 3-44: Management Register Read Timing

s_axi_aclk

s_axi_aresetn

s_axi_awdaddr

s_axi_awvalid

s_axi_awready

s_axi_wdata

s_axi_wstrb

s_axi_wvalid

s_axi_wready

s_axi_bresp

s_axi_bvalid

s_axi_bready

ADDRESS

DATA

Byte Enable

OKAY

Sending Address Writing Data Receiving Response

s_axi_aclk

s_axi_aresetn

s_axi_ardaddr

s_axi_arvalid

s_axi_arready

s_axi_rdata

s_axi_rvalid

s_axi_rready

s_axi_rresp

ADDRESS

DATA

Sending Address Receiving Response

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 118
PG051 July 25, 2012

Configuration and Status

MAC Configuration

After the core is powered up and reset, users can reconfigure some of the core parameters
from their defaults, such as flow control support and RX/TX VLAN support. Configuration
changes can be written at any time, however, both receiver and transmitter configuration
changes only take effect during interframe gaps. The exceptions to this are the configurable
soft resets, which take effect immediately. See MAC Configuration Registers in Chapter 2.

MDIO Interface

The Management Interface is also used to access the MDIO Interface of the TEMAC core;
this interface is used to access the Managed Information Block of the PHY components
attached to the TEMAC core and is only available when the management interface is
enabled.

Introduction to MDIO

MDIO Bus System

The Management Data Input/Output (MDIO) interface for access to Ethernet PHY devices
for 1 Gb/s operation and slower speeds is defined in IEEE 802.3, clause 22. This two-wire
interface consists of a Management Data Clock (MDC) and a shared serial data line (MDIO).
The maximum permitted frequency of MDC is set at 2.5 MHz. Figure 3-45 illustrates an
example MDIO bus system.

Table 3-4: MAC Registers

Address Description

0x000-0x1FC Reserved

0x200-0x3FC Statistics Counters

0x400-0x4FC MAC Configuration

0x500-0x5FC MDIO Interface

0x600-0x6FC Interrupt Controller

0x700-0x7FC Frame Filter

0x800-0xFFFC Reserved

0x10000-0x10FFC RX PTP Packet Buffer Address Space

0x11000-0x117FC TX PTP Packet Buffer Address Space

0x11800-0x11FFC Reserved

0x12000-0x127FC AVB Configuration

0x12800-0x13FFC RTC Configuration

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 119
PG051 July 25, 2012

Configuration and Status

An Ethernet MAC is shown as the MDIO bus master (the Station Management (STA) entity).
Two PHY devices are shown connected to the same bus, both of which are MDIO slaves
(MDIO Managed Device (MMD) entities).

The MDIO bus system is a standardized interface for accessing the configuration and status
registers of Ethernet PHY devices. In the example illustrated, the Management Bus Interface
of the Ethernet MAC is able to access the configuration and status registers of two PHY
devices using the MDIO bus.

MDIO Transactions

All transactions, read or write, are initiated by the MDIO master. All MDIO slave devices,
when addressed, must respond. MDIO transactions take the form of an MDIO frame,
containing f ields for transaction type, address and data. This MDIO frame is transferred
across the MDIO wire synchronously to MDC. The abbreviations are used in this section are
explained in Table 3-5.

X-Ref Target - Figure 3-45

Figure 3-45: A Typical MDIO-Managed System

Configuration
Registers 0 to 31
(REGAD)

MDIO slave

PHY1 (MMD)

Physical
Address
(PHYAD)
= 1

Configuration
Registers 0 to 31
(REGAD)

MDIO slave

PHY2 (MMD)

Physical
Address
(PHYAD)
= 2

MDIO
master

MAC (STA)

MDC
MDIO

Host
Bus I/F

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 120
PG051 July 25, 2012

Configuration and Status

Write Transaction

Figure 3-46 shows a Write transaction across the MDIO; this is defined by OP = 01. The
addressed PHY (PHYAD) device takes the 16-bit word in the data f ield and writes it to the
register at REGAD.

Read Transaction

Figure 3-47 shows a Read transaction; this is defined by OP = 10. The addressed PHY
(PHYAD) device returns the 16-bit word from the register at REGAD. For details of the
register map of PHY layer devices and a fuller description of the operation of the MDIO
interface itself, see [Ref 9].

Connecting the TEMAC to an MDIO bus

Connecting the MDIO to an Internally Integrated PHY

Table 3-5: Abbreviations and Terms

Abbreviation Term

PRE Preamble

ST Start of frame

OP Operation code

PHYAD Physical address

REGAD Register address

TA Turnaround

X-Ref Target - Figure 3-46

Figure 3-46: MDIO Write Transaction

X-Ref Target - Figure 3-47

Figure 3-47: MDIO Read Transaction

Z1 1 1 0 0 1 P4 P3 P2 P1 P0 R4R3R2R1R0 1 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PHYAD REGAD TA 16-bit WRITE DATA

GEMAC drives MDIO

Z1 1 1 0 1 0 P4 P3 P2 P1 P0 R4R3R2R1R0 Z 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PRTAD REGAD TA 16-bit READ DATA

MAC drives MDIO PHY drives MDIO

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 121
PG051 July 25, 2012

Configuration and Status

The MDIO ports of the core (see Table 2-17) can be connected to the MDIO ports of an
internally integrated physical layer device. For example, the MDIO ports of the Ethernet
1000BASE-X PCS/PMA or SGMII from Xilinx (see Interfacing to Other Xilinx Ethernet Cores).

Connecting the MDIO to an External PHY

When the core is used to connect to an external PHY device using GMII/MII or RGMII, it is
expected that the MDIO of the core is also connected to the external PHY. This allows the
configuration registers of the PHY to be accessed through the Management interface of the
core.

In this situation, mdio_i, mdio_o and mdio_t must be connected to a 3-state buffer to
create a bidirectional wire, mdio. This 3-state buffer can be either external to the FPGA, or
internally integrated by using an IOB IOBUF component with an appropriate SelectIO™
interface standard for the external PHY. (This is illustrated in Figure 3-48.)

Connecting the MDIO to an External and Internal PHY

The MDIO can connect to more than one device. If an internal PHY is present, for example
the Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE™, performing as SGMII and it is
desired to also connect the MDIO to an external PHY device, then an arbitration circuit is
required. An example circuit is shown in Figure 3-49. Both PHY devices must be assigned a
unique none zero physical address (PHYAD). This description is included only for
completeness and this particular use case is not expected to be common.

X-Ref Target - Figure 3-48

Figure 3-48: External MDIO Interface

IOB LOGIC

OPAD

O

I IO

T

IOPAD

IOB LOGIC

IOBUF

 Ethernet MAC Solution

mdc

mdio_t

mdio_o

mdio_i

MDC

MDIO

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 122
PG051 July 25, 2012

Configuration and Status

The SGMII specif ication contains a method of transferring PHY configuration information
across the SGMII link. Therefore all relevant PHY information can be obtained directly from
the internal SGMII core.

Accessing PHY Configuration Registers, through MDIO using the Management Interface

The Management Interface is also used to access the MDIO interface of the core. The MDIO
interface supplies a clock to the connected PHY, mdc. This clock is derived from the
s_axi_aclk signal using the value in the Clock Divide[5:0] configuration register.
The frequency of mdc is given by Equation 3-1.

Equation 3-1

The frequency of mdc given by Equation 3-1 should not exceed 2.5 MHz to comply with the
IEEE 802.3-2008 specif ication for this interface. To prevent mdc from being out of
specification, the Clock Divide[5:0] value powers up at 00000, and while this value is
in the register, it is impossible to enable the MDIO interface.

For details of the register map of PHY layer devices and a fuller description of the operation
of the MDIO interface itself, see IEEE 802.3-2008.

X-Ref Target - Figure 3-49

Figure 3-49: Internal and External MDIO Interfaces

mdc

mdio_i

mdio_o

mdio_t

mdc

mdio_in

mdio_out

mdio_tri

OPAD MDC

IOPAD MDIO

IOB Logic
(to external PHY(s))

T

I

O

 Ethernet MAC

Internal PHY Device
(e.g. SGMII core)

fMDC
fs_axi_aclk

1 Clock Divide[5:0]+() 2×
--=

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 123
PG051 July 25, 2012

Configuration and Status

MDIO Configuration and Control

Access to the MDIO interface through the management interface is entirely register
mapped.

To perform an MDIO write the write data must first be written to the MDIO Write Data
register, shown in Table 2-36, The MDIO write transaction is then initiated by a write to the
MDIO Control Word register, shown in Table 2-35, with Initiate (bit 11) set to 0x1, OP (bits
15:14) set to 0x1 and the PHYAD and REGAD set according to the PHY and Register being
accessed. This triggers the MDIO Ready bit to deassert and it remains deasserted until the
MDIO transaction has completed.

To perform an MDIO read, the read transaction is initiated by a write to the MDIO Control
Word register, shown in Table 2-35, with Initiate (bit 11) set to 0x1, OP (bits 15:14) set to 0x2
and the PHYAD and REGAD set according to the PHY and Register being accessed. This
triggers the MDIO Ready bit to deassert and it remains deasserted until the MDIO
transaction has completed. When the MDIO Ready is re-asserted the read data is ready to
be read from the MDIO Read data register, shown in Table 2-37.

Note: It is possible to either poll the MDIO Control register or the MDIO Read Data register to check
the status of MDIO Ready; alternatively the MAC interrupt can be used (see Interrupt Controller).

Interrupt Controller
An Interrupt Block is implemented in the Tri-Mode Ethernet MAC solution to assert an
interrupt when a pending MDIO transaction has completed. Interrupt registers are shown in
Table 2-38.

The Configuration Vector
If the optional management interface is omitted from the core, all of the relevant
configuration signals are brought out of the core. These signals are bundled into the
rx_configuration_vector and the tx_configuration_vector signals. The bit
mapping of these signals are defined in Table 2-69 and Table 2-70.

You can permanently set the vector bits to logic 0 or 1 or change the configuration vector
signals at any time; however, with the exception of the reset signals, they do not take effect
until the current frame has completed transmission or reception.

Frame Filter

When the frame filter is selected with no management interface, only a subset of its
functionality is available. Because there is no user access to internal registers it is not
possible to update the configurable frame filters; these are therefore not generated as part
of the core. However, the basic Destination Address f iltering is still available and enables
the MAC to identify/filter the Broadcast address, a User supplied Pause/Unicast Address
and the Special Pause Multicast Address. In this configuration it is assumed that the

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 124
PG051 July 25, 2012

TEMAC Configuration Settings

user-supplied Pause address is the same as the MAC Unicast address. A packet matching
this f ilter is only treated as a pause frame if it meets all other criteria to identify a pause
frame.

TEMAC Configuration Settings
This section discusses unusual configuration options. These can be set by either method
(Management Interface or the Configuration Vector).

Half-Duplex Configuration Settings
When the core is generated with half-duplex capability, the transmitter and receiver can be
independently configured between full and half-duplex modes. This functionality is made
available for full flexibility in unusual applications, for example, Ethernet protocol testers.
However, for legal and predictable behavior in Ethernet networks, always configure
transmitter and receiver duplex modes identically.

Half-Duplex and Flow Control Configuration Settings
The IEEE802.3 specification defines the flow control functionality only for full-duplex
applications.

Configuration of the TEMAC allows Flow Control functionality and Duplex mode to be
configured independently. However, Flow Control is enabled only in full-duplex mode:

• When operating half-duplex mode, always disable Flow Control.

• When operating in full-duplex mode, Flow Control can optionally be enabled.

MAC Address Settings
Under all core generation settings, the core contains a configurable Pause frame MAC
Source Address (see MAC Configuration Registers) and the use of configuration vectors
allows this to be set independently for RX and TX. This MAC Address is used by the flow
control logic; received pause frames are matched against this address appearing in the
Destination Address f ield; pause frames initiated by the core place this MAC Address into
the Source Address field of a transmitted pause frame.

When the TEMAC solution is generated with the optional frame filter, the core contains a
configurable Unicast Address (see MAC Configuration Registers). This is used by the frame
filter to match against this address appearing in the Destination Address f ield of all
received frames. The core, for full flexibility, allows the Pause frame MAC Source Address
and the Unicast Address (when present) to be configured independently. However, under
standard network operating conditions the Pause frame MAC Source Address should be set
to the Unicast Address.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 125
PG051 July 25, 2012

Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP Core

The core, when generated without a management interface, has independent RX and TX
Pause Frame MAC source Address control; these should be set to the same value.

AVB Endpoint
When enabling AVB Endpoint operation, disable flow control and jumbo mode and use only
in full-duplex mode.

Note: The AVB Endpoint is only available if the AXI4-Lite management interface is included and
therefore there is no configuration vector control available.

Physical Interface for the 10 Mb/s and 100 Mb/s
Only Ethernet MAC IP Core
The HDL example design supplied with the 10 Mb/s or 100 Mb/s only IP core, provides an
MII interface. This is typically used to connect the MAC to an external PHY device.

The Media Independent Interface (MII), defined in IEEE Std 802.3-2008, clause 22 is a
parallel interface that connects a 10 Mb/s and/or 100 Mb/s capable MAC to the physical
sublayers.

Virtex®-6 devices support MII at 2.5V only; Spartan®-6 devices support MII at 3.3V or
lower. For 7 series and Zynq™-7000 families it depends on the type of I/O used: HR I/O
supports MII at 3.3V or lower whereas HP I/O only supports 1.8V or lower and therefore an
external voltage converter is required to interoperate with any multi-standard PHY.

MII Transmitter Interface
The logic required to implement the MII transmitter logic is illustrated in Figure 3-50.
mii_tx_clk is provided by the external PHY device connected to the MII. As shown, this is
placed onto global clock routing to provide the clock for all transmitter logic, both within
the core and for the user-side logic which connects to the TX AXI4-Stream interface of the
core. Alternatively, for devices containing regional clock resources, the BUFG of Figure 3-50
can be replaced with a BUFR primitive.

To match the user data rate, which uses an 8-bit datapath and the MII, which uses a 4-bit
datapath, the TX AXI4-Stream interface is throttled, using tx_axis_mac_tready, under
control of the MAC to limit data transfers to every other cycle.

Figure 3-50 also illustrates how to use the physical transmitter interface of the core to
create an external MII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-50 shows that the output transmitter signals
are registered in device IOBs before driving them to the device pads.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 126
PG051 July 25, 2012

Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP Core

MII Receiver Interface
The logic required to implement the MII receiver logic is also illustrated in Figure 3-50.
mii_rx_clk is provided by the external PHY device connected to the MII. As illustrated,
this is placed onto global clock routing to provide the clock for all receiver logic, both
within the core and for the user-side logic which connects to the RX AXI4-Stream interface
of the TEMAC. Alternatively, for devices containing regional clock resources, the BUFG of
Figure 3-50 can be replaced with a BUFR primitive.

To match the user data rate, which uses an 8-bit datapath and the MII, which uses a 4-bit
datapath, the RX AXI4-Stream interface is throttled, using rx_axis_mac_tvalid, under
control of the MAC to limit data transfers to every other cycle.

Figure 3-50 also illustrates how to use the physical receiver interface of the core to create
an external MII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-50 shows that the input receiver signals are
registered in device IOBs before routing them to the core.

Multiple Core Instances with the MII
Because both mii_tx_clk and mii_rx_clk are both sourced by the external PHY device
connected to the MII, it is not possible to share transmitter or receiver clock resources
across multiple instantiations of the core. Each instance of the core requires its own
independent clocking resources. Therefore the logic of Figure 3-50 must be duplicated for
each instance of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 127
PG051 July 25, 2012

Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP Core

X-Ref Target - Figure 3-50

Figure 3-50: MII Transmitter, Receiver and Clock Logic For All Devices

IOB LOGIC

BUFG

D Q

mii_txd[0]

OPAD

D Q

mii_tx_en

OPAD

D Q

mii_tx_er

OPAD

 Ethernet MAC Netlist

tx_axi_clk

gmii_txd[0]

gmii_tx_en

<component_name>_block
(Block Level from Example Design)

gmii_tx_er

mii_tx_clk

OPAD

mii_rxd[0]

IPADDQ

mii_rx_dv

IPAD

mii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

IOB LOGIC

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

BUFG

OPAD

mii_rx_clk

Receiver
User Logic

Transmitter
User Logic

Transmitter
Clock Enable

tx_mac_aclk

tx_enable

rx_enable

rx_mac_aclk

Receiver
Clock Enable

rx_enable

tx_enable

Rx AXI4_Stream I/F

Tx AXI4-Stream I/F

MII PHY module
(mii_if)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 128
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Physical Interfaces for 1 Gb/s Only Ethernet MAC
IP Core
The HDL example design supplied with the core, for 1 Gb/s only operation provides either a
GMII or RGMII interface. These are typically used to connect the MAC to an external PHY
device.

The Gigabit Media Independent Interface (GMII), defined in IEEE Std 802.3-2008, clause 35,
is used to connect a 1 Gb/s capable MAC to the physical sublayers.

Virtex®-6 devices support GMII at 2.5V only; Spartan®-6 devices support GMII at 3.3V or
lower. For 7 series and Zynq™-7000 families it depends on the type of I/O used: HR I/O
support s GMII at 3.3V or lower whereas HP I/O only supports 1.8V or lower. and therefore
an external voltage converter is required to interoperate with any multi-standard PHY for
GMII.

The Reduced Gigabit Media Independent Interface (RGMII) is an alternative to the GMII and
achieves a 50% reduction in the pin count compared with GMII. Therefore, this is often
favored over GMII by Printed Circuit Board (PCB) designers. This configuration is achieved
with the use of double-data-rate (DDR) flip-flops.

Virtex-6 devices support RGMII at 2.5V or lower; Spartan-6 devices support RGMII at 3.3V
or lower. For 7 series and Zynq-7000 families it depends on the type of I/O used: HR I/O
supports RGMII at 2.5V or lower whereas HP I/O only supports 1.8V or lower. Despite this
being the defined RGMII voltage most PHYs require 2.5V and therefore an external voltage
converter is required to interoperate with any multi-standard PHY for RGMII.

See the appropriate section:

• Gigabit Media Independent Interface (GMII)

• Reduced Gigabit Media Independent Interface (RGMII)

Gigabit Media Independent Interface (GMII)

GMII Transmitter Interface

The logic required to implement the GMII transmitter logic is shown in Figure 3-51.
gtx_clk is a user-supplied 125 MHz reference clock source. As illustrated, this is placed
onto global clock routing to provide the clock for all transmitter logic, both within the core
and for the user-side logic which connects to the TX AXI4-Stream interface of the core.

Figure 3-51 illustrates how to use the physical transmitter interface of the core to create an
external GMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design for a Virtex-6 device when the GMII is selected. If other

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 129
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

families are chosen, equivalent primitives specif ic to that family are used in the example
design.

Figure 3-51 shows that the output transmitter signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the transmitter clock is also
shown. This logic uses an IOB output Double-Data-Rate (DDR) register so that the clock
signal produced incurs exactly the same delay as the data and control signals.

This clock signal, gmii_tx_clk , is inverted with respect to gtx_clk so that the rising
edge of gmii_tx_clk occurs in the centre of the data valid window, therefore maximizing
setup and hold times across the interface.

The half-duplex signals gmii_col and gmii_crs are asynchronous to the transmit clock.
These are routed through PADs and IOBs and then input to the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 130
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

GMII Receive Interface

The logic required to implement the GMII receiver logic is described in the following
sections. Logical implementation is different for different device families. See the specific
family section:

• Virtex-7, Kintex-7 and Virtex-6 Devices

• Artix-7 Devices

• Zynq-7000 Devices

X-Ref Target - Figure 3-51

Figure 3-51: GMII Transmitter Logic and Clock Logic

GMII PHY module
(gmii_if)

IPAD

IOB LOGIC

gtx_clk
BUFG

gtx_clk gmii_tx_clk

ODDR

IOB LOGIC

OPAD

D Q

D Q

'0'

'1'

D Q

gmii_txd[0]

OPAD
gmii_txd_reg[0]

D Q

gmii_tx_en

OPAD
gmii_tx_en_reg

D Q

gmii_tx_er

OPAD
gmii_tx_er_reg

 Ethernet MAC Netlist

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

tx_axi_clk gmii_txd[0]

gmii_tx_en

<component_name>_block
(Block Level from Example Design)

gmii_tx_er

Transmitter
User Logic

Tx AXI4-Stream I/F

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 131
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Virtex-7, Kintex-7 and Virtex-6 Devices

In this implementation, a BUFIO is used to provide the lowest form of clock routing delay
from input clock to input GMII RX signal sampling at the device IOBs. This creates
placement constraints: a BUFIO capable clock input pin must be selected, and all other
input GMII RX signals must be placed in the respective BUFIO region. The relevant family
User Guide should be consulted.

The input clock is also placed onto regional clock routing using the BUFR component as
illustrated in Figure 3-52. This regional clock then provides the clock for all receiver logic,
both within the core and for the user-side logic which connects to the receiver AXI4-Stream
interface of the core. The IODELAY elements can be adjusted to f ine-tune the setup and
hold times at the GMII IOB input flip-flops. The delay is applied to the IODELAY element
using constraints in the UCF; these can be edited if desired. See Chapter 8, Constraining the
Core.

Artix-7 Devices

In Artix-7 devices, a PLL must be used on the gmii_rx_clk path as shown in Figure 3-53
to meet the GMII input setup and hold requirements. This logic is implemented by the
example design delivered with the core. Phase shifting can then be applied to the PLL to

X-Ref Target - Figure 3-52

Figure 3-52: GMII Receiver Logic and Clock Logic for Virtex-7, Kintex-7 and Virtex-6 Devices

GMII PHY module
(gmii_if)

<component_name>_block
(Block Level from Example Design)

gmii_rx_clk

IOB LOGIC

IPAD

gmii_rxd[0]

IPADDQ

gmii_rx_dv

IPAD

gmii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

BUFR

IODELAY

IODELAY

IODELAY

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

 Ethernet MAC Netlist

IOB LOGIC

BUFIO

Receiver
User Logic rx_mac_aclk

Rx AXI4-Stream I/F

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 132
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

f ine-tune the setup and hold times of the input GMII receiver signals which are sampled at
the GMII IOB input flip-flops; a f ixed phase shift is applied to the PLL using the example UCF
for the example design.

A limitation of using a PLL on this interface is that, because a PLL is sensitive to a change in
the input clock, 1 Gb/s half-duplex is not supported. This is due to the nature of the RX
clock in this mode of operation because it is sourced by whichever device has control of the
media and a PPM shift is to be expected. This causes the PLL to lose lock, rendering the
received interface inactive.

The clock produced by the DCM, placed onto global clock routing, is used to provide the
clock for all receiver logic, both within the core and for the user-side logic which connects
to the receiver AXI4-Stream interface of the core.

Zynq-7000 Devices

The Zynq-7000 family uses either Kintex™-7 or Artix™-7 FPGA logic depending upon the
part chosen. For Z- 7010 and Z-7020 see Artix-7 Devices; for Z-7030 and Z-7045 see
Virtex-7, Kintex-7 and Virtex-6 Devices.

X-Ref Target - Figure 3-53

Figure 3-53: GMII Receiver logic and Clock logic for Artix-7 Devices

GMII PHY module
(gmii_if)

Rx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD

gmii_rxd[0]

IPADDQ

gmii_rx_dv

IPAD

gmii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

BUFG

IOB LOGIC

PLL

CLKINCLK0

FB

gmii_rx_clk0rx_mac_aclk

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

 Ethernet MAC Netlist

Receiver
User Logic

FBOUT

BUFH

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 133
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Spartan-6 Devices

In this implementation, a BUFIO2 is used to provide the lowest form of clock routing delay
from input clock to input GMII RX signal sampling at the device IOBs. This creates
placement constraints: a BUFIO2 capable clock input pin must be selected, and all other
input GMII RX signals must be placed in the respective BUFIO2 region. See [Ref 5].

The input clock is also placed onto global clock routing using the BUFG component as
illustrated in Figure 3-54. This clock then provides the clock for all receiver logic, both
within the core and for the user-side logic which connects to the receiver AXI4-Stream
interface of the core.

The IODELAY2 elements can be adjusted to f ine-tune the setup and hold times at the GMII
IOB input flip-flops. The delay is applied to the IODELAY2 element using constraints in the
UCF; these can be edited if desired. See Chapter 8, Constraining the Core.

X-Ref Target - Figure 3-54

Figure 3-54: GMII Receiver Logic and Clock Logic for Spartan-6 Devices

<component_name>_block
(Block Level from Example Design)

gmii_rxd[0]

IPADDQ

gmii_rx_dv

IPAD

gmii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

 Ethernet MAC LogiCORE

IOB LOGIC

Receiver
User Logic rx_mac_aclk

IODELAY2

IODELAY2

IODELAY2

gmii_rx_clk

IOB LOGIC

IPAD

BUFG

BUFIO2

DIV_CLK

Rx AXI4-Stream I/F

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 134
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Clock Sharing across Multiple Cores with GMII for 1 Gb/s Operation

When multiple instances of the core are instantiated in a design, transmitter clock resources
can be shared across all core instances; receiver clock resources cannot be shared and are
independent for each core instance. See the appropriate section:

• Clock Resource Sharing in Virtex-7, Kintex-7 and Virtex-6 Devices

• Clock Resource Sharing in Artix-7 Devices

• Clock Resource Sharing in Zynq-7000 Devices

Clock Resource Sharing in Virtex-7, Kintex-7 and Virtex-6 Devices

Figure 3-55 shows clock resource sharing across multiple instantiations of the core when
using GMII at 1 Gb/s. For all instantiations, gtx_clk can be shared between multiple cores,
resulting in a common clock domain across the device. The receiver clocks cannot be
shared. Each core is provided with its own local version of gmii_rx_clk from the
connected external PHY device as shown in Figure 3-55.

Figure 3-55 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing gtx_clk across all instantiations. The receiver clock, which cannot be
shared, is unique for every instance of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 135
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Clock Resource Sharing in Artix-7 Devices

Figure 3-56 illustrates clock resource sharing across multiple instantiations of the core
when using GMII at 1 Gb/s in Artix-7 devices. for all instantiations, gtx_clk can be shared
between multiple cores, resulting in a common clock domain across the device. The receiver
clocks cannot be shared. Each core is provided with its own local version of gmii_rx_clk
from the connected external PHY device as shown in Figure 3-56.

Figure 3-56 shows only two cores. However, more can be added using the same principal.
This is done by instantiating the cores using the block level (from the example design) and
sharing the gtx_clk across all instantiations. The receiver clock, which cannot be shared,
is unique for every instance of the core.

X-Ref Target - Figure 3-55

Figure 3-55: Clock Resource Sharing for 1 Gb/s GMII in Virtex-7, Kintex-7 and Virtex-6 Devices

<component_name>_block
(Block Level from Example Design)

gmii_rx_clk

IOB LOGIC

IPAD

BUFR

rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clkIPAD

IOB LOGIC

gtx_clk
BUFG

rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clk

BUFIO

to local GMII Rx IOBs

gmii_rx_clk

IOB LOGIC

IPAD

BUFR

BUFIO

to local GMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 136
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Clock Resource Sharing in Zynq-7000 Devices

The Zynq-7000 family uses either Kintex-7 or Artix-7 FPGA logic, depending upon the part
chosen. For Z-7010 and Z-7020 see Clock Resource Sharing in Artix-7 Devices; for Z-7030
and Z-7045 see Clock Resource Sharing in Virtex-7, Kintex-7 and Virtex-6 Devices.

Clock Resource Sharing in Spartan-6 Devices

Figure 3-57 illustrates clock resource sharing across multiple instantiations of the core
when using GMII at 1 Gb/s in Spartan-6 devices. For all instantiations, gtx_clk can be
shared between multiple cores, resulting in a common clock domain across the device. The
receiver clocks cannot be shared. Each core is provided with its own local version of
gmii_rx_clk from the connected external PHY device as shown in Figure 3-57.

Figure 3-57 shows only two cores. However, more can be added using the same principal.
This is done by instantiating the cores using the block level (from the example design) and
sharing gtx_clk across all instantiations. The receiver clock, which cannot be shared, is
unique for every instance of the core.

