
LogiCORE IP Color 
Filter Array 
Interpolation v4.0
Product Guide

PG002 October 19, 2011



Color Filter Array Interpolation www.xilinx.com 2
PG002 October 19, 2011

Chapter 1:  Overview
Standards Compliance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Feature Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Licensing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Installing Your License File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Resource Utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Chapter 2:  Core Interfaces and Register Space
Port Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Chapter 3:  Customizing and Generating the Core
Graphical User Interface (GUI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Chapter 4:  Designing with the Core
General Design Guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
Quality Measures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
Protocol Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Chapter 5:  Constraining the Core
Required Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Device, Package, and Speed Grade Selections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Clock Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Clock Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Clock Placement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Banking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Transceiver Placement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
I/O Standard and Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Chapter 6:  Detailed Example Design
Directory and File Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Demonstration Test Bench  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Appendix A:  Verification, Compliance, and Interoperability
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Table of Contents

http://www.xilinx.com


3 www.xilinx.com Color Filter Array Interpolation
PG002 October 19, 2011

Hardware Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Appendix B:  Migrating
Parameter Changes in the XCO File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Port Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Functionality Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Special Considerations when Migrating to AXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Appendix C:  Debugging

Appendix D:  Application Software Development
General EDK Programming Guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Appendix E:  C Model Reference
Installation and Directory Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Using the C-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

Appendix F:  Additional Resources
Xilinx Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Solution Centers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Technical Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Notice of Disclaimer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 4
PG002 October 19, 2011 Product Specification

Introduction
The Xilinx Color Filter Array Interpolation 
LogiCORE™ IP provides an optimized hardware block 
to reconstruct sub-sampled color data for images 
captured by a Bayer Color Filter Array image sensor. 
The color filter array overlaid on the silicon substrate 
enables CMOS or CCD image sensors to measure local 
light intensities that correspond to different 
wavelengths. However, the sensor measures the 
intensity of one principal color at any location. The 
Color Filter Array Interpolation LogiCORE IP provides 
an efficient and low-footprint solution to interpolate 
the missing color components for every pixel.

Features
• RGB and CMY Bayer image sensor support 

• 5x5 interpolation aperture

• Low-footprint, high quality interpolation

• Support for streaming or frame buffer processing 

• Selectable processor interface

• EDK pCore 
AXI interface based on AXI4-Lite specification

• General Purpose Processor

• Constant Interface 

• Transparent Interface

• 8-, 10-, and 12-bit input and output precision

• Automatic detection of timing parameters and 
timing signal polarities

LogiCORE IP Color Filter Array
Interpolation v4.0 Product Guide

LogiCORE IP Facts Table

Core Specifics

Supported 
Device 
Family(1)

Virtex®-7, Kintex®-7, Virtex-6, Spartan®-6

Supported User 
Interfaces

General Processor Interface, EDK pCore
AXI4-Lite, Constant Interface, Transparent

Interface

Resources See Table 1-1 through Table 1-4.

Provided with Core

Documentation Product Specification

Design Files Netlists, EDK pCore files, C drivers

Example 
Design Not Provided

Test Bench VHDL (2)

Constraints File Not Provided

Simulation 
Models

VHDL, Verilog Structural, C Model (2)

Tested Design Tools

Design Entry 
Tools CORE Generator™ tool, Platform Studio (XPS)

Simulation(3) Mentor Graphics ModelSim, Xilinx® ISim 13.3

Synthesis Tools Xilinx Synthesis Technology (XST) 13.3

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release notes 
for this core.

2. HDL test bench and C Model available on the product page 
on Xilinx.com at 
http://www.xilinx.com/products/ipcenter/EF-DI-CFA.htm 

3. For the supported versions of the tools, see the ISE Design Suite 
13: Release Notes Guide.

www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/products/ipcenter/EF-DI-CFA.htm


Color Filter Array Interpolation www.xilinx.com 5
PG002 October 19, 2011 Product Specification

Chapter 1

Overview

Images captured by a CMOS/CCD image sensor are monochrome in nature. To generate a 
color image, three primary colors (Red, Green, Blue or Cyan, Magenta, Yellow) are 
required for each pixel. Before the invention of color image sensors, the color image was 
created by superimposing three identical images with three different primary colors. These 
images were captured by placing different color filters in front of the sensor, allowing a 
certain bandwidth of the visible light to pass through. 

Kodak scientist Dr. Bryce Bayer realized that an image sensor with a Color Filter Array 
(CFA) pattern would allow the reconstruction of all the colors of a scene from a single 
image capture. The color filter array is manufactured as part of the image sensor as a set of 
colored micro-lenses laid over the phototransistors. Example CFA patterns are shown in 
Figure 1-1. These are called Bayer patterns and are used in most digital imaging systems.

The original data for each pixel only contains information about one color, depending on 
which color filter is positioned over that pixel. However, information for all three primary 
colors is needed at each pixel to reconstruct a color image. Some of the missing information 
can be recreated from the information available in neighboring pixels. This process of 
recreating the missing color information is called color interpolation or demosaicing and 
may require dedicated hardware to process the image data in real-time

There is no exact method to fully recover the missing information, as color channels have 
been physically sub-sampled by the CFA before proper low-pass filtering could take place, 
which leads to aliasing between color channels.

Perfect recovery of the original signal is not possible; however, the aliasing can be 
suppressed significantly by capitalizing on the temporal and spatial redundancies and 
structured nature of natural images/video sequences.

A variety of simple interpolation methods, such as Pixel Replication, Nearest Neighbor 
Interpolation, Bilinear Interpolation, and Bi-cubic Interpolation have been widely used for 
CFA demosaicing. However, simple methods usually compromise quality, and more 
elaborate methods require the use of an external frame buffer. The Xilinx Color Filter Array 

X-Ref Target - Figure 1-1

Figure 1-1: RGB and CMY Bayer CFA Patterns

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 6
PG002 October 19, 2011 Product Specification

Chapter 1: Overview

Interpolation LogiCORE IP was designed to efficiently suppress interpolation artifacts, 
such as the zipper and color aliasing effects, by minimizing Chrominance Variances in a 
5x5 neighborhood (Figure 1-2).

Image sensors that incorporate either Bayer RGB or CMY [Ref 1] Color Filters with all 
possible phase combinations are supported by the Xilinx Color Filter Array Interpolation 
LogiCORE IP. 

The Xilinx Color Filter Array Interpolation LogiCORE IP also enables the user to couple 
the image sensor to downstream processing modules. The built-in timing detector module 
measures timing parameters of the input video stream, such as the total number of rows 
and columns, blank rows and columns, and makes the measurement results accessible 
through an EDK or general processor interface. A built-in, programmable timing generator 
module can create hblank, vblank and active video signals based on the 
user-provided parameters, and then use these signals to re-frame the input video 
data-stream. This module enables one to change the position of blanked regions as well as 
to crop the active area. However, the CFA Interpolation block cannot change the input/
output image sizes, the input and output pixel clock rates, or the total image size.

Timing parameters illustrated in this figure are as follows:

TOTAL_ROWS = 64

TOTAL_COLS = 64 

BLANK_ROWS = 20 

ACTIVE_TOP = 10 

ACTIVE_BOTTOM = 42

BLANK_POLARITY_IN = 3

The non-blanked horizontal area can be flush with the active area:

(ACTIVE_LEFT = BLANK_LEFT; ACTIVE_RIGHT= BLANK_RIGHT)

X-Ref Target - Figure 1-2

Figure 1-2: Xilinx Color Filter Array Interpolation Block Diagram

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 7
PG002 October 19, 2011 Product Specification

Chapter 1: Overview

If the particular image sensor targeted does not provide the active_video signal, a 
signal driving the active_video_in port can be created as:

active_video_in = (hblank_in XNOR hblank_polarity) AND (vblank_in 
XNOR vblank_polarity)

where the blank_polarity signals designate whether the horizontal and vertical 
blanking signals are active high (1), or active low (0) as defined in Blanking Signal 
Polarities.

Standards Compliance
The Color Filter Array Interpolation core is compliant with the AXI4-Lite interconnect 
standard as defined in the AXI Reference Guide (UG761).

Feature Summary
The Color Filter Array Interpolation core reconstructs a color image from an RGB or CMY 
Bayer filtered sensor using a 5x5 interpolation aperture. The core is capable of a maximum 
resolution of 4096 columns by 4096 rows 8, 10, or 12 bits per pixel and supports the 
bandwidth necessary for High-definition (1080p60) resolutions.  

You can generate the core as an EDK pCore (AXI4-Lite interconnect), a generic General 
Purpose Processor interface where all the user register connections are exposed as ports to 
the core, a constant interface where there is no processor connection and the values of the 
timing signals are known before you generate the core and with a transparent interface 
where there is no processor interface and the values of the timing signals do not need to be 
known before the core is generated. 

Applications
• Pre-processing block for image sensors

• Video surveillance

• Industrial imaging

• Video conferencing

• Machine vision

• Other imaging applications

Licensing
The Color Filter Array Interpolation core provides the following three licensing options:

• Simulation Only

• Full System Hardware Evaluation

• Full

After installing the required Xilinx ISE software and IP Service Packs, choose a license 
option. 

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 8
PG002 October 19, 2011 Product Specification

Chapter 1: Overview

Simulation Only 
The Simulation Only Evaluation license key is provided with the Xilinx CORE Generator 
tool. This key lets you assess core functionality with either the example design provided 
with the Color Filter Array Interpolation core, or alongside your own design and 
demonstrates the various interfaces to the core in simulation. (Functional simulation is 
supported by a dynamically generated HDL structural model.) 

