
LogiCORE IP Color
Correction Matrix
v3.0
Product Guide

PG001 October 19, 2011

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 2
PG001 October 19, 2011

Chapter 1: Overview
Standards Compliance . 6
Feature Summary . 6
Applications . 6
Licensing . 6
Performance . 7
Resource Utilization. 8

Chapter 2: Core Interfaces and Register Space
Core Symbol and Port Descriptions. 10

Chapter 3: Customizing and Generating the Core
Graphical User Interface (GUI) . 20
Parameter Values in the XCO File . 22
Output Generation . 23

Chapter 4: Designing with the Core
General Design Guidelines . 26
Control Signals and Timing . 26

Chapter 5: Constraining the Core
Required Constraints. 27
Device, Package, and Speed Grade Selections. 27
Clock Frequencies. 27
Clock Management . 27
Clock Placement . 27
Banking. 27
Transceiver Placement . 27
I/O Standard and Placement . 27
Resets. 27
Protocol Description . 28

Chapter 6: Detailed Example Design
Demonstration Test Bench . 29

Appendix A: Verification, Compliance, and Interoperability
Simulation . 31
Hardware Testing . 31

Table of Contents

http://www.xilinx.com

3 www.xilinx.com LogiCORE IP Color Correction Matrix v3.0
PG001 October 19, 2011

Appendix B: Migrating
Functionality Changes . 32
Migrating to the EDK pCore AXI4-Lite Interface . 32

Appendix C: Debugging
Evaluation Core Timeout . 33

Appendix D: Application Software Development
Device Drivers . 36

Appendix E: C Model Reference
Features. 38
Overview . 38
Technical Support. 38
Feedback. 39
Unpacking and Model Contents . 39
Using the C Model . 40
C Model Example Code . 44

Appendix F: Additional Resources
Xilinx Resources . 46
References . 46
Technical Support. 46
Revision History . 46
Notice of Disclaimer . 47

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 4
PG001 October 19, 2011 Product Specification

Introduction
The Xilinx LogiCORE™ IP Color Correction Matrix
core is a 3 x 3 programmable coefficient matrix
multiplier with offset compensation. This core can be
used for color correction operations such as adjusting
white balance, color cast, brightness, or contrast in an
RGB image.

The core efficiently uses the 18x18 bit multipliers,
adders and registers provided in XtremeDSP™ slices in
Spartan®-6, Virtex®-6, Virtex-7, and Kintex®-7 devices
resulting in high performance and optimal resource
usage.

Features
• Programmable matrix coefficients

• Selectable processor interface

• EDK pCore - AXI interface is based on
AXI4-Lite specification

• General Purpose Processor Interface

• Constant Interface

• Configurable 8-, 10-, and 12-bit input and output

• Independent clipping and clamping control

• Delay match support for up to three sync signals

• Optional CMY input to RGB output color
conversion

1. For a complete listing of supported devices, see the release notes
for this core.

2. HDL test bench and C Model available on the Product Page on
Xilinx.com at http://www.xilinx.com/products/ipcenter/
EF-DI-CCM.htm

3. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

LogiCORE IP Color Correction
Matrix v3.0

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family (1)

Spartan-6, Virtex-6, Virtex-7, Kintex-7

Supported User
Interfaces

 General Purpose Processor Interface, EDK pCore
AXI4-Lite, Constant Interface

Resources See Table 1-1 through Table 1-4.

Provided with Core

Documentation Product Specification

Design Files Netlists for GPP, Encrypted Source Code for EDK
pCore files

Example
Design

Not Provided

Test Bench VHDL

Constraints File Not Provided

Simulation
Models

VHDL or Verilog Structural, C Model (2)

Tested Design Tools

Design Entry
Tools

CORE Generator™ tool, Platform Studio (XPS)

 Simulation (3) Mentor Graphics ModelSim

Synthesis Tools Xilinx Synthesis Technology (XST) 13.3

Support

Provided by Xilinx, Inc.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 5
PG001 October 19, 2011 Product Specification

Chapter 1

Overview

There are many variations that cause difficulties in accurately reproducing color in
imaging systems. These include:

• Spectral characteristics of the optics (lens, filters)

• Lighting source variations like daylight, fluorescent, or tungsten

• Characteristics of the color filters of the sensor

The Color Correction Matrix provides a method for correcting the image data for these
variations. This fundamental block operates on either CMY or RGB data, and processing is
“real-time” as a pre-processing hardware block.

As an example, following one of the three color channels through an imaging system from
the original light source to the processed image helps understand the functionality of this
core.

The blue color channel is a combination of the blue photons from the scene, multiplied by
the relative response of the blue filter, multiplied by the relative response of the silicon to
blue photons. However, the filter and silicon responses might be quite different from the
response of the human eye, so blue to the sensor is quite different from blue to a human
being.

This difference can be corrected and made to more closely match the blue that is acceptable
to human vision. The Color Correction Matrix core multiplies the pixel values by some
coefficient to strengthen or weaken it, creating an effective gain. At the same time a mixture
of green or red can be added to the blue channel. To express this processing
mathematically, the new blue (Bc) is related to the old blue (B), red (R), and green (G)
according to:

Bc = K1 x R + K2 x G + K3 x B

where K1, K2, and K3 are the weights for each of the mix of red, green, and blue to the new
blue.

Extending this concept, a standard 3 x 3 matrix multiplication can be applied to each of the
color channels in parallel simultaneously. This is a matrix operation where the weights
define a color-correction matrix. In typical applications, color-correction also contains
offset compensation to ensure black [0,0,0] levels are achieved.

Equation 1-1

Rc

Gc

Bc

K11 K12 K13

K21 K22 K23

K31 K32 K33

R
G
B

O1

O2

O3

+=

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 6
PG001 October 19, 2011 Product Specification

Chapter 1: Overview

As shown in the matrix operation, the input pixels are transformed to a set of corrected
output pixels. This can be a very useful function configured as a static application;
however, the programmability of the coefficients and offset values allows this function to
adapt to changing lighting conditions based on a separate control loop.

Standards Compliance
AXI4-LITE Interface.

Feature Summary
The Color Correction Matrix core offers a 3x3 matrix multiplication for a variety of color
correction applications. The coefficient matrix is fully programmable and includes offset
compensation, and clipping and clamping of the output is also definable.

The core offers a processor interface for changing the matrix coefficients during run-time.

Applications
• Pre-processing block for image sensors

• Post-processing core for image data adjustment

• Video surveillance

• Video Conferencing

• Machine Vision

Licensing
The Color Correction Matrix core provides the following three licensing options:

• Simulation Only

• Full System Hardware Evaluation

• Full

After installing the required Xilinx ISE software and IP Service Packs, choose a license
option.

Simulation Only
The Simulation Only Evaluation license key is provided with the Xilinx CORE Generator
tool. This key lets you assess core functionality with either the example design provided
with the Color Correction Matrix core, or alongside your own design and demonstrates the
various interfaces to the core in simulation. (Functional simulation is supported by a
dynamically generated HDL structural model.)

No action is required to obtain the Simulation Only Evaluation license key; it is provided
by default with the Xilinx CORE Generator software.

Full System Hardware Evaluation
The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place-and-route the design, evaluate timing, and

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 7
PG001 October 19, 2011 Product Specification

Chapter 1: Overview

perform functional simulation of the Color Correction Matrix core using the example
design and demonstration test bench provided with the core.

In addition, the license key lets you generate a bitstream from the placed and routed
design, which can then be downloaded to a supported device and tested in hardware. The
core can be tested in the target device for a limited time before timing out (ceasing to
function), at which time it can be reactivated by reconfiguring the device.

To obtain a Full System Hardware Evaluation license, do the following:

1. Navigate to the product page for this core.

2. Click Evaluate.
3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs.

Full
The Full license key is available when you purchase the core and provides full access to all
core functionality both in simulation and in hardware, including:

• Functional simulation support
• Full implementation support including place and route and bitstream generation
• Full functionality in the programmed device with no time outs

To obtain a Full license key, you must purchase a license for the core. Click on the "Order"
link on the Xilinx.com IP core product page for information on purchasing a license for this
core. After doing so, click the "How do I generate a license key to activate this core?" link on
the Xilinx.com IP core product page for further instructions.

Installing Your License File
The Simulation Only Evaluation license key is provided with the ISE CORE Generator
system and does not require installation of an additional license file. For the Full System
Hardware Evaluation license and the Full license, an email will be sent to you containing
instructions for installing your license file. Additional details about IP license key
installation can be found in the ISE Design Suite Installation, Licensing and Release Notes
document.