X-Ref Target - Figure 3-56

Figure 3-56: Clock Resource Sharing for 1 Gb/s GMII in Artix-7 Devices

gmii_rx_clk

IOB LOGIC

IPAD

BUFG PLL

CLKINCLK0

FB

rx_clk0
rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clkIPAD

IOB LOGIC

gtx_clk
BUFG

gmii_rx_clk

IOB LOGIC

IPAD

BUFG PLL

CLKINCLK0

FB

gmii_rx_clk0
rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clk

<component_name>_block
(Block Level from Example Design)

<component_name>_block
(Block Level from Example Design)

BUFH

FBOUT

FBOUT

BUFH

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 137
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Reduced Gigabit Media Independent Interface (RGMII)
The logic required to implement the RGMII logic is described in the following sections.
Logical implementation is different for different device families. See the specific family
section:

• Virtex-7, Kintex-7 and Virtex-6 Devices

• Artix-7 Devices

• Zynq-7000 Devices

• Spartan-6 Devices

X-Ref Target - Figure 3-57

Figure 3-57: Clock Resource Sharing for 1 Gb/s GMII in Spartan-6 Devices

<component_name>_block
(Block Level from Example Design)

rxgmiimiiclk

 Ethernet MAC LogiCORE

txgmiimiiclkIPAD

IOB LOGIC

gtx_clk
BUFG

rxgmiimiiclk

 Ethernet MAC LogiCORE

txgmiimiiclk

to local GMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

gmii_rx_clk

IOB LOGIC

IPAD

BUFG

BUFIO2

DIV_CLK

to local GMII Rx IOBs

gmii_rx_clk

IOB LOGIC

IPAD

BUFG

BUFIO2

DIV_CLK

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 138
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Virtex-7, Kintex-7 and Virtex-6 Devices

Transmitter Logic for Virtex-7 and Kintex-7 Using HP I/O and Virtex-6

The logic required to implement the RGMII transmitter logic is shown in Figure 3-58.
gtx_clk is a user-supplied 125 MHz reference clock source which is placed onto global
clock routing to provide the clock for all transmitter logic, both within the core and for the
user-side logic which connects to the transmitter AXI4-Stream interface of the core.

Figure 3-58 shows how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-58 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

Note: Virtex-6 devices support RGMII at 2.5 V or lower; For 7 series and Zynq-7000 families it
depends on the type of I/O used: HR I/O supports RGMII at 2.5 V or lower whereas HP I/O only
supports 1.8 V or lower. Despite this being the defined RGMII voltage most PHYs require 2.5 V and
therefore an external voltage converter is required to interoperate with any multi-standard PHY
when using 7 series HP I/O.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal is then routed
though an output delay element (IODELAY) before connecting to the device pad. The result
of this is to create a 2 ns delay, which places the rgmii_txc forwarded clock in the centre
of the data valid window for forwarded RGMII data and control signals.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 139
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

X-Ref Target - Figure 3-58

Figure 3-58: RGMII Transmitter Logic and Clock Logic for Virtex-7 and Kintex-7 Using HP I/O
and Virtex-6 Devices

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

gtx_clk

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR

OPAD

D1

QD2

C

rgmii_tx_ctl

ODDR

OPAD

D1

QD2

C

rgmii_txc
IODELAY OPAD

gmii_txd_int[4]

ODDR

D1

QD2

C

IODELAY

IODELAY

‘1’
‘0’

 Ethernet MAC Netlist

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]Transmitter
User Logic

Tx AXI4-Stream I/F

RGMII PHY module
(rgmii_if)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 140
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Transmitter Logic for Virtex-7 and Kintex-7 Using HR I/O

HR I/O do not include ODELAY components and another method is required to introduce
the required 2 ns offset between the clock and data.

The logic required to implement the RGMII transmitter logic is illustrated in Figure 3-59.
gtx_clk and gtx_clk90 are user-supplied 125 MHz reference clock sources with
gtx_clk90 having a 90ο phase shift with respect to gtx_clk . These are placed onto
global clock routing to provide the clocks for all transmitter logic. gtx_clk is used as the
clock for the RGMII data and control; it is used both within the core and for the user-side
logic which connects to the transmitter AXI4-Stream interface of the core. gtx_clk90 is
used for the RGMII clock only.

Figure 3-59 shows how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-59 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal uses the 90ο phase
shifted version of the clock. The result of this is to create a 2 ns delay, which places the
rgmii_txc forwarded clock in the centre of the data valid window for forwarded RGMII
data and control signals.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 141
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Receiver Logic

In this implementation, a BUFIO is used to provide the lowest form of clock routing delay
from input clock to input RGMII RX signal sampling at the device IOBs. This creates
placement constraints: a BUFIO capable clock input pin must be selected, and all other
input RGMII RX signals must be placed in the respective BUFIO region. The relevant family
User Guide should be consulted.

The input clock is also placed onto regional clock routing using the BUFR component as
illustrated in Figure 3-60. This regional clock then provides the clock for all receiver logic,
both within the core and for the user-side logic which connects to the receiver AXI4-Stream
interface of the core.

X-Ref Target - Figure 3-59

Figure 3-59: RGMII Transmitter Logic and Clock Logic for Virtex-7 and Kintex-7 Using HR I/O

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

io_clk

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR

OPAD

D1

QD2

C

rgmii_tx_ctl

ODDR

OPAD

D1

QD2

C

rgmii_txc

OPAD

gmii_txd_int[4]

ODDR

D1

QD2

C

‘1’
‘0’

 Ethernet MAC Netlist

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]Transmitter
User Logic

Tx AXI4-Stream I/F

RGMII PHY module
(rgmii_if)

BUFG
gtx_clk90

MMCM
clk

clk90

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 142
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the RGMII
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See Chapter 8, Constraining the Core.

Clock Resource Sharing

Figure 3-61 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII at 1 Gb/s in 7 series devices using HP I/O and Virtex-6 devices.
Figure 3-62 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII at 1 Gb/s in 7 series devices using HR I/O. For all instantiations,
gtx_clk, and gtx_clk90 where present, can be shared between multiple cores,
resulting in a common clock domain across the device. The receiver clocks cannot be
shared. Each core is provided with its own local version of rgmii_rxc from the connected
external PHY device (shown in Figure 3-61 and Figure 3-62).

Figure 3-61 and Figure 3-62 illustrates only two cores. However, more can be added using
the same principal. This is done by instantiating the cores using the block level (from the
example design) and sharing gtx_clk across all instantiations. The receiver clock, which
cannot be shared, is unique for every instance of the core.

X-Ref Target - Figure 3-60

Figure 3-60: RGMII Receiver Logic and Clock Logic for Virtex-7, Kintex-7 and Virtex-6 Devices

RGMII PHY module
(rgmii_if)

Rx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

rgmii_rxc

IOB LOGIC

IPAD

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

gmii_rx_clk_bufg

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]

IDDR

IPAD

Q1

DQ2

C

IODELAY

IODELAY

 Ethernet MAC Netlist

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rxd[4]

BUFR

BUFIO

Receiver
User Logic

rx_mac_aclk

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 143
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

X-Ref Target - Figure 3-61

Figure 3-61: Clock Resource Sharing for 1 Gb/s RGMII in Virtex-7, Kintex-7 using HP I/O and Virtex-6
Devices

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

ODDR OPAD

rgmii_txc

IODELAY

IOB LOGIC

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

ODDR OPAD

rgmii_txc

IODELAY

IOB LOGIC

IPAD

IOB LOGIC

gtx_clk
BUFG

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

<component_name>_block
(Block Level from Example Design)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 144
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Artix-7 Devices

Transmitter Logic for Artix-7 Using HR I/O

HR I/O do not include ODELAY components and another method is required to introduce
the required 2 ns offset between the clock and data.

The logic required to implement the RGMII transmitter logic is illustrated in Figure 3-63.
gtx_clk and gtx_clk90 are user-supplied 125 MHz reference clock sources with
gtx_clk90 having a 90ο phase shift with respect to gtx_clk . These are placed onto
global clock routing to provide the clocks for all transmitter logic. gtx_clk is used as the
clock for the RGMII data and control; it is used both within the core and for the user-side
logic which connects to the transmitter AXI4-Stream interface of the core. gtx_clk90 is
used for the RGMII clock only.

Figure 3-63 illustrates how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those

X-Ref Target - Figure 3-62

Figure 3-62: Clock Resource Sharing for 1 Gb/s RGMII in Virtex-7 and Kintex-7 Using HR I/O

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

ODDR OPAD

rgmii_txc

IOB LOGIC

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

ODDR OPAD

rgmii_txc

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

io_clk

BUFG

MMCM
clk

clk90

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 145
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

delivered with the example design. Figure 3-63 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal uses the 90ο phase
shifted version of the clock. The result of this is to create a 2 ns delay, which places the
rgmii_txc forwarded clock in the centre of the data valid window for forwarded RGMII
data and control signals.

X-Ref Target - Figure 3-63

Figure 3-63: RGMII Transmitter Logic and Clock Logic for Artix-7 Using HR I/O

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

io_clk

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR

OPAD

D1

QD2

C

rgmii_tx_ctl

ODDR

OPAD

D1

QD2

C

rgmii_txc

OPAD

gmii_txd_int[4]

ODDR

D1

QD2

C

‘1’
‘0’

 Ethernet MAC Netlist

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]Transmitter
User Logic

Tx AXI4-Stream I/F

RGMII PHY module
(rgmii_if)

BUFG
gtx_clk90

MMCM
clk

clk90

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 146
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Receiver Logic

In Artix-7 devices, a PLL must be used on the rgmii_rxc clock path as illustrated in
Figure 3-64 to meet the RGMII input setup and hold requirements. This logic is
implemented by the example design delivered with the core.

Phase shifting can then be applied to the PLL to f ine-tune the setup and hold times on the
input RGMII receiver signals which are sampled at the RGMII IOB flip-flops; a f ixed phase
shift is applied to the DCM using the example UCF for the example design.

A limitation of using a PLL on this interface is that, as a PLL is sensitive to a change in input
clock, 1 Gb/s half-duplex is not supported. This is due to the nature of the RX clock in this
mode of operation as it is sourced by whichever device has control of the media and a PPM
shift is to be expected. This causes the PLL to lose lock, rendering the receive interface
inactive. This is not an issue at 10M/100 Mb/s operation because the DCM is bypassed.

The clock produced by the PLL, placed onto global clock routing, is used to provide the
clock for all receiver logic, both within the core and for the user-side logic which connects
to the receiver AXI4-Stream interface of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 147
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Clock Resource Sharing

Figure 3-65 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII at 1 Gb/s in Artix-7 devices. For all instantiations, gtx_clk, and
gtx_clk90 can be shared between multiple cores, resulting in a common clock domain
across the device.

The receiver clocks cannot be shared. Each core is provided with its own local version of
rgmii_rxc from the connected external PHY device as shown in Figure 3-65.

Figure 3-65 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing gtx_clk across all instantiations. The receiver clock, which cannot be
shared, is unique for every instance of the core.

X-Ref Target - Figure 3-64

Figure 3-64: RGMII Receiver Logic and Clock Logic for Artix-7 Devices

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

BUFG

gmii_rx_clk_bufg

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]

IDDR

IPAD

Q1

DQ2

C

rgmii_rxc

IOB LOGIC

IPAD

PLL
CLKINCLK0

FB
 Ethernet MAC Netlist

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rxd[4]

<component_name>_block
(Block Level from Example Design) RGMII PHY module

(rgmii_if)

FBOUT

BUFH

Rx AXI4-Stream I/F

Receiver
User Logic

rx_clk

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 148
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Zynq-7000 Devices

The Zynq-7000 family uses either Kintex-7 or Artix-7 FPGA logic depending upon the part
chosen. For Z-7010 and Z- 7020 see Artix-7 Devices; for Z-7030 and Z- 7045 see Virtex-7,
Kintex-7 and Virtex-6 Devices.

Spartan-6 Devices

Transmitter Logic

The logic required to implement the RGMII transmitter logic is illustrated in Figure 3-66.
gtx_clk is a user-supplied 125 MHz reference clock source which is placed onto global
clock routing to provide the clock for all transmitter logic, both within the core and for the
user-side logic which connects to the transmitter AXI4-Stream interface of the core.

Figure 3-66 illustrates how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those

X-Ref Target - Figure 3-65

Figure 3-65: Clock Resource Sharing for 1 Gb/s RGMII in Artix-7

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

ODDR OPAD

rgmii_txc

IOB LOGIC

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

ODDR OPAD

rgmii_txc

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

to local RGMII Rx IOBs

rgmii_rxc

IOB LOGIC

IPAD

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

io_clk

BUFG

MMCM
clk

clk90

BUFG PLL
CLKINCLK0

FB
FBOUT

BUFH

PLL
CLKINCLK0

FB
FBOUT

BUFH

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 149
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

delivered with the example design. Figure 3-66 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal is then routed
though an output delay element (IODELAY2) before connecting to the device pad. The
result of this is to create a 2 ns delay, which places the rgmii_txc forwarded clock in the
centre of the data valid window for forwarded RGMII data and control signals.

X-Ref Target - Figure 3-66

Figure 3-66: RGMII Transmitter Logic and Clock Logic for Spartan-6 Devices

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

gtx_clk

gtx_clk

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

gmii_txd_int[4]

 Ethernet MAC Netlist

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]
Transmitter
User Logic

Tx AXI4-Stream I/F

RGMII PHY module
(rgmii_if) IOB LOGIC

rgmii_txc

OPAD

ODDR2

D1

QD2

C0

IODELAY2

C1

‘1’
‘0’

IOB LOGIC

OPAD

ODDR2

D1

QD2

C0

IODELAY2

C1

IOB LOGIC

OPAD

ODDR2

D1

QD2

C0

IODELAY2

C1

rgmii_txd[0]

rgmii_tx_ctl

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 150
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Receiver Logic

In Spartan-6 devices, a BUFG is used on the rgmii_rxc clock path with IODELAY2s on
the datapaths as illustrated in Figure 3-67 to meet the RGMII input setup and hold
requirements. This logic is implemented by the example design delivered with the core (all
signal names and logic match).

The tap delays of the individual IODELAY2s can then be adjusted to fine-tune the setup and
hold times of the input RGMII receiver signals which are sampled at the RGMII IOB
flip-flops; a f ixed tap delay is applied to the IODELAY2s using the example UCF for the
example design.See Chapter 8, Constraining the Core.

Clock Resource Sharing

Figure 3-68 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII at 1 Gb/s in Spartan-6 devices. For all instantiations, gtx_clk can be
shared between multiple cores, resulting in a common clock domain across the device. The
receiver clocks cannot be shared. Each core is provided with its own local version of
rgmii_rxc from the connected external PHY device as shown in Figure 3-68.

X-Ref Target - Figure 3-67

Figure 3-67: RGMII Receiver Logic and Clock Logic for Spartan-6 Devices

RGMII PHY module
(rgmii_if)

Rx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

rgmii_rxc

IOB LOGIC

IPAD

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

gmii_rx_clk_bufg

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl

IDDR2

IPAD

Q0

DQ1

C0

IOB LOGIC

rgmii_rxd[0]

IDDR2

IPAD

Q0

DQ1

C0

 Ethernet MAC Netlist

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rxd[4]

Receiver
User Logic

rx_mac_aclk

C1

C1

BUFG

IODELAY2

IODELAY2

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 151
PG051 July 25, 2012

Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core

Figure 3-68 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing gtx_clk across all instantiations. The receiver clock, which cannot be
shared, is unique for every instance of the core.

X-Ref Target - Figure 3-68

Figure 3-68: Clock Resource Sharing for 1 Gb/s RGMII in Spartan-6 Devices

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

OPAD

rgmii_txc

IODELAY2

IOB LOGIC

 Ethernet MAC Netlist

rx_axi_clktx_axi_clk

OPAD

rgmii_txc

IODELAY2

IOB LOGIC

IPAD

IOB LOGIC

gtx_clk
BUFG

rgmii_rxc

IOB LOGIC

IPAD

BUFG

to local RGMII Rx IOBs

rgmii_rxc

IOB LOGIC

IPAD

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

<component_name>_block
(Block Level from Example Design)

ODDR2

ODDR2

BUFG

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 152
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Physical Interfaces for Tri-speed (10 Mb/s,
100 Mb/s and 1 Gb/s) Ethernet MAC IP Core
The HDL example design supplied with the core, for Tri-speed operation, provides either a
GMII or RGMII interface. These are typically used to connect the MAC to an external PHY
device.

The Media Independent Interface (MII), defined in [Ref 9], clause 22, is a parallel interface
that connects a 10 Mb/s and/or 100 Mb/s capable MAC to the physical sublayers. The
Gigabit Media Independent Interface (GMII), defined in [Ref 9], clause 35, is an extension of
the MII and is used to connect a 1 Gb/s capable MAC to the physical sublayers. MII can be
considered a subset of GMII, and as a result, GMII/MII can carry Ethernet traff ic at 10 Mb/s,
100 Mb/s and 1 Gb/s.

Virtex®-6 devices support GMII at 2.5V only; Spartan®-6 devices support GMII at 3.3V or
lower. For 7 series and Zynq™-7000 families it depends on the type of I/O used: HR I/O
supports GMII at 3.3V or lower whereas HP I/O only supports 1.8V or lower and therefore an
external voltage converter is required to interoperate with any multi-standard PHY for GMII.

The Reduced Gigabit Media Independent Interface (RGMII) is an alternative to the GMII/MII.
RGMII can carry Ethernet traff ic at 10 Mb/s, 100 Mb/s and 1 Gb/s and achieves a 50%
reduction in the pin count compared with GMII; this is achieved with the use of
double-data-rate (DDR) flip-flops. RGMII is therefore often favored over GMII by PCB
designers. A further advantage of the RGMII implementation is that, unlike GMII/MII, clock
resources for the transmitter can be shared across multiple core instances. This results in
signif icant clock resource savings when implementing multiple cores in a design.

Virtex-6 devices support RGMII at 2.5V or lower; Spartan®-6 devices support RGMII at 3.3V
or lower. For 7 series and Zynq-7000 families it depends on the type of I/O used: HR I/O
supports RGMII at 2.5V or lower whereas HP I/O only supports 1.8V or lower. Despite this
being the defined RGMII voltage most PHYs require 2.5V and therefore an external voltage
converter is required to interoperate with any multi-standard PHY for RGMII.

See the appropriate section:

• Gigabit Media Independent Interface (GMII)

• Reduced Gigabit Media Independent Interface (RGMII)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 153
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Gigabit Media Independent Interface (GMII)

GMII Transmitter Interface

The logic required to implement the GMII transmitter logic is illustrated in Figure 3-69.
gtx_clk is a user-supplied 125 MHz reference clock source for use at 1 Gb/s.
mii_tx_clk is sourced by the external PHY device for use at 10 Mb/s and 100 Mb/s
speeds. Consequently a global clock multiplexer, a BUFGMUX, is used to switch the clock
source depending on the operating speed. The output from this BUFGMUX provides the
transmitter clock for the core and user logic as illustrated in Figure 3-69.

Closely linked to the clock logic is the use of the tx_enable clock enable derivation. This
must be provided to the MAC Netlist. All user logic uses the AXI4-Stream interface
handshaking to throttle the data to allow for the differing data widths between the 4-bit MII
and the cores 8-bit user datapath.

Figure 3-69 also illustrates how to use the physical transmitter interface of the core to
create an external GMII. The signal names and logic shown in this f igure exactly match
those delivered with the example design for a Virtex®-6 device when the GMII is selected.
If other families are chosen, equivalent primitives specific to that family are used in the
example design.

As shown in Figure 3-69, the output transmitter signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the transmitter clock for
1 Gb/s operation is also shown. This logic uses an IOB output Double-Data-Rate (DDR)
register so that the clock signal produced incurs exactly the same delay as the data and
control signals. This clock signal, gmii_tx_clk , is inverted with respect to gtx_clk so
that the rising edge of gmii_tx_clk occurs in the centre of the data valid window,
therefore maximizing setup and hold times across the interface.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 154
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

X-Ref Target - Figure 3-69

Figure 3-69: GMII Transmitter Logic and Clock Logic

IPAD

IOB LOGIC

gtx_clk

gmii_tx_clk

ODDR

OPAD

D Q

D Q

'0'

'1'

D Q

gmii_txd[0]

OPAD
gmii_txd_reg[0]

D Q

gmii_tx_en

OPAD
gmii_tx_en_reg

D Q

gmii_tx_er

OPAD
gmii_tx_er_reg

 Ethernet MAC Netlist

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

Tx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

Transmitter
User Logic

tx_mac_aclk

Transmitter
Clock Enable

tx_enable

tx_enable speedis10100

mii_tx_clk

IOB LOGIC

IPAD

BUFGMUX

I1

I0

gtx_clk
tx_clk_gen

GMII PHY module
(gmii_if)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 155
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

GMII Receive Interface

The logic required to implement the GMII receiver logic is described in the following
sections. Logical implementation varies for different device families. See the specific family
section:

• Virtex-7, Kintex-7 and Virtex-6 Devices

• Artix-7 Devices

• Zynq-7000 Devices

• Spartan-6 Devices

Virtex-7, Kintex-7 and Virtex-6 Devices

In this implementation, a BUFIO is used to provide the lowest form of clock routing delay
from input clock to input GMII RX signal sampling at the device IOBs. However, this creates
placement constraints; a BUFIO capable clock input pin must be selected, and all other
input GMII RX signals must be placed in the respective BUFIO region. The respective family
User Guide should be consulted.

The input clock is also placed onto regional clock routing using the BUFR component as
illustrated in Figure 3-70. This regional clock then provides the clock for all receiver logic,
both within the core and for the user-side logic which connects to the receiver AXI4-Stream
interface of the core.

The IODELAY elements can be adjusted to f ine-tune the setup and hold times at the GMII
IOB input flip-flops. This meets input setup and hold constraints at all three Ethernet
speeds. The delay is applied to the IODELAY element using constraints in the UCF; these can
be edited if desired. See Chapter 5 or Chapter 8.

Closely linked to the clock logic is the use of the rx_enable clock enable derivation. This
must be provided to the MAC Netlist. All user logic uses the AXI4-Stream interface
handshaking to throttle the data to allow for the differing data widths between the 4-bit MII
and the core’s 8-bit user datapath.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 156
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Artix-7 Devices

In Artix-7 devices, a PLL must be used on the gmii_rx_clk path as illustrated in
Figure 3-71 to meet the GMII input setup and hold requirements. This logic is implemented
by the example design delivered with the core.

Phase shifting can then be applied to the PLL to fine-tune the setup and hold times of the
input GMII receiver signals which are sampled at the GMII IOB input flip-flops; a f ixed phase
shift is applied to the PLL using the example UCF for the example design.

A limitation of using a PLL on this interface is that, as a PLL is sensitive to a change in the
input clock, 1 Gb/s hal duplex is not supported. This is due to the nature of the RX clock in
this mode of operation as it is sourced by whichever device has control of the media and a
PPM shift is to be expected. This causes the PLL to lose lock, rendering the received
interface inactive.

When operating at 10 Mb/s and 100 Mb/s, the PLL is bypassed and held in reset. This is
achieved using the BUFGMUX global clock multiplexor as illustrated in Figure 3-71. It is a

X-Ref Target - Figure 3-70

Figure 3-70: GMII Receiver Logic and Clock Logic for 7 Series and Virtex-6 Devices

GMII PHY module
(gmii_if)

gmii_rx_clk

IOB LOGIC

IPAD

gmii_rxd[0]

IPADDQ

gmii_rx_dv

IPAD

gmii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

BUFR

IODELAY

IODELAY

IODELAY

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

 Ethernet MAC Netlist

IOB LOGIC

BUFIO

Rx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

Receiver
User Logic

rx_mac_aclk

Receiver
Clock Enable

rx_enable

rx_enable speedis10100

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 157
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

requirement to bypass the PLL because the clock frequency of gmii_rx_clk is 2.5 MHz
when operating at 10 MB/s; this is below the PLL low frequency threshold. However, at the
10 Mb/s and 100 Mb/s operating speeds, input setup and hold margins increase
appropriately and the input MII data can be sampled correctly without the use of a PLL.

The clock produced by the PLL, placed onto global clock routing, is used to provide the
clock for all receiver logic, both within the core and for the user-side logic which connects
to the receiver AXI4-Stream interface of the core. Closely linked to the clock logic is the use
of the rx_enable clock enable derivation. This must be provided to the MAC netlist. All
user logic uses the AXI4-Stream interface handshaking to throttle the data to allow for the
differing data widths between the 4-bit MII and the 8-bit user datapath of the core.

.

Zynq-7000 Devices

The Zynq-7000 family uses either Kintex-7 or Artix-7 FPGA logic depending upon the part
chosen. For Z-7010 and Z-7020 see Artix-7 Devices, for Z-7030 and Z-7045 see Virtex-7,
Kintex-7 and Virtex-6 Devices.

X-Ref Target - Figure 3-71

Figure 3-71: GMII Receiver Logic and Clock Logic for Artix-7 Devices

GMII PHY module
(gmii_if)

Rx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD

gmii_rxd[0]

IPADDQ

gmii_rx_dv

IPAD

gmii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

BUFGMUX

IOB LOGIC

PLL

CLKINCLK0

FB

rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

 Ethernet MAC Netlist

Receiver
User Logic

rx_mac_aclk

I1

I0

speedis10100

Receiver
Clock Enable

rx_enable

rx_enable

FBOUT

BUFH

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 158
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Spartan-6 Devices

In this implementation, a BUFIO2 is used to provide the lowest form of clock routing delay
from input clock to input GMII RX signal sampling at the device IOBs. However, this creates
placement constraints; a BUFIO2 capable clock input pin must be selected, and all other
input GMII RX signals must be placed in the respective BUFIO2 region. The Spartan-6 FPGA
User Guide should be consulted.

The input clock is also placed onto global clock routing using the BUFG component as
illustrated in Figure 3-72. This clock then provides the clock for all receiver logic, both
within the core and for the user-side logic which connects to the receiver AXI4-Stream
interface of the core.

The IODELAY2 elements can be adjusted to f ine-tune the setup and hold times at the GMII
IOB input flip-flops. This meets input setup and hold constraints at all three Ethernet
speeds. The delay is applied to the IODELAY2 element using constraints in the UCF; these
can be edited if desired. See Chapter 5 or Chapter 8.

Closely linked to the clock logic is the use of the rx_enable clock enable derivation. This
must be provided to the MAC Netlist. All user logic uses the AXI4-Stream interface
handshaking to throttle the data to allow for the differing data widths between the 4-bit MII
and the cores 8-bit user datapath.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 159
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Multiple Core Instantiations

Because both mii_tx_clk and gmii_rx_clk are sourced by the external PHY device
connected to the GMII/MII, it is not possible to share global transmitter or receiver clock
resources across multiple instantiations of the core. Each instance of the core requires its
own endpoint clocking resources. See the appropriate section:

• Clock Resource Sharing in Virtex-7, Kintex-7 and Virtex-6 Devices

• Multiple core instances in Artix-7 Devices

• Multiple Core Instances in Zynq-7000 Devices

• Multiple Core Instances in Spartan-6 Devices

Note: RGMII provides a more optimal solution because it does allow transmitter clock resources to
be shared. See Reduced Gigabit Media Independent Interface (RGMII).

X-Ref Target - Figure 3-72

Figure 3-72: GMII Receiver Logic and Clock Logic for Spartan-6 Devices

GMII PHY module
(gmii_if)

gmii_rx_clk

IOB LOGIC

IPAD

gmii_rxd[0]

IPADDQ

gmii_rx_dv

IPAD

gmii_rx_er

IPAD

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

DQ

DQ

BUFG

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

 Ethernet MAC LogiCORE

IOB LOGIC

BUFIO2

<component_name>_block
(Block Level from Example Design)

Receiver
User Logic

rx_mac_aclk

Receiver
Clock EnableCE

rx_enable

rx_enable speed_is_10_100

IODELAY2

IODELAY2

IODELAY2

DIV_CLK

Rx AXI4-Stream I/F

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 160
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Multiple Core Instances in Virtex-7, Kintex-7 and Virtex-6 Devices

Figure 3-73 illustrates multiple instances of the core in Virtex-7, Kintex™-7 and Virtex-6
devices. The 1 Gb/s transmitter reference clock source, gtx_clk , can be shared across all
cores as illustrated in Figure 3-73. However, global transmitter and receiver clock resources
cannot be shared and require independent BUFGMUX/BUFR elements as shown.