No action is required to obtain the Simulation Only Evaluation license key; it is provided 
by default with the Xilinx CORE Generator software.

Full System Hardware Evaluation 
The Full System Hardware Evaluation license is available at no cost and lets you fully 
integrate the core into an FPGA design, place-and-route the design, evaluate timing, and 
perform functional simulation of the Color Filter Array Interpolation core using the 
example design and demonstration test bench provided with the core.

In addition, the license key lets you generate a bitstream from the placed and routed 
design, which can then be downloaded to a supported device and tested in hardware. The 
core can be tested in the target device for a limited time before timing out (resetting to 
default values and the output video becoming black), at which time it can be reactivated by 
reconfiguring the device. 

The timeout period for this core is set to approximately 8 hours for a 74.25 MHz clock. 
Using a faster or slower clock changes the timeout period proportionally. For example, 
using a 150 MHz clock results in a timeout period of approximately 4 hours.

To obtain a Full System Hardware Evaluation license, do the following:

1. Navigate to the product page for this core.

2. Click Evaluate. 
3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs. 

http://www.xilinx.com/products/ipcenter/EF-DI-CFA.htm
http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 9
PG002 October 19, 2011 Product Specification

Chapter 1: Overview

Full
The Full license key is available when you purchase the core and provides full access to all 
core functionality both in simulation and in hardware, including: 

• Functional simulation support 
• Full implementation support including place and route and bitstream generation 
• Full functionality in the programmed device with no time outs 

To obtain a Full license key, you must purchase a license for the core. Click on the "Order" 
link on the Xilinx.com IP core product page for information on purchasing a license for this 
core. After doing so, click the "How do I generate a license key to activate this core?" link on 
the Xilinx.com IP core product page for further instructions.

Installing Your License File
The Simulation Only Evaluation license key is provided with the ISE CORE Generator 
system and does not require installation of an additional license file. For the Full System 
Hardware Evaluation license and the Full license, an email will be sent to you containing 
instructions for installing your license file. Additional details about IP license key 
installation can be found in the ISE Design Suite Installation, Licensing and Release Notes 
document. any section of the design labeled DO NOT MODIFY. 

Ordering Information
The Color Filter Array Interpolation core is provided under the SignOnce IP Site License
and can be generated using the Xilinx CORE Generator system v13.1 or higher. The CORE
Generator system is shipped with Xilinx ISE Design Suite development software.

A simulation evaluation license for the core is shipped with the CORE Generator system.
To access the full functionality of the core, including FPGA bitstream generation, a full
license must be obtained from Xilinx. For more information, please visit the Color Filter
Array Interpolation product page.

Please contact your local Xilinx sales representative for pricing and availability of
additional Xilinx LogiCORE modules and software. Information about additional Xilinx
LogiCORE modules is available on the Xilinx IP Center.

Performance
The following sections detail the performance characteristics of the Color Filter Array 
Interpolation v3.0 core.

Maximum Frequencies
The following are typical clock frequencies for the target devices. The maximum 
achievable clock frequency can vary. The maximum achievable clock frequency and all 
resource counts can be affected by other tool options, additional logic in the FPGA device, 
using a different version of Xilinx tools and other factors.

• Virtex-7 FPGA: 303 MHz

• Kintex-7 FPGA: 303 MHz

http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
http://www.xilinx.com
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/products/ipcenter/EF-DI-CFA.htm
http://www.xilinx.com/products/ipcenter/EF-DI-CFA.htm
http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/ipcenter


Color Filter Array Interpolation www.xilinx.com 10
PG002 October 19, 2011 Product Specification

Chapter 1: Overview

• Virtex-6 FPGA: 225 MHz

• Spartan-6 FPGA: 150 MHz

Throughput 
The Color Filter Array Interpolation core produces as much data as it consumes. If timing 
constraints are met, the throughput is equal to the rate at which video data is written into 
the core.

In numeric terms, 1080P/60 YC4:2:2 represents an average data rate of 124.4 MPixels/sec, 
or a burst data rate of 148.5 MPixels/sec. 

Resource Utilization
For an accurate measure of the usage of primitives, slices, and CLBs for a particular 
instance, check the Display Core Viewer after Generation check box in the CORE 
Generator interface.

The information presented in Table 1-1 through Table 1-4 is a guide to the resource 
utilization of the Color Correction Matrix core for all input/output width combinations for 
Virtex-7, Kintex-7, Virtex-6, and Spartan-6 FPGA families. The Xtreme DSP Slice count is 
always 9, regardless of parameterization, and this core does not use any block RAMs, 
dedicated I/O, or CLK resources. The design was tested using ISE® v13.3 tools with 
default tool options for characterization data.

1. SPEEDFILE: xc6slx100-3 fgg484

Table 1-1: Spartan-6

Data Width
Max Cols / 

Rows
LUT-FF Pairs LUTs FFs RAM 16 / 8 DSP48A1 Fmax (MHz)

8 1023 5296 4949 3973 10 / 2 8 180

2200 5659 5291 4149 26 / 0 8 173

10 1023 6107 5792 4578 12 / 1 8 173

2200 6633 6176 4744 30 / 2 8 165

12 1023 5053 4519 5161 12 / 2 8 165

2200 5357 4817 5380 36 / 0 8 159

Table 1-2: Virtex-7

Data Width
Max Cols / 

Rows
LUT-FF Pairs LUTs FFs RAM 36 / 18 DSP48E1 Fmax (MHz)

8 1023 3817 3344 3868 3 / 6 8 300

2200 4220 3617 4038 8 / 9 8 274

10 1023 4431 3990 4452 4 / 5 8 300

2200 4717 4267 4622 11 / 8 8 274

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 11
PG002 October 19, 2011 Product Specification

Chapter 1: Overview

1. SPEEDFILE: xc7vx330t-2 ffg1157

1. SPEEDFILE: xc6vlx75t-2 ff484

1. SPEEDFILE: xc7k70t-2 fbg676

12 1023 5203 4457 5037 5 / 4 8 291

2200 5523 4705 5207 13 / 8 8 230

Table 1-2: Virtex-7 (Cont’d)

Data Width
Max Cols / 

Rows
LUT-FF Pairs LUTs FFs RAM 36 / 18 DSP48E1 Fmax (MHz)

Table 1-3: Virtex-6

Data Width
Max Cols / 

Rows
LUT-FF Pairs LUTs FFs RAM 36 / 18 DSP48E1 Fmax (MHz)

8 1023 3761 3402 3871 3 / 6 8 268

2200 4150 3655 4039 11 / 8 8 283

10 1023 4481 3994 4455 4 / 5 8 268

2200 4789 4450 4634 11 / 8 8 276

12 1023 4961 4497 5037 5 / 4 8 261

2200 5072 4738 5207 13 / 8 8 283

Table 1-4: Kintex-7

Data Width
Max Cols / 

Rows
LUT-FF Pairs LUTs FFs RAM 36 / 18 DSP48E1 Fmax (MHz)

8 1023 3883 3330 3868 3 / 6 8 295

2200 3993 3659 4038 8 / 9 8 295

10 1023 4675 3897 4452 4 / 5 8 275

2200 4800 4265 4622 11 / 8 8 282

12 1023 5213 4436 5037 5 / 4 8 289

2200 5599 4637 5207 13 / 8 8 201

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 12
PG002 October 19, 2011

Chapter 2

Core Interfaces and Register Space

Port Descriptions
The Color Filter Array Interpolation core can be configured with four different interface 
options, each resulting in a slightly different set of ports. The core uses a set of signals that 
is common to all of the Xilinx Video IP cores called the Xilinx Streaming Video Interface 
(XSVI). The XSVI signals are common to all interface options and are shown in Figure 2-2 
and described by Table 2-6.

Xilinx Streaming Video Interface
The Xilinx Streaming Video Interface (XSVI) is a set of signals common to all of the Xilinx 
video cores used to stream video data between IP cores. XSVI is also defined as an 
Embedded Development Kit (EDK) bus type so that the tool can automatically create input 
and output connections to the core. This definition is embedded in the pCORE interface 
provided with the IP, and it allows an easy way to cascade connections of Xilinx Video 
Cores. The Color Filter Array Interpolation core uses the following subset of the XSVI 
signals:

• video_data

• vblank

• hblank

• active_video

Other XSVI signals on the XSVI input bus, such as video_clk, vsync, hsync, 
field_id, and active_chr do not affect the function of this core.

Note: These signals are neither propagated, nor driven on the XSVI output of this core.

The following is an example EDK Microprocessor Peripheral Definition (.MPD) file 
definition. DWIDTH is the value you selected when you generated the IP in CORE 
Generator (i.e., 8, 10, or 12).

Input Side:

BUS_INTERFACE BUS = XSVI_CFA_IN, BUS_STD = XSVI, BUS_TYPE = TARGET

PORT active_video_in = active_video,  BUS = XSVI_CFA_IN, DIR = IN
PORT hblank_in = hblank, BUS = XSVI_CFA_IN, DIR = IN
PORT vblank_in = vblank,  BUS = XSVI_CFA_IN, DIR = IN
PORT video_data_in = video_data, VEC=[0:(DWIDTH-1)], BUS = XSVI_CFA_IN, DIR = IN

Output Side:

BUS_INTERFACE BUS = XSVI_CFA_OUT, BUS_STD = XSVI, BUS_TYPE = INITIATOR

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 13
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

PORT active_video_out = active_video, BUS = XSVI_CFA_OUT, DIR = OUT
PORT hblank_out = hblank, BUS = XSVI_CFA_OUT, DIR = OUT
PORT vblank_out  = vblank, BUS = XSVI_CFA_OUT, DIR = OUT
PORT video_data_out = video_data,VEC=[0:((DWIDTH*3)-1)],BUS = XSVI_CFA_OUT, DIR=OUT

The Color Filter Array Interpolation IP core is fully synchronous to the core clock, clk. 
Consequently, the input XSVI bus is expected to be synchronous to the input clock, clk. 
Similarly, to avoid clock resampling issues, the output XSVI bus for this IP is synchronous 
to the core clock, clk. The video_clk signals of the input and output XSVI buses are not 
used.