Performance

Maximum Frequencies
The following are typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts may be affected by other tool options, additional logic in the FPGA device,
using a different version of Xilinx tools, or other factors.

• Virtex-7 FPGA: 250 MHz

• Virtex-6 FPGA: 250 MHz

• Kintex-7 FPGA: 250 MHz

• Spartan-6 FPGA: 150 MHz

http://www.xilinx.com/products/intellectual-property/EF-DI-CCM.htm
http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 8
PG001 October 19, 2011 Product Specification

Chapter 1: Overview

Latency
The processing latency of the core is seven CLK cycles.

Resource Utilization
For an accurate measure of the usage of primitives, slices, and CLBs for a particular
instance, check the Display Core Viewer after Generation check box in the CORE
Generator interface.

The information presented in Table 1-1 through Table 1-4 is a guide to the resource
utilization of the Color Correction Matrix core for all input/output width combinations for
Spartan-6, Virtex-6, Virtex-7, and Kintex-7 FPGA families. The Xtreme DSP Slice count is
always 9, regardless of parameterization, and this core does not use any block RAMs,
dedicated I/O, or CLK resources. The design was tested using ISE® v13.3 tools with
default tool options for characterization data.

1. Speedfile: PRODUCTION 1.20c 2011-09-21

Table 1-1: Spartan-6 - xc6slx150,-2 fgg900 (1)

Input Width Output Width LUT6-FF Pairs LUTs FFs DSP48E1
Clock

Frequency
(MHz)

8

8 190 72 198 9 196

10 185 77 198 9 196

12 191 71 198 9 203

10

8 185 87 206 9 173

10 193 77 206 9 196

12 193 77 206 9 203

12

8 180 97 214 9 196

10 196 80 214 9 203

12 198 78 214 9 196

Table 1-2: Virtex-6 xc6vlx75t,-1 ff484(1)

Input Width Output Width LUT6-FF Pairs LUTs FFs DSP48E1
Clock

Frequency
(MHz)

8

8 179 83 198 9 336

10 186 76 198 9 336

12 188 73 198 9 336

10

8 187 81 206 9 342

10 196 75 206 9 336

12 185 85 206 9 336

12

8 207 70 214 9 342

10 200 79 214 9 342

12 191 85 214 9 342

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 9
PG001 October 19, 2011 Product Specification

Chapter 1: Overview

1. Speedfile: PRODUCTION 1.15 2011-09-21

1. Speedfile: ADVANCED 1.02i 2011-09-21

1. Speedfile: ADVANCED 1.02b 2011-09-21

Table 1-3: Virtex-7 xc7v585t,-1 ffg1157 (1)

Input Width Output Width LUT6-FF Pairs LUTs FFs DSP48E1
Clock

Frequency
(MHz)

8

8 180 83 198 9 361

10 182 81 198 9 352

12 190 74 198 9 370

10

8 183 88 206 9 370

10 178 86 206 9 370

12 187 83 206 9 344

12

8 206 75 214 9 352

10 208 71 214 9 300

12 205 75 214 9 326

Table 1-4: Kintex-7 xc7k70t,-1 fbg484 (1)

Input Width Output Width LUT6-FF Pairs LUTs FFs DSP48E1
Clock

Frequency
(MHz)

8

8 168 94 198 9 363

10 182 79 198 9 357

12 171 87 198 9 363

10

8 188 81 206 9 363

10 174 97 206 9 357

12 189 82 206 9 336

12

8 179 96 214 9 371

10 190 84 214 9 363

12 203 77 214 9 371

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 10
PG001 October 19, 2011

Chapter 2

Core Interfaces and Register Space

Core Symbol and Port Descriptions
The Color Correction Matrix core can be configured with three different interface options,
each resulting in a slightly different set of ports. The Color Correction Matrix core uses a set
of signals that is common to all of the Xilinx Video IP cores called the Xilinx Streaming
Video Interface (XSVI). The XSVI, clk, ce, and sclr signals are common to all interface
options and are shown in Figure 2-1 and described by Table 2-1.

Xilinx Streaming Video Interface
The Xilinx Streaming Video Interface (XSVI) is a set of signals common to all of the Xilinx
video cores used to stream video data between IP cores. XSVI is also defined as an
Embedded Development Kit (EDK) bus type so that the tool can automatically create input
and output connections to the core. This definition is embedded in the pCORE interface
provided with the IP, and it allows an easy way to cascade connections of Xilinx Video
Cores. The Color Correction Matrix IP core uses the following subset of the XSVI signals:

• video_data

• vblank

• hblank

• active_video

Other XSVI signals on the XSVI input bus, such as video_clk, vsync, hsync, field_id, and
active_chr do not affect the function of this core.

Note: These signals are neither propagated, nor driven on the XSVI output of this core.

The following is an example EDK Microprocessor Peripheral Definition (.MPD) file
definition.

Input side:

BUS_INTERFACE BUS = XSVI_IN, BUS_TYPE = TARGET, BUS_STD = XSVI

PORT hblank_in = hblank, DIR = I, BUS = XSVI_IN
PORT vblank_in = vblank, DIR = I, BUS = XSVI_IN
PORT active_video_in = active_video, DIR = I, BUS = XSVI_IN
PORT video_data_in = video_data, DIR = I, VEC=[3*INPUT_WIDTH-1:0], BUS = XSVI_IN

Output side:

BUS_INTERFACE BUS = XSVI_OUT, BUS_TYPE = INITIATOR, BUS_STD = XSVI

PORT hblank_out = hblank, DIR = O, BUS = XSVI_OUT
PORT vblank_out = vblank, DIR = O, BUS = XSVI_OUT
PORT active_video_out = active_video, DIR = O, BUS = XSVI_OUT

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 11
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

PORT video_data_out = video_data, DIR = O, VEC=[3*C_OUTPUT_WIDTH-1:0], BUS = XSVI_OUT

The Color Correction Matrix IP core is fully synchronous to the core clock, clk.
Consequently, the input XSVI bus is expected to be synchronous to the input clock, clk.
Similarly, to avoid clock re-sampling issues, the output XSVI bus for this IP is synchronous
to the core clock, clk. The video_clk signals of the input and output XSVI buses are not
used.

Constant Interface
The Constant Interface assumes the coefficient matrix and offset values are constants.
There is no processor interface and the core is not programmable, but can be reset, enabled,
or disabled using the sclr and ce pins. The ports for the Constant Interface are described
in detail in Table 2-1.

As this interface does not provide additional programmability, the Constant Interface has
no ports other than the Xilinx Streaming Video Interface, clk, ce, and sclr signals. The
Constant Interface Core Symbol is shown in Figure 2-1.

X-Ref Target - Figure 2-1

Figure 2-1: Core Symbol for the Constant Interface

video_data_in
hblank_in
vblank_in
active_video_in
sclr
ce
clk

video_data_out
hblank_out
vblank_out

active_video_out

Table 2-1: Port Descriptions for the Constant Interface

Port Name Port Width Direction Description

video_data_in 3*INPUT_WIDTH IN Data input bus

hblank_in 1 IN Horizontal blanking input

vblank_in 1 IN Vertical blanking input

active_video_in 1 IN Active video signal input

video_data_out 3*OUTPUT_WIDTH OUT Data output bus

hblank_out 1 OUT Horizontal blanking output

vblank_out 1 OUT Vertical blanking output

active_video_out 1 OUT Active video signal output

clk 1 IN Rising-edge clock

ce 1 IN Clock enable (active high)

sclr 1 IN Synchronous clear – reset (active high)

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 12
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

• video_data_in: This bus contains the three individual color inputs in the following
order from MSB to LSB [red : blue : green] or [cyan : yellow : magenta]. Color values
are expected in INPUT_WIDTH bits wide unsigned integer representation.

• hblank_in: The hblank_in signal conveys information about the blank/non-blank
regions of video scan lines. This signal is not actively used in the CCM core, but
passed through the core with a delay matching the latency of the corrected data.

• vblank_in: The vblank_in signal conveys information about the blank/non-blank
regions of video frames, and is used by the CCM core to detect end of a frame, when
user registers can be copied to active registers to avoid visual tearing of the image.
This signal is passed through the core with a delay matching the latency of the
corrected data.

• active_video_in: The active_video_in signal is high when valid data is presented
at the input. This signal is not actively used in the CCM core, but passed through the
core with a delay matching the latency of the corrected data.

• clk - clock: Master clock in the design.

• ce - clock enable: Pulling CE low suspends all operations within the core. Outputs are
held, no input signals are sampled, except for reset (SCLR takes precedence over CE).