Figure 3-73 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing the gtx_clk clock source across all instantiations.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 161
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

X-Ref Target - Figure 3-73

Figure 3-73: Clock Resource Sharing for GMII in Virtex-7, Kintex-7 and Virtex-6 Devices

rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clk

IPAD

IOB LOGIC

gtx_clk

<component_name>_block
(Block Level from Example Design)

Receiver
Clock Enable

rx_mac_aclk

rx_enable

BUFGMUX

I1

I0

Transmitter
Clock Enable

tx_enable

tx_mac_aclk

tx_enable

rx_enable

mii_tx_clk

IOB LOGIC

IPAD

rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clk

<component_name>_block
(Block Level from Example Design)

Receiver
Clock Enable

rx_mac_aclk

rx_enable

BUFGMUX

I1

I0

Transmitter
Clock Enable

tx_enable

tx_mac_aclk

tx_enable

rx_enable

mii_tx_clk

IOB LOGIC

IPAD

gmii_rx_clk

IOB LOGIC

IPAD

BUFR

BUFIO

to local GMII Rx IOBs

gmii_rx_clk

IOB LOGIC

IPAD

BUFR

BUFIO

to local GMII Rx IOBs

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 162
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Multiple core instances in Artix-7 Devices

Figure 3-74 illustrates clock resource sharing across multiple instantiations of the core
when using GMII in Artix-7 devices. for all instantiations, gtx_clk can be shared between
multiple cores, resulting in a common clock domain across the device. However, global
transmitter and receiver clock resources cannot be shared and require independent
BUFGMUX/BUFR elements as shown.

Figure 3-74 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing the gtx_clk across all instantiations. The transmitter and receiver clock
resources, which cannot be shared, are unique for every instance of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 163
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

X-Ref Target - Figure 3-74

Figure 3-74: Clock Resource Sharing for GMII in Artix-7 Devices

gmii_rx_clk

IPAD

BUFGMUX

PLL

CLKIN
CLK0

FB

rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clk

IPAD

IOB LOGIC

gtx_clk

<component_name>_block
(Block Level from Example Design)

I1

I0

Receiver
Clock Enable

rx_mac_aclk

rx_enable

BUFGMUX

I1

I0

Transmitter
Clock Enable

tx_enable

tx_mac_aclk

tx_enable

rx_enable

mii_tx_clk

IOB LOGIC

IPAD

gmii_rx_clk

IPAD

BUFGMUX

PLL

CLKIN
CLK0

FB

rx_axi_clk

 Ethernet MAC Netlist

tx_axi_clk

<component_name>_block
(Block Level from Example Design)

I1

I0

Receiver
Clock Enable

rx_mac_aclk

rx_enable

BUFGMUX

I1

I0

Transmitter
Clock Enable

tx_enable

tx_mac_aclk

tx_enable

rx_enable

mii_tx_clk

IOB LOGIC

IPAD

FBOUT

BUFH

FBOUT

BUFH

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 164
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Multiple Core Instances in Zynq-7000 Devices

The Zynq-7000 family uses either Kintex-7 or Artix-7 FPGA logic depending upon the part
chosen. For Z-7010 and Z-7020 see Multiple core instances in Artix-7 Devices, for Z-7030
and Z-7045 see Clock Resource Sharing in Virtex-7, Kintex-7 and Virtex-6 Devices.

Multiple Core Instances in Spartan-6 Devices

Figure 3-75 illustrates multiple instances of the core in Spartan-6 devices. The 1 Gb/s
transmitter reference clock source, gtx_clk , can be shared across all cores as shown.
However, global transmitter and receiver clock resources cannot be shared and require
independent BUFGMUX/BUFR elements as shown.

Figure 3-75 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing the gtx_clk clock source across all instantiations.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 165
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

X-Ref Target - Figure 3-75

Figure 3-75: Clock Resource Sharing for GMII in Spartan-6 Devices

rxgmiimiiclk

 Ethernet MAC LogiCORE

txgmiimiiclk

IPAD

IOB LOGIC

gtx_clk

<component_name>_block
(Block Level from Example Design)

Receiver
Clock Enable

rx_clk

rx_enable

BUFGMUX

I1

I0

Transmitter
Clock Enable

tx_enable

tx_clk

clientemactxenable

clientemacrxenable

mii_tx_clk

IOB LOGIC

IPAD

rxgmiimiiclk

 Ethernet MAC LogiCORE

txgmiimiiclk

<component_name>_block
(Block Level from Example Design)

Receiver
Clock Enable

rx_clk

rx_enable

BUFGMUX

I1

I0

Transmitter
Clock Enable

tx_enable

tx_clk

clientemactxenable

clientemacrxenable

mii_tx_clk

IOB LOGIC

IPAD

to local GMII Rx IOBs

gmii_rx_clk

IOB LOGIC

IPAD

BUFG

BUFIO2

DIV_CLK

to local GMII Rx IOBs

gmii_rx_clk

IOB LOGIC

IPAD

BUFG

BUFIO2

DIV_CLK

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 166
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Reduced Gigabit Media Independent Interface (RGMII)
The logic required to implement the RGMII logic is described in the next sections. Logical
implementation varies for different device families. See the specif ic device section:

• Virtex-7, Kintex-7 and Virtex-6 Devices

• Artix-7 Devices

• Zynq-7000 Devices

• Spartan-6 Devices

Virtex-7, Kintex-7 and Virtex-6 Devices

Transmitter Logic for Virtex-7 and Kintex-7 using HP I/O and Virtex-6

The logic required to implement the RGMII transmitter logic is illustrated in Figure 3-76.
gtx_clk is a user-supplied 125 MHz reference clock source which is placed onto global
clock routing to provide the clock for all transmitter logic, both within the core and for the
user-side logic which connects to the transmitter AXI4-Stream interface of the TEMAC.

For RGMII, this global 125 MHz is used to clock transmitter logic at all three Ethernet
speeds. The data rate difference between the three speeds is compensated for by the
transmitter clock enable logic (the enable_gen module from the example design
describes the required logic). The derived tx_enable signal must be supplied to the MAC
Netlist. All user logic uses the AXI4-Stream interfaces built in handshaking to throttle the
data appropriately, under control of the MAC Netlist. At all speeds the MAC expects the user
logic to supply/accept new data after each validated clock cycle. The generated tx_enable
signal is always high at 1 Gb/s, high for one in ten cycles at 100 Mb/s and high for one in a
hundred cycles at 10 Mb/s. The advantage of this approach is that it allows common
transmitter global clocks to be shared across any number of instantiated cores.

Figure 3-76 illustrates how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-76 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal is then routed
though an output delay element (IODELAY) before connecting to the device pad. The result
of this is to create a 2 ns delay, which places the rgmii_txc forwarded clock in the centre
of the data valid window for forwarded RGMII data and control signals when operating at
1 Gb/s Ethernet speed. At 10 Mb/s and 100 Mb/s speeds, the enable_gen module toggles
the DDR input signals at the required frequency so that the forwarded rgmii_txc clock is
always of the correct frequency for the forwarded data.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 167
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Transmitter Logic for Virtex-7 and Kintex-7 using HR I/O

HR I/O do not include ODELAY components and another method is required to introduce
the required 2 ns offset between the clock and data. The logic required to implement the
RGMII transmitter logic is illustrated in Figure 3-77. gtx_clk and gtx_clk90 are
user-supplied 125 MHz reference clock sources with gtx_clk90 having a 90o phase shift
with respect to gtx_clk . These are placed onto global clock routing to provide the clocks
for all transmitter logic. gtx_clk is used for the RGMII data and control and is also the
clock source for the transmit datapath of the core. gtx_clk90 is used for the RGMII clock
only.

X-Ref Target - Figure 3-76

Figure 3-76: RGMII Transmitter Logic and Clock Logic for Virtex-7, Kintex-7 and Virtex-6 Devices

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

gtx_clk

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR

OPAD

D1

QD2

C

rgmii_tx_ctl

ODDR

OPAD

D1

QD2

C

rgmii_txc
IODELAY OPAD

gmii_txd_int[4]

ODDR

D1

QD2

C

IODELAY

IODELAY

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]

Transmitter
User Logic

Tx AXI4-Stream I/F

 Ethernet MAC Netlist

speedis10100

tx_enable

gmii_tx_clken

Transmitter Clock Enable
(enable_gen)

speedis10

tx_enable

phy_tx_enable

speedis10100

speedis10

RGMII PHY module
(rgmii_if)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 168
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

For RGMII, this global 125 MHz is used to clock transmitter logic at all three Ethernet
speeds. The data rate difference between the three speeds is compensated for by the
transmitter clock enable logic (the enable_gen module from the example design
describes the required logic). The derived tx_enable signal must be supplied to the MAC
Netlist. All user logic uses the AXI4-Stream interfaces built in handshaking to throttle the
data appropriately, under control of the MAC Netlist. At all speeds the MAC expects the user
logic to supply/accept new data after each validated clock cycle. The generated tx_enable
signal is always high at 1 Gb/s, high for one in ten cycles at 100 Mb/s and high for one in a
hundred cycles at 10 Mb/s. The advantage of this approach is that it allows common
transmitter global clocks to be shared across any number of instantiated cores.

Figure 3-77 illustrates how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-77 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal uses the 90 degree
phase shifted version of the clock. The result of this is to create a 2 ns delay, which places
the rgmii_txc forwarded clock in the centre of the data valid window for forwarded
RGMII data and control signals when operating at 1 Gb/s Ethernet speed. At 10 Mb/s and
100 Mb/s speeds, the enable_gen module toggles the DDR input signals at the required
frequency so that the forwarded rgmii_txc clock is always of the correct frequency for the
forwarded data.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 169
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Receiver Logic

In this implementation, a BUFIO is used to provide the lowest form of clock routing delay
from input clock to input RGMII RX signal sampling at the device IOBs. However, this creates
placement constraints; a BUFIO capable clock input pin must be selected, and all other
input RGMII RX signals must be placed in the respective BUFIO region. The relevant family
User Guide should be consulted.

The input clock is also placed onto regional clock routing using the BUFR component as
illustrated in Figure 3-78. This regional clock then provides the clock for all receiver logic,
both within the core and for the user-side logic which connects to the receiver AXI4-Stream
interface of the core.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the RGMII
IOB input flip-flops. This meets input setup and hold constraints at all three Ethernet
speeds. The delay is applied to the IODELAY element using constraints in the UCF; these can

X-Ref Target - Figure 3-77

Figure 3-77: RGMII Transmitter Logic and Clock Logic for 7 Series devices using HR I/O

<component_name>_block
(Block Level from Example Design)

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR

OPAD

D1

QD2

C

rgmii_tx_ctl

ODDR

OPAD

D1

QD2

C

rgmii_txc

OPAD

gmii_txd_int[4]

ODDR

D1

QD2

C

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]

Transmitter
User Logic

Tx AXI4-Stream I/F

 Ethernet MAC Netlist

speedis10100

tx_enable

gmii_tx_clken

Transmitter Clock Enable
(enable_gen)

speedis10

tx_enable

phy_tx_enable

speedis10100

speedis10

RGMII PHY module
(rgmii_if)

IPAD

BUFG

IOB LOGIC

io_clk

BUFG

MMCM
clk

clk90

gtx_clk90

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 170
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

be edited if desired. See Chapter 5 or Chapter 8.

Closely linked to the clock logic is the use of the rx_enable clock enable derivation. This
must be provided to the MAC Netlist. All user logic uses the AXI4-Stream interface
handshaking to throttle the data as required at the different speeds.

Clock Resource Sharing

Figure 3-79 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII in 7 series devices using HP I/O and Virtex-6 devices. Figure 3-80
illustrates clock resource sharing across multiple instantiations of the core when using
RGMII in Virtex-7 and Kintex-7 devices using HR I/O. For all instantiations, gtx_clk and
gtx_clk90, where present, can be shared between multiple cores, resulting in a common
clock domain across the device. The receiver clocks cannot be shared. Each core is provided
with its own local version of rgmii_rxc from the connected external PHY device as shown.

X-Ref Target - Figure 3-78

Figure 3-78: RGMII Receiver Logic and Clock Logic for Virtex-7, Kintex-7 and Virtex-6 Devices

RGMII PHY module
(rgmii_if)

Rx AXI4-Stream I/F

rgmii_rxc

IOB LOGIC

IPAD

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

gmii_rx_clk_bufg

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]

IDDR

IPAD

Q1

DQ2

C

IODELAY

IODELAY

 Ethernet MAC Netlist

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rxd[4]

BUFR

BUFIO

<component_name>_block
(Block Level from Example Design)

Receiver
User Logic

rx_clk

Receiver
Clock Enable

rx_enable

speedis10100rx_enable

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 171
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Figure 3-79 and Figure 3-80 show only two cores. However, more can be added using the
same principal. This is done by instantiating the cores using the block level (from the
example design) and sharing gtx_clk and gtx_clk90, if required, across all
instantiations. The receiver clock, which cannot be shared, is unique for every instance of
the core.

X-Ref Target - Figure 3-79

Figure 3-79: Clock Resource Sharing for RGMII in Virtex-7 and Kintex-7 using HP I/O and Virtex-6
Devices

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

ODDR

OPAD

rgmii_txc

IODELAY

IOB LOGIC

IPAD

IOB LOGIC

gtx_clk
BUFG

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

ODDR

OPAD

rgmii_txc

IODELAY

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 172
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Artix-7 Devices

Transmitter Logic for Artix-7 using HR I/O

HR I/O do not include ODELAY components and another method is required to introduce
the required 2 ns offset between the clock and data. The logic required to implement the
RGMII transmitter logic is illustrated in Figure 3-81. gtx_clk and gtx_clk90 are
user-supplied 125 MHz reference clock sources with gtx_clk90 having a 90o phase shift
with respect to gtx_clk . These are placed onto global clock routing to provide the clocks
for all transmitter logic. gtx_clk is used for the RGMII data and control and is also the
clock source for the transmit datapath of the core. gtx_clk90 is used for the RGMII clock
only.

For RGMII, this global 125 MHz is used to clock transmitter logic at all three Ethernet
speeds. The data rate difference between the three speeds is compensated for by the
transmitter clock enable logic (the enable_gen module from the example design

X-Ref Target - Figure 3-80

Figure 3-80: Clock Resource Sharing for RGMII in 7 Series Devices Using HR I/O

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

ODDR

OPAD

rgmii_txc

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

ODDR

OPAD

rgmii_txc

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

BUFR

BUFIO

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

IPAD

BUFG

IOB LOGIC

io_clk

BUFG

MMCM
clk

clk90

gtx_clk90

gtx_clk90

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 173
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

describes the required logic). The derived tx_enable signal must be supplied to the MAC
Netlist. All user logic uses the AXI4-Stream interfaces built in handshaking to throttle the
data appropriately, under control of the MAC Netlist. At all speeds the MAC expects the user
logic to supply/accept new data after each validated clock cycle. The generated tx_enable
signal is always high at 1 Gb/s, high for one in ten cycles at 100 Mb/s and high for one in a
hundred cycles at 10 Mb/s. The advantage of this approach is that it allows common
transmitter global clocks to be shared across any number of instantiated cores.

Figure 3-81 illustrates how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-81 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal uses the 90 degree
phase shifted version of the clock. The result of this is to create a 2 ns delay, which places
the rgmii_txc forwarded clock in the centre of the data valid window for forwarded
RGMII data and control signals when operating at 1 Gb/s Ethernet speed. At 10 Mb/s and
100 Mb/s speeds, the enable_gen module toggles the DDR input signals at the required
frequency so that the forwarded rgmii_txc clock is always of the correct frequency for the
forwarded data.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 174
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Receiver Logic

In Artix-7 devices, a PLL must be used on the rgmii_rxc clock path as illustrated in
Figure 3-82 to meet the RGMII input setup and hold requirements. This logic is
implemented by the example design delivered with the core.

Phase shifting can then be applied to the PLL to f ine-tune the setup and hold times on the
input RGMII receiver signals which are sampled at the RGMII IOB flip-flops; a f ixed phase
shift is applied to the PLL using the example UCF for the example design.

A limitation of using a PLL on this interface is that, as a PLL is sensitive to a change in input
clock, 1 Gb/s half-duplex is not supported. This is due to the nature of the RX clock in this
mode of operation as it is sourced by whichever device has control of the media and a PPM
shift is to be expected. This causes the PLL to lose lock, rendering the receive interface
inactive. This is not an issue at 10M/100 Mb/s operation because the PLL is bypassed.

X-Ref Target - Figure 3-81

Figure 3-81: RGMII Transmitter Logic and Clock Logic for Artix-7 devices using HR I/O

<component_name>_block
(Block Level from Example Design)

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR

OPAD

D1

QD2

C

rgmii_tx_ctl

ODDR

OPAD

D1

QD2

C

rgmii_txc

OPAD

gmii_txd_int[4]

ODDR

D1

QD2

C

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]

Transmitter
User Logic

Tx AXI4-Stream I/F

 Ethernet MAC Netlist

speedis10100

tx_enable

gmii_tx_clken

Transmitter Clock Enable
(enable_gen)

speedis10

tx_enable

phy_tx_enable

speedis10100

speedis10

RGMII PHY module
(rgmii_if)

IPAD

BUFG

IOB LOGIC

io_clk

BUFG

MMCM
clk

clk90

gtx_clk90

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 175
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

When operating at 10 Mb/s and 100 Mb/s, the PLL is bypassed and held in reset. This is
achieved using the BUFGMUX global clock multiplexer as illustrated in Figure 3-82. It is a
requirement to bypass the PLL since the clock frequency of rgmii_rxc at 10 Mb/s is
2.5 MHz when operating at 10 Mb/s; this is below the PLL low frequency threshold.

The clock produced by the PLL, placed onto global clock routing, is used to provide the
clock for all receiver logic, both within the core and the user-side logic which connects to
the receiver AXI4-Stream interface of the core. Closely linked to the clock logic is the use of
the rx_enable clock enable derivation. This must be provided to the MAC Netlist. All user
logic uses the AXI4-Stream interface handshaking to throttle the data as required at the
different speeds.

X-Ref Target - Figure 3-82

Figure 3-82: RGMII Receiver Logic and Clock Logic for Artix-7 Devices

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

rx_mac_aclk

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]

IDDR

IPAD

Q1

DQ2

C

rgmii_rxc

IOB LOGIC

IPAD

PLL
CLKIN

CLK0
FB

 Ethernet MAC Netlist

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rxd[4]

BUFGMUX

I1

I0

FBOUT

Rx AXI4-Stream I/F

<component_name>_block
(Block Level from Example Design)

Receiver
User Logic

rx_mac_aclk

Receiver
Clock Enable

rx_enable

speedis10100rx_enable

RGMII PHY module
(rgmii_if)

BUFH

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 176
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Clock Resource Sharing

Figure 3-83 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII in Artix-7 devices using HR I/O. For all instantiations, gtx_clk and
gtx_clk90, where present, can be shared between multiple cores, resulting in a common
clock domain across the device. The receiver clocks cannot be shared. Each core is provided
with its own local version of rgmii_rxc from the connected external PHY device as shown.

Figure 3-83 illustrates only two cores. However, more can be added using the same
principal. This is done by instantiating the cores using the block level (from the example
design) and sharing gtx_clk and gtx_clk90, if required, across all instantiations. The
receiver clock, which cannot be shared, is unique for every instance of the core.

X-Ref Target - Figure 3-83

Figure 3-83: Clock Resource Sharing for RGMII in Artix-7 devices using HR I/O

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

ODDR

OPAD

rgmii_txc

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

 Ethernet MAC Netlist

ODDR

OPAD

rgmii_txc

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

IPAD

BUFG

IOB LOGIC

io_clk

BUFG

MMCM
clk

clk90

gtx_clk90

gtx_clk90

PLL
CLKINCLK0

FB
FBOUT

BUFH

to local RGMII Rx IOBs

PLL
CLKINCLK0

FB
FBOUT

BUFH

BUFGMUX

I1

I0
speedis10100

rx_axi_clk

tx_axi_clk BUFGMUX

I1

I0
speedis10100

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 177
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Zynq-7000 Devices

The Zynq-7000 family uses either Kintex-7 or Artix-7 FPGA logic depending upon the part
chosen. For Z-7010 and Z-7020 see Artix-7 Devices, for Z-7030 and Z-7045 see Virtex-7,
Kintex-7 and Virtex-6 Devices.

Spartan-6 Devices

Transmitter Logic

The logic required to implement the RGMII transmitter logic is illustrated in Figure 3-84.
gtx_clk is a user-supplied 125 MHz reference clock source which is placed onto global
clock routing to provide the clock for all transmitter logic, both within the core and for the
user-side logic which connects to the transmitter AXI4-Stream interface of the core.

For RGMII, this global 125 MHz is used to clock transmitter logic at all three Ethernet
speeds. The data rate difference between the three speeds is compensated for by the
transmitter clock enable logic (the enable_gen module from the example design
describes the required logic). The derived tx_enable signal must be supplied to the MAC
Netlist. All user logic uses the AXI4-Stream interfaces built in handshaking to throttle the
data appropriately, under control of the MAC Netlist. At all speeds the MAC expects the user
logic to supply/accept new data after each validated clock cycle. The generated
tx_enable signal is always high at 1 Gb/s, high for one in ten cycles at 100 Mb/s and high
for one in a hundred cycles at 10 Mb/s. The advantage of this approach is that it allows
common transmitter global clocks to be shared across any number of instantiated cores.

Figure 3-84 illustrates how to use the physical transmitter interface of the core to create an
external RGMII. The signal names and logic shown in this f igure exactly match those
delivered with the example design. Figure 3-84 shows that the output transmitter signals
are registered in device IOBs, using DDR registers, before driving them to the device pads.

The logic required to forward the transmitter clock is also shown. This logic uses an IOB
output Double-Data-Rate (DDR) register so that the clock signal produced incurs exactly
the same delay as the data and control signals. However, the clock signal is then routed
though an output delay element (IODELAY2) before connecting to the device pad. The
result of this is to create a 2 ns delay, which places the rgmii_txc forwarded clock in the
centre of the data valid window for forwarded RGMII data and control signals when
operating at 1 Gb/s Ethernet speed. At 10 Mb/s and 100 Mb/s speeds, the enable_gen
module toggles the DDR input signals at the required frequency so that the forwarded
rgmii_txc clock is always of the correct frequency for the forwarded data.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 178
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Receiver Logic

In Spartan-6 devices, a BUFG is used on the rgmii_rxc clock path with IODELAY2s on the
datapaths as illustrated in Figure 3-85 to meet the RGMII input setup and hold
requirements. This logic is implemented by the example design delivered with the core (all
signal names and logic match).

The tap delays of the individual IODELAY2s can then be adjusted to fine-tune the setup and
hold times of the input RGMII receiver signals which are sampled at the RGMII IOB
flip-flops; a f ixed tap delay is applied to the IODELAY2s using the example UCF for the
example design. See Chapter 8, Constraining the Core.

X-Ref Target - Figure 3-84

Figure 3-84: RGMII Transmitter Logic and Clock Logic for Spartan-6 Devices

<component_name>_block
(Block Level from Example Design)

IPAD

BUFG

IOB LOGIC

gtx_clk

gtx_clk

IOB LOGIC

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

ODDR2

OPAD

D1

QD2

C0

rgmii_tx_ctl

ODDR2

OPAD

D1

QD2

C0

rgmii_txc

OPAD

gmii_txd_int[4]

ODDR2

D1

QD2

C0

tx_axi_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

gmii_txd[4]

Transmitter
User Logic

TxAXI4-Stream I/F

 Ethernet MAC Netlist

speedis10100

tx_enable

gmii_tx_clken

Transmitter Clock Enable
(enable_gen)

speedis10

tx_enable

phy_tx_enable

speedis10100

speedis10

RGMII PHY module
(rgmii_if)

IODELAY2

IODELAY2

IODELAY2

C1

C1

C1

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 179
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

Closely linked to the clock logic is the use of the rx_enable clock enable derivation. This
must be provided to the MAC Netlist. All user logic uses the AXI4-Stream interface
handshaking to throttle the data as required at the different speeds.

Clock Resource Sharing

Figure 3-86 illustrates clock resource sharing across multiple instantiations of the core
when using RGMII in Spartan-6 devices. For all instantiations, gtx_clk can be shared
between multiple cores, resulting in a common clock domain across the device.

The receiver clocks cannot be shared. Each core is provided with its own local version of
rgmii_rxc from the connected external PHY device as shown. Figure 3-86 illustrates only
two cores. However, more can be added using the same principal. This is done by
instantiating the cores using the block level (from the example design) and sharing
gtx_clk across all instantiations. The receiver clock, which cannot be shared, is unique for
every instance of the core.

X-Ref Target - Figure 3-85

Figure 3-85: RGMII Receiver Logic and Clock Logic for Spartan-6 Devices

RGMII PHY module
(rgmii_if)

Rx AXI4-Stream I/F

rgmii_rxc

IOB LOGIC

IPAD

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

gmii_rx_clk_bufg

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl

IDDR2

IPAD

Q0

DQ1

C0

IOB LOGIC

rgmii_rxd[0]

IDDR2

IPAD

Q0

DQ1

C0

IODELAY2

IODELAY2

 Ethernet MAC Netlist

rx_axi_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rxd[4]

<component_name>_block
(Block Level from Example Design)

Receiver
User Logic

rx_mac_aclk

Receiver
Clock Enable

rx_enable

speedis10100rx_enable

C1

C1

BUFG

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 180
PG051 July 25, 2012

Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core

X-Ref Target - Figure 3-86

Figure 3-86: Clock Resource Sharing for RGMII in Spartan-6 Devices

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

OPAD

rgmii_txc

IODELAY2

IOB LOGIC

IPAD

IOB LOGIC

gtx_clk
BUFG

rgmii_rxc

IOB LOGIC

IPAD

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk

 Ethernet MAC Netlist

rx_axi_clk

tx_axi_clk

OPAD

rgmii_txc

IODELAY2

IOB LOGIC

rgmii_rxc

IOB LOGIC

IPAD

to local RGMII Rx IOBs

<component_name>_block
(Block Level from Example Design)

Transmitter
Clock Enable

tx_enable

gmii_tx_clken

tx_enable

rx_enable

Receiver
Clock Enable

rx_mac_aclk

rx_enable

gtx_clk
ODDR2

ODDR2

BUFG

BUFG

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 181
PG051 July 25, 2012

Interfacing to Other Xilinx Ethernet Cores

Interfacing to Other Xilinx Ethernet Cores

Ethernet 1000BASE-X PCS/PMA or SGMII Core
The Ethernet MAC core can be integrated in a single device with the Ethernet 1000BASE-X
PCS/PMA or SGMII core to provide either:

• A MAC with an SGMII interface to an external PHY device. SGMII can support either
tri-speed (10/100/1000 Mb/s) designs or 1 Gb/s only designs.

• A 1 Gb/s Ethernet MAC core with 1000BASE-X PCS/PMA sublayer functionality: this is a
1 Gb/s only PHY standard which is most commonly used for a f ibre optic medium.

For more details on the Xilinx Ethernet 1000BASE-X PCS/PMA or SGMII core, see the
product page at:

www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

The Ethernet 1000BASE-X PCS/PMA or SGMII Product Guide [Ref 2] provides the information
required to connect the two cores together in any supported configuration.

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 182
PG051 July 25, 2012

SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core

Constraining the Core

Example Design

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 183
PG051 July 25, 2012

Chapter 4

Customizing and Generating the Core
This chapter includes information on using Xilinx tools to customize and generate the core.

The TEMAC solution which comprises the 10/100/1000 Mb/s, 1 Gb/s and 10/100 Mb/s IP
cores are generated through the Vivado™ Design Suite using a graphical user interface
(GUI). This chapter describes the GUI options used to generate and customize the core.

GUI
X-Ref Target - Figure 4-1

Figure 4-1: Vivado Customization GUI

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 184
PG051 July 25, 2012

GUI

Component Name
The component name is used as the base name of the output f iles generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_”.

Physical Interface
Four physical interface types are available for the core:

• GMII. The Gigabit Media Independent Interface (GMII) is defined by the IEEE802.3
specification; it can provide support for Ethernet operation at 10 Mb/s, 100 Mb/s and
1 Gb/s speeds.

• MII. The Media Independent Interface (MII) is defined by the IEEE802.3 specification; it
can provide support for Ethernet operation at 10 Mb/s and 100 Mb/s speeds.

• RGMII. The Reduced Gigabit Media Independent Interface (RGMII) is, effectively, a
Double Data Rate version of GMII; it can provide support for Ethernet operation at
10 Mb/s, 100 Mb/s and 1 Gb/s speeds.

• Internal. The core is generated with no physical interface ready for connection to an
internal PHY such as the Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE.