Constant Interface
Constant Interface, caters to those who want to interface to a particular image sensor with 
known, stationary timing parameters and Bayer Phase. Once the timing parameters are 
established and verified, typically by inserting a prototype CFA core instance with the 
EDK or General Purpose Processor interface into the user design, the timing parameters 
can be hard coded into a CFA core with a constant interface via the CFA core GUI. The 
processor interface and some of the timing detector module are trimmed from the design, 
leading to savings in FPGA logic resources. Since there is no processor interface generated, 
the core is not programmable, but can be reset, enabled, or disabled using the sclr and ce 
pins. 

This interface does not provide additional programmability, the Constant Interface has no 
ports other than the Xilinx Streaming Video Interface, clk, ce, sclr, and irq signals. The 
Constant Interface Core Symbol is shown in Figure 2-2.

The Constant Interface option caters to those who want to interface to a particular image 
sensor with known, stationary timing parameters and Bayer Phase. Once the timing 
parameters are established and verified, typically by inserting a prototype CFA core 
instance with the EDK or General Purpose Processor interface into the user design, the 
timing parameters can be hard coded into a CFA core with a constant interface via the CFA 
core GUI. The processor interface and some of the timing detector module are trimmed 
from the design, leading to savings in FPGA logic resources. Since there is no processor 
interface generated, the core is not programmable, but can be reset, enabled, or disabled 
using the sclr and ce pins. The timing parameter values can be measured either by using 
a Color Filter Array Interpolation IP Core instance with a processor interface, or captured 
from the data-sheet of the image sensor. For more information on the definition of timing 
parameters, see Definition of Timing Parameters.

Transparent Interface
The Transparent Interface does not require any a-priori timing information from the image 
sensor used other than the maximum number of rows and columns (including blank rows 
and columns). The built-in timing detector feeds the measured timing parameters directly 
to the timing generator, as if the user connected the timing output ports of the General 
Purpose Processor Interface to the timing input ports, in a transparent manner. However, 
version 3.0 of the Color Filter Array core does not contain automatic Bayer Phase detection 
circuitry; therefore the Bayer Phase has to be supplied through the GUI in generation time. 
There is no processor interface of any kind generated, and the core is not programmable 
but can be reset, enabled/disabled using the sclr and ce pins. 

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 14
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

General Purpose Processor Interface
The General Purpose Processor Interface exposes the timing registers as ports enabling 
developers designing a system with a user-defined bus to an arbitrary processor 
(Table 2-2). The function of the registers is identical to those described in Table 2-1. 

Double-buffering is also supported by the General Purpose Processor Interface; however 
the first set of registers, which are typically part of the bus decoding logic, have to be 
supplied by the user-defined bus interface. Values from this register bank (external to the 
CFA core) are copied over to the internal registers when vblank_in becomes inactive 
after the user committed the changes by setting bit 1 (REG_UPDATE) of the control input to 
'1'. Before the commit, the CFA core is using the values measured by the timing detector to 
generate output timing signals. The measured values can be accessed via dedicated timing 
outputs (see Figure 2-3).

Similarly, output port values reflect working register values actively used by the core. 
Working registers contain measurement data from the timing detector module until the 
user performs a successful register update which copies over input port values to the 
working registers.

EDK pCore Interface
Many imaging applications have an embedded processor that can dynamically control the 
parameters in the core. The developer can select an EDK pCore interface, which creates a 
pCore that can be added to an EDK project as a hardware peripheral. This pCore provides 
a memory-mapped interface for the programmable registers in the core, which are 
described in Table 2-1.

The EDK Interface generates additional AXI 4-Lite Bus interface ports besides the Xilinx 
Streaming Video Interface (XSVI), clk, ce, and sclr signals (Figure 2-4). The AXI 4-Lite 
bus signals are automatically connected when the generated pCore is inserted into an EDK 
project. For more information on these signals, see [Ref 3]. The XSVI is described in the 
Xilinx Streaming Video Interface section.

Table 2-1: EDK pCore Interface Register Descriptions

Address
Offset

Read-
Write

Name Description

0x00000000 R/W cfa_reg_00_control General control register. Default value is 1. 

0x00000004 R/W cfa_reg_01_reset Software reset register. Default value is 0. 

0x00000008 R cfa_reg_02_status General status register. 

0x0000000C R/W cfa_reg_03_interrupt_contr
ol

Interrupt control register

0x00000010 R/W cfa_reg_04_active_left User defined value for ACTIVE_LEFT(1)

0x00000014 R/W cfa_reg_05_active_right User defined value for ACTIVE_RIGHT(1)

0x00000018 R/W cfa_reg_06_active_top User defined value for ACTIVE_TOP(1)

0x0000001C R/W cfa_reg_07_active_bottom User defined value for ACTIVE_BOTTOM(1)

0x00000020 R/W cfa_reg_08_total_rows User defined value for TOTAL_ROWS(1)

0x00000024 R/W cfa_reg_09_total_cols User defined value for TOTAL_COLS(2)

0x00000028 R/W cfa_reg_10_blank_rows User defined value for BLANK_ROWS(1)

0x0000002C R/W cfa_reg_11_blank_left User defined value for BLANK_LEFT(1)

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 15
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

All of the Write registers are also readable, enabling the user to verify writes or read back 
current values. Default values of timing registers are defined in the Graphical User 
Interface (GUI). 

Control Register

Table 2-2 contains the Control Register descriptions.

0x00000030 R/W cfa_reg_12_blank_right User defined value for BLANK_RIGHT(1)

0x00000034 R/W cfa_reg_13_blank_polarity User defined polarity values for Vertical (Bit 1) and Horizontal 
(Bit 0) Blanking.

0: indicates blanking (active low) signal

1: indicates valid video (active high) signal

0x00000038 R/W cfa_reg_14_bayer_phase User defined register to specify the Bayer grid. Bits 0 
(bayer_phase_x) and 1 (bayer_phase_x) specify whether the 
top-left corner of the Bayer sampling grid starts with a Green, 
Red or Blue pixel.

0x0000003C R cfa_reg_15_active_left_r ACTIVE_LEFT(1) value measured by the core

0x00000040 R cfa_reg_16_active_right_r ACTIVE_RIGHT(1) value measured by the core

0x00000044 R cfa_reg_17_active_top_r ACTIVE_TOP(1) value measured by the core

0x00000048 R cfa_reg_18_active_bottom_
r

ACTIVE_BOTTOM(1) value measured by the core

0x0000004C R cfa_reg_19_total_rows_r TOTAL_ROWS(2) value measured by the core

0x00000050 R cfa_reg_20_total_cols_r TOTAL_COLS(2) value measured by the core

0x00000054 R cfa_reg_21_blank_rows_r BLANK_ROWS(1) value measured by the core

0x00000058 R cfa_reg_22_blank_cols_r BLANK_LEFT(1) value measured by the core

0x0000005C R cfa_reg_23_blank_cols_r BLANK_RIGHT(1) value measured by the core

0x00000060 R cfa_reg_24_blank_polarity_
r

Measured blank polarity for Vertical (Bit 1) and Horizontal (Bit 
0) Blanking.

0: indicates blanking (active low) signal

1: indicates valid video (active high) signal

1. Counting of rows and columns start from 0, that is, if the first pixel of the first line is active, both ACTIVE_LEFT and ACTIVE_TOP 
will be equal to 0.

2. Counting of total rows and columns starts from 1. For example, if rows 0 - 499 are non-blank, and 500-599 are blank, there are 
TOTAL_ROWS = 600 lines in the frame.

Table 2-1: EDK pCore Interface Register Descriptions (Cont’d)

Table 2-2: Control Register Description

Bit Name Function

0 SW_ENABLE Software Enable Register. 

‘0’ effectively disables the core halting further operations, which blocks the 
propagation of all video signals. The default value of SW enable is 1 (enabled).

1 REG_UPDATE Host processor write done semaphore. ‘1’ indicates the host processor has finished 
updating timing registers, which are ready to be copied over at the next V_SYNC 
signal. (See General EDK Programming Guidelines)

2 CLEAR_STAT ‘1’ clears flags in the status registers (clears interrupt source).

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 16
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Software Reset Register

Table 2-3 contains the Software Reset Register descriptions.

The core can be effectively reset in-system by asserting the software reset (bit 0), which 
returns the timing registers to their default values, specified through the GUI when the 
core is instantiated. The core outputs are also forced to 0 until the SW_RESET bit is 
deasserted.

Status Register

Table 2-4 provides the Status Register descriptions.

Interrupt Control Register

Table 2-5 provides the Control Register descriptions.