• sclr - synchronous clear: Pulling SCLR high results in resetting all output control
signal pins to 0, and resetting the video_data_out bus to the clamping values for
each color channel. Internal registers within the XtremeDSP slice and D-flip-flops are
cleared. However, the core uses SRL16/SRL32-based delay lines for hblank, vblank,
and active_video generation, which are not cleared by SCLR. This may result in
non-zero outputs after SCLR is deasserted, until the contents of SRL16/SRL32s are
flushed. Unwanted results can be avoided if SCLR is held active until SRL16/SRL32s
are flushed.

• video_data_out: This bus contains RGB output in the same order as
video_data_in. Color values are represented as OUTPUT_WIDTH bits wide
unsigned integers.

• hblank_out, vblank_out and active_video_out: The corresponding input signals are
delayed so active_video and blanking outputs are in phase with the video data
output, maintaining the integrity of the video stream. The blanking and active_video
outputs are connected to the corresponding inputs via delay lines matching the
propagation delay of the RGB processing pipe. Unwanted blanking inputs should be
tied high, and corresponding outputs left unconnected, which will result in the
trimming of any unused logic within the core.

The active_video and blanking signals do not affect the processing behavior of the
core. Asserting or deasserting them will not stall processing or the R, G, B streams, and
neither will force video outputs to zero.

Bits
3*INPUT_WIDTH - 1:

2*INPUT_WIDTH
2*INPUT_WIDTH - 1:

INPUT_WIDTH
INPUT_WIDTH - 1:0

Video Data Signals
Red Blue Green

Cyan Yellow Magenta

Bits
3*OUTPUT_WIDTH - 1:

2*OUTPUT_WIDTH
2*OUTPUT_WIDTH - 1:

OUTPUT_WIDTH
OUTPUT_WIDTH - 1:0

Video Data Signals Red Blue Green

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 13
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

General Purpose Processor Interface
The General Purpose Processor interface exposes all matrix coefficients and offsets as
ports. This option is very useful for developers designing a system with a user-defined bus
interface (decoding logic and register banks) to an arbitrary processor.

The Core Symbol for the General Purpose Processor Interface is shown in Figure 2-2. The
Xilinx Streaming Video Interface clk, ce, and sclr are described in the previous section. The
General Purpose Processor ports are described in Table 2-2.

The coefficient and offset ports have a control mechanism to prevent tearing or committing
partially updated port values, and are stored in the port registers within the core. The port
values are latched into the working registers at the rising edge of vblank_in when bit 1 of
ccm_control port is set to 1. At the beginning of the next frame, designated by a rising
edge in vblank_in, the port registers will all update.

X-Ref Target - Figure 2-2

Figure 2-2: Core Symbol for the General Purpose Processor Interface

video_data_in
hblank_in
vblank_in
active_video_in
sclr
ce
clk
ccm_control
ccm_k11
ccm_k12
ccm_k13
ccm_k21
ccm_k22
ccm_k23
ccm_k31
ccm_k32
ccm_k33
ccm_roffset
ccm_goffset
ccm_boffset

video_data_out
hblank_out
vblank_out

active_video_out

Table 2-2: Ports for the General Purpose Processor Interface

Port Name Port Width Description

ccm_control 2

Bit 0

Software Enable

0 - Not enabled

1 - Enabled

Bit 1

Semaphore for AXI4-Lite Register Update

0 - Normal Operating Mode, software safe for updating AXI4-Lite registers

1 - Register Update, stored register values are updated in the core on the next
rising edge of vblank_in

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 14
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

EDK pCore Interface
The EDK pCore Interface generates AXI4-Lite interface ports listed in Table 2-3, in addition
to the clk, ce, sclr, and Xilinx Streaming Video Signals. The AXI4-Lite signals are
automatically connected when the generated pCore is inserted into an EDK project. The
Core Symbol for the EDK pCore Interface is shown in Figure 2-3. The Xilinx Streaming
Video Interface clk, ce, and sclr are described in the previous section (Table 2-1). For more
information on the AXI4-Lite bus signals, see UG761, AXI Reference Guide.

ccm_k11 18 Matrix Coefficient values are presented in 18.15 fixed point format. 18-bit
signed integer values are equivalent to real numbers in the [-4 : 4]) range,
multiplied by 32768.ccm_k12 18

ccm_k13 18

ccm_k21 18

ccm_k22 18

ccm_k23 18

ccm_k31 18

ccm_k32 18

ccm_k33 18

ccm_roffset OWIDTH + 1 wide OWIDTH + 1-bit wide signed integer value in the range [-(2OWIDTH) :
(2OWIDTH)-1]

ccm_goffset OWIDTH + 1 wide

ccm_boffset OWIDTH + 1 wide

Table 2-2: Ports for the General Purpose Processor Interface (Cont’d)

Port Name Port Width Description

Table 2-3: Ports for the EDK pCore Interface

Pin Name Dir Width Description

AXI Global System Signals(1)

S_AXI_ARESETN I 1 AXI Reset, active low

IP2INTC_Irpt O 1 Interrupt request output

AXI Write Address Channel Signals(1)

S_AXI_AWADDR I [(C_S_AXI_ADDR_
WIDTH-1):0]

AXI4-Lite Write Address Bus. The write address
bus gives the address of the write transaction.

S_AXI_AWVALID I 1 AXI4-Lite Write Address Channel Write Address
Valid. This signal indicates that valid write address
is available.

1 = Write address is valid.

0 = Write address is not valid.

S_AXI_AWREADY O 1 AXI4-Lite Write Address Channel Write Address
Ready. Indicates core is ready to accept the write
address.

1 = Ready to accept address.

0 = Not ready to accept address.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 15
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

AXI Write Data Channel Signals(1)

S_AXI_WDATA I [(C_S_AXI_DATA_
WIDTH-1):0]

AXI4-Lite Write Data Bus.

S_AXI_WSTRB I [C_S_AXI_DATA_
WIDTH/8-1:0]

AXI4-Lite Write Strobes. This signal indicates
which byte lanes to update in memory.

S_AXI_WVALID I 1 AXI4-Lite Write Data Channel Write Data Valid.
This signal indicates that valid write data and
strobes are available.

1 = Write data/strobes are valid.

0 = Write data/strobes are not valid.

S_AXI_WREADY O 1 AXI4-Lite Write Data Channel Write Data Ready.
Indicates core is ready to accept the write data.

1 = Ready to accept data.

0 = Not ready to accept data.

AXI Write Response Channel Signals(1)

S_AXI_BRESP(2) O [1:0] AXI4-Lite Write Response Channel. Indicates
results of the write transfer.

00b = OKAY - Normal access has been successful.

01b = EXOKAY - Not supported.

10b = SLVERR - Error.

11b = DECERR - Not supported.

S_AXI_BVALID O 1 AXI4-Lite Write Response Channel Response
Valid. Indicates response is valid.

1 = Response is valid.

0 = Response is not valid.

S_AXI_BREADY I 1 AXI4-Lite Write Response Channel Ready.
Indicates Master is ready to receive response.

1 = Ready to receive response.

0 = Not ready to receive response.

AXI Read Address Channel Signals(1)

S_AXI_ARADDR I [(C_S_AXI_ADDR_
WIDTH-1):0]

AXI4-Lite Read Address Bus. The read address bus
gives the address of a read transaction

S_AXI_ARVALID I 1 AXI4-Lite Read Address Channel Read Address
Valid.

1 = Read address is valid.

0 = Read address is not valid.

S_AXI_ARREADY O 1 AXI4-Lite Read Address Channel Read Address
Ready. Indicates core is ready to accept the read
address.

1 = Ready to accept address.

0 = Not ready to accept address.

Table 2-3: Ports for the EDK pCore Interface (Cont’d)

Pin Name Dir Width Description

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 16
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

AXI Read Data Channel Signals(1)

S_AXI_RDATA O [(C_S_AXI_DATA_
WIDTH-1):0]

AXI4-Lite Read Data Bus.

S_AXI_RRESP(2) O [1:0] AXI4-Lite Read Response Channel Response.
Indicates results of the read transfer.

00b = OKAY - Normal access has been successful.

01b = EXOKAY - Not supported.

10b = SLVERR - Error.

11b = DECERR - Not supported.

S_AXI_RVALID O 1 AXI4-Lite Read Data Channel Read Data Valid.
This signal indicates that the required read data is
available and the read transfer can complete.

1 = Read data is valid.

0 = Read data is not valid.

S_AXI_RREADY I 1 AXI4-Lite Read Data Channel Read Data Ready.

Indicates master is ready to accept the read data.

1 = Ready to accept data.

0 = Not ready to accept data.