The choice of physical interface determines the content of the example design delivered
with the core where the external GMII, MII or RGMII is described in HDL. There is no change
in the core HDL between RGMII, GMII or Internal. If MII is selected then the physical
interface datapath is reduced to 4 bits. The default is to use GMII.

MAC Speed
The TEMAC solution can provide support for 1 Gb/s speed only operation; 10 Mb/s and
100 Mb/s speed operation; full tri-speed operation (10 Mb/s, 100 Mb/s and 1 Gb/s speed
capability).

The available choice for speed support selection is dependent on the chosen Physical
Interface:

• If GMII or RGMII is selected, then Tri-speed operation and 1 Gb/s only operation are
available for selection.

• If MII is selected, then only 10 Mb/s and 100 Mb/s operation is available.

• If Internal is selected then only Tri-speed is available as the speed is under the control
of the internal PHY.

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 185
PG051 July 25, 2012

GUI

Half-Duplex
The TEMAC solution always provides support for full-duplex Ethernet. However, to provide
half-duplex operation, further FPGA logic resources are required. Because many
applications require only full-duplex support, the half-duplex logic is therefore optional.

When the core is generated with half-duplex logic, full- or half-duplex operation can be
selected using TEMAC configuration.

The default is to include half-duplex support.

When half-duplex is selected the AVB option is disabled.

Note: If a MMCM is used on the physical interface receive path to control the clock to data
relationship then 1 G half-duplex is not supported.

Management Interface
Select the AXI4-Lite option if you wish to include the optional Management Interface for
TEMAC configuration (see The Management Interface). If this option is not selected, the
core is generated with a replacement configuration vector. If the AXI4-Lite Management
Interface is not selected the AVB option is not available. The default is to have the AXI4-Lite
Management Interface.

AVB Option
Select the Enable_AVB option if you wish the optional AVB Endpoint front end logic to be
included.

• If half-duplex is selected the AVB option is disabled

• If the AXI4-Lite management interface is not selected the AVB option is disabled

If selected the fee-based Ethernet AVB Endpoint license is required in addition to the
Tri-Mode Ethernet MAC license to enable core generation. The default is to not have the
AVB Endpoint included.

Frame Filter
It is possible to generate the core with a frame filter, which prevents the reception of frames
that are not matched by this MAC. This is most commonly used to identify packets which are
addressed specif ically to this MAC. The default is to use the frame filter.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 186
PG051 July 25, 2012

Output Generation

Number of Table Entries
The frame filter can be generated with a look-up table that holds up to eight additional
valid MAC frame match patterns. You can select an integer between 0 and 8 to define the
number of match patterns that are present in the table. The default is to use 4 table entries.

Statistics Counters
It is possible to generate the core with built in statistics counters. The number of counters
available is dependant upon the duplex setting of the core with full-duplex requiring 34
counters and half-duplex requiring 44 counters. This option can only be selected when the
core is configured with the AXI4-Lite Management Interface. The default is to include the
Statistics counters

Statistics Reset
When the Statistics Counters are included it is possible to include logic to ensure the
counters are cleared to zero upon a hardware reset. Without this logic the counter values
persist over a reset and are only cleared upon device configuration. The default is to include
the counter reset functionality

Statistics Width
The Statistics counters can be either 32 bits or 64 bits wide. This allows the user to control
the frequency at which the counters must be polled to avoid information loss due to
overflow. The default is to use 64-bit wide counters.

Output Generation
The TEMAC solution delivers files into a number of f ilegroups. By default the f ilegroups
necessary for use of the TEMAC or opening the IP Example design are generated when the
core is generated. If additional f ilegroups are required these can be selected using the
generate option.

The filegroups generated can be seen in the IP Sources tab of the Sources window where
they are listed for each IP in the project.

The filegroups available for the TEMAC solution are:

Examples
Includes all source required to be able to open and implement the IP example design
project. i.e. Example design HDL and the example design xdc f ile.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 187
PG051 July 25, 2012

Output Generation

Examples simulation
Includes all source required to be able to simulate the IP example design project. This is the
same list of HDL as the Examples f ilegroup with the addition of the demonstration
testbench HDL.

Synthesis
Includes all synthesis sources required by the core. For the TEMAC solution this is a mix of
both encyrpted and unencrypted source. Only the unencrypted sources are visible.

Simulation
Includes all simulation sources required by the core. Simulation of the TEMAC solution at
the core level is not supported without the addition of a testbench (not supplied).
Simulation of the example design is supported.

Instantiation Template
Example instantiation template

Miscellaneous
This provides simulations scripts and support f iles required for running netlist based
functional simulation. The f iles delivered as part of this f ilegroup are not used or
understood by Vivado and as such this f ilegroup is not displayed. These f iles are delivered
into the project source directory.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 188
PG051 July 25, 2012

Chapter 5

Constraining the Core

Required Constraints
This chapter defines the constraint requirements of the TEMAC solution. The TEMAC
solution is provided with a core level XDC file. This provides constraints for the core which
are expected to be applied in all instantiations of the core. This XDC file, named
<component name>.xdc, can be found in the IP Sources tab of the Sources window in the
Synthesis f ile group.

An example XDC is also provided with the HDL example design to provide the board level
constraints. This is specific to the example design and, as such, is only expected to be used
as a template for the user design. See Chapter 6, Example Design. This XDC file, named
<component name>_example_design.xdc, is found in the IP Sources tab of the Sources
window in the Examples file group.

The core level XDC file inherits some constraints from the example design XDC file. In any
system it is expected that the user would also provide an XDC file to constrain the logic in
which the TEMAC solution is instantiated.

Device, Package, and Speed Grade Selections
The core can be implemented in Virtex®-7, Kintex™-7 and Artix™-7 devices with these
attributes:

• Large enough to accommodate the core

• Contains a suff icient number of IOBs

• Device has a supported speed grade:

Table 5-1: Supported Speed Grades

Device Family Speed Grade

Virtex-7 -1 or faster

Kintex-7 -1 or faster

Artix-7 -1 or faster

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 189
PG051 July 25, 2012

Clock Frequencies

Clock Frequencies
The TEMAC solution has a variable number of clocks with the precise number required
being dependant upon the specif ic parameterization.

As the core targets a specific interface standard (RGMII/GMII or MII) there are associated
clock frequency requirements.

I/O Standard and Placement
Of the various interfaces provided when the TEMAC solution is generated only the interface
to the selected PHY is expected to be propagated to actual device IO. As such there are no
specific IO standard/placement requirements on most interfaces. When the TEMAC is
generated with either RGMII/GMII or MII support, the related interfaces and the MDIO
interface, if present, are expected to propagate to device IO and as such there are some
limitations which have to considered.

Depending upon the Device family, part and package chosen there are two types of IO
available for use. HP I/O is intended for support of high speed interfaces and as such is
limited to 1.8V support. HP I/O support both Input and Output Delays components. HR I/O
is intended for interfaces with higher voltage requirements and has a more limited
supported frequency range. HR I/O only supports Input Delay components.

Both MII and GMII are 3.3 V standards, with RGMII being a 1.8V standard. However the
majority of PHYs are multi-standard and operate at either 2.5 V or 3.3 V and this is also true
of the PHYs selected for Xilinx development boards. This means that for most applications
the physical interfaces are restricted to either using HR I/O, where available, or HP I/O with
an external voltage converter to translate between 1.8V and the minimum level required by

Table 5-2: TEMAC Solution Frequency requirements

Clock Name Parameterization Frequency
Requirement

gtx_clk Always present 125 MHz

gtx_clk90 RGMII when HRIO used for interface. 90 degree shifted version of gtx_clk 125 MHz

refclk RGMII or GMII. Required for the idelayctrl. 200-300 MHz

mii_tx_clk GMII or MII. Required for 10/100 Mb/s operation 25 MHz

mii_rx_clk MII. 25 MHz

gmii_rx_clk GMII. 125 MHz

rgmii_rxc RGMII 125 MHz

s_axi_aclk Management Type set to AXI4-Lite 10-300 MHz

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 190
PG051 July 25, 2012

I/O Standard and Placement

the PHY of 2.5 V. For any board design it is therefore very important to identify which type
of IO is available/being used.

For the 1 Gb/s interface standards (RGMII and GMII), the receive data interface from the
PHY can have some placement requirements, depending upon the capture interface used.
Across all supported families there are two common capture methods used, these are
detailed in Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core in Chapter 3 and
Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core in
Chapter 3. In summary, the receive data sample window is adjusted by either shifting the
data using Input delays or by shifting the clock using a PLL/MMCM. When the Data is
shifted a BUFIO is used to provide the lowest form of clock routing delay from input clock
to input RX signal sampling at the device IOBs. However, this creates placement constraints;
a BUFIO capable clock input pin must be selected, and all other input RGMII/GMII RX
signals must be placed in the respective BUFIO region. The relevant family User Guide
should be consulted. This requirement does not exist if the PLL/MMCM method is used.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 191
PG051 July 25, 2012

Chapter 6

Example Design
This section provides detailed information about the example design, including a
description of the f ile groups , the contents of the example HDL wrappers, and the
operation of the demonstration test bench.

The example design, under certain core configurations, is intended to be directly targetable
to key Xilinx Demonstration Platforms, the current supported boards being:

• Kintex™-7 FPGA boards

° KC705 Board

• Virtex®-7 and Artix™-7 FPGA Boards

° No boards are supported at this time

The example design includes a basic state machine which, through the AXI4-Lite interface,
brings up the external PHY and MAC to allow basic frame transfer.

A Simple Frame Generator and Frame Checker are also included which can be used to turn
a particular board into a packet generator with any received data optionally being checked.
If the TEMAC is generated with the Optional AVB Endpoint another frame generator and
frame checker are included to exercise the additional AV datapath.

Loopback functionality is provided as either MAC RX to TX loopback, where the loopback
logic becomes the packet source in place of the packet generator, or PHY TX to RX
loopback, with the loopback replacing the demonstration test bench stimulus and checker.
Basic control of the state machine, allowing MAC speed change is achieved using push
buttons and DIP switches on the board. See the board specif ic sections in Targeting the
Example Design to a Board, page 203

top directory link - white text invisible

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 192
PG051 July 25, 2012

Detailed Example Design

Detailed Example Design
Figure 6-1 illustrates the top-level design for the TEMAC solution example design.

The HDL example design contains the following:

• An instance of the TEMAC solution

• Clock management logic, including MMCM and Global Clock Buffer instances, where
required

• MII, GMII or RGMII interface logic, including IOB and DDR registers instances, where
required

• Statistics vector decode logic

• AXI4-Lite to IPIF interface logic

• User Transmit and Receive FIFOs with AXI4-Stream interfaces

• User basic pattern generator module that contains a frame generator and frame
checker plus loopback logic.

• User AVB pattern generator module providing a second frame generator and frame
checker for designs including the AVB Endpoint.

• A simple state machine to bring up the PHY (if any) and MAC ready for frame transfer

X-Ref Target - Figure 6-1

Figure 6-1: HDL Example Design

<component_name>_block

<component_name>_example_design

Pattern
Generator
& Checker

Physical
Interface

<component_name>_fifo_block

Statistics Vectors
Interface

Clock
Generation

MII/GMII/RGMII
Interface
Logic and

Clocks

 TEMAC Core
&

AVB Endpoint

Tx FIFO

Rx FIFO

10 Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

Interface

MDIO

Statistics
Vector Decode

AXI4-Lite
to IPIF

AXI4-Lite
Control
State

Machine

AVB
Pattern

Generator
& Checker

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 193
PG051 July 25, 2012

Detailed Example Design

The HDL example design provides basic loopback functionality on the user side of the
TEMAC solution and connects the GMII/RGMII interface to external IOBs, it can also operate
as a pattern generator with data being optionally looped back externally, on the PHY side,
and automatically checked.

This allows the functionality of the core to be demonstrated either using a simulation
package, as discussed in this guide, or in hardware, if placed on a suitable board. The simple
state machine assumes standard PHY address and register content as per standard Xilinx
demonstration boards.

10 Mb/s /100 Mb/s/1 Gb/s Ethernet FIFO
The 10 Mb/s/100 Mb/s/1 Gb/s Ethernet FIFO is described in the following f iles:

<component_name>_ten_100_1g_eth_fifo.v[hd]

<component_name>_tx_client_fifo.v[hd]

<component_name>_rx_client_fifo.v[hd]

The 10 Mb/s/100 Mb/s/1 Gb/s Ethernet FIFO contains an instance of tx_client_f ifo to
connect to the MAC TX AXI4-Stream interface, and an instance of the rx_client_f ifo to
connect to the MAC RX AXI4-Stream interface. Both transmit and receive FIFO components
implement an AXI4-Stream user interface, through which the frame data can be read/
written. Figure 6-2 illustrates a straightforward frame transfer across the user-side
AXI4-Stream interface

rx_client_fifo

The rx_client_fifo is built around two Dual Port Block RAMs, giving a total memory
capacity of 4096 bytes. The receive FIFO writes in data received through the TEMAC core. If
the frame is not errored, that frame is presented on the AXI4-Stream FIFO interface for
reading by the user, (in this case the basic_pat_gen module). If the frame is errored, that
frame is dropped by the receive FIFO.

X-Ref Target - Figure 6-2

Figure 6-2: Frame Transfer across AXI4-Stream Interface

clock

axis_fifo_tdata

axis_fifo_tvalid

axis_fifo_tlast

axis_fifo_tready

Packet 1 New Packet.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 194
PG051 July 25, 2012

Detailed Example Design

If the receive FIFO memory overflows, the frame currently being received is dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow is asserted.
Situations in which the memory can overflow are:

• The FIFO can overflow if the receiver clock is running at a faster rate than the
transmitter clock or if the inter-packet gap between the received frames is smaller than
the interpacket gap between the transmitted frames. If this is the case, the TX FIFO is
not able to read data from the RX FIFO as fast as it is being received.

• The FIFO size of 4096 bytes limits the size of the frames that it can store without error.
If a frame is larger than 4000 bytes, the FIFO can overflow and data is then lost. It is
therefore recommended that the example design is not used with the TEMAC solution
in jumbo frame mode for frames of larger than 4000 bytes.

tx_client_fifo

The tx_client_fifo is built around two Dual Port Block RAMs, giving a total memory
capacity of 4096 bytes.

When a full frame has been written into the transmit FIFO, the FIFO presents data to the
MAC transmitter. The MAC uses tx_axis_mac_tready to throttle the data until it has
control of the medium.

If the FIFO memory f ills up, the tx_axis_fifo_tready signal is used to halt the
AXI4-Stream interface writing in data, until space becomes available in the FIFO. If the FIFO
memory f ills up but no full frames are available for transmission. For example, if a frame
larger than 4000 bytes is written into the FIFO, the FIFO asserts the tx_overflow signal
and continues to accept the rest of the frame from you. The overflow frame is dropped by
the FIFO. This ensures that the AXI4-Stream FIFO interface does not lock up.

Basic Pattern Generator Module
The Basic Pattern Generator is described in the following f iles:

<component_name>_basic_pat_gen.v[hd]

<component_name>_axi_pat_gen.v[hd]

<component_name>_axi_pat_check.v[hd]

<component_name>_axi_mux.v[hd]

<component_name>_axi_pipe.v[hd]

<component_name>_address_swap.v[hd]

The basic pattern generator has two main functional modes: loopback and generator. In
loopback the data from the RX FIFO is passed to the address swap module and passed from
there to the TX FIFO. In Generator mode the TX data is provided by the Pattern Generator,
with RX Data being optionally checked by the pattern Checker.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 195
PG051 July 25, 2012

Detailed Example Design

Address Swap

The address swap module can be enabled for use on the loopback path. This would allow
the example design, targeted to a suitable board, to be connected to an Ethernet protocol
tester. The address swap module waits until both the DA and SA have been received before
starting to send data on to the TX FIFO.

If enabled, the module swaps the destination and source addresses of each frame as shown
in Figure 6-3 to ensure that the outgoing frame destination address matches the source
address of the link partner, otherwise the DA and SA are left untouched. The module
transmits the frame control signals with an equal latency to the frame data

Pattern Generator

This pattern generator can be enabled/disabled using a DIP switch. when Enabled the data
from the RX FIFO is flushed and the axi_pat_gen module drives the address_swap
modules inputs.

The pattern generator allows user modification of the Destination Address, Source Address,
minimum frame size and maximum frame size using parameters. When enabled, using a
dedicated input mapped to a DIP switch on a board, it starts with the minimum frame size
and after each frame is sent, increments the frame size until the maximum value is reached,
it then starts again at the minimum frame size.

In all cases the Destination and Source address are as provided by HDL parameters, with the
Type/Length f ield being dependant upon the frame size and the frame data being a
decrementing count starting from the value in the type/length f ield. This should mean that
the final data byte in all frames is 0x1. This is shown in Figure 6-4.

X-Ref Target - Figure 6-3

Figure 6-3: Modification of Frame Data by Address Swap Module

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 196
PG051 July 25, 2012

Detailed Example Design

In a loopback scenario (using a second board as the loopback), the ppm difference between
the oscillators on the two boards can cause overflows in the slower board - resulting in
errors. This is normally observed when the slower board is operating as the loopback board.
To avoid this issue the data rate provided by the pattern generator is throttled to just below
the selected line rate.

Pattern Checker

The axi_pat_check module provides a simple sanity check that data is being received
correctly. It uses the same parameters as the axi_pat_gen module and therefore expects
the same frame contents and frame size increments. Because the Frame data may or may
not have the DA and SA swapped the pattern checker allows either value to be in either
location.

When enabled, using a dedicated input which uses a board DIP switch, the output from the
RX_FIFO is monitored. The first step is to identify where in the frame sequence the data is,
this is done by capturing the value in the type/length field. After this is done the following
frame is expected to be incrementally bigger (unless you happen to be at the wrap point).
If an error is detected an error is raised on the byte or bytes which mismatch and the error
condition is latched and output to a dedicated output; this is displayed using a board LED.
The pattern checker state machine then re-synchronizes to the data. A dedicated input,
connected to one of the push buttons, is used to clear this latched error state, enabling a
feel for the frequency of errors (if any).

The pattern checker also provides a simple activity monitor. This toggles a dedicated
output, which flashes a board LED, to indicate that RX Data is being received correctly. This
ensures that the lack of a detected error is not just due to all frames being dropped.

X-Ref Target - Figure 6-4

Figure 6-4: Pattern Generator Frame Structure

axi_tclk

tdata

tvalid

tlast

tuser

tready

DA[1] DA[2] DA[3] DA[4] DA[5] DA[6] SA[1] SA[2] SA[3] SA[4] SA[5] SA[6] N[1] N[0] N[0] N[0]-1 N[0]-2 2 1 DA[1]

Destination Address Source Address Length Decrementing Data IFG(12cycles)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 197
PG051 July 25, 2012

Detailed Example Design

AXI4-Lite Control State Machine
The AXI4-Lite state machine, which is present when the core is generated with AXI4_Lite
support enabled, provides basic accesses to initialise the PHY and MAC to allow basic frame
transfer.

X-Ref Target - Figure 6-5

Figure 6-5: State Machine Flow Diagram

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 198
PG051 July 25, 2012

Detailed Example Design

Figure 6-5 shows the accesses performed by the state machine. After a reset, and allowing
settling time for internal resets to complete, the state machine f irst writes to the MAC to
enable the MDIO and configure the MDIO clock (this assumes an s_axi_aclk running at
100 MHz). An MDIO read is then performed from PHYAD 7, which is the standard address
used on Xilinx Demonstration Boards. If this returns all 1’s it implies that no PHY exists at
this location and further MDIO accesses are skipped.

This MDIO read enables the demonstration test bench to limit the number of MDIO
accesses performed and reduce the run time of the simulations whilst still allowing the
correct MDIO accesses to take place on a board. If the PHY is present, the MDIO read data
has a value other than all 1’s; the state machine then performs the necessary MDIO writes
to configure the PHY speed advertisement as per the mac_speed inputs. If RGMII is
selected a read-modify-write is performed to select RGMII, avoiding the need to change
jumper settings on the board. Finally the PHY is reset and auto-negotiation restarted. After
auto-negotiation completes the MAC speed is updated, as per the mac_speed inputs. The
MAC is then configured to disable flow control, initialise the unicast address and set the
Frame Filter to promiscuous mode. If the AVB Endpoint logic is present then the RTC is
started and PTP frames both transmitted and received (this assumes an external loopback is
in use). Finally the state machine sits and waits; if the update_speed input asserts it
returns to the initial MDIO read state and the new mac_speed input is captured and
applied.

With the state machine only applying a f ixed core configuration, logic can be stripped
during logic optimization. To avoid this the state machine has a serial interface,
serial_command and serial_response, which can be used to access any location and either
perform a read or a write. This uncertainty prevents functions unused by the state machine
from being stripped.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 199
PG051 July 25, 2012

Demonstration Test Bench

Demonstration Test Bench

Test Bench Functionality
X-Ref Target - Figure 6-6

The demonstration test bench is defined in the following f iles:

demo_tb.v[hd]

The demonstration test bench is a simple VHDL or Verilog program to exercise the example
design and the core itself. It has two modes of operation, DEMO and Built-in Self Test (BIST),
with BIST being the default mode only when the AVB Endpoint is included. The mode can be
changed using a parameter in the demonstration test bench code.

The test bench consists of the following:

• Clock generators

• DEMO: A stimulus block that connects to the GMII/MII or RGMII receiver interface of
the example design

• DEMO: A monitor block to check data returned through the GMII/MII or RGMII
transmitter interface

• BIST: A simple loopback from the GMII/MII or RGMII transmit interface to the receiver.

• BIST (AVB only): A basic AV data bandwidth monitor.

Figure 6-6: Demonstration Test Bench

<component_name>_block

<component_name>_example_design

Pattern
Generator
& Checker

Physical
Interface

<component_name>_fifo_block

Statistics Vectors
Interface

Clock
Generation

MII/GMII/RGMII
Interface
Logic and

Clocks

 TEMAC Core
&

AVB Endpoint
&

Statistics

Tx FIFO

Rx FIFO

10 Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

Interface

MDIO

Statistics
Vector Decode

AXI4-Lite
to IPIF

AXI4-Lite
Control
State

Machine

demo_tb

MDIO Response

Frame
Monitor

Frame
Stimulus

Test Control
Stimulus

AVB
Pattern

Generator
& Checker

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 200
PG051 July 25, 2012

Demonstration Test Bench

• A management block to control the speed selection

• An MDIO monitor/stimulus to check and respond to MDIO accesses, if a management
interface is selected.

• A control mechanism to manage the interaction of management, stimulus and monitor
blocks

Core with Management Interface

DEMO mode

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The required speed is selected using mac_speed and update_speed

• The MDIO stimulus/response block responds to a read with all 1’s - to indicate no PHY
is present.

• Four frames are pushed into the GMII/MII or RGMII receiver interface at the fastest
MAC speed supported:

° The first frame is a minimum length frame

° The second frame is a type frame

° The third frame is an errored frame

° The fourth frame is a padded frame

• The frames received at the GMII/MII or RGMII transmitter interface are checked against
the stimulus frames to ensure data is the same. The monitor process takes into account
the source/destination address f ield and FCS modifications resulting from the address
swap module.

• If either the Tri-speed or MII configurations have been selected, mac_speed is updated
to run at the next fastest available speed. This is 100 Mb/s or 10 Mb/s respectively.
update_speed is then pulsed.

• The MDIO stimulus/response block responds to a read with all 1’s - to indicate no PHY
is present.

• The same four frames are then sent to the MII/GMII or RGMII interface and checked
against the stimulus frames.

• If the Tri-speed configuration has been selected, mac_speed is updated to run at
10 Mb/s. update_speed is then pulsed.

• The MDIO stimulus/response block responds to a read with all 1’s - to indicate no PHY
is present.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 201
PG051 July 25, 2012

Demonstration Test Bench

• The same four frames are then sent to the MII/GMII or RGMII interface and checked
against the stimulus frames.

• For the Tri-speed configuration, the speed is then changed back to 1 Gb/s and the
same four frames are sent and checked for a final time. This tests the speed switching
between 1 Gb/s and 10/100 Mb/s in both directions.

BIST mode

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The required speed is selected using mac_speed and update_speed

• The MDIO stimulus/response block responds to a read with all 1’s - to indicate no PHY
is present.

• If the AVB Endpoint is included the AXI4-Lite state machine requests two TX PTP frames
and checks they are received

• The pattern generator(s) and checker(s) are enabled

• The simulation runs for a fixed duration, allowing a large number of frames to pass.

• Any detected errors or lack of RX activity are reported as errors

• If the AVB Endpoint is included the bandwidth of the two data streams is reported.

Core with No Management Interface

DEMO Mode

The demonstration test bench performs the following tasks:

• Input clock signals are generated

• A reset is applied to the example design

• The required speed is selected using mac_speed and update_speed

• The stimulus block pushes four frames into the GMII/MII or RGMII receiver interface at
the fastest speed supported by the selected configuration:

° The first frame is a minimum-length frame

° The second frame is a type frame

° The third frame is an errored frame

° The fourth frame is a padded frame

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 202
PG051 July 25, 2012

Demonstration Test Bench

• The frames received at the GMII/MII or RGMII transmitter interface are checked against
the stimulus frames to ensure data is the same. The monitor process takes into account
the source/destination address f ield and FCS modifications resulting from the address
swap module.

• If either the Tri-speed or MII configurations have been selected, mac_speed is updated
to run at the next fastest available speed. This is 100 Mb/s or 10 Mb/s respectively.
update_speed is then pulsed.

• The same four frames are then sent to the MII/GMII or RGMII interface and checked
against the stimulus frames.

• If the Tri-speed configuration has been selected, mac_speed is updated to run at
10 Mb/s. update_speed is then pulsed. The same four frames are then sent to the MII
or RGMII interface and checked against the stimulus frames.

• For the Tri-speed configuration, the speed is then changed back to 1 Gb/s and the
same four frames are sent and checked for a final time. This tests the speed switching
between 1 Gb/s and 10/100 Mb/s in both directions.

BIST mode

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The required speed is selected using mac_speed and update_speed

• The pattern generator and checker are enabled

• The simulation runs for a fixed duration, allowing a large number of frames to pass.

• Any detected errors or lack of RX activity are reported as errors

Changing the Test Bench
The Demonstration test bench defaults to DEMO mode for all implementations which do
not include the AVB Endpoint (which defaults to BIST mode).

The mode is set using a parameter in the demo_tb.v[hd] with the alternative mode being
commented out. To change mode, uncomment the desired mode and either remove or
comment the undesired one.

DEMO Mode

Changing Frame Data

The contents of the frame data passed into the TEMAC receiver can be changed by editing
the DATA fields for each frame defined in the test bench. The test bench automatically

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 203
PG051 July 25, 2012

Targeting the Example Design to a Board

calculates the new FCS f ield to pass into the TEMAC, as well as calculating the new expected
FCS value. Further frames can be added by defining a new frame of data.

Changing Frame Error Status

Errors can be inserted into any of the pre-defined frames by changing the error f ield to 1 in
any column of that frame. When an error is introduced into a frame, the bad_frame f ield
for that frame must be set to disable the monitor checking for that frame. The error
currently written into the third frame can be removed by setting all error f ields for the frame
to 0 and unsetting the bad_frame f ield.

BIST Mode

In BIST mode the data is provided by the Basic Pattern Generator Module. This allows a
degree of control over the frames generated using the module parameters:

DEST_ADDR
SRC_ADDR
MAX_SIZE
MIN_SIZE
ENABLE_VLAN
VLAN_ID
VLAN_PRIORITY

The pattern generator does not have an error injection capability.

Targeting the Example Design to a Board
For each supported device, there are certain TEMAC solution configurations which can be
targeted directly to the Xilinx connectivity board for that device. The XDC included with the
example design provides the required pin placements for the specif ic board. In each case
the board DIP switches, push buttons and LEDs are used to provide basic control over the
MAC functionality. This is described in more detail in the board specific sections.

TEMAC Solution Configurations Supported
There are some basic requirements for the example design to function correctly when
targeted at a board. The TEMAC must:

• Include an AXI4_Lite Management interface

• Target the relevant part for the specific board - see the board specif ic section.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 204
PG051 July 25, 2012

Targeting the Example Design to a Board

Bring Up Sequence
When the example design is f irst targeted at a board the following sequence is suggested
to check the various features are working, this is common for all boards:

• First Attach an Ethernet cable between the board and a PC installed with wireshark or
similar.