Table 2-3: Software Reset Register Description

Bit Name Function

0 SW_RESET Software Reset Register. The default value of SW_RESET is 0.

Table 2-4: Status Register Descriptions

Bit Name Function

0-6 - Reserved

7 TIMING_LOCK
ED

'1' indicates that the timing module of the core has locked on the input timing 
signals and is generating stable output timing signals

8 VSYNC_DET Vertical Sync detected 

9 VSYNC_ERR Vertical Sync error (TOTAL_ROWS larger than MAX_ROWS parameter)

10 HSYNC_ERR Horizontal Sync error (TOTAL_COLS larger than MAX_COLS parameter)

11 VBLANK_CHG VBLANK POLARITY changed since last vblank_in falling edge(1)

12 HBLANK_CHG HBLANK POLARITY changed since last vblank_in falling edge(1)

13 TROWS_CHG TOTAL_ROWS changed since last vblank_in falling edge(1)

14 TCOLS_CHG TOTAL_COLS changed since last vblank_in falling edge(1)

15 BROWS_CHG BLANK_ROWS changed since last vblank_in falling edge(1)

16 BCOLS_CHG BLANK_COLS changed since last vblank_in falling edge(1)

1. Assumes that vblank_in is active high.

Table 2-5: Interrupt Control Register Descriptions 

Bit Name Function

0 INT_EN Enable/Disable Interrupts

1 CLR_SRC Clear interrupt sources

2-7 - Reserved

8 VSYNC_DET_INT ‘1’ enables rising VSYNC_DET to request interrupt

9 VSYNC_ERR_INT ‘1’ enables rising VSYNC_ERR to request interrupt

10 HSYNC_ERR_INT ‘1’ enables rising HSYNC_ERR to request interrupt

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 17
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

If multiple bits of the Interrupt Control Register are set to 1, the interrupt service routine 
has to determine the source of the interrupt by polling the Status Register. To facilitate 
subsequent interrupts by the same event, the interrupt service routine has to clear the 
interrupt source in the Status Register.

If multiple bits of the Interrupt Control Register are set to 1, the interrupt service routine 
has to determine the source of the interrupt by polling the Status Register. To facilitate 
subsequent interrupts by the same event, the interrupt service routine has to clear the 
interrupt source in the Status Register.

Timing Registers 0x0000000C - 0x00000028

Registers ACTIVE_LEFT, ACTIVE_RIGHT, TOTAL_COLS, and BLANK_COLS take 
unsigned integers smaller than generic core variable MAX_CO. For example, if MAX_COLS 
is defined as 1024, then the registers accept 10-bit unsigned integers. 

Registers ACTIVE_TOP, ACTIVE_BOTTOM, TOTAL_ROWS, and BLANK_ROWS take 
unsigned integers smaller than generic core variable MAX_ROWS. For example, if 
MAX_ROWS is defined as 1024, then the registers accept 10-bit unsigned integers. 

Bayer Phase Register

Bits 0 (bayer_phase_x) and 1 (bayer_phase_y) specify whether the top-left corner of 
the Bayer sampling grid starts with Green, Red, or Blue Pixel, according to Figure 2-1, 

11 VBLANK_CHG_INT ‘1’ enables rising VBLANK_CHG to request interrupt

12 HBLANK_CHG_INT ‘1’ enables rising HBLANK_CHG to request interrupt

13 TROWS_CHG_INT ‘1’ enables rising TROWS_CHG to request interrupt

14 TCOLS_CHG_INT ‘1’ enables rising TCOLS_CHG to request interrupt

15 BROWS_CHG_INT ‘1’ enables rising BROWS_CHG to request interrupt

16 BCOLS_CHG_INT ‘1’ enables rising BCOLS_CHG to request interrupt

Table 2-5: Interrupt Control Register Descriptions  (Cont’d)

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 18
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

which displays top-left corner of the imager sample matrix along with the Bayer Phase 
Register value combinations.

Transparent Interface
This interface option is the easiest to use and is recommended for the user who is not 
interested in reading out or modifying the timing parameters. This interface does not 
require any timing information from the image sensor used. The built-in timing detector 
feeds the measured timing parameters directly to the timing generator, as if the user 
connected the timing output ports of the General Purpose Processor Interface to the timing 
input ports, in a transparent manner. The Transparent Interface has no ports other than the 
Xilinx Streaming Video Interface, clk, ce, sclr, and irq signals. The Constant Interface Core 
Symbol is shown in Figure 2-2.

X-Ref Target - Figure 2-1

Figure 2-1: Bayer Phase Register Combination Definitions

X-Ref Target - Figure 2-2

Figure 2-2: Core Symbol for Constant and Transparent Interfaces

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 19
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

• video_data_in: This is the sample input bus for Bayer patterned data. DWIDTH bits 
wide color values are expected in unsigned integer representation. 

• hblank_in. This signal conveys information about the blank/non-blank regions of 
video scan lines. 

• vblank_in: This signal conveys information about the blank/non-blank regions of 
video frames.

• active_video_in: This signal is high when valid data is presented at the input.

• clk - clock: Master clock in the design, synchronous to, or identical with video clk.

• ce - clock enable: Pulling CE low suspends all operations within the core. Outputs are 
held, no input signals are sampled, except for reset (SCLR takes precedence over CE).

• sclr - synchronous clear: Pulling SCLR high results in resetting all output pins to zero. 
Internal registers within the XtremeDSP™ slice and D-flip-flops are cleared. However, 
the core uses SRL16/SRL32-based delay lines for hblank, vblank, and 
active_video generation, which are not cleared by SCLR. This may result in 
non-zero outputs after SCLR is deasserted, until the contents of SRL16/SRL32s are 
flushed. Unwanted results can be avoided if SCLR is held active until SRL16/SRL32s 
are flushed.

• video_data_out: This bus contains RGB output in the same order as 
video_data_in. Color values are represented as DWIDTH bits wide unsigned 
integers.

• hblank_out, vblank_out and active_video_out: The corresponding input signals are 
delayed so active_video and blanking outputs are in phase with the video data 
output, maintaining the integrity of the video stream. The active_video_out 
signal is high when valid data is presented at the output.

Table 2-6: Port Descriptions for the Constant and Transparent Interfaces 

Port Name Port Width Direction Description

video_data_in DWIDTH IN data input bus

hblank_in 1 IN horizontal blanking input

vblank_in 1 IN vertical blanking input

active_video_in 1 IN active video signal input

video_data_out 3* DWIDTH OUT data output bus

hblank_out 1 OUT horizontal blanking output

vblank_out 1 OUT vertical blanking output

active_video_out 1 OUT active video signal output

irq 1 OUT interrupt request pin

clk 1 IN rising-edge clock

ce 1 IN clock enable (active high)

sclr 1 IN synchronous clear – reset (active high)

Bits
3DWIDTH-1:2DWIDT

H
2DWIDTH-1:DWIDT

H
DWIDTH-1:0

video data signals Red/Magenta Blue/Cyan Green/Yellow

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 20
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

• irq: The Interrupt output pin can be used in a processor system to signal special 
conditions detected by the CFA core. For more information on interrupt subsystems, 
see Using the Interrupt Subsystem. For a complete list of events that can be 
monitored, see Interrupt Control Register.

General Purpose Processor Interface
Figure 2-3 shows the core pinout for the General Purpose Processor Interface; Table 2-7 
provides descriptions for its pins in addition to the pins defined in Table 2-6.

X-Ref Target - Figure 2-3

Figure 2-3: Core Pinout for General Purpose Processor Interface

Table 2-7: Optional Pins for the General Purpose Processor Interface

Port Name Port Width Direction Description

control 4 IN Bit 0: Software Enable Register

Bit 1: Host processor write done semaphore

Bit 2: Clear status registers (clears interrupt source)

Bit 3: Reserved

status 18 OUT Status Register

active_left_in COLS_WIDTH IN User defined value for ACTIVE_LEFT(1)

active_right_in COLS_WIDTH IN User defined value for ACTIVE_RIGHT(1)

active_top_in ROWS_WIDTH IN User defined value for ACTIVE_TOP(1)

active_bottom_in ROWS_WIDTH IN User defined value for ACTIVE_BOTTOM(1)

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 21
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

total_rows_in COLS_WIDTH IN User defined value for TOTAL_ROWS(1)

total_cols_in COLS_WIDTH IN User defined value for TOTAL_COLS(1)

blank_rows_in ROWS_WIDTH IN User defined value for BLANK_ROWS(1)

blank_left_in COLS_WIDTH IN User defined value for BLANK_LEFT(1)

blank_right_in COLS_WIDTH IN User defined value for BLANK_RIGHT(1)

blank_polarity_in 2 IN User defined input timing blank polarities for Vertical 
(Bit 1) and Horizontal (Bit 0) Blanking

0: indicates blanking (active low) signal

1: indicates valid video (active high) signal

bayer_phase 2 IN See Bayer Phase Register

interrupt_control 17 IN See section Using the interrupt subsystem

active_left_out COLS_WIDTH OUT Input timing value measured for ACTIVE_LEFT*

active_right_out COLS_WIDTH OUT Input timing value measured for ACTIVE_RIGHT(1)

active_top_out ROWS_WIDTH OUT Input timing value measured for ACTIVE_TOP(1)

active_bottom_out ROWS_WIDTH OUT Input timing value measured for 
ACTIVE_BOTTOM(1)

total_rows_out COLS_WIDTH OUT Input timing value measured for TOTAL_ROWS(1)

total_cols_out COLS_WIDTH OUT Input timing value measured for TOTAL_COLS(1)

blank_rows_out ROWS_WIDTH OUT Input timing value measured for BLANK_ROWS(1)

blank_left_out COLS_WIDTH OUT Input timing value measured for BLANK_LEFT(1)

blank_right_out COLS_WIDTH OUT Input timing value measured for BLANK_RIGHT(1)

blank_polarity_out 2 OUT User defined output timing blank polarities for 
Vertical (Bit 1) and Horizontal (Bit 0) Blanking

0: indicates blanking (active low) signal

1: indicates valid video (active high) signal

1. See Definition of Timing Parameters, page 26
2. See Blanking Signal Polarities, page 26

Table 2-7: Optional Pins for the General Purpose Processor Interface (Cont’d)

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 22
PG002 October 19, 2011

Chapter 2: Core Interfaces and Register Space

X-Ref Target - Figure 2-4

Figure 2-4: Core Pinout for the EDK Processor Interface

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 23
PG002 October 19, 2011

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface (GUI)
The Xilinx Color Filter Array Interpolation core is easily configured to meet the developer's 
specific needs through the CORE Generator™ GUI. This section provides a quick reference 
to parameters that can be configured at generation time. Figure 3-1 shows the main Color 
Filter Array Interpolation screen.