1. The function and timing of these signals are defined in the AMBA AXI Protocol Specification.
2. For signals S_AXI_RRESP[1:0] and S_AXI_BRESP[1:0], the core does not generate the Decode Error ('11') response.

Other responses like '00' (OKAY) and '10' (SLVERR) are generated by the core based upon certain conditions.

Table 2-3: Ports for the EDK pCore Interface (Cont’d)

Pin Name Dir Width Description

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 17
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

EDK pCore Interface Register Descriptions
Many imaging applications have an embedded processor that can dynamically control the
parameters within the core to correct for variations within the lighting conditions of the
scene being captured. The user can select an EDK pCore interface, which creates a pCore
that can be added to an EDK project as a hardware peripheral. This pCore provides a
memory-mapped interface for the programmable registers of the matrix coefficients and
offsets within the core. These registers are described in Table 2-4.

X-Ref Target - Figure 2-3

Figure 2-3: Core Symbol for the EDK pCore Interface

Table 2-4: EDK pCore Interface Register Descriptions

Address
Offset (hex)

Register Name
Access

Type
Default Value

(hex)
Description

0x00 ccm_reg00_control R/W 0x1 Bit 0 Software Enable

0 – Not enabled

1 – Enabled

Bit 1 Semaphore for AXI4-Lite Register
Update

0 – Normal Operating Mode,
software safe for updating AXI4-Lite
registers

1 – Register Update, stored register
values are updated in the core on the
next rising edge of vblank_in

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 18
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

All of the Write registers are readable, enabling the user to verify writes or read back
current values. There is an additional feature that effectively disables the core halting
further operations, which blocks the propagation of all video signals. This function is
controlled by setting the SW enable register, bit 0 of ccm_reg00_control, to 0. The
default value of SW enable is 1 (enabled).

All registers other than the control and SW reset registers are double-buffered in hardware
to ensure no image tearing happens if the K or offset values are modified in the active area
of a frame. This double-buffering provides a more flexible and easier to use core because it
decouples the register updates from the blanking period, allowing software a much larger
window with which to update the parameter values. The updated values for the K and
offset registers are latched into the shadow registers immediately after writing them, while
the actual offset and matrix multiplier coefficients used are stored in the working registers.

Any Reads of registers during operation return the values stored in the shadow registers.
The rising edge of vblank_in triggers the values from the shadow registers to be copied
to the working registers, when bit 1 of ccm_reg00_control is set to 1. This semaphore
bit helps to prevent partially updated shadow registers from being copied over to the
working registers.

The EDK pCore option provides a standard AXI4-LiteAXI4-Lite bus interface to the cores.

0x04 ccm_reg01_reset R/W 0x0 Bit 0 Software Manual Reset

0 – Not Reset

1 – Force immediate reset, hold until
bit is cleared

Bit 1 Software Auto-synchronized Reset

0 – Not Reset

1 – Reset occurs automatically on the
next rising edge of vblank_in

0x08 ccm_reg04_K11 R/W from GUI

Matrix Coefficient values are presented in
18.15 fixed point format. 18-bit signed integer
values are equivalent to real numbers in the
[-4 : 4] range, multiplied by 32768.

0x0C ccm_reg05_K12 R/W from GUI

0x10 ccm_reg06_K13 R/W from GUI

0x14 ccm_reg07_K21 R/W from GUI

0x18 ccm_reg08_K22 R/W from GUI

0x1C ccm_reg09_K23 R/W from GUI

0x20 ccm_reg10_K31 R/W from GUI

0x24 ccm_reg11_K32 R/W from GUI

0x28 ccm_reg12_K33 R/W from GUI

0x2C ccm_reg13_ROFFSET R/W from GUI OWIDTH + 1-bit wide signed integer value in
the range [-(2OWIDTH) : (2OWIDTH)-1]

0x30 ccm_reg14_GOFFSET R/W from GUI

0x34 ccm_reg15_BOFFSET R/W from GUI

Table 2-4: EDK pCore Interface Register Descriptions (Cont’d)

Address
Offset (hex)

Register Name
Access

Type
Default Value

(hex)
Description

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 19
PG001 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Importing Generated pCore Into EDK
To generate an EDK pCore, select the EDK pCore option in the CORE Generator Graphical
User Interface.

A folder is created in the coregen project directory with the Component Name specified in
the CORE Generator Graphical User Interface. This folder contains all of the files needed
for an EDK pCore, which contains two folders:

/drivers

/pcores

Any EDK pCore repository, whether internal or external to an EDK/Xilinx Platform Studio
(XPS) project, contains matching /drivers and /pcores folders containing all of the
pCores available in that pCore repository. Copy the contents of these generated folders into
your EDK pCore repository location.

For XPS to detect the new pCore, select Project → Rescan user repositories in XPS.

Once XPS detects the new pCore, it appears in the XPS IP Catalog Tab under the repository
in which it has been placed as "Color Correction Matrix 3.00.a". Drag-and-drop, or
right-click and select Add IP to add a new instance of the core to your project.

To connect the Color Correction Matrix pCore to your AXI4-Lite bus, expand the view of
the pCore instance in the System Assembly View's Bus Interfaces tab, and select the
associated AXI4-Lite bus in the S_AXI drop-down.

To configure Color Correction Matrix pCore parameters once it has been inserted into your
XPS project, right-click the specific instance of the pCore in the System Assembly View
window, and select Configure IP ... The input and output widths (C_IWIDTH,
C_OWIDTH), the clipping (C_MAX) and the clamping values (C_MIN), and AXI4-Lite bus
configuration settings are configurable for this pCore instance.

To set the AXI4-Lite base address for the Color Correction Matrix pCore, set the address in
either the core's configuration or in the System Assembly View's Addresses' tab. The Color
Correction Matrix pCore requires an address range of 256 bytes.

To connect the Color Correction Matrix pCore's video input and output signals, expand the
entry for the pCore instance in the System Assembly View's Ports tab. Use the drop-down
items to associate each port of the Color Correction Matrix pCore with the desired
connection within your EDK system. Note that the clk input is the clock rate of the Color
Correction Matrix pCore's video-processing logic, which should be connected to the video
clock, not the AXI4-Lite bus clock.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 20
PG001 October 19, 2011

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface (GUI)
The Color Correction Matrix core is easily configured to meet developers’ specific needs
before instantiation through the CORE Generator™ graphical user interface (GUI). Once
developers start to build the Color Correction Matrix core within the CORE Generator
system, they are guided through and asked to set various parameters. This section
provides a quick reference to the windows and parameters that can be configured at
compile time.

The first screen (Figure 3-1) shows a representation of the IP symbol on the left side, and
the settable parameters on the right, which are described as follows:

• Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9 and “_”.

X-Ref Target - Figure 3-1

Figure 3-1: Graphical User Interface – Screen 1

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 21
PG001 October 19, 2011

Chapter 3: Customizing and Generating the Core

• Input Data Width (IWIDTH): Specifies the bit width of the input color channel for
each component.
In cases where the Input Data Width does not equal the Output Data Width, the data
is scaled up or down accordingly.

• Output Data Width (OWIDTH): Specifies the bit width of the output color channel
for each component.
In cases where the Input Data Width does not equal the Output Data Width, the data
is scaled up or down accordingly.

• Output Clamping Value: Specifies the minimum value of the output. Allowable
values are from 0 to 2OWDITH-1. The clamping value must be less than the clipping
value.

• Output Clipping Value: Specifies the maximum value of the output. Allowable
values are from 0 to 2OWDITH-1. The clipping value must be larger than the clamping
value.

• Interface Selection: As described in the previous sections, this option allows for the
configuration of three different interfaces for the core.

• EDK pCore Interface: The CORE Generator tool generates a pCore that can be
easily imported into an EDK project as a hardware peripheral and coefficients can
be programmed via registers. When the EDK pCore interface is selected, the
Input- and Output- Data Width, Clipping -, and Clamping Value fields, as well as
Page 2 of the GUI are inactive. The parameters of the EDK pCore are controllable
via the EDK core configuration GUI and software drivers.

• General Purpose Processor Interface: The CORE Generator tool generates a set of
ports to be used to program the core.

• Constant Interface: The matrix coefficients and offsets are constant, and,
consequently, no programming is necessary.

The second screen (Figure 3-2) also shows a representation of the IP symbol on the left side,
but has a second set of settable parameters on the right, as described in this section.