• Select the desired speed using the DIP switches

• Push the update speed pushbutton

• Ensure the link status LEDs show the expected speed

• Enable the pattern_generator using the DIP switch

• Capture and check the received frames at the PC and ensure they have the expected
data pattern.

To utilise the pattern checker and check the both datapaths two boards are required.

Board A: Operates as a frame source and optionally checker.

Board B: This board operates as a simple loopback board.

Bring up process:

• First attach an Ethernet cable between the two boards.

• Select the desired speed on both boards - this must be the same setting

• Push the update speed button on both boards

• Check the link status LEDs show the correct speed

• Enable the pattern generator on Board A, ensure it is disabled on Board B

• Check the Link Status RX/TX LEDs all light up

• If desired the Pattern checker can be enabled on both boards or just Board A.

• Ensure the RX activity LED is flashing

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 205
PG051 July 25, 2012

Targeting the Example Design to a Board

KC705 Board
The XDC targets the KC705 when the correct Kintex-7 FPGA part (xc7k325tffg900) is
selected.

X-Ref Target - Figure 6-7

Figure 6-7: KC705 Board Connectivity

Board Reset

LEDs:
(from right to left)
1- Pat check Error
2- Pat check Pass
3- Activity Info
4- Activity Info inverted

DIP Switchs:
(from left to right)
1- mac_speed[0]
2- mac_speed[1]
3- Enable pat_gen
4- Enable pat_check

Link Status

Push Buttons:
(from top to bottom)
N- Reset checker error
C- update_speed

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 206
PG051 July 25, 2012

SECTION III: ISE DESIGN SUITE

Customizing and Generating the Core

Constraining the Core

Example Design

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 207
PG051 July 25, 2012

Chapter 7

Customizing and Generating the Core
This chapter includes information on using Xilinx tools to customize and generate the core.

The TEMAC solution which comprises the 10/100/1000 Mb/s, 1 Gb/s and 10/100 Mb/s IP
cores are generated through the Xilinx® CORE Generator™ tool using a graphical user
interface (GUI). This chapter describes the GUI options used to generate and customize the
core.

GUI
Figure 7-1 displays the TEMAC core customization screen.

X-Ref Target - Figure 7-1

Figure 7-1: Core Customization Screen

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 208
PG051 July 25, 2012

GUI

For general help starting and using the CORE Generator tool on your system, see the
documentation supplied with the Xilinx ISE® Design Suite, including the CORE Generator
Guide at www.xilinx.com/support/software_manuals.htm.

Component Name
The component name is used as the base name of the output f iles generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_”.

Physical Interface
Four physical interface types are available for the core:

• GMII. The Gigabit Media Independent Interface (GMII) is defined by the IEEE802.3
specification; it can provide support for Ethernet operation at 10 Mb/s, 100 Mb/s and
1 Gb/s speeds.

• MII. The Media Independent Interface (MII) is defined by the IEEE802.3 specification; it
can provide support for Ethernet operation at 10 Mb/s and 100 Mb/s speeds.

• RGMII. The Reduced Gigabit Media Independent Interface (RGMII) is, effectively, a
Double Data Rate version of GMII; it can provide support for Ethernet operation at
10 Mb/s, 100 Mb/s and 1 Gb/s speeds.

• Internal. The core is generated with no physical interface ready for connection to an
internal PHY such as the Ethernet 1000BASE-X PCS/PMA or SGMII LogiCORE.

The choice of physical interface determines the content of the example design delivered
with the core where the external GMII, MII or RGMII is described in HDL. There is no change
in the core netlist between RGMII, GMII or Internal. If MII is selected then the physical
interface datapath is reduced to 4 bits. The default is to use GMII.

MAC Speed
The TEMAC solution can provide support for 1 Gb/s speed only operation; 10 Mb/s and
100 Mb/s speed operation; full tri-speed operation (10 Mb/s, 100 Mb/s and 1 Gb/s speed
capability).

The available choice for speed support selection is dependent on the chosen Physical
Interface:

• If GMII or RGMII is selected, then Tri-speed operation and 1 Gb/s only operation are
available for selection.

• If MII is selected, then only 10 Mb/s and 100 Mb/s operation is available.

• If Internal is selected then only Tri-speed is available as the speed is under the control
of the internal PHY.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-GMIITO1GBSXPCS.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 209
PG051 July 25, 2012

GUI

Half-Duplex
The TEMAC solution always provides support for full-duplex Ethernet. However, to provide
half-duplex operation, further FPGA logic resources are required. Because many
applications require only full-duplex support, the half-duplex logic is therefore optional.

When the core is generated with half-duplex logic, full- or half-duplex operation can be
selected using TEMAC configuration.

The default is to include half-duplex support.

When half-duplex is selected the AVB option is disabled.

Note: If a MMCM is used on the physical interface receive path to control the clock to data
relationship then 1 G half-duplex is not supported.

Management Interface
Select the AXI4-Lite option if you wish to include the optional Management Interface for
TEMAC configuration (see The Management Interface). If this option is not selected, the
core is generated with a replacement configuration vector. If the AXI4-Lite Management
Interface is not selected the AVB option is not available. The default is to have the AXI4-Lite
Management Interface.

AVB Option
Select the Enable_AVB option if you wish the optional AVB Endpoint front end logic to be
included.

• If half-duplex is selected the AVB option is disabled

• If the AXI4-Lite management interface is not selected the AVB option is disabled

If selected the fee-based Ethernet AVB Endpoint license is required in addition to the
Tri-Mode Ethernet MAC license to enable core generation. The default is to not have the
AVB Endpoint included.

Frame Filter
It is possible to generate the core with a frame filter, which prevents the reception of frames
that are not matched by this MAC. This is most commonly used to identify packets which are
addressed specif ically to this MAC. The default is to use the frame filter.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 210
PG051 July 25, 2012

Parameter Values in the XCO File

Number of Table Entries
The frame filter can be generated with a look-up table that holds up to eight additional
valid MAC frame match patterns. You can select an integer between 0 and 8 to define the
number of match patterns that are present in the table. The default is to use 4 table entries.

Statistics Counters
It is possible to generate the core with built in statistics counters. The number of counters
available is dependant upon the duplex setting of the core with full-duplex requiring 34
counters and half-duplex requiring 44 counters. This option can only be selected when the
core is configured with the AXI4-Lite Management Interface. The default is to include the
Statistics counters

Statistics Reset
When the Statistics Counters are included it is possible to include logic to ensure the
counters are cleared to zero upon a hardware reset. Without this logic the counter values
persist over a reset and are only cleared upon device configuration. The default is to include
the counter reset functionality

Statistics Width
The Statistics counters can be either 32 bits or 64 bits wide. This allows the user to control
the frequency at which the counters must be polled to avoid information loss due to
overflow. The default is to use 64-bit wide counters.

Parameter Values in the XCO File
An XCO file is produced by CORE Generator tool whenever a core is customized and
generated: it records all options used in the generation of the core, and lists these as
parameters. Existing or manually created XCO files can be imported into a CORE Generator
project.

XCO file parameter names and their values are identical to the names and values shown in
the GUI, except that underscore characters (_) are used instead of spaces. The text in an XCO
file is case insensitive.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 211
PG051 July 25, 2012

Parameter Values in the XCO File

Table 7-1 shows the XCO file parameters and values, and summarizes the GUI defaults. The
following is an example of the CSET parameters in an XCO file:

CSET component_name=tri_mode_eth_mac_v5_3
CSET physical_interface=GMII
CSET mac_speed=Tri_speed
CSET enable_avb=false
CSET half_duplex=true
CSET management_interface=true
CSET frame_filter=true
CSET number_of_table_entries=4
CSET statistics_counters=true
CSET statistics_reset=true
CSET statistics_width=32bit

Table 7-1: XCO File Values and Default Values

Parameter XCO File Values Default GUI Setting

component_name ASCII text starting with a letter and based
upon the following character set: a..z, 0..9
and _

tri_mode_eth_mac_v5_3

physical_interface One of the following keywords:
mii, gmii, rgmii, internal gmii

mac_speed One of the following keywords: tri_speed,
1000_Mbps, 10_100_Mbps tri_speed

enable_avb One of the following keywords:
true, false false

half_duplex One of the following keywords:
true, false true

management_interface One of the following keywords:
true, false true

frame_filter One of the following keywords:
true, false true

number_of_table_entries Integer in the range 0 - 8 4

statistics_counters One of the following keywords:
true, false true

statistics_reset One of the following keywords:
true, false true

statistics_width One of the following keywords:
32bit, 64bit 64bit

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 212
PG051 July 25, 2012

Output Generation

Output Generation
The output files generated from the CORE Generator tool are placed in the CORE Generator
tool project directory. The list of output f iles includes

• the netlist f ile

• supporting CORE Generator f iles

• release notes and other documentation

• subdirectories containing example design f iles

• scripts to run the core through the Xilinx back-end tools and to simulate the core using
the Mentor Graphics ModelSim, Cadence IES, or Synopsys VCS simulators.

See Chapter 9, Example Design, for details about the CORE Generator tool output files and
for details on the HDL example design.

Implementing Your Design
This chapter describes how to simulate and implement your design containing the Ethernet
MAC core.

Pre-implementation Simulation
The CORE Generator™ tool generates a functional model of the core netlist to allow
simulation of the block in the design phase of the project.

Using the Simulation Model

For information on setting up your simulator to use the functional model, see [Ref 14], also
included in your Xilinx software installation. The model is provided in the CORE Generator™
tool project directory.

VHDL

<component_name>.vhd

Verilog

<component_name>.v

This model can be compiled along with your code to simulate the overall system.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 213
PG051 July 25, 2012

Implementing Your Design

Synthesis

XST - VHDL

In the CORE Generator tool project directory, there is a <component_name>.vho f ile that
is a component and instantiation template for the core. Use this to help instance the core
into your VHDL source.

After your entire design is complete, create the following:

• An XST project f ile top_level_module_name.prj listing all your source code files

• An XST script f ile top_level_module_name.scr containing your required synthesis
options

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

See the XST User Guide for details on creating project and synthesis script f iles, and running
the xst program.

XST - Verilog

In the CORE Generator tool project directory, locate the module declaration for the core at:

<component_name>/implement/<component_name>_mod.v

Use this module to help instance the core into your Verilog source.

After your entire design is complete, create

• An XST project f ile top_level_module_name.prj listing all your source code files.
Be sure to include

%XILINX%/verilog/src/iSE/unisim_comp.v

and

<component_name>/implement/component_name_mod.v

as the first two files in the project list.

• An XST script f ile top_level_module_name.scr containing your required synthesis
options

To synthesize the design, run

$ xst -ifn top_level_module_name.scr

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 214
PG051 July 25, 2012

Implementing Your Design

See the XST User Guide for details on creating project and synthesis script f iles and running
the xst program.

Implementation

Generating the Xilinx Netlist

To generate the Xilinx netlist, the ngdbuild tool is used to translate and merge the
individual design netlists into a single design database, the Native Generic Database (NGD)
f ile. Also merged at this stage is the UCF for the design. An example of the ngdbuild
command is:

$ ngdbuild -sd path_to_core_netlist -sd path_to_user_synth_results \

-uc top_level_module_name.ucf top_level_module_name

Mapping the Design

To map the logic gates of your design netlist into the CLBs (Configurable Logic Blocks) and
IOBs of the FPGA, run the map command. The map command writes out a physical design to
an Native Circuit Description (NCD) file. An example of the map command is:

$ map -ol high -timing top_level_module_name \

-o top_level_module_name_map.ncd

Placing and Routing the Design

To place and route your design’s logic components (mapped physical logic cells) contained
within an NCD file in accordance with the layout and timing requirements specif ied within
the Physical Constraints File (PCF) f ile, the par command must be executed. The par
command outputs the placed and routed physical design to an NCD file. An example of the
par command is:

$ par -ol high -w top_level_module_name_map.ncd \

top_level_module_name.ncd mapped.pcf

Static Timing Analysis

To evaluate timing closure on a design and create a Timing Wizard Report (TWR) f ile
derived from static timing analysis of the Physical Design f ile (NCD), the trce command
must be executed. The analysis is typically based on constraints included in the optional
PCF file. An example of the trce command is:

$ trce -o top_level_module_name.twr top_level_module_name.ncd \

mapped.pcf

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 215
PG051 July 25, 2012

Implementing Your Design

Generating a Bitstream

To create the configuration bitstream (BIT) f ile based on the contents of a physical
implementation f ile (NCD), the bitgen command must be executed. The BIT f ile defines
the behavior of the programmed FPGA. An example of the bitgen command is:

$ bitgen -w top_level_module_name.ncd

Post-Implementation Simulation
The purpose of post-implementation simulation is to verify that the design as implemented
in the FPGA works as expected.

Generating a Simulation Model

To generate a chip-level simulation netlist for your design, run the netgen command.

VHDL

$ netgen -sim -ofmt vhdl -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.vhd

Verilog

$ netgen -sim -ofmt verilog -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.v

Using the Model

For information on setting up your simulator to use the pre-implemented model, consult
the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

Other Implementation Information
For details about using the Xilinx implementation tool flow, including command line
switches and options, see the Xilinx ISE® Design Suite manuals.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 216
PG051 July 25, 2012

Chapter 8

Constraining the Core

Device, Package, and Speed Grade Selections
The core can be implemented in Zynq™-7000, Virtex®-7, Kintex™-7, Artix™-7, Spartan®-6
and Virtex-6 devices with these attributes:

• Large enough to accommodate the core

• Contains a suff icient number of IOBs

• Device has a supported speed grade:

This chapter defines the constraint requirements of the TEMAC solution. An example UCF is

provided with the HDL example design to provide samples of constraint requirements for
the design. See Chapter 9, Example Design.

Clock Frequencies
Depending on the selected device family, the selected physical interface, and the supported
Ethernet speeds, a wide variation of required clock period constraint syntax exists. However,
the UCF provided with the example design always provides the correct constraints for the
generated example design and so this f ile should be used for reference. Do not relax these
clock period constraints.

Table 8-1: Supported Speed Grades

Device Family Speed Grade

Virtex-7 -1 or faster

Kintex-7 -1 or faster

Artix-7 -1 or faster

Virtex-6 -1 or faster

Virtex-6 Lower Power -1L or faster

Spartan-6 -2 or faster

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 217
PG051 July 25, 2012

Clock Frequencies

Transmitter Clock Constraints

Transmitter clock period constraints are always provided after the following comment
heading in the UCF:

##
TX Clock period Constraints
##

The following syntax provides an example. This is taken from a tri-speed capable Virtex-7
FPGA design using GMII:

Transmitter clock period constraints: do not relax
NET "clk_in_p" TNM_NET = "clk_in_p";
TIMESPEC "TS_clk_in_p" = PERIOD "clk_in_p" 5 ns HIGH 50% INPUT_JITTER 50.0ps;

NET "gtx_clk_bufg" TNM_NET = "clk_gtx";
TIMESPEC "TS_gtx_clk" = PERIOD "clk_gtx" 8000 ps HIGH 50 %;

NET "*tx_mac_aclk*" TNM_NET = "clk_tx_mac";
TIMESPEC "TS_tx_clk_gmii" = PERIOD "clk_tx_mac" 8000 ps HIGH 50 %;

Receiver Clock Constraints

Depending on the selected device family, the selected physical interface, and the supported
Ethernet speeds, a wide variation of required clock period constraint syntax exists. However,
the UCF provided with the example design always provides the correct constraints for the
generated example design and so this f ile should be used for reference. Do not relax these
clock period constraints.

Receiver clock period constraints are always provided after the following comment heading
in the UCF:

##
RX Clock period Constraints
##

The following syntax provides an example. This is taken from a tri-speed capable Virtex-7
FPGA design using GMII:

Receiver clock period constraints: do not relax
NET "gmii_rx_clk" TNM_NET = "clk_rx";
TIMESPEC "TS_rx_clk" = PERIOD "clk_rx" 8000 ps HIGH 50 %;

IDELAYCTRL Reference Clock Constraints

For Virtex-7, Kintex-7 and Virtex-6 devices, an additional constraint my be required in the
UCF for the IDELAYCTRL reference clock. This is not required in the generated example
design as the relevant clock constraint is inherited from the MMCM. This clock is
constrained to run at 200 MHz. See the device User Guide for IDELAYCTRL components and
the supported reference clock frequency range.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 218
PG051 July 25, 2012

General Constraints

NET "*refclk_bufg" TNM_NET = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "clk_ref_clk" 5000 ps HIGH 50 %;

Management Clock Constraints

Whenever the optional Management Interface is present in the core, the s_axi_aclk
signal must be constrained to run at the desired frequency. This is NOT required in the
generated example design as it is inherited from the MMCM as TS_clock_generator_clkout1.
This is set to 100 MHz in the example design.

NET "*s_axi_aclk TNM_NET = "clk_axi";
TIMESPEC "TS_axi_clk" = PERIOD "clk_axi" 8000 ps HIGH 50 % PRIORITY 10;

General Constraints
MDIO Logic

The MDIO logic is synchronous to s_axi_aclk , but data only changes at the MDC output
rate:; nominally this is set to a frequency of 2.5 MHz. Every flip-flop in the MDIO logic is
clocked with s_axi_aclk , but is sent a clock enable pulse at the MDC frequency. To
prevent this logic being over constrained by the s_axi_aclk period, the relevant flip-flops
for the MDIO logic can be grouped together and constrained at a multiple of the
s_axi_aclk period. The Priority setting ensures this constraint takes precedence over the
standard s_axi_aclk period constraint (which is given a priority of 10).

The UCF syntax which follows targets the MDIO logic flip-flops and groups them together.
Reduced clock period constraints are then applied.

##
MDIO Constraints: do not edit
##
Place the MDIO logic in its own timing groups
INST "*trimac_core*MANIFGEN?MANAGEN?PHY?ENABLE_REG" TNM = "mdio_logic";
INST "*trimac_core*MANIFGEN?MANAGEN?PHY?READY_INT" TNM = "mdio_logic";
INST "*trimac_core*MANIFGEN?MANAGEN?PHY?STATE_COUNT*" TNM = FFS "mdio_logic";
INST "*trimac_core*MANIFGEN?MANAGEN?PHY?MDIO_TRISTATE" TNM = "mdio_logic";
INST "*trimac_core*MANIFGEN?MANAGEN?PHY?MDIO_OUT" TNM = "mdio_logic";
TIMESPEC "TS_mdio" = PERIOD "mdio_logic" "TS_clock_generator_clkout1" * 40 PRIORITY
0;

Timespecs for Critical Logic

Signals must cross clock domains at certain points in the core. These are described in the
following section.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 219
PG051 July 25, 2012

I/O Standard and Placement

Flow Control

Pause requests are received and decoded in the receiver clock domain and must be
transferred into the transmitter domain to pause the transmitter. Therefore, the following
constraints must always be applied:

Flow Control logic reclocking - control signal is synchronized
INST "*trimac_core?BU2?U0?FLOW?RX_PAUSE?PAUSE_REQ_TO_TX" TNM="flow_rx_to_tx";
INST "*trimac_core?BU2?U0?FLOW?RX_PAUSE?PAUSE_VALUE_TO_TX*" TNM="flow_rx_to_tx";
TIMESPEC "TS_flow_rx_to_tx" = FROM "flow_rx_to_tx" TO "clk_tx_gmii" 8000 ps
DATAPATHONLY;

Configuration Logic

When the optional Management Interface is used with the core (see The Management
Interface), configuration information is written synchronously to s_axi_aclk . Receiver
configuration data must be transferred onto the receiver clock domain for use with the
receiver; transmitter configuration data must be transferred onto the transmitter clock
domain for use with the transmitter. The following UCF syntax targets this logic and a timing
ignore attribute (TIG) is applied. It does not matter when configuration changes take place;
the latest configurations are sampled at the beginning of new frames by both the receiver
and transmitter.

Note: clock_generator_clkout1 is the auto-defined group generated by the MMCM and covers the
s_axi_aclk domain.

TIMEGRP "ffs_except_axi" = FFS EXCEPT "clock_generator_clkout1" "mdio_logic";
TIMESPEC "TS_config_to_all" = FROM "clock_generator_clkout1" TO "ffs_except_axi"
TIG;

I/O Standard and Placement

I/O Location Constraints
For Zynq-7000, Virtex-7, Kintex-7 and Artix-7 FPGAs there are two types of I/O available,
though both are not supported in most parts: HR I/O supports MII/GMII at 3.3V or lower
and RGMII at 2.5V whereas HP I/O only supports 1.8V or lower. Despite this being the
defined RGMII voltage most PHYs require 2.5V and therefore an external voltage converter
is required to interoperate with any multi-standard PHY for MII, GMII and RGMII. Whilst
there are no specif ic I/O location constraints required for the Tri-Mode Ethernet MAC care
must be taken to understand the type of I/O being targeted and the board implications.

For Spartan-6 and Virtex-6 devices no specif ic I/O location constraints are required.
However, ensure that you use the correct type of dedicated clock input pins for clock inputs
and to abide by the device bank rules when using SelectIO™ interface logic at different
voltage standards.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 220
PG051 July 25, 2012

I/O Standard and Placement

Additionally, when employing BUFIO, BUFIO2 and BUFR regional clock routing, ensure that
a BUFIO/BUFIO2 capable clock input pin is selected for input clock sources, and that all
related input synchronous data signals are placed in the respective BUFIO/BUFIO2 region.
The device User Guides should be consulted.

Note: The example designs delivered by the CORE Generator™ tool to accompany the core netlist
contain I/O placement constraints. These are provided as an example only and should be edited for
specif ic customer placements.

Placement Constraints
The example designs delivered by the CORE Generator™ tool to accompany the core netlist
can contain placement information for the global clock buffers and Mixed-Mode Clock
Managers (MMCM). These are provided as an example only and can be removed or edited
for specif ic customer placements.

Timing Constraints

Constraints when Implementing an External GMII

The constraints defined in this section are implemented in the UCF for the GMII example
design delivered with the core. Sections from this UCF are copied into the following
descriptions to act as an example. These should be studied in conjunction with the HDL
source code for the example design and with the description given in the Physical Interface
chapters within this Guide.

GMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top-level HDL f ile for
the example design; constraints are set to ensure that these are placed in IOBs.

INST "*gmii_txd*" IOB = true;
INST "*gmii_tx_en" IOB = true;
INST "*gmii_tx_er" IOB = true;

INST "*rxd_to_mac*" IOB = true;
INST "*rx_dv_to_mac" IOB = true;
INST "*rx_er_to_mac" IOB = true;

Virtex-6 devices only support GMII/MII at 2.5V and the device default SelectIO™ interface
standard of LVCMOS25 is used. In Spartan-6 devices, GMII/MII by default is supported at
3.3V and the UCF can be updated to contain the following syntax, the targeted
demonstration platforms use 2.5V PHY devices and the UCF therefore specif ies LVCMOS25.
Use this syntax together with the device I/O Banking rules. for Virtex-7 and Kintex-7 devices
see the relevant FPGA data sheet [Ref 3].

INST "gmii_txd<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en" IOSTANDARD = LVTTL;
INST "gmii_tx_er" IOSTANDARD = LVTTL;

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 221
PG051 July 25, 2012

I/O Standard and Placement

INST "gmii_rxd<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv" IOSTANDARD = LVTTL;
INST "gmii_rx_er" IOSTANDARD = LVTTL;

INST "gmii_tx_clk" IOSTANDARD = LVTTL;
INST "gmii_rx_clk" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the GMII I/Os. These are provided
as a guideline only; there are no specif ic I/O location constraints for this core.

GMII Input Setup/Hold Timing

Figure 8-1 and Table 8-2 illustrate the setup and hold time window for the input GMII
signals. This is the worst-case data valid window presented to the FPGA pins.

Observe that there is a 2 ns data valid window which is presented across the GMII input bus.
This must be correctly sampled by the FPGA devices.

7 Series and Virtex-6 Devices

In 7 series devices there are two types of I/O available, High Performance (HP) and High
Range (HR). The HR I/O are perfectly suited to use for GMII as they support both the
required frequency and the required voltage. However, HR I/O are only available on a subset
of Virtex-7 devices, most Kintex-7 devices and all Artix-7 devices and are therefore not
guaranteed to be available. HP I/O, however, are available on all Virtex-7 and Kintex-7
devices but are limited to 1.8V or lower operation. Therefore if HP I/O is used an external
voltage converter is required on all GMII I/O (as well as any other PHY related signals).

The GMII example design uses BUFIO/BUFR routing on the clock and IODELAY components
on the receiver data and control signals for 7 series and Virtex-6 devices. A f ixed tap delay

X-Ref Target - Figure 8-1

Figure 8-1: Input GMII Timing

Table 8-2: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

GMII_RXD[7:0],
GMII_RX_DV,
GMII_RX_ER

GMII_RX_CLK

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 222
PG051 July 25, 2012

I/O Standard and Placement

can be applied to delay the data and control signals so that they are correctly sampled by
the gmii_rx_clk clock at the IOB flip-flop, thereby meeting GMII setup and hold timing.

The following constraint shows an example of setting the delay value for one of these
IODELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

INST *gmii_interface/delay_gmii_rx_dv IDELAY_VALUE = 26;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold timing
which is achieved after place-and-route is reported in the data sheet section of the TRCE
report (created by the implement script). See Understanding Timing Reports for GMII
Setup/Hold Timing.

When IODELAY primitives are instantiated with a fixed delay attribute, an IDELAYCTRL
component must be also instantiated to continuously calibrate the individual input delay
elements. The IDELAYCTRL module requires a reference clock, which is assumed to be an
input to the example design delivered by the CORE Generator tool. The most eff icient way
to use the IDELAYCTRL module is to lock the placement of the instance to the clock region
of the device where the IDELAY/IODELAY components are placed.

To aid the tools in this all related IODELAY components and the related IDELAYCTRL are
placed into a common IODELAY_GROUP. See the Virtex-6 FPGA User Guide and code
comments for details. In addition, for all 7 series and Virtex-6 family designs, the following
UCF syntax is included:

##
For Setup and Hold time analysis on GMII inputs
##

Identify GMII RX Pads only.
This prevents setup/hold analysis being performed on false inputs,
for example, the configuration_vector inputs.
INST "gmii_rxd<?>" TNM = IN_GMII;
INST "gmii_rx_er" TNM = IN_GMII;
INST "gmii_rx_dv" TNM = IN_GMII;

TIMEGRP "IN_GMII" OFFSET = IN 2 ns VALID 2 ns BEFORE "gmii_rx_clk";

This syntax causes the Xilinx® implementation tools to analyze the input setup and hold
constraints for the input GMII bus. If these constraints are not met, the tools report timing
errors. However, the tools do NOT attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUEs in the UCF.

Spartan-6 Devices

The GMII example design uses BUFIO2/BUFG routing on the clock and IODELAY2
components on the receiver data and control signals for Spartan-6 devices. A f ixed tap
delay can be applied to delay the data and control signals so that they are correctly

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 223
PG051 July 25, 2012

I/O Standard and Placement

sampled by the gmii_rx_clk clock at the IOB flip-flop, thereby meeting GMII setup and
hold timing.

The following constraint shows an example of setting the delay value for one of these
IODELAY2 components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

INST *gmii_interface/delay_gmii_rx_dv IDELAY_VALUE = 26;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold timing
which is achieved after place-and-route is reported in the data sheet section of the TRCE
report (created by the implement script). See Understanding Timing Reports for GMII
Setup/Hold Timing.

In addition, for all Spartan-6 FPGA designs, the following UCF syntax is included:

##
For Setup and Hold time analysis on GMII inputs
##

Identify GMII RX Pads only.
This prevents setup/hold analysis being performed on false inputs,
for example, the configuration_vector inputs.
INST "gmii_rxd<?>" TNM = IN_GMII;
INST "gmii_rx_er" TNM = IN_GMII;
INST "gmii_rx_dv" TNM = IN_GMII;

TIMEGRP "IN_GMII" OFFSET = IN 2 ns VALID 2 ns BEFORE "gmii_rx_clk";

This syntax causes the Xilinx implementation tools to analyze the input setup and hold
constraints for the input GMII bus. If these constraints are not met, the tools report timing
errors. However, the tools do NOT attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUEs in the UCF.