The GUI displays a representation of the IP symbol on the left side, and the parameter 
assignments on the right side, which are described as follows:

• Component Name: The component name is used as the base name of output files 
generated for the module. Names must begin with a letter and must be composed 
from characters: a to z, 0 to 9 and “_”.

X-Ref Target - Figure 3-1

Figure 3-1: Color Filter Array Interpolation Main Screen

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 24
PG002 October 19, 2011

Chapter 3: Customizing and Generating the Core

• Data Width (DWIDTH): Specifies the bit width of input samples. Permitted values 
are 8, 10 and 12 bits.

• Maximum Number of Columns (MAX_COLS): Specifies the maximum number of 
columns that can be processed by the core. Permitted values are from 128 to 4096. 
Specifying this value is necessary to establish the internal widths of counters and 
control-logic components as well as the depth of line buffers. Using a tight 
upper-bound on possible values of TOTAL_COLS results in optimal block RAM usage. 
However, feeding the configured CFA instance timing signals which violate the 
MAX_COLS constraint will lead to data-, and output timing signal corruption and is 
flagged by the status register.

• Maximum Number of Rows (MAX_ROWS): Specifies the maximum number of rows 
that can be processed by the core. Permitted values are from 128 to 4096. Specifying 
this value is necessary to establish the internal widths of counters and control-logic 
components. Feeding the configured CFA instance timing signals which violate the 
MAX_ROWS constraint will lead to data-, and output timing signal corruption and is 
flagged by the status register.

• Interface Selection: As described in the previous sections, this option allows for the 
configuration of four different interfaces for the core.    

• EDK pCore Interface: CORE Generator software will generate a pCore which can 
be easily imported into an EDK project as a hardware peripheral. Internal timing 
measurement values can be read out, timing parameters used can be 
reprogrammed, and double-buffering is used to eliminate tearing of output 
images. 

• General Purpose Processor Interface: CORE Generator software will generate a 
set of ports to be used to program the core. 

• Constant Interface: Timing parameters provided on screen 2 of the GUI are 
constant, and therefore no programming is necessary. The timing detector 
circuitry is trimmed from the design, slightly reducing the slice-count for the core. 

• Transparent Interface: Timing parameters are measured automatically; therefore 
no programming other than setting the Bayer Phase is necessary. 

The Default Names screen (Figure 3-2) allows for the definition of default timing, polarity, 
Bayer Phase and interrupt control values. For the Constant Interface, these values are 

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 25
PG002 October 19, 2011

Chapter 3: Customizing and Generating the Core

permanent for the generated CFA instance. For the Transparent Interface, Timing 
Initialization values are discarded. 

 

• Timing Initialization: The timing initialization pane allows assigning default values 
for the output timing generator. This pane is only available when the Constant user 
interface is selected. For all other interface selections the IP core contains a timing 
detector module, which provides timing information for the output timing generator. 
This information is either directly driving the output timing generator (Transparent 
interface) or can be provided to a software driver, which can program the output 
timing generator. If the sensor-specific timing values have been established and are 
fixed for the core instance, the constant interface provides a way to save on resources 
by not instantiating a timing detector module, but using the established timing values 
provided though the CORE Generator GUI. For the definition of Timing Initialization 
generic parameters, see the preceding Definition of Timing Parameters section.

• Bayer Phase: Based on the data sheet of the particular image sensor used, and the 
particular register settings of the sensor, the user has to identify where the top-left 
corner of total area falls on the CFA matrix. For the first two samples, four 
combinations are possible. For RGB sensors, these are RG, GR, BG, GB. For CMY 
sensors the combinations are MY, YM, CY, YC.

X-Ref Target - Figure 3-2

Figure 3-2: Color Filter Array Interpolation, Default Status Screen

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 26
PG002 October 19, 2011

Chapter 4

Designing with the Core

General Design Guidelines
The processor interfaces allow access to input timing information measured by the internal 
timing detector circuitry (Figure 1-2) and to control output timing signals by programming 
the built-in timing generator. From the edge transitions of the three input timing signals, 
the timing circuitry can measure:

• Blanking signal polarities

• Overall (total) frame dimensions

• The size and position of the non-blank area

• The size and position of the active area

Blanking Signal Polarities
Typical constituents of a video stream, blanking signals provide framing and blanking 
information that complements and formats image data provided via the video_data_in 
port. Image sensors provide this information by active high (data valid) signaling [Ref 1], 
or active low (blank) signaling. 

The Xilinx Color Filter Array core is equipped with automatic detection of blanking signal 
polarity, based on the phase relations between the blanking and the active signals. The 
active_video input signal is assumed active high. If active_video_in is high during 
the logic high period of a blanking signal, that blanking signal is considered active high 
(valid signaling). If active_video_in is high during the logic low period of a blanking 
signal, the blanking signal is considered active low (blank signaling).

Note: The high portion of active_video_in should not extend across edges of either blanking 
signals.

The following definition of timing parameters assumes the hblank_in and vblank_in 
are driven by blanking signals, with logic high corresponding to blanked, logic low 
corresponding to non-blanked areas.

Definition of Timing Parameters

The periodic vblank, hblank, and active_video signals define the frame boundaries, as 
well as the blanked and active areas within a video stream. Edges of the vblank signal 
identify frame boundaries, and the blank/non-blank rows within frames. Edges of the 
hblank signal identify the blank/non-blank columns within frames, and also determine 
the total number of columns (TOTAL_COLUMNS) in the frame, which is the number of clock 
cycles between two rising (or falling) edges of hblank. 

Note: The Color Filter Array core supports only hblank_in signals that are periodic through the 
entire frame time. 

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 27
PG002 October 19, 2011

Chapter 4: Designing with the Core

If the video stream signals were plotted line-by-line in a coordinate system scanning from 
left to right, top towards bottom, with the top-left corner identified by the falling edge of 
the vblank signal, the phase relationships between the vblank, hblank, and active video 
signals would define three rectangles: the total area containing the non-blank area, which 
contains the active area (Figure 4-1).

The timing parameters defining the sizes and positions of the total, non-blank and active 
areas can be defined as:

TOTAL_COLUMNS: Defines the total number of columns, counting from 1, in a 
video frame. This is equal to the number of clk periods in a 
full hblank period.

TOTAL_ROWS: Defines the total number of rows, counting from 1, in a 
video frame. This is equal to the number of hblank periods 
in a full vblank period.

BLANK_ROWS: Defines the number of blank rows, counting from 1, in a 
video frame. This is equal to the number of hblank periods 
in the vertical blanking period.

BLANK_LEFT: Defines the index, counting from 0, of the first non-blank 
column (on the left side of the active area).

NON_BLANK_COLUMNS The number of clk periods, counting from 1, when hblank is 
inactive in a full hblank period.

BLANK_RIGHT: Defines the index, counting from 0, of the first blank column 
on the right side of the active area.

BLANK_RIGHT=BLANK_LEFT+NON_BLANK_COLUMNS

ACTIVE_TOP: Defines the index of the first active row, where row 0 is at the 
beginning of the vertical non-blank period. The active area 
is typically smaller than the non-blank area, which for a 
typical sensor includes optically masked (inactive) pixels. 

ACTIVE_LEFT Defines the index, counting from 0, of the first active 
column. The active area is typically smaller than the 
non-blank area, which for a typical sensor includes optically 
masked (inactive) pixels.

ACTIVE_ROWS: Number of active_video pulses in the vertical 
non-blanking period.

ACTIVE_COLUMNS: Number of clock cycles between the rising and falling edges 
of active_video.

ACTIVE_RIGHT: Defines the index, counting from 0, of the first non-active 
column on the right side of the active area.

ACTIVE_RIGHT=ACTIVE_LEFT+ACTIVE_COLUMNS

ACTIVE_BOTTOM: Defines the index of the first non-active row below the active 
area of the frame, where row 0 is at the beginning of the 
vertical non-blank period. 

ACTIVE_BOTTOM = ACTIVE_TOP+ACTIVE_ROWS

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 28
PG002 October 19, 2011

Chapter 4: Designing with the Core

The logic high state of input signal active_video_in marks samples of 
video_data_in as valid. Although this signal could be used to mark an arbitrary region 
of the frame active, typical image sensors use this signal to designate a rectangle within the 
non-blank area as an active/valid area. 

Note: The Color Filter Array Interpolation core only supports active_video_in signals that 
designate a rectangular area, are contiguous within one hblank period, and are periodic during the 
active region of the frame.

The top-left corner of the active area is defined by ACTIVE_TOP and ACTIVE_LEFT, which 
are the coordinates of the first sample marked active by active_video_in in the 
coordinate system defined by the blanking input signals. Similarly, ACTIVE_BOTTOM and 
ACTIVE_RIGHT are the coordinates of the last sample marked active by 
active_video_in. An example of horizontal timing and corresponding timing 
parameters is provided in Figure 4-2.