X-Ref Target - Figure 3-2

Figure 3-2: Graphical User Interface – Screen 2

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 22
PG001 October 19, 2011

Chapter 3: Customizing and Generating the Core

• Coefficient Matrix: Enter the floating-point coefficients ranging from [-4, 4] (K in
Equation 1-1) by specifying the 18 bit coefficients with 15 fractional bits of the
coefficient matrix. The entered values will be the default used to initialize the core and
the values used when the core is reset. Enter the real valued coefficients as
floating-point decimal values in the range [-4.0, 4.0] (K in Equation 1-1). When the
core is generated, the floating-point decimal value is converted to an 18-bit vector
with 15 fractional bits, which are used internally to the core.

• Offsets: Enter the offset coefficients (O in Equation 1-1). These signed coefficients
have the same bit width as the output. Enter the offset values (O in Equation 1-1).
These signed integer values must be in the range
[-2OWIDTH, 2OWIDTH-1], and are 1-bit wider than the Output Data Width specified on
the first page of the GUI.

• Include conversion from CMY to RGB: The Color Correction Matrix core can accept
either RGB or CMY inputs. When selecting this conversion, the core will modify the
coefficient matrix to also convert the CMY input to RGB output. The equation to
calculate the new coefficient matrix is as follows:

Equation 3-1

Parameter Values in the XCO File
Table 1 defines valid entries for the XCO parameters. Xilinx strongly suggests that XCO
parameters are not manually edited in the XCO file; instead, use the CORE Generator
software GUI to configure the core and perform range and parameter value checking. The
XCO parameters are helpful in defining the interface to other Xilinx tools.

K′
K11 K12 K13

K21 K22 K23

K31 K32 K33

1– 1 1
1 1– 1
1 1 1–

=

Table 3-1: XCO Parameters

XCO Parameter Default Valid Values

component_name ccm
ASCII text using characters: a..z, 0..9 and

"_" starting with a letter.

Note: "v_ccm_v3_0" is not allowed.

interface_selection EDK_Pcore EDK_Pcore, General_Purpose
Processor, Constant

iwidth 8 8, 10, 12

owidth 8 8, 10, 12

cmy2rgb false true, false

k11 1.0 [-4.0, 4.0)

k12 0.0 [-4.0, 4.0)

k13 0.0 [-4.0, 4.0)

k21 0.0 [-4.0, 4.0)

k22 1.0 [-4.0, 4.0)

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 23
PG001 October 19, 2011

Chapter 3: Customizing and Generating the Core

Output Generation
The output files generated from the Xilinx CORE Generator software for the core depend
upon whether the interface selection is set to EDK pCore or General Purpose Processor/
Constant. The output files are placed in the project directory.

EDK pCore Files
When the interface selection is set to EDK pCore, CORE Generator will output the core as
a pCore that can be easily incorporated into an EDK project. The pCore output consists of
a hardware pCore and a software driver. The pCore has the following directory structure:

<Component_Name>

• drivers

- ccm_v3_00_a

- data

- build

- example

- src

• pcores

- axi_ccm_v3_00_a

- data

- hdl

- vhdl

k23 0.0 [-4.0, 4.0)

k31 0.0 [-4.0, 4.0)

k32 0.0 [-4.0, 4.0)

k33 1.0 [-4.0, 4.0)

rgb_min 0 0 to 2OWIDTH - 1

rgb_max 255 0 to 2OWIDTH - 1

roffset 0 -2OWIDTH to 2OWIDTH - 1

goffset 0 -2OWIDTH to 2OWIDTH - 1

boffset 0 -2OWIDTH to 2OWIDTH - 1

Table 3-1: XCO Parameters

XCO Parameter Default Valid Values

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 24
PG001 October 19, 2011

Chapter 3: Customizing and Generating the Core

File Details

<project directory>

This is the top-level directory. It contains xco and other assorted files.

<project directory>/<component_name>/pcores/axi_ccm_v3_00_a/data

This directory contains files that EDK uses to define the interface to the pCore.

< project directory>/<component_name>/pcores/axi_ccm_v3_00_a/hdl/vhdl

This directory contains the HDL files that implement the pCore.

< project directory>/<component_name>/drivers/ccm_v3_00_a/data

This directory contains files that SDK uses to define the operation of the pCore's
software driver.

< project directory>/<component_name>/drivers/ccm_v3_00_a/example

This directory contains some example code using the pCore's software driver.

< project directory>/<component_name>/drivers/ccm_v3_00_a/src

This directory contains the source code of the pCore's software driver.

General Purpose Processor or Constant Interface Files
When the interface selection is set to General Purpose Processor, CORE Generator will
output the core as a netlist that can be inserted into a processor interface wrapper or
instantiated directly in an HDL design. The output is placed in the <project directory>.

File Details

The CORE Generator output consists of some or all the following files.

Name Description

<component_name>.xco Log file from CORE Generator software describing which options were used to
generate the core. An XCO file can also be used as an input to the CORE
Generator software.

<component_name>_flist.txt A text file listing all of the output files produced when the customized core was
generated in the CORE Generator software.

Name Description

ccm.c Provides the API access to all features of the device driver.

ccm.h Provides the API access to all features of the device driver.

Table 3-2:

Name Description

<component_name>_readme.txt Readme file for the core.

<component_name>.ngc The netlist for the core.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 25
PG001 October 19, 2011

Chapter 3: Customizing and Generating the Core

<component_name>.veo

The HDL template for instantiating the core.

The structural simulation model for the core. It is used for functionally
simulating the core.

<component_name>.vho

<component_name>.v

<component_name>.vhd

<component_name>.xco Log file from CORE Generator software describing which options were
used to generate the core. An XCO file can also be used as an input to
the CORE Generator software.

<component_name>_flist.txt A text file listing all of the output files produced when the customized
core was generated in the CORE Generator software.

<component_name>.asy IP symbol file

<component_name>.gise
ISE subproject files for use when including the core in ISE designs.

<component_name>.xise

Table 3-2:

Name Description

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 26
PG001 October 19, 2011

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines
The Color Correction Matrix core is a 3x3 matrix multiplication with an additional offset.

The output values are:

Rc = K11 x R + KK12 x G + K13 x B + O1

Gc =K21 x R + K22x G + K33 x B + O2

Bc = K31 x R + K32x G + K33 x B + O3

In cases where the Input Data Width does not equal the Output Data Width, the data is
scaled up or down accordingly. For example, if the Input Data Width =8, and Output Data
Width=12, then the core scales the data up by a factor of 4. Meaning, with an identity
matrix, an input of 1 will give an output of 4.

Control Signals and Timing
The propagation delay of the Color Correction Matrix core is independent of
parameterization and actual signal (R, G, B, hblank_in, vblank_in,
active_video_in) values. Deasserting CE suspends processing, which may be useful
for data-throttling, to temporarily cease processing of a video stream in order to match the
delay of other processing components.

The processing latency of the core is seven CLK cycles.
X-Ref Target - Figure 4-1

Figure 4-1: Timing Signals

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 27
PG001 October 19, 2011

Chapter 5

Constraining the Core

Required Constraints
The clk pin should be constrained at the pixel clock rate desired for the video stream.

Device, Package, and Speed Grade Selections
There are no device, package, or speed grade requirements for this core.

Note: The core has not been characterized for use in low power devices.

Clock Frequencies
The clk pin should be run at the required pixel clock frequency for the this core.

Clock Management
There is only one clock for this core.

Clock Placement
There are no specific clock placement requirements for this core

Banking
There are no specific banking rules for this core

Transceiver Placement
There are no transceivers used in this core.

I/O Standard and Placement
There are no specific I/O standard or placement requirements.

Resets
The Color Correction Matrix core has one reset (sclr) that is used for the entire core. The
reset is active high.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 28
PG001 October 19, 2011

Chapter 5: Constraining the Core

Protocol Description
For the pCore version of the Color Correction Matrix core, the register interface is
compliant with the AXI4-Lite interface.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 29
PG001 October 19, 2011

Chapter 6

Detailed Example Design

Demonstration Test Bench

Overview
This readme describes how to use the files that come with the demo testbench package for
Color Correction Matrix v3.0.

This demo testbench is provided as a simple introductory package that enables core users
to observe the core generated by Coregen operating in a waveform simulator. The user is
encouraged to observe core-specific aspects in the waveform, make simple modifications
to the test conditions, and observe the changes in the waveform.

Software Tools and System Requirements
• Xilinx ISE 13.3 or higher (Includes XST, ISIM, and Coregen).

• ModelSim v6.6d

• ISE Simulator 13.3

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 30
PG001 October 19, 2011

Chapter 6: Detailed Example Design

Design File Hierarchy
The directory structure underneath this top-level folder is described below:

• Expected

• Contains the pre-generated expected/golden data used by the testbench to
compare actual output data.