Understanding Timing Reports for GMII Setup/Hold Timing

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 8-1. Here follows an example report. The implementation requires 1.835 ns of setup:
this is less than the 2 ns required and so there is slack. The implementation requires
-0.226 ns of hold; this is less than the 0 ns required and so there is slack.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 224
PG051 July 25, 2012

I/O Standard and Placement

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+-------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+-------------------+--------+
gmii_rx_dv | 1.820(R)| -0.281(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rx_er | 1.770(R)| -0.226(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<0> | 1.821(R)| -0.283(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<1> | 1.833(R)| -0.295(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<2> | 1.790(R)| -0.253(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<3> | 1.789(R)| -0.252(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<4> | 1.834(R)| -0.296(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<5> | 1.829(R)| -0.291(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<6> | 1.793(R)| -0.255(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<7> | 1.835(R)| -0.296(R)|rx_gmii_mii_clk_int| 0.000|
------------+------------+------------+-------------------+--------+

Constraints when Implementing an External RGMII

The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the following descriptions to
act as an example. These should be studied in conjunction with the HDL source code for the
example design and with the description given in the Physical Interface chapters within this
Guide.

RGMII IOB Constraints

All Families

The RGMII v2.0 is a 1.5 V signal-level interface. The 1.5 V HSTL (High-Speed Transistor
Logic) Class I SelectIO interface standard is used for RGMII interface pins. Use the following
constraints with the device I/O Banking rules. The I/O slew rate is set to fast to ensure that
the interface can meet setup and hold times.

Note: The targeted demonstration platforms use PHY devices which require 2.5 V, the UCF therefore
sets the IOSTANDARD to LVCMOS25.

INST "rgmii_txd<?>" IOSTANDARD = HSTL_I;
INST "rgmii_tx_ctl" IOSTANDARD = HSTL_I;
INST "rgmii_rxd<?>" IOSTANDARD = HSTL_I;
INST "rgmii_rx_ctl" IOSTANDARD = HSTL_I;

INST "rgmii_txc" IOSTANDARD = HSTL_I;
INST "rgmii_rxc" IOSTANDARD = HSTL_I;

INST "rgmii_txd<?> SLEW = FAST;
INST "rgmii_tx_ctl" SLEW = FAST;
INST "rgmii_txc" SLEW = FAST;

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 225
PG051 July 25, 2012

I/O Standard and Placement

In addition, the example design provides pad locking on the RGMII for several families. This
is a provided as a guideline only; there are no specific I/O location constraints for this core.

RGMII Input Setup/Hold Timing

Figure 8-2 and Table 8-3 illustrate the setup and hold time window for the input RGMII
signals. This is the worst-case data valid window presented to the FPGA pins.

Observe that there is a 2 ns data valid window which is presented across the RGMII input
bus. This must be correctly sampled on both clock edges by the FPGA devices.

For RGMII, the lower data bits, rgmii_rxd[3:0], should be sampled internally on the
rising edge of rgmii_rxc, and the upper data bits, rgmii_rxd[7:4], should be sampled
internally on the falling edge of rgmii_rxc.

7 Series Devices

RGMII requires an offset between the transmit clock and data. In Spartan-6 and Virtex-6
devices this is achieved using a built in output delay. In 7 series devices the output delay
component is only available on High Performance (HP) I/O which are limited to operating at
1.8V or lower. Despite RGMII being defined as a 1.8V standard, the majority of PHYs
supporting it are multi-standard and require it to run at 2.5V.

To be able to run at 2.5V you are limited to either using High Range (HR) I/O, which are only
available on a subset of Virtex-7 devices, most Kintex-7 devices and all Artix-7 devices, or
using an off-chip voltage converter. 7 series HR I/O do not have the output delay
functionality and therefore require different logic to implement the required transmit clock/
data offset. See the appropriate section depending upon the type of I/O used.

X-Ref Target - Figure 8-2

Figure 8-2: Input RGMII Timing

Table 8-3: Input RGMII Timing

Symbol Min Typical Units

tSETUP 1.0 2.0 ns

tHOLD 1.0 2.0 ns

tSETUP

tHOLD

tSETUP

tHOLD

RGMII_RXC

RGMII_RXD[3:0],
RGMII_RX_CTL

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 226
PG051 July 25, 2012

I/O Standard and Placement

7 Series Devices using HR I/O

The RGMII design requires a 90o phase shifted version off gtx_clk to be available. In the
provided example design this is an output from the Clock Generator.

The 90o phase shifted clock, gtx_clk90, is used to generate the transmit clock, with the
normal clock, gtx_clk , being used for the data and control generation.

The RGMII receiver design uses BUFIO/BUFR routing on the clock and IDELAY components
on the data and control signals. A f ixed tap delay can be applied to delay the data and
control signals so that they are correctly sampled by the rgmii_rxc clock at the IOB IDDR
registers, thereby meeting RGMII setup and hold timing.

The following constraint shows an example of setting the delay value for one of these
IDELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *gmii_interface/delay_rgmii_rx_ctl IDELAY_VALUE = 20;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup and
hold constraints for the example RGMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
RGMII Setup/Hold Timing.

When IDELAY primitives are instantiated with a f ixed delay attribute, an IDELAYCTRL
component must be also instantiated to continuously calibrate the individual input delay
elements. The IDELAYCTRL module requires a reference clock, which is assumed to be an
input to the example design delivered by the CORE Generator tool. The most eff icient way
to use the IDELAYCTRL module is to lock the placement of the instance to the clock region
of the device where the IDELAY components are placed. To aid the tools in this all related
IDELAY components and the related IDELAYCTRL are placed into a common
IODELAY_GROUP. See the code comments for details.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 227
PG051 July 25, 2012

I/O Standard and Placement

In addition, for all designs, the following UCF syntax is included:

##
For Setup and Hold time analysis on RGMII inputs
##

Identify RGMII RX Pads only.
This prevents setup/hold analysis being performed on false inputs,
for example, the configuration_vector inputs.
INST "rgmii_rxd<?>" TNM = IN_RGMII;
INST "rgmii_rx_ctl" TNM = IN_RGMII;

Define data valid window with respect to the clock rising edge.
The spec states that, worst case, the data is valid 1 ns before the clock edge.
The worst case it to provide 1 ns hold time (a 2ns window in total)
TIMEGRP "IN_RGMII" OFFSET = IN 1 ns VALID 2 ns BEFORE "rgmii_rxc" "RISING";

Define data valid window with respect to the clock falling edge.
TIMEGRP "IN_RGMII" OFFSET = IN 1 ns VALID 2 ns BEFORE rgmii_rxc "FALLING";

This syntax causes the Xilinx implementation tools to analyze the input setup and hold
constraints for the input RGMII bus. If these constraints are not met, the tools report timing
errors. However, the tools do NOT attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUE in the UCF.

7 Series using HP I/O and Virtex-6 Devices

Note: HP I/O only supports operation at 1.8V or lower and this either requires an external voltage
converter for 2.5V PHYs or a dedicated RGMII PHY supporting 1.8V.

The RGMII design uses an IODELAY component on the rgmii_txc transmitter output
clock. A fixed tap delay is applied to move the rising edge of this clock to the center of the
output data window. The following UCF syntax is an example:

INST "*delay_rgmii_tx_clk" ODELAY_VALUE = 26;

The RGMII receiver design uses BUFIO/BUFR routing on the clock and IODELAY components
on the data and control signals. A f ixed tap delay can be applied to delay the data and
control signals so that they are correctly sampled by the rgmii_rxc clock at the IOB IDDR
registers, thereby meeting RGMII setup and hold timing.

The following constraint shows an example of setting the delay value for one of these
IODELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *gmii_interface/delay_rgmii_rx_ctl IDELAY_VALUE = 20;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup and
hold constraints for the example RGMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
RGMII Setup/Hold Timing.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 228
PG051 July 25, 2012

I/O Standard and Placement

When IODELAY primitives are instantiated with a fixed delay attribute, an IDELAYCTRL
component must be also instantiated to continuously calibrate the individual input delay
elements. The IDELAYCTRL module requires a reference clock, which is assumed to be an
input to the example design delivered by the CORE Generator tool. The most eff icient way
to use the IDELAYCTRL module is to lock the placement of the instance to the clock region
of the device where the IDELAY/IODELAY components are placed. To aid the tools in this all
related IODELAY components and the related IDELAYCTRL are placed into a common
IODELAY_GROUP. See the Virtex-6 FPGA User Guide and code comments for details.

In addition, for all 7 series and Virtex-6 family designs, the following UCF syntax is included:

##
For Setup and Hold time analysis on RGMII inputs
##

Identify RGMII RX Pads only.
This prevents setup/hold analysis being performed on false inputs,
for example, the configuration_vector inputs.
INST "rgmii_rxd<?>" TNM = IN_RGMII;
INST "rgmii_rx_ctl" TNM = IN_RGMII;

Define data valid window with respect to the clock rising edge.
The spec states that, worst case, the data is valid 1 ns before the clock edge.
The worst case it to provide 1 ns hold time (a 2ns window in total)
TIMEGRP "IN_RGMII" OFFSET = IN 1 ns VALID 2 ns BEFORE "rgmii_rxc" "RISING";

Define data valid window with respect to the clock falling edge.
TIMEGRP "IN_RGMII" OFFSET = IN 1 ns VALID 2 ns BEFORE rgmii_rxc "FALLING";

This syntax causes the Xilinx implementation tools to analyze the input setup and hold
constraints for the input RGMII bus. If these constraints are not met, the tools report timing
errors. However, the tools do NOT attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUE in the UCF.

Spartan-6 Devices

The RGMII design uses an IODELAY2 component on the rgmii_txc transmitter output
clock. A fixed tap delay is applied to move the rising edge of this clock to the center of the
output data window. This is performed with the following UCF syntax:

#INST "*delay_rgmii_tx_clk" ODELAY_VALUE = 26;

The RGMII receiver design uses direct BUFG routing on the clock with IODELAY2
components on the control and datapaths. A fixed tap delay is applied to move the control/
data in relation to the clock to provide the maximum setup/hold for the interface at the
data/control IOB IDDR2 registers.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 229
PG051 July 25, 2012

I/O Standard and Placement

The following constraint shows an example of setting the IODELAY2 tap delay. The ideal
value for this is found through hardware testing.

INST "*delay_rgmii_rxd*" IDELAY_VALUE = 8;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup and
hold constraints for the example RGMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
RGMII Setup/Hold Timing.

In addition, for all Spartan-6 FPGA designs, the following UCF syntax is included:

##
For Setup and Hold time analysis on RGMII inputs
##

Identify RGMII RX Pads only.
This prevents setup/hold analysis being performed on false inputs,
for example, the configuration_vector inputs.
INST "rgmii_rxd<?>" TNM = IN_RGMII;
INST "rgmii_rx_ctl" TNM = IN_RGMII;

Define data valid window with respect to the clock rising edge.
The spec states that, worst case, the data is valid 1 ns before the clock edge.
The worst case it to provide 1 ns hold time (a 2ns window in total)
TIMEGRP "IN_RGMII" OFFSET = IN 1 ns VALID 2 ns BEFORE "rgmii_rxc" "RISING";

Define data valid window with respect to the clock falling edge.
TIMEGRP "IN_RGMII" OFFSET = IN 1 ns VALID 2 ns BEFORE rgmii_rxc "FALLING";

This syntax causes the Xilinx implementation tools to analyze the input setup and hold
constraints for the input RGMII bus. If these constraints are not met, the tools report timing
errors. However, the tools do NOT attempt to automatically correct the timing in the case of
failure. These must be corrected manually by changing the IDELAY_VALUE in the UCF.

Understanding Timing Reports for RGMII Setup/Hold Timing

Setup and Hold results for the RGMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 8-2. Here follows an example report. Each Input lists two sets of values: one
corresponding to the falling edge of the clock and one to the rising edge.

Setup: the first set listed corresponds to falling edge, which occurs at time 4 ns. The
implementation requires 0.648 ns of setup to the falling edge and 0.661 ns to the rising
edge; this is less than the 1ns required and so there is slack.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 230
PG051 July 25, 2012

I/O Standard and Placement

Hold: the implementation requires 0.300 ns of hold after the falling edge and 0.316 ns after
the falling edge; this is less than the 1ns required and so there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+---------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+---------------------+--------+
rgmii_rx_ctl| -3.352(R)| 4.300(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.661(R)| 0.284(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<0>| -3.384(R)| 4.332(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.629(R)| 0.316(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<1>| -3.348(R)| 4.296(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.665(R)| 0.280(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<2>| -3.360(R)| 4.308(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.653(R)| 0.292(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<3>| -3.428(R)| 4.382(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.585(R)| 0.366(R)|rgmii_rx_clk_bufg | 0.938|
------------+------------+------------+---------------------+--------+

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 231
PG051 July 25, 2012

Chapter 9

Example Design

Example Design Overview
Figure 9-1 illustrates the top-level design for the TEMAC solution example design.

The top-level example design for the TEMAC solution is defined in the following f iles:

<project_dir>/<component_name>/example_design/
<component_name>_example_design.v[hd]

X-Ref Target - Figure 9-1

Figure 9-1: HDL Example Design

<component_name>_block

<component_name>_example_design

Pattern
Generator
& Checker

Physical
Interface

<component_name>_fifo_block

Statistics Vectors
Interface

Clock
Generation

MII/GMII/RGMII
Interface
Logic and

Clocks

 TEMAC Core
&

AVB Endpoint

Tx FIFO

Rx FIFO

10 Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

Interface

MDIO

Statistics
Vector Decode

AXI4-Lite
to IPIF

AXI4-Lite
Control
State

Machine

AVB
Pattern

Generator
& Checker

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 232
PG051 July 25, 2012

Example Design Overview

The HDL example design contains the following:

• An instance of the TEMAC solution

• Clock management logic, including MMCM and Global Clock Buffer instances, where
required

• MII, GMII or RGMII interface logic, including IOB and DDR registers instances, where
required

• Statistics vector decode logic

• AXI4-Lite to IPIF interface logic

• User Transmit and Receive FIFOs with AXI4-Stream interfaces

• User basic pattern generator module that contains a frame generator and frame
checker plus loopback logic.

• User AVB pattern generator module providing a second frame generator and frame
checker for designs including the AVB Endpoint.

• A simple state machine to bring up the PHY (if any) and MAC ready for frame transfer

The HDL example design provides basic loopback functionality on the user side of the
TEMAC solution and connects the GMII/RGMII interface to external IOBs, it can also operate
as a pattern generator with data being optionally looped back externally, on the PHY side,
and automatically checked.

This allows the functionality of the core to be demonstrated either using a simulation
package, as discussed in this guide, or in hardware, if placed on a suitable board. The simple
state machine assumes standard PHY address and register content as per standard Xilinx
demonstration boards.

After the core is generated, a functional simulation directory is created, which contains
scripts to simulate the core using the structural HDL models. See Simulation, page 249.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 233
PG051 July 25, 2012

Detailed Example Design

Detailed Example Design
This section provides detailed information about the example design, including a
description of f iles and the directory structure generated by the Xilinx® CORE Generator™
tool, the purpose and contents of the provided scripts, the contents of the example HDL
wrappers, and the operation of the demonstration test bench.

The example design, under certain core configurations, is intended to be directly targetable
to key Xilinx Demonstration Platforms, the current supported boards being:

• Spartan®-6 FPGA boards

° SP601 Board

° SP605 Board

• Virtex®-6 FPGA boards

° ML605 Board

• Kintex™-7 FPGA boards

° KC705 Board

• Virtex®-7 and Artix™-7 FPGA Boards

° No boards are supported at this time

The example design includes a basic state machine which, through the AXI4-Lite interface,
brings up the external PHY and MAC to allow basic frame transfer. This is described in more
detail in AXI4-Lite Control State Machine, page 197.

The example design also include a basic store and forward AXI4-Stream FIFO example. This
is described in10 Mb/s /100 Mb/s/1 Gb/s Ethernet FIFO, page 193.

A Simple Frame Generator and Frame Checker are also included which can be used to turn
a particular board into a packet generator with any received data optionally being checked,
see Basic Pattern Generator Module, page 194 for more detail. If the TEMAC is generated
with the Optional AVB Endpoint another frame generator and frame checker are included to
exercise the AV datapath.

Loopback functionality is provided as either MAC RX to TX loopback, where the loopback
logic becomes the packet source in place of the packet generator, or PHY TX to RX
loopback, with the loopback replacing the demonstration test bench stimulus and checker.
Basic control of the state machine, allowing MAC speed change is achieved using push
buttons and DIP switches on the board. See the board specif ic sections in Targeting the
Example Design to a Board, page 243

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 234
PG051 July 25, 2012

Directory and File Contents

Directory and File Contents
top directory link - white text invisible

<project directory>top directory

Top-level project directory; name is user-defined.

 <project directory>/<component name>
Core release notes file

 <component name>/example design
Verilog and VHDL design files

 example design/common
Files for general use in the example design

 example design/axi_ipif
Files for the AXI4-Lite to IPIF interface that is instanced in the Block level

 example design/axi_lite
Files for the AXI4-Lite control state machine which is instanced in the top level
example design

 example design/control
Files for the Configuration vector control state machine which is instanced in
the top level example design

 example design/fifo
Files for the FIFO that is instanced in the FIFO Block level

 example design/pat_gen
Files for the Basic Pattern Generator which is instanced in the top level
example design

 example_design/physical
Files for the physical interface of the MAC

 example_design/statistics
Files for the statistics vector decode logic

<component name>/implement
Implementation script files

 implement/results
Results directory, created after implementation scripts are run, and contains
implement script results

 <component name>/simulation
Simulation scripts

 simulation/functional
Functional simulation files

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 235
PG051 July 25, 2012

Directory and File Contents

The core directories and their associated files are defined in the following sections.

<project directory>
The project directory contains all the CORE Generator tool project f iles.

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
which can include last-minute changes and updates.

Table 9-1: Project Directory

Name Description

<project_dir>

<component_name>.ngc Binary Xilinx implementation netlist. Describes
how the core is to be implemented. Used as input
to the Xilinx Implementation Tools.

<component_name>.v[hd] VHDL or Verilog structural simulation model. File
used to support functional simulation of a core.
The model passes customized parameters to the
generic core simulation model.

<component_name>.xco As an output file, the XCO file is a log f ile which
records the settings used to generate a particular
core. An XCO file is generated by the CORE
Generator tool for each core that it creates in the
current project directory. An XCO file can also be
used as an input to the CORE Generator tool.

<component_name>_flist.txt Text f ile that defines all the output files produced
when a customized core is generated using the
CORE Generator tool.

<component_name>.{veo|vho} Verilog or VHDL template for the core. This can be
copied into your design.

Back to Top

Table 9-2: Component Name Directory

Name Description

<project_dir>/<component_name>

tri_mode_eth_mac_readme.txt Core release notes f ile

Back to Top

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 236
PG051 July 25, 2012

Directory and File Contents

<component name>/example design
This directory (and subdirectories) contain all of the support f iles necessary for a VHDL or
Verilog implementation of the example design. Table 9-3 defines the HDL f iles that are
always present in this directory. Example designs for certain implementations can contain
extra f iles for clock/clock enable generation logic. See Demonstration Test Bench, page 199
for details.

example design/common
This directory contains common files required by various levels of the example design.

Table 9-3: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

<component_name>_example_design.v[hd] Top-level VHDL or Verilog file for the example
design. This instantiates the f ifo block level along
with the basic pattern generator block, providing a
simple loopback function or frame generation.

<component_name>_example_design.ucf User constraints f ile (UCF) for the core and the
example design

<component_name>_fifo_block.v[hd] Example design with an AXI4-Stream interface. This
instantiates the block level TEMAC wrapper
together with a receive and a transmit FIFO.

<component_name>_block.v[hd] Block-level TEMAC wrapper containing the core
and all clocking and physical interface circuitry

<component_name>_mod.v Verilog module declaration for the core instance in
the example design

<component_name>_tx_clk_gen.v[hd] Simple TX clock generation block

<component_name>_example_design.xdc Not Used

Back to Top

Table 9-4: Common Directory

Name Description

<project_dir>/<component_name>/example_design/common

<component_name>_sync_block.v[hd] Synchronizer module, used for passing signals
across a clock domain.

<component_name>_reset_sync.v[hd] Local reset synchronizer, used to create a
synchronous reset output signal from an
asynchronous input.

Back to Top

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 237
PG051 July 25, 2012

Directory and File Contents

example design/axi_ipif
This directory contains the f iles for the AXI4_IPIF interface that is instanced in the Block
level of the example design.

example design/axi_lite
This directory contains the f iles for the AXI4-Lite controller that is instanced in the example
design when the optional management interface is selected.

Table 9-5: Axi_ipif Directory

Name Description

<project_dir>/<component_name>/example_design/axi_ipif

<component_name>_axi4_lite_ipif_
wrapper.v[hd]

Top Level wrapper for the AXI4-Lite to IPIF
interface. This simplif ies the required parameters
to just the required base address.

<component_name>_axi_lite_ipif.v[hd] AXI4-Lite IPIF wrapper block. converts from the
industry standard AXI4-Lite to a simple IPIF
interface.

<component_name>_slace_attachment.v[hd] Required file for the AXI_Lite_IPIF block.

<component_name>_address_decoder.v[hd] Required file for the AXI_Lite_IPIF block.

<component_name>_counter_f.v[hd] Required file for the AXI_Lite_IPIF block.

<component_name>_pselect_f.v[hd] Required file for the AXI_Lite_IPIF block.

<component_name>_ipif_pkg.vhd Only required for VHDL projects. Provides entity
declarations of the VHDL f iles required by this
block.

Back to Top

Table 9-6: Axi_lite Directory

Name Description

<project_dir>/<component_name>/example_design/axi_lite

<component_name>_axi_lite_sm.v[hd] Simple state machine to bring up the PHY (if any)
and MAC ready for frame transfer.

Back to Top

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 238
PG051 July 25, 2012

Directory and File Contents

example design/control
This directory contains the f iles for the config vector controller that is instanced in the
example design when no management interface is selected.

example design/fifo
This directory contains the f iles for the FIFO that is instanced in the fifo block example
design.

Table 9-7: Control Directory

Name Description

<project_dir>/<component_name>/example_design/control

<component_name>_config_vector_sm.v[hd] Simple state machine to drive the configuration
vectors to allow frame transfer.

Back to Top

Table 9-8: FIFO Directory

Name Description

<project_dir>/<component_name>/example_design/fifo

<component_name>_tx_client_fifo.v[hd] Transmit FIFO. This takes data from the user in
AXI4-Stream format, stores it and sends it to the
MAC.

<component_name>_rx_client_f ifo.v[hd] Receive FIFO. This reads in and stores data from the
MAC before outputting it to the user in
AXI4-Stream format.

<component_name>_ten_100_1G_eth_
fifo.v[hd]

FIFO top level. This instantiates the transmit and
receive FIFOs.

Back to Top

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 239
PG051 July 25, 2012

Directory and File Contents

example design/pat_gen
This directory contains the f iles for the basic pattern generator that is instanced in the
example design.

example_design/physical
This directory contains a f ile for the physical interface of the MAC. A GMII, MII or RGMII
version is delivered by the CORE Generator tool depending on the selected option.

Table 9-9: Pat_gen Directory

Name Description

<project_dir>/<component_name>/example_design/pat_gen

<component_name>_basic_pat_gen.v[hd] Top level for the basic pattern generator block

<component_name>_axi_mux.v[hd] Simple Mux to allow the choice between the
axi_pat_gen or the AXI4-Stream RX datapath.
Provides basic loopback functionality under
control of a dedicated input.

<component_name>_axi_pipe.v[hd] Simple axi4-stream pipeline stage

<component_name>_axi_pat_gen.v[hd] Simple pattern generator. Generates packets of a
defined size/range of sizes with the (parameter)
specif ied DA and SA f ields. The frame content is
simple incrementing data.

<component_name>_address_swap.v[hd] Allows the frame sourced by the axi_mux block to
have the DA and SA f ields swapped. This is
controlled using a dedicated input.

Back to Top

Table 9-10: Physical Directory

Name Description

<project_dir>/<component_name>/example_design/physical

<component_name>_mii_if.v[hd] For MII only: all clocking and logic required to
provide an MII physical interface

<component_name>_gmii_if.v[hd] For GMII only: all clocking and logic required to
provide a GMII physical interface

<component_name>_rgmii_v2_0_if.v[hd] For RGMII only: all clocking and logic required to
provide a RGMII v2.0 physical interface

Back to Top

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 240
PG051 July 25, 2012

Directory and File Contents

example_design/statistics
This directory contains the statistics counters decode logic which is required when the core
is build with the statistics core included.

<component name>/implement
This directory contains the support f iles necessary for implementation of the example
design with the Xilinx tools. See Demonstration Test Bench, page 199. Execution of an
implement script results in creation of the results directory and an xst project directory.

Table 9-11: Statistics Directory

Name Description

<project_dir>/<component_name>/example_design/statistics

<component_name>_vector_decode.v[hd] This block translates between the MAC source
statistics vectors and the required counter
increment signals. This is provided to allow user
customization of the counters.

Back to Top

Table 9-12: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.sh Linux shell script that processes the example
design through the Xilinx tool flow

implement.bat Windows batch file that processes the example
design through the Xilinx tool flow

xst.prj XST project f ile for the example design; it
enumerates all the HDL f iles that need to be
synthesised.

xst.scr XST script f ile for the example design

example_design_xst.xcf Constraints f ile automatically used by XST

planAhead_rdn.sh Not Used

planAhead_rdn.bat Not Used

planAhead_rdn.tcl Not Used

Back to Top

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 241
PG051 July 25, 2012

Directory and File Contents

implement/results
This directory is created by the implement scripts and is used to run the example design
f iles and the <component_name>.ngc f ile through the Xilinx implementation tools. On
completion of an implement script, this directory contains the following files for timing
simulation. Output f iles from the Xilinx implementation tools are also located in this
directory.

.

<component name>/simulation
The simulation directory and the subdirectories below it provide the f iles necessary to test
a VHDL or Verilog implementation of the example design.

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 9-13: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd] Back-annotated SIMPRIM-based gate-level VHDL or Verilog design. Used for
timing simulation.

routed.sdf Timing information for simulation

Back to Top

Table 9-14: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

demo_tb.v[hd] VHDL or Verilog demonstration test bench for the TEMAC solution

Back to Top

Table 9-15: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do ModelSim macro file that compiles the example design sources and the structural
simulation model then runs the functional simulation to completion.

wave_mti.do ModelSim macro f ile that opens a wave window and adds interesting signals to it.
It is called by the simulate_mti.do macro f ile.

simulate_ncsim.sh Cadence IES script f ile that compiles the example design sources and the structural
simulation model and then runs the functional simulation to completion.

wave_ncsim.sv Cadence IES macro file that opens a wave window and adds interesting signals to
it.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 242
PG051 July 25, 2012

Demonstration Test Bench

Demonstration Test Bench
See Demonstration Test Bench in Chapter 6.

Implementation

Implementation Scripts
In CORE Generator, an implement script is generated in the <project_dir>/
<component_name>/implement directory. The implementation script is either a shell
script or batch f ile that processes the example design through the Xilinx tool flow.

If the core is generated with a Hardware Evaluation or a Full license, the netlist and HDL
example design can be processed through the Xilinx implementation toolset.

Linux

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

The implement script performs the following steps:

• The HDL example design is synthesized using XST.

• NGDBuild is run to consolidate the core netlist and the HDL example netlist into the
NGD file containing the entire design.

• The design is mapped to the target technology.

• The design is place-and-routed on the target device.

• Static timing analysis is performed on the routed design using trce.

simulate_vcs.sh VCS script f ile that compiles the Verilog sources and runs the functional simulation
to completion.

ucli_commands.key This f ile is sourced by VCS at the start of simulation: it configures the simulator.

vcs_session.tcl VCS macro file that opens a wave window and adds signals of interest to it. It is
called by the simulate_vcs.sh script f ile.

Back to Top

Table 9-15: Functional Directory (Cont’d)

Name Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 243
PG051 July 25, 2012

Targeting the Example Design to a Board

• A bitstream is generated.

• Netgen runs on the routed design to generate VHDL and Verilog netlists and timing
information in the form of SDF f iles.

The Xilinx tool flow generates several output and report f iles. These are saved in the
following directory which is created by the implement script:

<project_dir>/<component_name>/implement/results

Targeting the Example Design to a Board
For each supported device, there are certain TEMAC solution configurations which can be
targeted directly to the Xilinx connectivity board for that device. The UCF included with the
example design provides the required pin placements for the specif ic board. In each case
the board DIP switches, push buttons and LEDs are used to provide basic control over the
MAC functionality. This is described in more detail in the board specific sections.

TEMAC Solution Configurations Supported
There are some basic requirements for the example design to function correctly when
targeted at a board. The TEMAC must:

• Include an AXI4_Lite Management interface

• Target the relevant part for the specific board - see the board specif ic section.