Timing Tolerances
Due to state-machine setup and reset constraints internal to the Xilinx Color Filter Array 
core, the following limitations must be observed when configuring the image sensor to be 
used in conjunction with the core:

• BLANK_ROWS > 2 

• ACTIVE_LEFT > 3 

X-Ref Target - Figure 4-1

Figure 4-1: Timing Parameters

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 29
PG002 October 19, 2011

Chapter 4: Designing with the Core

• BLANK_LEFT <= ACTIVE_LEFT

• BLANK_LEFT + (TOTAL_COLS-BLANK_RIGHT) > 2

• ACTIVE_RIGHT < TOTAL_COLS - 5

• ACTIVE_RIGHT - ACTIVE_LEFT > 31

• BLANK_RIGHT> = ACTIVE_RIGHT
• ACTIVE_BOTTOM - ACTIVE_TOP > 31

Figure 4-2 shows an example in which these conditions are met.

In this example, the timing parameters are as follows:

BLANK_LEFT =1 

(CLK cycles between a falling edge of vblank_in and the next falling edge of 
hblank_in)

ACTIVE_LEFT = 4 

(CLK cycles between a falling edge of vblank_in and the next rising edge of 
active_video_in)

ACTIVE_RIGHT = 63

(CLK cycles between a falling edge of vblank_in and the next falling edge of 
active_video_in)

BLANK_RIGHT = 66

(CLK cycles between a falling edge of vblank_in and the next rising edge of 
hblank_in)

TOTAL_COLS = 70

(CLK cycles between falling edges of hblank_in)

BLANK_POLARITY_IN = 0

(Both hblank and vblank signals in this example are active-low)

The propagation delay of the Color Filter Array Interpolation core depends on actual 
parameterization, but is at least four full line-times. Deasserting CE suspends processing, 
which may be useful for data-throttling to temporarily cease processing of a video stream 
to match the delay of other processing components.

The example in Figure 4-3 illustrates vertical timing for a very short video frame.

X-Ref Target - Figure 4-2

Figure 4-2:  Color Filter Array Interpolation Programming Flow Chart

X-Ref Target - Figure 4-3

Figure 4-3: Vertical Timing Example

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 30
PG002 October 19, 2011

Chapter 4: Designing with the Core

Quality Measures
Table 4-1 provides Peak Signal to Noise Ratio (PSNR) measurement results for typical test 
images using an 8-bit input data.

Protocol Description
For the pCore version of the Color Filter Array Interpolation core, the register interface is 
compliant with the AXI4-Lite interface.

Table 4-1: PSNR Results for Typical Test Images

Image PSNR [dB]

34.051

39.404

33.736

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 31
PG002 October 19, 2011

Chapter 5

Constraining the Core

Required Constraints
The clk pin should be constrained at the pixel clock rate desired for your video stream.

Device, Package, and Speed Grade Selections
There are no Device, Package or Speed Grade requirements for the Color Filter Array 
Interpolation core. This core has not been characterized for use in low power devices.

Clock Frequencies
The pixel clock frequency is the required frequency for the Color Filter Array Interpolation 
core. See Maximum Frequencies in Chapter 1.

Clock Management
There is only one clock for the Color Filter Array Interpolation core.

Clock Placement
There are no specific Clock placement requirements for the Color Filter Array 
Interpolation core.

Banking
There are no specific Banking rules for the Color Filter Array Interpolation core.

Transceiver Placement
There are no Transceiver Placement requirements for the Color Filter Array Interpolation 
core.

I/O Standard and Placement
There are no specific I/O standards and placement requirements for the Color Filter Array 
Interpolation core.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 32
PG002 October 19, 2011

Chapter 6

Detailed Example Design

Directory and File Contents
The directory structure underneath this top-level folder is described below:

• Expected

Contains the pre-generated expected/golden data used by the testbench to compare 
actual output data.

• Stimuli

Contains the pre-generated input data used by the testbench to stimulate the core 
(including register programming values).

• Results

Actual output data will be written to a file in this folder.

• src

Contains the .vhd & .xco files of the core.

• The .vhd file is a netlist generated using Coregen.

You can regenerate a new netlist using the .xco file in Coregen.

• tb_src

Contains the top-level testbench design.

This directory also contains other packages used by the testbench.

• isim_wave.wcfg - Waveform configuration for ISIM

• mti_wave.do - Waveform configuration for ModelSim

• run_isim.bat - Runscript for iSim in Windows OS

• run_isim.sh - Runscript for iSim in Linux OS

• run_mti.bat - Runscript for ModelSim in Windows OS

• run_mti.sh - Runscript for ModelSim in Linux OS

Demonstration Test Bench
This demonstration test bench is provided as a simple introductory package that enables 
core users to observe the core generated by the CORE Generator tool operating in a 
waveform simulator. The user is encouraged to observe core-specific aspects in the 
waveform, make simple modifications to the test conditions, and observe the changes in 
the waveform.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 33
PG002 October 19, 2011

Chapter 6: Detailed Example Design

Simulation
Simulation using ModelSim for Linux:

• From the console, Type "source run_mti.sh".

Simulation using ModelSim for Windows:

• Double-click on "run_mti.bat" file.

Simulation using iSim for Linux:

• Double-click on "run_isim.bat" file.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 34
PG002 October 19, 2011

Appendix A

Verification, Compliance, and 
Interoperability

Simulation
A highly parameterizable test bench was used to test the Object Segmentation core. Testing 
included the following:

• Register accesses

• Processing of multiple frames of data

• Testing of various frame sizes

• Varying parameter settings

Hardware Testing
The Object Segmentation core has been tested in a variety of hardware platforms at Xilinx 
to represent a variety of parameterizations, including the following:

• A test design was developed for the core that incorporated a MicroBlaze™ processor, 
AXI4-Lite interconnect and various other peripherals. The software for the test system 
included pre-generated input and output data along with live video stream. The 
MicroBlaze processor was responsible for:

• Initializing the appropriate input and output buffers

• Initializing the Color Filer Array Interpolation core

• Launching the test

• Comparing the output of the core against the expected results

• Reporting the Pass/Fail status of the test and any errors that were found

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 35
PG002 October 19, 2011

Appendix B

Migrating

Parameter Changes in the XCO File
There are no parameter changes in the XCO file.

Port Changes
Other than an AXI4-Lite interface in place of the PLB, there are no port changes.

Functionality Changes
There are no functionality changes to the core.

Special Considerations when Migrating to AXI
The Color Filter Array Interpolation core v4.0 changed from the PLB EDK pCore processor 
interface to the EDK pCore AXI4-Lite interface. As a result, all of the PLB-related 
connections have been replaced with an AXI4-Lite interface. This processor interface 
change does not change the functionality of the core other than an AXI4-Lite has to be used 
in place of the PLB.  For more information about AXI4-Lite, see UG761 AXI Reference 
Guide.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 36
PG002 October 19, 2011

Appendix C

Debugging

Consider the following: 

• Are the input and output timing signals active_video, vblank, hblank connected?

• Is the video clock (clk) and reset (sclr) signals connected?

• Is bit 0 of the control register (BASEADDR + 0x00) set to '1'?

• Is bit 7 of the status register (BASEADDR + 0x08) set to '1'?

• Did you follow the Color Filter Array Interpolation Programming Flow Chart (Figure 
2-2) to program the temporal, spatial and pixel age threshold registers?

See Solution Centers in Appendix F for information helpful to the debugging progress.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 37
PG002 October 19, 2011

Appendix D

Application Software Development

General EDK Programming Guidelines
All registers other than control, status, and interrupt_control registers are 
double-buffered to ensure no image tearing happens if values are modified in the active 
area of a frame. Updated values for timing registers are latched into shadow registers 
immediately after writing, and shadow register values are copied into the working 
registers when vblank_in becomes inactive. Double-buffering decouples register 
updates from the blanking period, allowing software a much larger window to update the 
parameter values without tearing. 

After startup/reset, output timing register values (reg_04 - reg_13), and internal 
registers controlling the output timing generator are constantly updated with values 
measured by the timing detector (reg_15 - reg_24). If the input timing changes (e.g., as 
a consequence of reprogramming the image sensor), the CFA core automatically adjusts its 
timing, which is reflected by the timing register values. However, when the user writes to 
any of registers reg_04 - reg_13, the core stops automatically updating reg_04 - 
reg_13, and retains the user-provided values. For register values not modified by the 
user, the core retains the values in effect at the time of the first register write. User provided 
values are not affecting output timing generation until the changes are committed 
(REG_UPDATE bit set to '1', vblank_in transitions to inactive). Subsequent changes in 
input timing signals will not automatically change the output timing registers (reg_04 - 
reg_13) signals until the core is reset.

Programmer’s Guide
The software API is provided to allow easy access to the CFA pCore's registers defined in 
Table 2-1. To utilize the API functions, the following two header files must be included in 
the user C code:

#include "cfa.h"
#include "xparameters.h"

The hardware settings of your system, including the base address of your CFA core, are 
defined in the xparameters.h file. The cfa.h file contains the macro function 
definitions for controlling the CFA pCore.

For examples on API function calls and integration into a user application, the drivers 
subdirectory of the pCore contains a file, example.c, in the cfa_v4_00_a/example 
subfolder. This file is a sample C program that demonstrates how to use the CFA pCore 
API. 

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 38
PG002 October 19, 2011

Appendix D: Application Software Development

EDK pCore API Functions

This section describes the functions included in the C driver (cfa.c and cfa.h) 
generated for the EDK pCore API.

CFA_Enable(uint32 BaseAddress);

• This macro enables a CFA instance.

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h).

CFA_Disable(uint32 BaseAddress);

• This macro disables a CFA instance.

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h).

CFA_Reset(uint32 BaseAddress);

• This macro resets a CFA instance. This reset affects the core immediately, and may 
cause image tearing. Reset affects the timing registers, forces video_data_out to 0, 
and returns timing signal outputs to their reset state until CFA_ClearReset() is called.