• Stimuli

• Contains the pre-generated input data used by the testbench to stimulate the core
(including register programming values).

• Results

• Actual output data is written to a file in this folder.

• src

• Contains the .vhd & .xco files of the core.

The .vhd file is a netlist generated using Coregen.

You can regenerate a new netlist using the .xco file in Coregen.

• tb_src

• Contains the top-level testbench design.

This directory also contains other packages used by the testbench.

• isim_wave.wcfg - Waveform configuration for ISIM

• mti_wave.do - Waveform configuration for ModelSim

• run_isim.bat - Runscript for iSim in Windows OS

• run_isim.sh - Runscript for iSim in Linux OS

• run_mti.bat - Runscript for ModelSim in Windows OS

• run_mti.sh - Runscript for ModelSim in Linux OS

Operating Instructions

• Simulation using ModelSim for Linux:
From the console, Type "source run_mti.sh".

• Simulation using ModelSim for Windows:
Double click on "run_mti.bat" file.

• Simulation using iSim for Linux:
From the console, Type "source run_isim.sh".

• Simulation using iSim for Windows:
Double click on "run_isim.bat" file.

Support
To obtain technical support for this reference design, go to www.xilinx.com/support to
locate answers to known issues in the Xilinx Answers Database or to create a WebCase.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 31
PG001 October 19, 2011

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A highly parameterizable test bench was used to test the Color Correction Matrix core.
Testing includes the following:

• Register accesses

• Varying matrix coefficients (positive and negative values)

• Varying offset values

• Varying clipping and clamping values

• Testing of various data widths

Hardware Testing
The Color Correction Matrix core has been tested in a variety of hardware platforms at
Xilinx to represent a variety of parameterizations.

A test design was developed for the core that incorporated a MicroBlaze processor,
AXI4-LITE Interface and various other peripherals.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 32
PG001 October 19, 2011

Appendix B

Migrating

This appendix describes migrating from older versions of the IP to the current IP release.

Functionality Changes
In cases where the Input Data Width does not equal the Output Data Width, the data is
scaled accordingly. For example, if the Input Data Width=8, and Output Data Width=12,
then the core scales the data up by a factor of 4. Hence, with an identity matrix, an input of
1 yields an output of 4.

Migrating to the EDK pCore AXI4-Lite Interface
The Color Correction Matrix v3.0 interface changed from the PLB processor interface to the
EDK pCore AXI4-Lite interface. As a result, all of the PLB-related connections have been
replaced with an AXI4-Lite interface. For more information, see the AXI Reference Guide.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 33
PG001 October 19, 2011

Appendix C

Debugging

Evaluation Core Timeout
The Color Correction Matrix v3.0 hardware evaluation core times out after approximately
8 hours of operation. The output is driven to zero. This results in a black screen for RGB
color systems and a dark-green screen for YUV color systems.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 34
PG001 October 19, 2011

Appendix D

Application Software Development

Figure D-1 shows a software flow diagram for normal operation and updating registers
during the operation of the core. The core can be effectively reset in-system by asserting
SW reset (bit 0), which returns all control, coefficient, and offset values to their default
values, specified through the Graphical User Interface when the core is instantiated. The
core outputs are also forced to 0 until the SW reset bit is deasserted.

X-Ref Target - Figure D-1

Figure D-1: Color Correction Matrix Programming Flow Chart

normal operating mode

set ccm_reg00_control
 bit 0 = 1 (enabled)
 bit 1 = 0 (do not update registers)

set ccm_reg01_reset
 bit 0 = 0 (no reset)

coefficient update finished

set ccm_reg00_control
 bit 0 = 1 (enabled)
 bit 1 = 0 (do not update registers)

set ccm_reg01_reset
 bit 0 = 0 (no reset)

update coefficients

set ccm_reg00_control
 bit 0 = 1 (enabled)
 bit 1 = 1 (register update)

set ccm_reg01_reset
 bit 0 = 0 (no reset)

prepare to change coefficients

set ccm_reg00_control
 bit 0 = 1 (enabled)
 bit 1 = 0 (do not update registers)

set ccm_reg01_reset
 bit 0 = 0 (no reset)

set the coefficient/offset registers
 ccm_reg04_K11
 ccm_reg05_K12
 …
 ccm_reg12_K33
 ccm_reg13_roffset
 ccm_reg14_goffset
 ccm_reg15_boffset

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 35
PG001 October 19, 2011

Appendix D: Application Software Development

The software API is provided to allow easy access to the CCM pCore's shared memory
registers defined in Table D-1.

To utilize the API functions provided, the following two header files must be included in
the user C code:

#include "ccm.h"

#include "xparameters.h"

The hardware settings of your system, including the base address of your CCM core, are in
the xparameters.h file. The ccm.h file contains the API of functions specifically for
controlling the CCM pCore.

The drivers subdirectory of the pCore contains the example.c file in the ccm_v3_00_a/
example subfolder. This file is a sample C program that demonstrates how to use the
CCM pCore API. It contains the report_ccm_settings() function, which demonstrates how
to use the functions provided by the ccm.h driver to read the current status of the core's
configuration registers. This file also contains the CCM_Update_Example() function,
which provides an example of updating those configuration registers.

Each software register defined in Table D-1 has a constant defined in ccm.h that is set to
the offset for that register. To write to a register, use the CCM_WriteReg() function using
the base address of your CCM pCore instance (from xparameters.h), the offset of the
desired register, and the data to write. For example:

CCM_WriteReg(XPAR_CCM_0_BASEADDR, CCM_REG04_K11, 12345);

Reading a value from a register also uses the base address and offset for the register:

Xuint32 value = CCM_ReadReg(XPAR_CCM_0_BASEADDR, CCM_REG04_K11);

For operations that require reading or writing only a single bit, rather than an entire 32-bit
word, ccm.h provides pre-defined bit masks as shown in Table D-1.

For additional convenience, pre-defined functions are provided in ccm.h for the
most-used operations as shown in Table D-2.

Table D-1: Pre-defined Bit Masks

CCM_CTL_EN_MASK Bit mask for the software enable bit of the control register

CCM_CTL_RUE_MASK Bit mask for the register update enable bit of the control
register

CCM_RST_RESET Bit mask for the manual reset bit of the reset register

CCM_RST_AUTORESET Bit mask for the autoreset bit of the reset register

Table D-2: Pre-defined Functions

CCM_Enable(BaseAddress) Enables the CCM pCore software enable

CCM_Disable(BaseAddress) Disables the CCM pCore software enable

CCM_RegUpdateEnable(BaseAddress) Enables the CCM pCore register update enable

CCM_RegUpdateDisable(BaseAddress) Disables the CCM pCore register update enable

CCM_Reset(BaseAddress) Asserts the CCM pCore manual reset

CCM_ClearReset(BaseAddress) Clears the CCM pCore resets

CCM_AutoSyncReset(BaseAddress) Asserts the CCM pCore auto reset

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 36
PG001 October 19, 2011

Appendix D: Application Software Development

Device Drivers
The software API is provided to allow easy access to the pCore's registers defined in Table
7.

To utilize the API functions provided, the following two header files must be included in
the user C code:

• #include "ccm.h"

• #include "xparameters.h"

The hardware settings of your system, including the base address of your core, are defined
in the xparameters.h file. The ccm.h file contains the macro function definitions for
controlling the pCore.

For examples on API function calls and integration into a user application, the drivers
subdirectory of the pCore contains a file, example.c, in the ccm_v3_00_a/example
subfolder. This file is a sample C program that demonstrates how to use the pCore API.

EDK pCore API Functions
This section describes the functions included in the C driver (ccm.c and ccm.h) generated
for the EDK pCore API.

CCM_Enable(uint32 BaseAddress);

This macro enables a Color Correction Matrix instance.

BaseAddress is the Xilinx EDK base address of the Color Correction Matrix core (from
xparameters.h).

CCM_Disable(uint32 BaseAddress);

This macro disables a Color Correction Matrix instance.

BaseAddress is the Xilinx EDK base address of the Color Correction Matrix core (from
xparameters.h).

CCM_Reset(uint32 BaseAddress);

This macro resets a Color Correction Matrix instance. This reset effects the core
immediately, and may cause image tearing. Reset affects the coefficient and frame size
registers, forces video_data_out to 0, and forces timing signal outputs to their reset state
until CCM_ClearReset() is called.

BaseAddress is the Xilinx EDK base address of the Color Correction Matrix core (from
xparameters.h)

CCM_ClearReset(uint32 BaseAddress);

This macro clears the reset flag of the core, which allows it to re-sync with the input video
stream and return to normal operation.