Bring Up Sequence
When the example design is f irst targeted at a board the following sequence is suggested
to check the various features are working, this is common for all boards:

• First Attach an Ethernet cable between the board and a PC installed with wireshark or
similar.

• Select the desired speed using the DIP switches

• Push the update speed pushbutton

• Ensure the link status LEDs show the expected speed

• Enable the pattern_generator using the DIP switch

• Capture and check the received frames at the PC and ensure they have the expected
data pattern.

To utilise the pattern checker and check the both datapaths two boards are required.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 244
PG051 July 25, 2012

Targeting the Example Design to a Board

Board A: Operates as a frame source and optionally checker.

Board B: This board operates as a simple loopback board.

Bring up process:

• First attach an Ethernet cable between the two boards.

• Select the desired speed on both boards - this must be the same setting

• Push the update speed button on both boards

• Check the link status LEDs show the correct speed

• Enable the pattern generator on Board A, ensure it is disabled on Board B

• Check the Link Status RX/TX LEDs all light up

• If desired the Pattern checker can be enabled on both boards or just Board A.

• Ensure the RX activity LED is flashing

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 245
PG051 July 25, 2012

Targeting the Example Design to a Board

SP601 Board
The UCF targets the SP601 when any Spartan-6 device apart from the 45T is used.

Figure 9-1: SP601 Board Connectivity

Board Reset

DIP Switchs:
(from left to right)
1- mac_speed[0]
2- mac_speed[1]
3- Enable pat_gen
4- Enable pat_check

Push Buttons:
(from right to left)
0- update_speed
1- Not used
2- Not used
3- Reset checker error

LEDs:
(from right to left)
1- Activity Info
2- Activity Info inverted
3- Pat check Pass
4- Pat check Error

Link Status

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 246
PG051 July 25, 2012

Targeting the Example Design to a Board

SP605 Board
The UCF targets this board if the Spartan-6 45T part is selected.

X-Ref Target - Figure 9-2

Figure 9-2: SP605 Board Connectivity

DIP Switchs:
(from bottom to top)
1- mac_speed[0]
2- mac_speed[1]
3- Enable pat_gen
4- Enable pat_check

LEDs:
(from left to right)
4- Activity Info
5- Activity Info Inverted
6- pat_check pass
7- pat_check fail

Board RESET

Push Button:
Update_speed

Push Button:
Reset checker error

Link Status

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 247
PG051 July 25, 2012

Targeting the Example Design to a Board

ML605 Board
The UCF targets the ML605 when any Virtex-6 LX FPGA part is selected.

X-Ref Target - Figure 9-3

Figure 9-3: ML605 Board Connectivity

DIP Switchs:
(from top to bottom)
1- mac_speed[0]
2- mac_speed[1]
3- Enable pat_gen
4- Enable pat_check

Board RESET

Link Status
Push Buttons
(from top to bottom)
c - update speed
s - reset checker error

LEDs:
(from top to bottom)
n - pat_check pass
c - not used
s - pac check error

LEDs:
(from top to bottom)
1- activity info
2- activity info inverted

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 248
PG051 July 25, 2012

Targeting the Example Design to a Board

KC705 Board
The UCF targets the KC705 when any Kintex-7 FPGA part is selected.

X-Ref Target - Figure 9-4

Figure 9-4: KC705 Board Connectivity

Board Reset

LEDs:
(from right to left)
1- Pat check Error
2- Pat check Pass
3- Activity Info
4- Activity Info inverted

DIP Switchs:
(from left to right)
1- mac_speed[0]
2- mac_speed[1]
3- Enable pat_gen
4- Enable pat_check

Link Status

Push Buttons:
(from top to bottom)
N- Reset checker error
C- update_speed

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 249
PG051 July 25, 2012

Simulation

Simulation

Test Scripts For Functional Simulation
The functional simulation flow is available with any license type, and the test script that
automates the simulation of the test bench is located in one of the following locations:

Mentor ModelSim

<project_dir>/<component_name>/simulation/functional/simulate_mti.do

Cadence IES

<project_dir>/<component_name>/simulation/functional/simulate_ncsim.sh

Synopsys VCS

<project_dir>/<component_name>/simulation/functional/simulate_vcs.sh

The test script performs the following tasks:

• Compiles the structural simulation model of the core

• Compiles the example design files

• Compiles the demonstration test bench

• Starts a simulation of the test bench with no timing information

• Opens a Wave window and adds some signals of interest

• Runs the simulation to completion

Running the Simulation

Functional Simulation

To run the functional simulation, you must have the Xilinx Simulation Libraries compiled for
your system. See COMPXLIB in [Ref 16].

Note: In the simulation examples that follow, <project_dir> is the CORE Generator tool project
directory, and <component_name> is the component name as entered in the core customization
dialog box.

VHDL Simulation

To run a VHDL functional simulation:

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 250
PG051 July 25, 2012

Simulation

1. Open a command prompt or shell and set the current directory to: <project_dir>/
<component_name>/simulation/functional

2. Launch the simulation script:

ModelSim: vsim -do simulate_mti.do

IES:./simulate_ncsim.sh

The scripts compile the structural VHDL model, the example design files and the
demonstration test bench, add some relevant signals to a wave window, then run the
simulation to completion. Now, you can review the simulation transcript and waveform to
observe the operation of the core.

Verilog Simulation

To run a Verilog functional simulation:

1. Open a command prompt or shell and set the current directory to <project_dir>/
<component_name>/simulation/functional

2. Launch the simulation script:

ModelSim: vsim -do simulate_mti.do

IES: ./simulate_ncsim.sh

VCS: ./simulate_vcs.sh

The scripts compile the structural Verilog model, the example design f iles and the
demonstration test bench, add some relevant signals to a wave window, then run the
simulation to completion. Now, you can review the simulation transcript and waveform to
observe the operation of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 251
PG051 July 25, 2012

SECTION IV: APPENDICES

Calculating the MMCM Phase Shift or IODelay
Tap Setting

Differences between the Embedded Tri-Mode
Ethernet MACs and the Soft TEMAC Solution IP
Core

Verification, Compliance, and Interoperability

Migrating to AXI Tri-Mode Ethernet MAC

Debugging

Application Software Development

Additional Resources

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 252
PG051 July 25, 2012

Appendix A

Calculating the MMCM Phase Shift or
IODelay Tap Setting

Two differing methods can be used by the core to meet input bus (GMII/MII or RGMII) setup
and hold timing specif ications. These are:

• MMCM Usage

A MMCM can be used in the receiver clock path to meet the input setup and hold
requirements when implementing GMII/MII and RGMII. See the Physical Interface
sections in this Guide in Chapter 3.

• IODelay Usage

IODelays can be used in the receiver clock path to meet the input setup and hold
requirements when implementing GMII/MII and RGMII See the Physical Interface
sections in this Guide in Chapter 3.

MMCM Usage

MMCM Phase Shifting Requirements
When using a MMCM, a f ixed-phase shift offset is applied to the receiver clock MMCM to
skew the clock; this performs static alignment by using the receiver clock MMCM to shift
the internal version of the receiver clock such that the input data is sampled at the optimum
time. The ability to shift the internal clock in small increments is critical for sampling
high-speed source synchronous signals. For statically aligned systems, the MMCM output
clock phase offset (as set by the phase shift value) is a critical part of the system, as is the
requirement that the PCB is designed with precise delay and impedance-matching for all
the GMII/MII or RGMII receiver data bus and control signals.

You must determine the best MMCM setting (phase shift) to ensure that the target system
has the maximum system margin to perform across voltage, temperature, and process
(multiple chips) variations. Testing the system to determine the best MMCM phase shift
setting has the added advantage of providing a benchmark of the system margin based on
the UI (unit interval or bit time). System margin is defined as the following:

System Margin (ps) = UI(ps) * (working phase shift range/128)

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 253
PG051 July 25, 2012

MMCM Usage

Finding the Ideal Phase Shift Value
Xilinx cannot recommend a singular phase shift value that is effective across all hardware
families. Xilinx does not recommend attempting to determine the phase shift setting
empirically. In addition to the clock-to-data phase relationship, other factors such as
package flight time (package skew) and clock routing delays (internal to the device) affect
the clock to data relationship at the sample point (in the IOB) and are diff icult to
characterize.

Xilinx recommends extensive investigation of the phase shift setting during hardware
integration and debugging. The phase shift settings provided in the example design
constraint f ile are placeholders, and work successfully in back-annotated simulation of the
example design.

Perform a complete sweep of phase-shift settings during your initial system test. Use a test
range which covers at least half of the clock period or 128 taps. This does not imply that 128
phase-shift values must be tested; increments of 4 (52, 56, 60, and so forth) correspond to
roughly one MMCM tap at 125 MHz, and consequently provide an appropriate step size.
Additionally, it is not necessary to characterize areas outside the working phase-shift range.

At the edge of the operating phase shift range, system behavior changes dramatically. In
eight phase shift settings or less, the system can transition from no errors to exhibiting
errors. Checking the operational edge at a step size of two (on more than one board) refines
the typical operational phase shift range. After the range is determined, choose the average
of the high and low working phase shift values as the default. During the production test,
Xilinx recommends that you re-examine the working range at corner case operating
conditions to determine whether any final adjustments to the final phase shift setting are
needed.

You can use the FPGA Editor to generate the required test f ile set instead of resorting to
multiple PAR runs. Performing the test on design f iles that differ only in phase shift setting
prevents other variables from affecting the test results. FPGA Editor operations can even be
scripted further, reducing the effort needed to perform this characterization.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 254
PG051 July 25, 2012

IODelay Usage

IODelay Usage
IODelay Tap Setting Requirements
With this method, an IODelay is used on either the clock or Data (or both) to adjust the
Clock/Data relationship such that the input data is sampled at the optimum time. The ability
to adjust this relationship in small increments is critical for sampling high-speed source
synchronous signals. For statically aligned systems, the IODelay Tap setting is a critical part
of the system, as is the requirement that the PCB is designed with precise delay and
impedance-matching for all the GMII/MII or RGMII receiver data bus and control signals.

You must determine the best IODelay Tap setting to ensure that the target system has the
maximum system margin to perform across voltage, temperature, and process (multiple
chips) variations.

Finding the Ideal Tap Setting Value
Xilinx cannot recommend a singular tap value that is effective across all hardware families.
Xilinx does not recommend attempting to determine the tap setting empirically. In addition
to the clock-to-data phase relationship, other factors such as package flight time (package
skew) and clock routing delays (internal to the device) affect the clock to data relationship
at the sample point (in the IOB) and are diff icult to characterize. Xilinx recommends
extensive investigation of the tap setting during hardware integration and debugging. The
tap settings provided in the example design constraint f ile are placeholders, and work
successfully in back-annotated simulation of the example design.

Perform a complete sweep of tap settings during your initial system test. If possible use a
test range which covers at least half of the clock period. This does not imply that all values
must be tested as it might be simpler to use a large step size initially to identify a tighter
range for a subsequent run. Additionally, it is not necessary to characterize areas outside
the working range. If an IODelay is used on both Clock and Data then ensure this test range
covers both clock only and data only adjustments.

At the edge of the operating range, system behavior changes dramatically. In four tap
settings or less, the system can transition from no errors to exhibiting errors. Checking the
operational edge at a step size of two (on more than one board) refines the typical
operational range. After the range is determined, choose the average of the high and low
working values as the default. During the production test, Xilinx recommends that you
re-examine the working range at corner case operating conditions to determine whether
any final adjustments to the final setting are needed. Where IODelays are used on the data
it might be necessary or beneficial to use slightly different values for each bit.

You can use the FPGA Editor to generate the required test f ile set instead of resorting to
multiple PAR runs. Performing the test on design f iles that differ only in tap setting prevents
other variables from affecting the test results. FPGA Editor operations can even be scripted
further, reducing the effort needed to perform this characterization.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 255
PG051 July 25, 2012

Appendix B

Differences between the Embedded
Tri-Mode Ethernet MACs and the Soft
TEMAC Solution IP Core

This appendix describes the differences between the Embedded Tri-Mode Ethernet MAC
blocks, available in Virtex®-6 devices and the soft IP cores, Tri-Mode Ethernet MAC
(TEMAC), solutions provided by Xilinx.

Note: This guide only considers the V6 Embedded Tri-Mode Ethernet MAC v2.1 and later and the
Soft Tri-Mode Ethernet MAC v5.1 and later.

The functionality provided by the Embedded Tri-Mode Ethernet MACs can be provided by
linking together the Tri-Mode Ethernet MAC soft IP core and the Ethernet 1000BASE-X PCS/
PMA or SGMII core. More details are available at:

www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm

There are, however, some differences in the operation of the Embedded Tri-Mode Ethernet
MACs themselves, which have evolved over three generations, and between the embedded
MACs and the soft IP cores. These differences are detailed in the following sections.

Virtex-6 Device

Features Exclusive to the Embedded Tri-Mode Ethernet MAC
These features are exclusive to the Embedded Tri-Mode Ethernet MAC:

• Includes integrated SGMII and 1000BASE-X PCS/PMA functionality.

• Includes an RGMII/SGMII status register.

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 256
PG051 July 25, 2012

Virtex-6 Device

Features Exclusive to Soft 10/100/1000 Mb/s, 1000 Mb/s and
10/100 Mb/s IP Cores
These features are exclusive to soft IP cores:

• The soft Tri-Mode Ethernet MAC solution:

° Supports 1 GB half-duplex mode for parallel physical interfaces.

° Supports IFG adjustment down to 8 bytes if half-duplex support is added or 4 bytes
if full-duplex only.

° Includes the optional AVB Endpoint front end.

• The soft PCS/PMA core:

° Supports the ten bit interface (TBI).

° Outputs a status vector with bits that indicate:

- The status of the link.

- The status of the link synchronization state machine.

- When the core is receiving /C/ ordered sets.

- When the core is receiving /I/ ordered sets.

- When the core is receiving invalid data.

• Soft PCS/PMA and Tri-Mode Ethernet MAC solution IP cores:

° Can be connected together to provide a single Ethernet interface, similar to the
solution provided by the Embedded Tri-Mode Ethernet MAC.

° Can be configured by a vector when the management interface is not required. The
vector signals equate to attributes in the Embedded Tri-Mode Ethernet MAC.

° The Embedded Tri-Mode Ethernet MAC is available in the Virtex-6 FPGA.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 257
PG051 July 25, 2012

Appendix C

Verification, Compliance, and
Interoperability

The TEMAC solution has been verif ied with extensive simulation and hardware verif ication.

Simulation
A highly paramerizable transaction based test bench was used to test the core. Testing
included the following:

• Reset and Initialization

• Register Access including MDIO

• Frame transmission

• Frame reception, frame filtering and error handling

• All supported PHY interfaces

Hardware Testing
The example design provided with this core can be targeted to Available Reference Boards.

These designs have been used to perform hardware validation of the TEMAC solution. The
KV705 design has been hardware tested using both Vivado™ and ISE® Design Suites.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 258
PG051 July 25, 2012

Appendix D

Migrating to AXI Tri-Mode Ethernet MAC
This appendix describes migrating from older versions of the IP (prior to version 5.1) to the
current IP release.

As of Tri-Mode Ethernet MAC v5.1 onwards the MAC uses an optional AXI4-Lite interface for
the configuration, AXI4-Stream for data transfer, and has an entirely new memory map.

This Appendix describes the differences between the legacy interfaces used in prior
versions and those in TEMAC version 5.1 and onwards.

Host Interface to AXI4-Lite
The management interface uses the industry standard AXI4-Lite to allow access to the MAC
netlist. This interface replaces the Host interface for these operations:

• Configuring the MAC core

• Configuring the frame filter

• Accessing Statistics information

• Providing access to the MDIO interface

As these four features are now accessible using a single interface they have been combined
into a single memory map. Table D-1 lists the AXI4-Lite registers and, if appropriate, their
legacy host locations. For more details see Configuration and Status.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 259
PG051 July 25, 2012

Host Interface to AXI4-Lite

Table D-1: AXI4-LITE/Host Address Map Comparison

AXI4-Lite
Address

Legacy Host
Address Name Notes

0x200-0x204 0x001 Received bytes

Upper and lower words are
separately addressed - but need
to be linked, that is, upper
access must follow lower access.

0x208-0x20C 0x000 Transmitted bytes

0x210-0x214 0x002 RX Undersize frames

0x218-0x21C 0x003 RX Fragment frames

0x220-0x224 0x004 RX 64 byte Frames

0x228-0x22C 0x005 RX 65-127 byte Frames

0x230-0x234 0x006 RX 128-255 byte Frames

0x238-0x23C 0x007 RX 256-511 byte Frames

0x240-0x244 0x008 RX 512-1023 byte Frames

0x248-0x24C 0x009 RX 1024-MaxFrameSize byte Frames

0x250-0x254 0x00A RX Oversize Frames

0x258-0x25C 0x00B TX 64 byte Frames

0x260-0x264 0x00C TX 65-127 byte Frames

0x268-0x26C 0x00D TX 128-255 byte Frames

0x270-0x274 0x00E TX 256-511 byte Frames

0x278-0x27C 0x00F TX 512-1023 byte Frames

0x280-0x284 0x010 TX 1024-MaxFrameSize byte Frames

0x288-0x28C 0x011 TX Oversize Frames

0x290-0x294 0x012 RX Good Frames

0x298-0x29C 0x013 RX Frame Check Sequence Errors

0x2A0-0x2A4 0x014 RX Good Broadcast Frames

0x2A8-0x2AC 0x015 RX Good Multicast Frames

0x2B0-0x2B4 0x016 RX Good Control Frames

0x2B8-0x2BC 0x017 RX Length/Type Out of Range

0x2C0-0x2C4 0x018 RX Good VLAN Tagged Frames

0x2C8-0x2CC 0x019 RX Good Pause Frames

0x2D0-0x2D4 0x01A RX Bad Opcode

0x2D8-0x2DC 0x01B TX Good Frames

0x2E0-0x2E4 0x01C TX Good Broadcast Frames

0x2E8-0x2EC 0x01D TX Good Multicast Frames

0x2F0-0x2F4 0x01E TX Good Underrun Errors

0x2F8-0x2FC 0x01F TX Good Control Frames

0x300-0x304 0x020 TX Good VLAN Tagged Frames

0x308-0x30C 0x021 TX Good Pause Frames

0x310-0x314 0x022 TX Single Collision Frames

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 260
PG051 July 25, 2012

Host Interface to AXI4-Lite

0x318-0x31C 0x023 TX Multiple Collision Frames.

Upper and lower words are
separately addressed - but need
to be linked, that is, upper
access must follow lower access.

0x320-0x324 0x024 TX Deferred

0x328-0x32C 0x025 TX Late Collisions

0x330-0x334 0x026 TX Excess collisions

0x338-0x33C 0x027 TX Excess Deferral

0x340-0x344 0x028 TX Alignment Errors

0x348-0x3FC NA Reserved

0x400 0x200-0x23F Receiver Configuration Word 0 No change

0x404 0x240-0x27F Receiver Configuration Word 1 No change

0x408 0x280-0x2BF Transmitter Configuration No change

0x40C 0x2C0-0x2FF Flow Control Configuration No change

0x410 0x300-0x31F Speed configuration No change

0x414 NA RX Max Frame Configuration New feature

0x418 NA TX Max Frame Configuration New feature

0x41C-0x4F4 NA Reserved

0x4F8 NA ID Register New feature

0x4FC NA Ability Register New feature

0x500 0x340-0x37F MDIO Setup Word 0 No Change

0x504 NA MDIO Control Word 1 MDIO is fully address-mapped
and MDIO Ready can be either
polled or setup as an interrupt.
See MDIO Interface for more
information.

0x508 NA MDIO TX Data

0x50C NA MDIO RX Data

0x510-0x5FC NA Reserved

0x600 NA Interrupt status Register.

New feature. See Interrupt
Controller for more information.

0x604-0x60C NA Reserved

0x610 NA Interrupt Pending Register.

0x614-0x61C NA Reserved

0x620 NA Interrupt Enable Register.

0x624-0x62C NA Reserved

0x630 NA Interrupt Clear Register.

0x634-0x6FC NA Reserved

0x700 0x380-0x383 Unicast Address word 0 No Change

0x704 0x384-0x387 Unicast Address word 1 No Change

0x708 0x390-0x3BF Frame filter Control Additional control to select
which f ilter is being addressed

Table D-1: AXI4-LITE/Host Address Map Comparison (Cont’d)

AXI4-Lite
Address

Legacy Host
Address Name Notes

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 261
PG051 July 25, 2012

Host Interface to AXI4-Lite

Table D-2 describes the optional signals used to access the MAC netlist.

0x70C NA Frame filter Enable
New Feature - by default f ilter 0
is enabled. See Frame Filter for
more information.

0x710 0x388-0x38B Frame f ilter value bytes 3-0
This register accesses the filter
specified by the frame filter
control register.

0x714 0x38C-0x38F Frame f ilter value bytes 7-4

By default only the bottom 16
bits are used (controlled through
the mask registers). The upper
16 bits provide extended f ilter
capabilities.

0x718-0x74C NA Frame filter value bytes 63-8

0x750-0x78C NA Frame f ilter mask value bytes 63-0 By default only the destination
address is compared.

0x790-0x7FC NA Reserved

Table D-2: Optional AXI4-Lite Signal Pinout

Signal Direction Clock Domain Description

s_axi_aclk Input N/A Clock for AXI4-Lite

s_axi_resetn Input s_axi_aclk Local reset for the clock domain

s_axi_awaddr[31:0] Input s_axi_aclk Write Address

s_axi_awvalid Input s_axi_aclk Write Address Valid

s_axi_awready Output s_axi_aclk Write Address ready

s_axi_wdata[31:0] Input s_axi_aclk Write Data

s_axi_wvalid Input s_axi_aclk Write Data valid

s_axi_wready Output s_axi_aclk Write Data ready

s_axi_bresp[1:0] Output s_axi_aclk Write Response

s_axi_bvalid Output s_axi_aclk Write Response valid

s_axi_bready Input s_axi_aclk Write Response ready

s_axi_araddr[31:0] Input s_axi_aclk Read Address

s_axi_arvalid Input s_axi_aclk Read Address valid

s_axi_arready Output s_axi_aclk Read Address ready

s_axi_rdata[31:0] Output s_axi_aclk Read Data

s_axi_rresp[1:0] Output s_axi_aclk Read Response

s_axi_rvalid Output s_axi_aclk Read Data/Response Valid

s_axi_rready Input s_axi_aclk Read Data/Response ready

Table D-1: AXI4-LITE/Host Address Map Comparison (Cont’d)

AXI4-Lite
Address

Legacy Host
Address Name Notes

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 262
PG051 July 25, 2012

Host Interface to AXI4-Lite

With the legacy host interface each of these four key features had different access models
as shown in Figure D-3 to Figure D-6. With the move to AXI4-Lite and a single memory map
the same format and timing is used for all accesses as shown in Figure D-1 to Figure D-2.

X-Ref Target - Figure D-1

Figure D-1: AXI4-Lite Write
X-Ref Target - Figure D-2

Figure D-2: AXI4-Lite Read

s_axi_aclk

s_axi_aresetn

s_axi_awdaddr

s_axi_awvalid

s_axi_awready

s_axi_wdata

s_axi_wstrb

s_axi_wvalid

s_axi_wready

s_axi_bresp

s_axi_bvalid

s_axi_bready

ADDRESS

DATA

Byte Enable

OKAY

Sending Address Writing Data Receiving Response

s_axi_aclk

s_axi_aresetn

s_axi_ardaddr

s_axi_arvalid

s_axi_arready

s_axi_rdata

s_axi_rvalid

s_axi_rready

s_axi_rresp

ADDRESS

DATA

Sending Address Receiving Response

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 263
PG051 July 25, 2012

Host Interface to AXI4-Lite

Host MAC Configuration
Host MAC configuration writes require the hostmiimsel to be driven low and
hostaddr[9] to be driven high. A read or write is controlled by the hostopcode upper
bit. host_req and host_rdy are not used.

AXI4-Lite accesses use a standard memory-mapped access as shown in Figure D-1 and
Figure D-2. See MAC Configuration for more information.

Host Filter Access
Host f ilter accesses are controlled using a write to the filter control register at 0x18C (in the
legacy core - an equivalent register does not exist from version 5.1 onwards). For writes the
new filter data is split over two writes with the first setting the lower 32-bits of the 48-bit
address and the control write setting the upper 16-bits of the 48-bit address and specifying
the filter that is to be updated. For a read, the control register is written to specify a read
and the filter to be read and the 48-bit address is returned over the following two cycles.

X-Ref Target - Figure D-3

Figure D-3: Host Interface MAC Configuration Read/Write

X-Ref Target - Figure D-4

Figure D-4: Address Filter Read/Write

hostclk

hostmiimsel

hostopcode[1]

hostaddr[8:0]

hostaddr[9]

hostwrdata[31:0]

hostrddata[31:0]

Write Read

hostclk

hostmiimsel

hostopcode[1]

hostaddr[8:0]

hostaddr[9]

hostwrdata[31:0]

hostrddata[31:0]

0x188 0x18C 0x18C

addr control control

Write Read

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 264
PG051 July 25, 2012

Host Interface to AXI4-Lite

AXI4-Lite accesses use a standard memory-mapped access as shown in Figure D-1 and
Figure D-2. However, the updated frame filter provides significantly more f iltering
capabilities covering the entire f irst 64 bytes of any frame. The Frame Filter Control register
(0x708) is therefore used to specify which of the available f ilters is being accessed by
accesses in the range 0x70C to 0x790.

To access a particular f ilter:

• Write to the Frame Filter Control register(0x708) to select the Filter

• Write or read to the specified f ilter register

See Frame Filter for more information.

Host Statistics Read
Host Statistics reads make use of the host_req to initialize an access, with hostmiimsel
and hostaddr[9] being low to indicate a statistics access is required.

The stats specific host_stats_lsw_rdy and host_stats_msw_rdy output indicate
when valid stats data is present on the read data bus. This data is always presented 6 cycles
after the request is initiated.

AXI4-Lite accesses use a standard memory-mapped access as shown in Figure D-1 and
Figure D-2. However, there is a read-order requirement if the full 64-bit statistics value is
desired. In all cases the lowest location must f irst be read, this causes the upper 32-bit value
to be captured. The following read, to the statistics block, can either be to the related upper
32-bit location OR to another statistics counter’s lower 32-bit location. A read to another
counter’s upper 32-bit location results in an error. See Statistics Counters for more detail.

X-Ref Target - Figure D-5

Figure D-5: Statistics Read

hostclk

hostmiimsel

host_req

hostaddr[8:0]

hostaddr[9]

hostrddata[31:0]

host_stats_lsw_rdy

host_stats_msw_rdy

LSW MSW

6 clocks

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 265
PG051 July 25, 2012

Host Interface to AXI4-Lite

Host MDIO Read/Write
Host MDIO accesses are initialized with the assertion of host_req when hostmiimsel is
high. The values presented on the hostopcode and hostaddr inputs then specify the
type of access and its location. When a write is required, the hostwrdata must also be
valid in this cycle. When the access has started, the MDIO specific host_rdy output drops
low, remaining in this state until the access is complete. When a read has been requested
the hostrddata becomes valid at this point.

AXI4-Lite accesses use a standard memory-mapped access as shown in Figure D-1 and
Figure D-2. MDIO accesses use a mailbox that does not hold up the bus for the duration of
the access. For a write the write data must be first set to the desired value by writing to the
write data register at 0x508; the write access is then initialized by writing to the MDIO
control register at 0x504 with the access location and type being specified. See MDIO
Interface.

X-Ref Target - Figure D-6

Figure D-6: MDIO Access

hostclk

hostmiimsel

host_req

hostopcode[1:0]

hostaddr[9:0]

hostwrdata[15:0]

host_rdy

hostrddata[15:0]

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 266
PG051 July 25, 2012

Host Interface to AXI4-Lite

For a read only, the MDIO control register write is required.