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h)

CFA_ClearReset(uint32 BaseAddress);

• This macro clears the reset flag of the core, which allows it to re-sync with the input 
video stream and return to normal operation. 

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h).

Reading and Writing pCore Registers

Each software register defined in Table 2-1 has a constant defined in cfa.h that is set to 
the offset for that register. 
Reading a value from a register uses the base address and offset for the register:
Xuint32 value = CFA_ReadReg(XPAR_CFA_0_BASEADDR, 

CFA_REG04_ACTIVE_LEFT);

This macro returns the 32-bit unsigned integer value of the register. The definition of this 
macro is:

CFA_ReadReg(uint32 BaseAddress, uint32 RegOffset)

• Read the given register.

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h).

• RegOffset is the register offset of the register (defined in Table 2-1).

To write to a register, use the CFA_WriteReg() function using the base address of the CFA 
pCore instance (from xparameters.h), the offset of the desired register, and the data to 
write. For example:

CFA_WriteReg(XPAR_CFA_0_BASEADDR, CFA_REG04_ACTIVE_LEFT, 70);

The definition of this macro is:

CFA_WriteReg(uint32 BaseAddress, uint32 RegOffset, uint32 Data)

• Write the given register.

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h).

• RegOffset is the register offset of the register (defined in Table 2-1).

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 39
PG002 October 19, 2011

Appendix D: Application Software Development

• Data is the 32-bit value to write to the register.

CFA_RegUpdateEnable(uint32 BaseAddress);

• Updating timing register values, calling RegUpdateEnable causes the CFA to start 
using the updated table to update on the next rising edge of VBlank_in. This action 
causes the new values written to the inactive look-up table to become the active 
look-up table when the VBlank_in rising edge occurs. The user must manually 
disable the register update after a sufficient amount of time to prevent continuous 
updates.

• This function only works when the CFA core is enabled.

• BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h)

CFA_RegUpdateDisable(uint32 BaseAddress);

• When using a double-buffered interface, disabling the Register Update prevents the 
CFA correction look-up table from updating. Xilinx recommends disabling the 
Register Update while writing to the inactive look-up table in the CFA correction core 
until the write operation is complete. While disabled, writes to the inactive look up 
table are stored, but do not affect the core’s behavior.

• This function only works when the CFA core is enabled.

BaseAddress is the Xilinx EDK base address of the CFA core (from xparameters.h)

Figure D-1 provides a software flow diagram for updating registers during the operation 
of the core.

Using the Interrupt Subsystem

The Color Filter Array core can signal several exceptional events to the host processor 
using the irq output. 

Bits 8-16 of the status register can request an interrupt if the interrupt enable bit 
corresponding to the particular status bit is set to '1'. 

X-Ref Target - Figure D-1

Figure D-1: Color Filter Array Interpolator Programming Flow Chart

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 40
PG002 October 19, 2011

Appendix D: Application Software Development

For example, if TOTAL_COLS, established by the timing detector circuitry or entered 
dynamically through a processor interface, gets larger than MAX_COLS, bit 10 of the status 
register is set to '1'. If bit 10 of the Interrupt Enable register is also set (='1'), and the general 
interrupt enable flag (Interrupt Enable Register, bit 0) is also set (='1'), then the event sets 
the irq output to '1' as well. 

For the complete list of interrupt events, see Status Register in Chapter 2.

Once the interrupt is serviced by the host processor, the processor should identify the 
interrupt source by polling the status register, then pulsing the clear-status flag (Bit 2 of the 
control register). Individual interrupts sources can be masked using the Interrupt Enable 
Register.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 41
PG002 October 19, 2011

Appendix E

C Model Reference

Installation and Directory Structure
This chapter contains information for installing the Color FIlter Array C-Model, and 
describes the file contents and directory structure.

Software Requirements
The Color Filter Array v4.0 C models were compiled and tested with the following 
software versions.

Installation
The installation of the c-model requires updates to the PATH variable, as described below. 

Linux 

Ensure that the directory in which the libIp_v_cfa_v4_0_bitacc_cmodel.so and 
libstlport.so.5.1 files are located is in your $LD_LIBRARY_PATH environment 
variable.

Table E-1: Supported Systems and Software Requirements

Platform C-Compiler

Linux 32-bit and 64-bit GCC 4.1.1

Windows 32-bit and 64-bit Microsoft Visual Studio 2005

(Visual C++ 8.0)

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 42
PG002 October 19, 2011

Appendix E: C Model Reference

C-Model File Contents
Unzipping the v_cfa_v4_0_bitacc_model.zip file creates the following directory structures 
and files which are described inTable E-2. 

Table E-2: C-Model Files

File Description

/lin Pre-compiled bit accurate ANSI C reference model for simulation on 32-bit
Linux Platforms

libIp_v_cfa_v4_0_bitacc_cmodel.lib Color Filter Array Interpolation v4.0 model shared object library (Linux
platforms only)

libstlport.so.5.1 STL library, referenced by the Color Filter Array Interpolation and RGB to
YCrCb object libraries (Linux platforms only)

run_bitacc_cmodel Pre-compiled bit accurate executable for simulation on 32-bit Linux Platforms

/lin64 Pre-compiled bit accurate ANSI C reference model for simulation on 64-bit
Linux Platforms

libIp_v_cfa_v4_0_bitacc_cmodel.lib Color Filter Array Interpolation v4.0 model shared object library (Linux
platforms only)

libstlport.so.5.1 STL library, referenced by the Color Filter Array Interpolation and RGB to
YCrCb object libraries (Linux platforms only)

run_bitacc_cmodel Pre-compiled bit accurate executable for simulation on 32-bit Linux Platforms

/nt Pre-compiled bit accurate ANSI C reference model for simulation on 32-bit
Windows Platforms

libIp_v_cfa_v4_0_bitacc_cmodel.lib Pre-compiled library file for win32 compilation
(Windows platforms only)

run_bitacc_cmodel.exe Pre-compiled bit accurate executable for simulation on 32-bit Windows
Platforms

/nt64 Pre-compiled bit accurate ANSI C reference model for simulation on 64-bit
Windows Platforms

libIp_v_cfa_v4_0_bitacc_cmodel.lib Pre-compiled library file for win32 compilation
(Windows platforms only)

run_bitacc_cmodel.exe Pre-compiled bit accurate executable for simulation on 64-bit Windows
Platforms

README.txt Release notes

pg002_v_cfa.pdf The Color Filter Array Interpolation Core Product Guide

v_cfa_v4_0_bitacc_cmodel.h Model header file

rgb_utils.h Header file declaring the RGB image / video container type and support
functions

bmp_utils.h Header file declaring the bitmap (.bmp) image file I/O functions

video_utils.h Header file declaring the generalized image / video container type, I/O and
support functions.

Kodim19_128x192.bmp 128x192 sample test image of the Lighthouse image from the True-color Kodak
test images

run_bittacc_cmodel.c Example code calling the C model

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 43
PG002 October 19, 2011

Appendix E: C Model Reference

Using the C-Model
The bit-accurate C model is accessed through a set of functions and data structures, 
declared in the header file v_cfa_v4_0_bitacc_cmodel.h. Before using the model, the 
structures holding the inputs, generics and output of the CFA instance have to be defined, 
as illustrated below.

struct  xilinx_ip_v_cfa_v4_0_generics cfa_generics;
struct  xilinx_ip_v_cfa_v4_0_inputs   cfa_inputs;
struct  xilinx_ip_v_cfa_v4_0_outputs  cfa_outputs;

Declaration of the above structs are located in the v_cfa_v4_0_bitacc_cmodel.h file.

The only generic parameter the CFA v4.0 IP Core bit accurate C model takes is 
DATA_WIDTH, corresponding to the Core Generator Data Width parameter. Allowed values 
are 8, 10 and 12. Calling 

xilinx_ip_v_cfa_v4_0_get_default_generics (&cfa_generics)

initializes the generics structure with the CFA GUI default DATA_WIDTH value (8).

The structure cfa_inputs defines the values of run-time parameters BAYER_PHASE and 
the actual input image. For the description of BAYER_PHASE, please see Figure 4-2, 
page 18. For the description of the input structure, see CFA Input and Output Video 
Structure.

Calling xilinx_ip_v_cfa_v4_0_get_default_inputs(&cfa_generics, 
&cfa_inputs) initializes the BAYER_PHASE member of the input structure with the 
CFA GUI default value (3).

Note: The video_in variable is not initialized, as the initialization depends on the actual test image to 
be simulated. The next chapter describes the initialization of the video_in structure.

After the inputs are defined the model can be simulated by calling the function:

int xilinx_ip_v_cfa_v4_0_bitacc_simulate(
struct xilinx_ip_v_cfa_v4_0_generics* generics,
struct xilinx_ip_v_cfa_v4_0_outputs*  outputs).

Results are provided in the outputs structure. This contains only one member type, 
video_struct.

After the outputs were evaluated and saved, dynamically allocated in memory for input 
and output video structures have to be released by calling function:

void xilinx_ip_v_cfa_v4_0_destroy(
struct xilinx_ip_v_cfa_v4_0_inputs *input, 
struct xilinx_ip_v_cfa_v4_0_outputs *output).

Successful execution of all provided functions (except for the destroy function) return 
value of 0. A non-zero error code indicates that problems were encountered during 
function calls. 