BaseAddress is the Xilinx EDK base address of the Color Correction Matrix core (from
xparameters.h).

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 37
PG001 October 19, 2011

Appendix D: Application Software Development

CCM_RegUpdateEnable(uint32 BaseAddress);

Calling RegUpdateEnable causes the Color Correction Matrix to start using the updated
register values on the next rising edge of vblank_in. The user must manually disable the
register update after a sufficient amount of time to prevent continuous updates.

This function only works when the Color Correction Matrix core is enabled.

BaseAddress is the Xilinx EDK base address of the Color Correction Matrix core (from
xparameters.h)

CCM_RegUpdateDisable(uint32 BaseAddress);

Disabling the Register Update prevents the Color Correction Matrix gain registers from
updating. It is recommended that the Register Update be disabled while writing to the
registers in the core, until the write operation is complete. While disabled, writes to the
registers are stored, but do not affect the core's behavior.

This function only works when the Color Correction Matrix core is enabled.

BaseAddress is the Xilinx EDK base address of the Color Correction Matrix core (from
xparameters.h)

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 38
PG001 October 19, 2011

Appendix E

C Model Reference

The Xilinx® LogiCORE™ IP Color Correction Matrix core has a bit accurate C model
designed for system modeling.

Features
• Bit accurate with the CCM v3.0 core

• Statically linked library (.lib, .o, .obj – Windows)

• Dynamically linked library (.so – Linux)

• Available for 32 and 64-bit Windows and Linux platforms

• Supports all features of the CCM core that affect numerical results

• Designed for rapid integration into a larger system model

• Example C code is provided to show how to use the function

• Example application C code wrapper file supports 8-bit BMP only

Overview
The Xilinx LogiCORE IP CCM v3.0 has a bit accurate C model for 32- and 64-bit Linux
platforms. The model has an interface consisting of a set of C functions, which reside in a
statically link library (shared library). Full details of the interface are given in Using the C
Model. An example piece of C code is provided to show how to call the model.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis. However, the model is not cycle accurate, as it does not model the
core's latency or its interface signals.

The latest version of the model is available for download on the Xilinx™ LogiCORE IP
CCM product page at:

http://www.xilinx.com/products/intellectual-property/EF-DI-CCM.htm

Technical Support
For technical support, go to www.xilinx.com/support. Questions are routed to a team with
expertise using the CCM v3.0 core. Xilinx provides technical support for use of this
product as described in this product guide.

Xilinx cannot guarantee functionality or support of this product for designs that do not
follow these guidelines.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 39
PG001 October 19, 2011

Appendix E: C Model Reference

Feedback
Xilinx welcomes comments and suggestions about the CCM v3.0 core and the
accompanying documentation.

CCM v3.0 Bit Accurate C Model and IP Core
For comments or suggestions about the CCM v3.0 core and bit accurate C model, submit a
WebCase from: http://www.xilinx.com/support/clearexpress/websupport.htm

Be sure to include this information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about the documentation for the CCM v3.0 core and bit
accurate C model, submit a WebCase from:

http://www.xilinx.com/support/clearexpress/websupport.htm

Be sure to include this information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

Unpacking and Model Contents
Unzip the v_ccm_v3_0_bitacc_model.zip file, containing the bit accurate models for
the Color Correction Matrix IP Core. This creates the directory structure and files in
Table E-1.

Table E-1: Directory Structure and Files of the CCM v3.0 Bit Accurate C Model

File Name Contents

README.txt Release notes

pg001_v_ccm.pdf LogiCORE IP Color Correction Matrix Product Guide

v_ccm_v3_0_bitacc_cmodel.h Model header file

rgb_utils.h Header file declaring the RGB image/video container type and support
functions

bmp_utils.h Header file declaring the bitmap (.bmp) image file I/O functions

video_utils.h Header file declaring the generalized image/video container type, I/O
and support functions

run_bitacc_cmodel.c Example code calling the C model

kodim19_128x192.bmp 128x192 sample test image of the lighthouse image from the True Color
Kodak test images

http://www.xilinx.com
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 40
PG001 October 19, 2011

Appendix E: C Model Reference

Installation
For Linux, make sure these files are in a directory that is in your $LD_LIBRARY_PATH
environment variable:

• libIp_v_ccm_v3_0_bitacc_cmodel.so

• libstlport.so.5.1

Software Requirements

The CCM v3.0 C models were compiled and tested with the software listed in Table E-2.

Using the C Model
The bit accurate C model is accessed through a set of functions and data structures that are
declared in the v_ccm_v3_0_bitacc_cmodel.h file.

Before using the model, the structures holding the inputs, generics and output of the CCM
instance must be defined:

struct xilinx_ip_v_ccm_v3_0_generics ccm_generics;
struct xilinx_ip_v_ccm_v3_0_inputs ccm_inputs;
struct xilinx_ip_v_ccm_v3_0_outputs ccm_outputs;

The declaration of these structures is in the v_ccm_v3_0_bitacc_cmodel.h file.

/lin64 Precompiled bit accurate ANSI C reference model for simulation on
64-bit Linux platforms

libIp_v_ccm_v3_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by

libIp_v_ccm_v3_0_bitacc_cmodel.so

/nt32 Precompiled bit accurate ANSI C reference model for simulation on
32-bit Windows platforms.

libIp_v_ccm_v3_0_bitacc_cmodel.lib Precompiled library file for win32 compilation

/lin32 Precompiled bit accurate ANSI C reference model for simulation on
32-bit Linux platforms

libIp_v_ccm_v3_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by

libIp_v_ccm_v3_0_bitacc_cmodel.so

/nt64 Precompiled bit accurate ANSI C reference model for simulation on
64-bit Windows platforms.

libIp_v_ccm_v3_0_bitacc_cmodel.lib Precompiled library file for nt64 compilation

Table E-1: Directory Structure and Files of the CCM v3.0 Bit Accurate C Model (Cont’d)

Table E-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

32- and 64-bit Linux GCC 4.1.1

32- and 64-bit Windows Microsoft Visual Studio 2005

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 41
PG001 October 19, 2011

Appendix E: C Model Reference

Table E-3 lists the generic parameters taken by the CCM v3.0 IP core bit accurate model, as
well as the default values. For an actual instance of the core, these parameters can only be
set in generation time through the CORE Generator™ GUI.

Calling xilinx_ip_v_ccm_v3_0_get_default_generics(&ccm_generics)
initializes the generics structure with the CCM GUI defaults, listed in Table E-3.

Coefficients, offsets, clipping and clamping values can also be set dynamically through the
pCore and General Purpose Processor interfaces. Consequently, these values are passed as
inputs to the core, along with the actual test image, or video sequence (Table E-4).

1 For a detailed description of inputs and other generic parameters, see Core Interfaces and Register Space.
2 For the description of the input structure, see Initializing the CCM Input Video Structure.

The structure ccm_inputs defines the values of run time parameters and the actual input
image. Calling xilinx_ip_v_ccm_v3_0_get_default_inputs(&ccm_generics,
&ccm_inputs) initializes the input structure with the CCM GUI default values (see
Table E-4).

Note: The video_in variable is not initialized because the initialization depends on the actual test
image to be simulated. Initializing the CCM Input Video Structure describes the initialization of the
video_in structure.

After the inputs are defined, the model can be simulated by calling this function:

int xilinx_ip_v_ccm_v3_0_bitacc_simulate(
struct xilinx_ip_v_ccm_v3_0_generics* generics,
struct xilinx_ip_v_ccm_v3_0_inputs* inputs,
struct xilinx_ip_v_ccm_v3_0_outputs* outputs).

Results are included in the outputs structure, which contains only one member, type
video_struct. After the outputs are evaluated and saved, dynamically allocated
memory for input and output video structures must be released by calling this function:

void xilinx_ip_v_ccm_v3_0_destroy(

Table E-3: Model Generic Parameters and Default Values

Generic variable Type
Default
Value

Range Description

IWIDTH int 8 8,10,12 Input data width

OWIDTH int 8 8,10,12 Output width

Table E-4: Core Generic Parameters and Default Values

Input
Variable

Type Default Value Range(1) Description

video_in video_struct null N/A
Container to hold input image or video
data.2

coeffs double[3][3] identity1 [-4 to 4] 3x3 matrix of floating point numbers

offsets double[3]
zeros1 Offsets applied to the output color

channels

CLAMP int 0 Clamping value for outputs

CLIP int Clipping value for outputs

1. OWIDTH is the output data width of each color component

2–
OWIDTH to

2OWIDTH 1–

0 to 2OWIDTH 1–

2OWIDTH 1– 0 to 2OWIDTH 1–

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 42
PG001 October 19, 2011

Appendix E: C Model Reference

struct xilinx_ip_v_ccm_v3_0_inputs *input,
struct xilinx_ip_v_ccm_v3_0_outputs *output).