X-Ref Target - Figure D-7

Figure D-7: AXI4-Lite MDIO Write Access

s_axi_clk

s_axi_awaddr

s_axi_awvalid

s_axi_awready

s_axi_wdata

s_axi_wstrb

s_axi_wvalid

s_axi_wready

s_axi_bresp

s_axi_bvalid

s_axi_bready

s_axi_araddr

s_axi_arvalid

s_axi_arready

s_axi_rdata

s_axi_rvalid

s_axi_rready

s_axi_rresp

0x508 0x504

WRDATA CONTROL

0xF 0xF

OKAY OKAY

0x504

STATUS

OKAY

Write data Write Control
Poll MDIO Status

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 267
PG051 July 25, 2012

Host Interface to AXI4-Lite

In both cases the same methods can be used to identify if an mdio transaction has
completed. Either poll the mdio_ready status in either the MDIO control register (0x504)
or the MDIO Read data register (0x50C) or setup the interrupt controller to provide an
interrupt. After the MDIO transaction is complete, a read results in valid data in the MDIO
Read data register.

X-Ref Target - Figure D-8

Figure D-8: AXI4-Lite MDIO Read Access

s_axi_clk

s_axi_awaddr

s_axi_awvalid

s_axi_awready

s_axi_wdata

s_axi_wstrb

s_axi_wvalid

s_axi_wready

s_axi_bresp

s_axi_bvalid

s_axi_bready

s_axi_araddr

s_axi_arvalid

s_axi_arready

s_axi_rdata

s_axi_rvalid

s_axi_rready

s_axi_rresp

0x504

CONTROL

0xF

OKAY

0x50C

STATUS/DATA

OKAY

Read Control
Poll MDIO Status

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 268
PG051 July 25, 2012

Client Interface to AXI4-Stream

Client Interface to AXI4-Stream
The following tables show the RX and TX AXI4-Stream signals.

TX Client Interface versus TX AXI4-Stream
The TX client interface requires the use of an acknowledge from the MAC to identify when
a data transfer can continue; this is shown in Figure D-9.

The key requirement is that the first byte of a frame is presented to the MAC, with txdvld
high, and then held until tx_ack is asserted. The MAC expects new data on the following
cycle, and on each valid cycle after that until the end of the frame. The deassertion of
txdvld identif ies the end of the frame.

If data cannot be made available at the required rate, the user is expected to assert
tx_underrun to ensure the frame is errored. For lower rates, where data is only not
required on every physical cycle, it is expected that a clock enable is used to control the
data rate.

Table D-3: TX AXI4-Stream Signal Pinout

Signal Direction Clock Domain Description

tx_mac_clk Input N/A Clock for AXI4-Stream

tx_axis_mac_tdata Input tx_mac_clk Data

tx_axis_mac_tvalid Input tx_mac_clk Data Valid

tx_axis_mac_tlast input tx_mac_clk Final transfer of frame

tx_axis_mac_tuser Input tx_mac_clk Explicit Error indication

tx_axis_mac_tready output tx_mac_clk MAC ready for data

Table D-4: RX AXI4-Stream Signal Pinout

Signal Direction Clock Domain Description

rx_mac_clk Input N/A Clock for AXI4-Stream

rx_axis_mac_tdata Output rx_mac_clk Data

rx_axis_mac_tvalid Output rx_mac_clk Data Valid

rx_axis_mac_tlast Output rx_mac_clk f inal transfer of frame

rx_axis_mac_tuser Output rx_mac_clk Frame good/bad indication

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 269
PG051 July 25, 2012

Client Interface to AXI4-Stream

The TX AXI4-Stream access is also shown in Figure D-9. Because there is no built-in FIFO to
allow throttling of frame data, the requirement still exists to always provide data to the MAC
when requested. However, AXI4-Stream uses a standard ready/valid handshake throughout
the frame and requires the final byte of the frame to be identif ied with tlast.

The TX AXI4-Stream interface allows for both implicit and explicit error insertion. In the case
of frame underrun, the valid would be dropped mid-frame and, if tlast was not asserted
on the previous cycle, this would implicitly create an error. Deasserting the tuser input
allows an error to be forced under direct user control.

In the case of lower rates, the is no difference in the required user logic as tready is used
to actively control the data throughput.

RX Client Interface versus RX AXI4-Stream
The RX Client interface, shown in Figure D-10, outputs data as received from the PHY, with
a frame good or frame bad indication being set when the frame is complete. For lower rates
a clock enable is used to control the data throughput.

X-Ref Target - Figure D-9

Figure D-9: TX Client access vs TX AXI4-Stream

TX Client Interface

tx_clk

txd[7:0]

txdvld

tx_ack

tx_underrun

TX AXI4 Stream Interface

tx_axis_mac_tdata

tx_axis_mac_tvalid

tx_axis_mac_tlast

tx_axis_mac_tuser

tx_axis_mac_tready

DA SA L/T DATA

DA SA L/T DATA

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 270
PG051 July 25, 2012

LocalLink to AXI4-Stream Translation

The RX AXI4-Stream interface, also shown in Figure D-10, is almost identical to the RX
Client interface with the main difference being the use of tlast to identify the final byte of
the frame. Unlike the TX interface, no ready is used or required, and it is assumed by the
MAC that data can be received at full-line rate if required.

The tuser output is used to identify if a frame is good or bad, and this is only valid on the
cycle tlast is asserted. Because the frame can optionally strip the frame CRC, and this is
checked prior to marking a frame as good/bad, the f inal byte of the frame can be extended,
with tvalid deasserted, until this check has been performed.

For lower data rates tvalid is used to control the data throughput.

LocalLink to AXI4-Stream Translation
The example design FIFO was previously provided with a LocalLink interface. This has also
been converted to AXI-Stream. Because the LocalLink interface uses handshaking to
transfer data it is almost identical in all but signal names, see Table D-5:

X-Ref Target - Figure D-10

Figure D-10: RX Client Transfer vs RX AXI4-Stream

RX Client Interface

rx_clk

rxd[7:0]

rxdvld

rx_good_frame

rx_bad_frame

RX AXI4 Stream Interface

rx_axis_mac_tdata

rx_axis_mac_tvalid

rx_axis_mac_tlast

rx_axis_mac_tuser

DA SA L/T DATA

DA SA L/T DATA

Table D-5: LocalLink to AXI4-Stream

LocalLink Name AXI4-Stream Name Difference

data tdata Name change only

eof_n tlast Name change; tlast is the inverse of eof_n

dst_rdy_n tready Name change; tready is the inverse of dst_rdy_n

sof_n No direct equivalent

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 271
PG051 July 25, 2012

LocalLink to AXI4-Stream Translation

Figure D-11 shows a LocalLink transfer and the associated AXI4-Stream signals. This is
identical for both TX and RX.

src_rdy_n No direct equivalent

tvalid Generated from sof_n and src_rdy_n. tvalid can only be
high when valid frame data is present.

Table D-5: LocalLink to AXI4-Stream (Cont’d)

LocalLink Name AXI4-Stream Name Difference

X-Ref Target - Figure D-11

Figure D-11: LocalLink vs AXI4-Stream

LocalLink Interface

clk

data

sof_n

eof_n

src_rdy_n

dst_rdy_n

AXI4-Stream Interface

tdata

tvalid

tready

tlast

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 272
PG051 July 25, 2012

Appendix E

Debugging
This appendix defines a step-by-step debugging procedure to assist in the identif ication
and resolution of any issues that might arise during each phase of the design process. It
contains the following sections:

• Debug Tools

• Simulation Debug

• Implementation and Timing Errors

• Hardware Debug

If this appendix does not help to resolve the issue, see Solution Centers in Appendix F for
information helpful to the debugging progress.

Debug Tools
There are many tools available to debug Ethernet MAC design issues. It is important to
know which tools are useful for debugging various situations. This section references the
following tools:

Example Design
The Tri-Mode Ethernet Media Access Controller (TEMAC) comes with a synthesizable
example design complete with a functional test benches. Information on the example
design can be found in Chapter 6, Example Design.

ChipScope Pro Tool
The ChipScope™ Pro tool inserts logic analyzer, bus analyzer, and virtual I/O cores directly
into your design. The ChipScope Pro tool allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed through the ChipScope Pro Logic Analyzer tool. For detailed information on the
ChipScope Pro tool, see www.xilinx.com/tools/cspro.htm.

http://www.xilinx.com
http://www.xilinx.com/tools/cspro.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 273
PG051 July 25, 2012

Simulation Debug

Available Reference Boards
Various Xilinx development boards support 10/100/1000 Mb/s Ethernet. These boards can
be used to prototype designs and establish that the core can communicate with the system.

The provided example design can, if generated with the correct part and core options, be
targeted directly to the following list of boards. For more information see Targeting the
Example Design to a Board in Chapter 6.

• Spartan-6 evaluation boards

° SP601

° SP605

• Virtex-6 evaluation boards

° ML605

• 7-Series evaluation boards

° KC705

Link Analyzers
Link analyzers can be used to generate and analyze traff ic for hardware debug and testing.
Common link analyzers include:

• Spirent SmartBits

• IXIA brand 10/100/1000 Ethernet test chassis

• Wireshark (a free packet sniffer software application)

Simulation Debug
The simulation debug flow for ModelSim is shown in Figure E-1. A similar approach can be
used with other simulators.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 274
PG051 July 25, 2012

Simulation Debug

ModelSim
Simulation Debug

Does simulating the TEMAC
Example Design give the

expected output?

Do you get errors referring to
failing to access library?

No

No

No

Yes

Do you get errors indicating
"BUFG" or other elements not defined?

Are you able to transmit and receive
frames on the user AXI4-Stream interface?

No

No

The TEMAC Example Design
should allow the user to quickly
determine if the simulator is set up
correctly. The TEMAC Example
Design simulation will receive four
frames and transmit back out the valid
frames using loopback on the user
side.

A Verilog license is required to
simulate with the SecureIP models.
If the user design uses VHDL, a
mixed-mode simulation license is
required.

Yes

Need to compile and map the
proper libraries. See "Compiling
Simulation Libraries Section."

Yes

Yes

For verilog simulations add the "-L" switch
with the appropriate library reference to the

vsim command line. For example: -L secureip
or -L unisims_ver. See the Example Design

simulate_mti.do for an example.

See “Detailed Example Design” chapters

If the libraries are not compiled and
mapped correctly, it will cause errors
such as:
** Error: (vopt-19) Failed to access
 library 'secureip' at "secureip".
No such file or directory.
 (errno = ENOENT)

** Error: ../../example_design/
 v6emac_block.v(820):
 Library secureip not found.

To model the TEMAC block and serial
transceivers, the SecureIP models are
used. These models must be referenced
during the vsim call. Also, it is necessary
to reference the unisims library.

No

Check that the core is
properly enabled and configured.

See the following debug sections for more
details.

Yes
If problem is more design specific, open

a case with Xilinx Technical Support
and include a wlf file dump of the simulation.
For the best results, dump the entire design

hierarchy.

Check for the latest supported
versions of Modelsim in the Core Product

Guide. Is this version being used?

Update to this version.

If using VHDL with SecureIP models,
do you have a mixed-mode simulation

license?

Obtain a mixed-mode
simulation license.

Yes

X-Ref Target - Figure E-1

Figure E-1: Simulation Debug Flow Chart

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 275
PG051 July 25, 2012

Implementation and Timing Errors

Compiling Simulation Libraries
Compile the Xilinx simulation libraries, either by using the Xilinx Simulation Library
Compilation Wizard, or by using the compxlib command line tool.

Xilinx Simulation Library Compilation Wizard

A GUI wizard provided as part of the Xilinx software can be launched to assist in compiling
the simulation libraries by typing compxlib in the command prompt.

For more information see the Software Manuals and specif ically the Command Line Tools
Reference Guide under the section titled compxlib.

Assuming the Xilinx and ModelSim environments are set up correctly, this is an example of
compiling the SecureIP and UNISIMs libraries for Verilog into the current directory.

compxlib -s mti_se -arch virtex6 -l verilog -lib secureip -lib unisims
 -dir ./

There are many other options available for compxlib described in the Command Line Tools
Reference Guide [Ref 16].

Compxlib produces a modelsim.ini f ile containing the library mappings. In ModelSim, to see
the current library mappings, type vmap at the prompt. The mappings can be updated in
the .ini f ile or to map a library at the ModelSim prompt type:

vmap [<logical_name>] [<path>]

For example:

vmap unisims_ver C:\my_unisim_lib

Implementation and Timing Errors

Regional Clocking Errors
When implementing the Ethernet MAC with either a GMII or RGMII physical interface,
regional clocking methodologies are used. This means that there are the following
requirements:

1. The receive-side physical interface clock (GMII_RX_CLK for GMII, or RGMII_RXC for
RGMII) must be placed at a clock-capable I/O (CCIO) pin. If this requirement is not met,
an error similar to the following one might be seen during implementation:

ERROR:Place:839 - The component GMII_RX_CLK has been physically constrained to a
location which is an invalid placement for this component.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 276
PG051 July 25, 2012

Implementation and Timing Errors

2. All receive-side physical interface signals must be placed at package pins that
correspond to the same clock region as the receive-side physical interface. If this
requirement is not met, an error similar to the following might be seen during
implementation:

ERROR:Place:901 - IO Clock Net "gmii_rx_clk_bufio" cannot possibly be routed to
component v6_emac_gmii_locallink_inst/v6_emac_gmii_block_inst/gmii/RXD_TO_MA
C<2>" (placed in clock region "CLOCKREGION_X0Y1"), since it is too far away from
source BUFIO "bufio_rx" (placed in clock region "CLOCKREGION_X1Y1"). The situation
may be caused by user constraints, or the complexity of the design. Constraining
the components related to the regional clock properly may guide the tool to find a
solution.

For more information on these requirements, see either:

• When using the ISE® Design Suite, I/O Standard and Placement in Chapter 8

• When using the Vivado™ Design Suite, I/O Standard and Placement in Chapter 5

Timing Failed for GMII/RGMII/MII OFFSET IN Constraint
To satisfy setup and hold requirements for these standards, either:

• f ixed-mode IODELAYs are placed on the receive data and control signals when using
the GMII, RGMII, or MII wrapper f iles.

In the example design UCF, the f ixed value delays are set based on the pinout used in
the example design. With a different pinout, it might be required to adjust the f ixed
DELAY value to still meet the setup and hold requirements.

• An MMCM is used on the input clock source for the GMII, RGMII or MII.

In the example design UCF, a f ixed phase shift value is set, based on the pinout used in
the example design. With a different pinout, it might be required to adjust the phase
shift value to still meet the setup and hold requirements.

For more details on how to adjust this delay to meet setup and hold requirements, see
either:

• When using the ISE Design Suite, I/O Standard and Placement in Chapter 8

• When using the Vivado Design Suite, I/O Standard and Placement in Chapter 5

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 277
PG051 July 25, 2012

Hardware Debug

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The ChipScope tool is a valuable resource
to use in hardware debug and the signal names mentioned in the following individual
sections can be probed using the ChipScope tool for debugging the specif ic problems.
Many of these common issues can also be applied to debugging design simulations. Details
are provided on:

• General Checks

• Problems with Transmitting and Receiving Frames

• Problems with the MDIO

• Configuring the Ethernet MAC to the Correct Speed

General Checks
• Ensure that all the timing constraints for the core were properly incorporated from the

example design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue.

• Ensure that all clock sources are active and clean. If using MMCMs in the design, ensure
that all MMCMs have obtained lock by monitoring the LOCKED port.

Problems with Transmitting and Receiving Frames
Problems with data reception or transmission can be caused by a wide range of factors. The
following list contains common causes to check for:

• Verify that the whole TEMAC block is not being held in reset. The whole block is held in
reset if the main reset input or if a locked signal from an MMCM is low.

• Verify that both the receiver and transmitter are enabled and not being held in reset.
For more information, see the receiver and transmitter configuration words in
Table 2-24, page 40 and Table 2-26, page 41 respectively.

• Verify that the TEMAC is configured correctly and that the latest core version is being
used. Try running a simulation to check if the failure is hardware-specific.

• If using GMII or RGMII, check if setup and hold requirements are met For more
information, see the section on debugging Implementation and Timing Errors.

• Verify that the link is up between the PHY and its link partner. If using the Ethernet
1000BASE-X PCS/PMA or SGMII core, see the Debugging Guide section of the
LogiCORE IP Ethernet 1000BASE-X PCS/PMA or SGMII Product Guide [Ref 2]

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 278
PG051 July 25, 2012

Hardware Debug

• If using an external PHY, is data received correctly if the PHY is put in loopback? If so,
the issue might be on the link between the PHY and its link partner.

• Check if the address f ilter is enabled. If frames are not being received correctly, try
disabling the address filter to ensure that the frame is not being dropped by the
address f ilter. For more information, see Frame Filter in Chapter 3.

• Verify that the TEMAC has been configured to operate at the correct speed negotiated
with the PHY.

• Are received frames being dropped by user logic because rx_axis_mac_tuser is
asserted? See Frame Reception with Errors in Chapter 3 for details on why frames are
marked bad by the Ethernet MAC. The ChipScope tool can be inserted to get more
details on the bad frames.

• Add the ChipScope tool to the design to look at the RX and TX AXI4-Stream and
physical interface data signals, control signals and statistics vectors.

Problems with the MDIO
See Accessing PHY Configuration Registers, through MDIO using the Management
Interface in Chapter 3 for detailed information about performing MDIO transactions.

Things to check for:

• Check that the MDC clock is running and that the frequency is 2.5 MHz or less. If using
the MDIO control registers to perform MDIO accesses, the MDIO interface does not
work until the clock frequency is set with CLOCK_DIVIDE. The MDIO clock with a
maximum frequency of 2.5 MHz is derived from the s_axi_aclk clock.

• Ensure that the TEMAC and PHY are not held in reset. Be sure to check the polarity of
the reset to your external PHY. Many PHYs have an active-low reset.

• Read from a configuration register that does not have all 0s as a default. If all 0s are
read back, the read was unsuccessful.

• If using the management interface to access the MDIO, check if the issue is just with
the MDIO control registers or if there are also issues reading and writing MAC registers
with the management interface.

• If accessing MDIO registers of the Ethernet 1000BASE-X PCS/PMA or SGMII core, check
that the PHYAD field placed into the MDIO frame matches the value placed on the
phyad[4:0] port of the Ethernet 1000BASE-X PCS/PMA or SGMII core.

• Has a simulation been run? Verify in simulation and/or a ChipScope tool capture that
the waveform is correct for accessing the management interface for a MDIO read/write.
The demonstration testbench delivered with the core provides an example of MDIO
accesses.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 279
PG051 July 25, 2012

Hardware Debug

Configuring the Ethernet MAC to the Correct Speed
When operating in tri-mode, the PHY negotiates the highest speed available with its link
partner. The speed of the Ethernet MAC can be set by the user application after
auto-negotiation completes by doing the following:

1. The user application can either monitor auto-negotiation interrupt from the external
PHY or internal Ethernet 1000BASE-X PCSPMA or SGMII core, or poll for
auto-negotiation (see the relevant PHY documentation).

2. When auto-negotiation completes the user application can read the MDIO
auto-negotiation registers to obtain the negotiated speed.

3. The user application then needs to set this speed in the Ethernet MAC configuration
registers using the host interface.

If auto-negotiation is disabled, the Ethernet MAC, PHY, and the PHY's link partner must all
be set to the same speed.

http://www.xilinx.com

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 280
PG051 July 25, 2012

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

For details and updates about the core, see the data sheet, available from the TEMAC
product page. From the document directory, available after generating the core, all product
documentation, including the release notes, are available.

See the Ethernet Products and Services page at:

www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

The Solution Center specific to the Tri-Mode Ethernet MAC core is located at Xilinx Ethernet
IP Solution Center.

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/answers/38279.htm
http://www.xilinx.com/support/answers/38279.htm
http://www.xilinx.com/products/intellectual-property/TEMAC.htm
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 281
PG051 July 25, 2012

References

References
These documents provide supplemental material useful with this user guide:

1. Virtex-6 FPGA Data Sheet: DC and Switching Characteristics (DS152)

2. Ethernet 1000BASE-X PCS/PMA or SGMII Product Guide (PG047)

3. 7 Series Data Sheets

4. 7 Series FPGAs Configuration User Guide (UG470)

5. 7 Series FPGAs Clocking Resources User Guide (UG472)

6. 7 Series FPGAs Configurable Logic Block User Guide (UG474)

7. Spartan-6 FPGA Data Sheets

8. Spartan-6 FPGA Clocking Resources User Guide (UG382)

9. IEEE 802.3-2008 specif ication

10. Reduced Gigabit Media Independent Interface (RGMII), version 2.0

11. Tri-Mode Ethernet MAC User Guide (UG777)

12. AXI Ethernet Data Sheet (DS759)

13. AMBA AXI4-Stream Protocol Specification

14. Xilinx Synthesis and Simulation Design Guide

15. Xilinx ISE Design Suite Documentation

16. Xilinx Command Line Tools User Guide (UG628)

17. IEEE 802.1 AS

18. IEEE 802IEEE 802.1BA-2011

19. .1 Q-2011

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com
http://www.xilinx.com/support/documentation/spartan-6.htm
http://www.xilinx.com/support/documentation/virtex-6_data_sheets.htm
http://www.xilinx.com/support/documentation/ipcommunicationnetwork_ethernet_do-di-gmiito1gbsxpcs.htm
http://www.xilinx.com/support/documentation/7_series.htm
http://www.xilinx.com/support/documentation/7_series.htm
http://www.xilinx.com/support/documentation/7_series.htm
http://www.xilinx.com/support/documentation/spartan-6.htm
http://www.xilinx.com/support/documentation/ipcommunicationnetwork_ethernet_trimodeethernetmac.htm
http://www.xilinx.com/support/documentation/ipembedprocess_peripheralnetwork_axi_ethernet.htm
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/support/documentation/7_series.htm

Tri-Mode Ethernet MAC v5.4 www.xilinx.com 282
PG051 July 25, 2012

Technical Support

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Date Version Revision

07/25/12 1.0 Initial Xilinx release. This Product Guide is derived from DS818 and UG777.

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Tri-Mode Ethernet MAC v5.4
	Table of Contents
	Section I: Summary
	IP Facts
	Overview
	Recommended Design Experience
	Ethernet Overview
	Core Overview
	Ethernet Mac Block
	AXI4-Lite Wrapper
	Statistics Vector Decode
	PHY Interface
	Ethernet AVB Endpoint
	Transmit Engine
	Receive Engine
	Flow Control
	GMII/MII Block
	Management Interface
	MDIO Interface
	Frame Filter
	Statistics Counters

	Feature Summary
	Applications
	Ethernet Switch or Router
	Ethernet Communications Port for an Embedded Processor
	Ethernet AVB Endpoint System

	Licensing and Ordering Information
	Before you Begin
	License Options
	Obtaining your License Key
	Installing your License File

	Product Specification
	Standards
	Performance
	Latency

	Resource Utilization
	Supported Families
	Device Utilization
	Performance

	Port Descriptions
	User Interfaces
	Physical Interface Signals

	Register Space
	Statistics Counters
	MAC Configuration Registers
	MDIO
	Interrupt Controller
	Frame Filter Configuration
	AVB Endpoint
	RTC Configuration
	Configuration Vector

	System Requirements
	Windows
	Linux
	Software

	Designing with the Core
	General Design Guidelines
	Design Steps
	Implementing the Tri-Mode Ethernet MAC in Your Application
	Keep it Registered
	Recognize Timing Critical Signals
	Make Only Allowed Modifications

	Clocking
	Resets
	Protocol Description
	Ethernet Protocol Overview

	AXI4-Stream User Interface
	Receiving Inbound Frames
	Transmitting Outbound Frames

	Flow Control
	Overview of Flow Control
	Flow Control Operation of the TEMAC
	Flow Control Implementation Example

	Statistics Counters
	Frame Filter
	Using the Frame Filter
	Frame Filter Example Application
	Using the AVB Specific Frame Filters

	Ethernet AVB Endpoint
	Ethernet AVB Endpoint Transmission
	Ethernet AVB Endpoint Reception
	Real Time Clock and Time Stamping
	Time Stamping Logic
	IEEE1722 Real Time Clock Format
	Precise Timing Protocol Packet Buffers

	Configuration and Status
	The Management Interface
	Interrupt Controller
	The Configuration Vector

	TEMAC Configuration Settings
	Half-Duplex Configuration Settings
	Half-Duplex and Flow Control Configuration Settings
	MAC Address Settings
	AVB Endpoint

	Physical Interface for the 10 Mb/s and 100 Mb/s Only Ethernet MAC IP Core
	MII Transmitter Interface
	MII Receiver Interface
	Multiple Core Instances with the MII

	Physical Interfaces for 1 Gb/s Only Ethernet MAC IP Core
	Gigabit Media Independent Interface (GMII)
	Reduced Gigabit Media Independent Interface (RGMII)

	Physical Interfaces for Tri-speed (10 Mb/s, 100 Mb/s and 1 Gb/s) Ethernet MAC IP Core
	Gigabit Media Independent Interface (GMII)
	Reduced Gigabit Media Independent Interface (RGMII)

	Interfacing to Other Xilinx Ethernet Cores
	Ethernet 1000BASE-X PCS/PMA or SGMII Core

	Section II: Vivado Design Suite
	Customizing and Generating the Core
	GUI
	Component Name
	Physical Interface
	MAC Speed
	Half-Duplex
	Management Interface
	AVB Option
	Frame Filter
	Number of Table Entries
	Statistics Counters
	Statistics Reset
	Statistics Width

	Output Generation
	Examples
	Examples simulation
	Synthesis
	Simulation
	Instantiation Template
	Miscellaneous

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	I/O Standard and Placement

	Example Design
	Detailed Example Design
	10 Mb/s /100 Mb/s/1 Gb/s Ethernet FIFO
	Basic Pattern Generator Module
	AXI4-Lite Control State Machine

	Demonstration Test Bench
	Test Bench Functionality
	Changing the Test Bench

	Targeting the Example Design to a Board
	TEMAC Solution Configurations Supported
	Bring Up Sequence
	KC705 Board

	Section III: ISE Design Suite
	Customizing and Generating the Core
	GUI
	Component Name
	Physical Interface
	MAC Speed
	Half-Duplex
	Management Interface
	AVB Option
	Frame Filter
	Number of Table Entries
	Statistics Counters
	Statistics Reset
	Statistics Width

	Parameter Values in the XCO File
	Output Generation
	Implementing Your Design
	Pre-implementation Simulation
	Synthesis
	Implementation
	Post-Implementation Simulation
	Other Implementation Information

	Constraining the Core
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	General Constraints
	I/O Standard and Placement
	I/O Location Constraints
	Placement Constraints
	Timing Constraints

	Example Design
	Example Design Overview
	Detailed Example Design
	Directory and File Contents
	<project directory>
	<project directory>/<component name>
	<component name>/example design
	example design/common
	example design/axi_ipif
	example design/axi_lite
	example design/control
	example design/fifo
	example design/pat_gen
	example_design/physical
	example_design/statistics
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/functional

	Demonstration Test Bench
	Implementation
	Implementation Scripts

	Targeting the Example Design to a Board
	TEMAC Solution Configurations Supported
	Bring Up Sequence
	SP601 Board
	SP605 Board
	ML605 Board
	KC705 Board

	Simulation
	Test Scripts For Functional Simulation
	Running the Simulation

	Section IV: Appendices
	Calculating the MMCM Phase Shift or IODelay Tap Setting
	MMCM Usage
	MMCM Phase Shifting Requirements
	Finding the Ideal Phase Shift Value

	IODelay Usage
	IODelay Tap Setting Requirements
	Finding the Ideal Tap Setting Value

	Differences between the Embedded Tri-Mode Ethernet MACs and the Soft TEMAC Solution IP Core
	Virtex-6 Device
	Features Exclusive to the Embedded Tri-Mode Ethernet MAC
	Features Exclusive to Soft 10/100/1000 Mb/s, 1000 Mb/s and 10/100 Mb/s IP Cores

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Migrating to AXI Tri-Mode Ethernet MAC
	Host Interface to AXI4-Lite
	Host MAC Configuration
	Host Filter Access
	Host Statistics Read
	Host MDIO Read/Write

	Client Interface to AXI4-Stream
	TX Client Interface versus TX AXI4-Stream
	RX Client Interface versus RX AXI4-Stream

	LocalLink to AXI4-Stream Translation

	Debugging
	Debug Tools
	Example Design
	ChipScope Pro Tool
	Available Reference Boards
	Link Analyzers

	Simulation Debug
	Compiling Simulation Libraries

	Implementation and Timing Errors
	Regional Clocking Errors
	Timing Failed for GMII/RGMII/MII OFFSET IN Constraint

	Hardware Debug
	General Checks
	Problems with Transmitting and Receiving Frames
	Problems with the MDIO
	Configuring the Ethernet MAC to the Correct Speed

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Revision History
	Notice of Disclaimer