Successful execution of all provided functions, except for the destroy function, return
value 0. A non-zero error code indicates that problems occurred during function calls.

CCM Input and Output Video Structure
Input images or video streams can be provided to the CCM v3.0 reference model using the
video_struct structure, defined in video_utils.h:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table E-5: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per frame.

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for YUV data. Frame dimensions
are assumed constant through all frames of the video stream.
However different planes, such as y, u and v can have different
dimensions.

cols Number of columns per frame.

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for YUV data. Frame dimensions
are assumed constant through all frames of the video stream.
However different planes, such as y, u and v can have different
dimensions.

bits_per_component Number of bits per color channel/component.All image planes
are assumed to have the same color/component representation.
Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.

Named constants to be assigned to mode are listed in Table E-6.

data Set of five pointers to three dimensional arrays containing data
for image planes.

Data is in 16-bit unsigned integer format accessed as
data[plane][frame][row][col].

Table E-6: Named Video Modes with Corresponding Planes and Representations

Mode(1) Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 444 YUV, or YCrCb image/video data

FORMAT_C422 3 422 format YUV video, (u, v chrominance channels
horizontally sub-sampled)

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 43
PG001 October 19, 2011

Appendix E: C Model Reference

Initializing the CCM Input Video Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with
an image or video. The bmp_util.h and video_util.h header files packaged with the
bit accurate C models contain functions to facilitate file I/O.

Bitmap Image Files

The header bmp_utils.h declares functions that help access files in Windows Bitmap
format (http://en.wikipedia.org/wiki/BMP_file_format). However, this format limits
color depth to a maximum of 8-bits per pixel, and operates on images with three planes
(R,G,B). Consequently, the following functions operate on arguments type
rgb8_video_struct, which is defined in rgb_utils.h. Also, both functions support
only true-color, non-indexed formats with 24-bits per pixel.

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

Exchanging data between rgb8_video_struct and general video_struct type
frames/videos is facilitated by these functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);

int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

Note: All image/video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Moreover, the input structure must have the dynamically allocated container (data
or r, g, b) structures already allocated and initialized with the input frame(s). If the output container
structure is pre-allocated at the time of the function call, the utility functions verify and issue an error
if the output container size does not match the size of the expected output. If the output container
structure is not pre-allocated, the utility functions create the appropriate container to hold results.

Binary Image/Video Files

The video_utils.h header file declares functions that help load and save generalized
video files in raw, uncompressed format.

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

FORMAT_C420 3 420 format YUV video, (u, v sub-sampled both horizontally
and vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with Motion

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

1. The Color Correction Matrix core supports Modes FORMAT_RGB and FORMAT_C444.

Table E-6: Named Video Modes with Corresponding Planes and Representations

http://www.xilinx.com
http://en.wikipedia.org/wiki/BMP_file_format

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 44
PG001 October 19, 2011

Appendix E: C Model Reference

These functions serialize the video_struct structure. The corresponding file contains a
small, plain text header defining, "Mode", "Frames", "Rows", "Columns", and "Bits per
Pixel". The plain text header is followed by binary data, 16-bits per component in scan line
continuous format. Subsequent frames contain as many component planes as defined by
the video mode value selected. Also, the size (rows, columns) of component planes can
differ within each frame as defined by the actual video mode selected.

Working with Video_struct Containers

The video_utils.h header file defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

The video_planes_per_mode function returns the number of component planes
defined by the mode variable, as described in Table E-6. The video_rows_per_plane
and video_cols_per_plane functions return the number of rows and columns in a
given plane of the selected video structure. The following example demonstrates using
these functions in conjunction to process all pixels within a video stream stored in the
in_video variable:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]
 }
 }
 }
}

C Model Example Code
An example C file, run_bitacc_cmodel.c, is provided to demonstrate the steps
required to run the model. After following the compilation instructions, run the example
executable. The executable takes the path/name of the input file and the path/name of the
output file as parameters. If invoked with insufficient parameters, this help message is
issued:

Usage: run_bitacc_cmodel in_file out_file

in_file : path/name of the input BMP file

out_file : path/name of the output BMP file

During successful execution, two files with a .bin extension are created. The first file
corresponds to the input BMP image, with the same path and name as the input file, and a
.bin extension. The other file similarly corresponds to the output file. These files contain
the inputs and outputs of the CCM algorithm in full precision, as the BMP format does not
support color resolutions beyond 8-bits per component. The structure of .bin files are
described in Binary Image/Video Files.

To ease modifying and debugging the provided top-level demonstrator using the built-in
debugging environment of Visual Studio, the top-level command line parameters can be
specified through the Project Property Pages using these steps:

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 45
PG001 October 19, 2011

Appendix E: C Model Reference

1. In the Solution Explorer pane, right-click the project name and select Properties in the
context menu.

2. Select Debugging on the left pane of the Property Pages dialog box.

3. Enter the paths and file names of the input and output images in the Command
Arguments field.

Compiling CCM C Model with Example Wrapper

Linux (32- and 64-bit)

To compile the example code, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where you unzipped the model zip file using a command such as:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 directory to the root directory:

libstlport.so.5.1

libIp_v_ccm_v3_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler with this command:

gcc -x c++ run_bitacc_cmodel.c -o run_bitacc_cmodel -L.
-lIp_v_ccm_v3_0_bitacc_cmodel -Wl,-rpath,.

Windows (32- and 64-bit)

The precompiled library v_ccm_v3_0_bitacc_cmodel.lib, and top-level
demonstration code run_bitacc_cmodel.c should be compiled with an ANSI C
compliant compiler under Windows. An example procedure is provided here using
Microsoft Visual Studio.

1. In Visual Studio, create a new, empty Win32 Console Application project.

2. As existing items, add:

a. libIp_v_ccm_v3_0_bitacc_cmodel.lib to the Resource Files folder of the
project

b. run_bitacc_cmodel.c to the Source Files folder of the project

c. v_ccm_v3_0_bitacc_cmodel.h to the Header Files folder of the project

3. After the project is created and populated, it must be compiled and linked (built) to
create a win32 executable. To perform the build step, select "Build Solution" from the
Build menu. An executable matching the project name has been created either in the
Debug or Release subdirectories under the project location based on whether "Debug"
or "Release" has been selected in the "Configuration Manager" under the Build menu.

http://www.xilinx.com

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 46
PG001 October 19, 2011

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

References
These documents provide supplemental material useful with this user guide:

• AXI Reference Guide.

• AMBA AXI4 Interface Protocol.

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/ipcenter/axi4.htm
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

LogiCORE IP Color Correction Matrix v3.0 www.xilinx.com 47
PG001 October 19, 2011

Appendix F: Additional Resources

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Color Correction Matrix v3.0
	Table of Contents
	Overview
	Standards Compliance
	Feature Summary
	Applications
	Licensing
	Simulation Only
	Full System Hardware Evaluation
	Full
	Installing Your License File

	Performance
	Maximum Frequencies
	Latency

	Resource Utilization

	Core Interfaces and Register Space
	Core Symbol and Port Descriptions
	Xilinx Streaming Video Interface
	Constant Interface
	General Purpose Processor Interface
	EDK pCore Interface
	EDK pCore Interface Register Descriptions
	Importing Generated pCore Into EDK

	Customizing and Generating the Core
	Graphical User Interface (GUI)
	Parameter Values in the XCO File
	Output Generation
	EDK pCore Files
	General Purpose Processor or Constant Interface Files

	Designing with the Core
	General Design Guidelines
	Control Signals and Timing

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement
	Resets
	Protocol Description

	Detailed Example Design
	Demonstration Test Bench
	Overview
	Software Tools and System Requirements
	Design File Hierarchy

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Migrating
	Functionality Changes
	Migrating to the EDK pCore AXI4-Lite Interface

	Debugging
	Evaluation Core Timeout

	Application Software Development
	Device Drivers
	EDK pCore API Functions

	C Model Reference
	Features
	Overview
	Technical Support
	Feedback
	CCM v3.0 Bit Accurate C Model and IP Core
	Document

	Unpacking and Model Contents
	Installation

	Using the C Model
	CCM Input and Output Video Structure
	Initializing the CCM Input Video Structure

	C Model Example Code
	Compiling CCM C Model with Example Wrapper

	Additional Resources
	Xilinx Resources
	References
	Technical Support
	Revision History
	Notice of Disclaimer