CFA Input and Output Video Structure
Input images or video streams can be provided to the Color Filter Array v4.0 reference 
model using the video_struct structure, defined in video_utils.h:

struct video_struct{                
  int       frames, rows, cols, bits_per_component, mode; 
  uint16*** data[5]; };

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 44
PG002 October 19, 2011

Appendix E: C Model Reference

Initializing the CFA Input Video Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with 
an image or sequence of images. The bmp_util.h and video_util.h header files packaged 
with the bit accurate C models contain functions to facilitate file I/O. 

Table E-3: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per framea

a. Pertaining to the image plane with most rows and columns, such as t6he luminance channel for y,u,v 
data. Frame dimensions are assumed constant through all frames of the video stream; however, 
different planes (such as y, u, and v) may have different dimensions.

cols Number of columns per framea

bits_per_component Number of bits per color channel/componentb

b. All image planes are assumed to have the same color/component representation. Maximum number 
of bits per component is 16.

mode Contains information about the designation of data planesc

c. Named constants to be assigned to mode are listed in Table E-4.

data
Set of five pointers to three-dimensional arrays containing 
data for image planes.d

d. Data is in 16-bit unsigned integer format accessed as data[plane][frame][row][col]

Table E-4: Named Video Modes Constants with Planes and Representations

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome- Luminance only

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 444YUV, or YCrCb image/video data

FORMAT_C422
3

422 format YUV VIDEO, (u,v chrominance 
channels horizontally sub-sampled)

FORMAT_C420
3

420 format YUV VIDEO, (u,v sub-sampled both 
horizontally and vertically)

FORMAT_MONO_M 3 monochrome (luminance) video with Motion

FORMAT_RGBA
4

RGB image/video data with alpha (transparency) 
channel

FORMAT_C420_M 5 420 YUV video with Motion

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

Note: When using the C model, the CFA core accepts FORMAT_RGB as input and FORMAT_RGB 
as output.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 45
PG002 October 19, 2011

Appendix E: C Model Reference

Bitmap Image Files

The header bmp_utils.h declares functions which help access files in Windows Bitmap 
format (http://en.wikipedia.org/wiki/BMP_file_format). However, this format limits 
color depth to a maximum of 8 bits per pixel, and operates on images with three planes 
(R,G,B). Therefore, functions:

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

operate on arguments type rgb8_video_struct, which is defined in rgb_utils.h. Also, 
both functions support only true-color, non-indexed formats with 24 bits per pixel.

Exchanging data between rgb8_video_struct and general video_struct type frames/videos 
is facilitated by functions:

int copy_rgb8_to_video( struct rgb8_video_struct* rgb8_in, 
 struct video_struct* video_out ); 

int copy_video_to_rgb8( struct video_struct* video_in, 
 struct rgb8_video_struct* rgb8_out );

Note: Note: All image / video manipulation utility functions expect both input and output structures 
initialized, (for example, pointing to a structure which has been allocated in memory), either as static 
or dynamic variables. Moreover, the input structure has to have the dynamically allocated container 
(data or r, g, b) structures already allocated and initialized with the input frame(s). If the output 
container structure is pre-allocated at the time of the function call, the utility functions verify and throw 
an error if the output container size does not match the size of the expected output. If the output 
container structure is not pre-allocated the utility functions will create the appropriate container to 
hold results.

Binary Image/Video Files

The header video_utils.h declares functions which help load and save generalized video 
files in raw, un-compressed format. Functions 

int read_video( FILE* infile,  struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

effectively serialize the video_struct structure. The corresponding file contains a 
small, plain text header defining "Mode", "Frames", "Rows", "Columns", and "Bits per 
Pixel". The plain text header is followed by binary data, 16 bits per component in scan line 
continuous format. Subsequent frames contain as many component planes as defined by 
the video mode value selected.  Also, the size (rows, columns) of component planes may 
differ within each frame as defined by the actual video mode selected. 

Working with video_struct Containers

Header file video_utils.h define functions to simplify access to video data in 
video_struct. 

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

Function video_planes_per_mode returns the number of component planes defined by the 
mode variable, as described in Table E-4. Functions video_rows_per_plane and 
video_cols_per_plane return the number of rows and columns in a given plane of the 
selected video structure. The example below demonstrates all pixels within a video stream 
stored in variable in_video:

for (int frame = 0; frame < in_video->frames; frame++) {

http://www.xilinx.com
http://en.wikipedia.org/wiki/BMP_file_format


Color Filter Array Interpolation www.xilinx.com 46
PG002 October 19, 2011

Appendix E: C Model Reference

  for (int plane = 0; plane < video_planes_per_mode(in_video->mode); 
plane++) {
    for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
      for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on 
// in_video->data[plane][frame][row][col]

      }
    }
  }
}

Destroying the Video Structure

Finally, the video structure must be destroyed to free up memory used to store the video 
structure.

C Model Example Code

An example C file, run_bitacc_cmodel.c, is provided. This demonstrates the steps required 
to run the model.

After following the compilation instructions, run the example executable.

The executable takes the path/name of the input file and the path/name of the output file 
as parameters. If invoked with insufficient parameters, the following help message is 
printed:

Usage: run_bitacc_cmodel in_file out_file
in_file     : path/name of the input  BMP file
out_file    : path/name of the output BMP file

During successful execution, two other files with the extension 'bin', are created. The first 
file corresponds to the input bmp image, and has the same path and name as the input file, 
with extension '.bin'. The other file similarly corresponds to the output file. These files 
contain the inputs and outputs of the CFA algorithm in full precision, as the BMP format 
does not support color resolutions beyond 8 bits per component. The structure of.bin files 
are detailed in the section Binary Image/Video Files.

Compiling with the CFA C Model

Linux (32- and 64-bit)

To compile the example code, first ensure that the directory in which the files 
libIp_v_cfa_v4_0_bitacc_cmodel.so and libstlport.so.5.1 are located is 
present in your $LD_LIBRARY_PATH environment variable. These shared libraries are 
referenced during the compilation and linking process. Then cd into the directory where 
the header files, library files and run_bitacc_cmodel.c were unpacked. The libraries and 
header files are referenced during the compilation and linking process.

Place the header file and C source file in a single directory. Then in that directory, compile 
using the GNU C Compiler: 

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o 
run_bitacc_cmodel -L. -lIp_v_cfa_v4_0_bitacc_cmodel -Wl,-rpath,.

gcc  -m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o 
run_bitacc_cmodel -L. -lIp_v_cfa_v4_0_bitacc_cmodel -Wl,-rpath,.

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 47
PG002 October 19, 2011

Appendix E: C Model Reference

Windows (32- and 64-bit)

Precompiled library v_cfa_v4_0_bitacc_cmodel.dll, and top level demonstration code 
run_bitacc_cmodel.c should be compiled with an ANSI C compliant compiler under 
Windows. Here an example is presented using Microsoft Visual Studio. 

In Visual Studio create a new, empty Windows Console Application project. As existing 
items, add:

• llibIpv_cfa_v4_0_bitacc_cmodel.dll to the "Resource Files" folder of the project

• run_bitacc_cmodel.c to the "Source Files" folder of the project

• v_cfa_v4_0_bitacc_cmodel.h header files to "Header Files" folder of the project 
(optional)

After the project has been created and populated, it needs to be compiled and linked (built) 
to create a win32 executable. To perform the build step, choose Build Solution from the 
Build menu. An executable matching the project name has been created either in the 
Debug or Release subdirectories under the project location based on whether Debug or 
Release has been selected in the Configuration Manager under the Build menu. 

http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 48
PG002 October 19, 2011

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the 
Xilinx Support website at:f

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips. 

References
These documents provide supplemental material useful with this user guide:

1. Eastman Kodak Company: KAC – 1310, 1280 x 1024 SXGA CMOS Image Sensor 
Technical Data.

2. Aptina MT9P031: 1/2.5-Inch 5Mp Digital Image Sensor Features.

3. UG761 AXI Reference Guide.

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP 
product when used as described in the product documentation. Xilinx cannot guarantee 
timing, functionality, or support of product if implemented in devices that are not defined 
in the documentation, if customized beyond that allowed in the product documentation, 
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core, 
there is a master Answer Record that contains the Release Notes and Known Issues list for 
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com


Color Filter Array Interpolation www.xilinx.com 49
PG002 October 19, 2011

Appendix F: Additional Resources

Ordering Information
The Color Filter Array Interpolation v4.0 core is provided under the Xilinx Core License 
Agreement and can be generated using the Xilinx® CORE Generator™ system. The CORE 
Generator system is shipped with Xilinx ISE® Design Suite software.

Contact your local Xilinx sales representative for pricing and availability of additional 
Xilinx LogiCORE IP modules and software. Information about additional Xilinx 
LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.
 

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of 
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” 
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, 
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, 
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable 
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage 
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the 
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including 
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third 
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of 
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of 
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly 
display the Materials without prior written consent. Certain products are subject to the terms and conditions of 
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to 
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or 
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and 
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other 
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other 
trademarks are the property of their respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release. 

www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com

	LogiCORE IP Color Filter Array Interpolation v4.0
	Table of Contents
	Overview
	Standards Compliance
	Feature Summary
	Applications
	Licensing
	Simulation Only
	Full System Hardware Evaluation
	Full

	Installing Your License File
	Ordering Information
	Performance
	Maximum Frequencies
	Throughput

	Resource Utilization

	Core Interfaces and Register Space
	Port Descriptions
	Xilinx Streaming Video Interface
	Constant Interface
	Transparent Interface
	General Purpose Processor Interface
	EDK pCore Interface
	Transparent Interface
	General Purpose Processor Interface


	Customizing and Generating the Core
	Graphical User Interface (GUI)

	Designing with the Core
	General Design Guidelines
	Blanking Signal Polarities
	Timing Tolerances

	Quality Measures
	Protocol Description

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Detailed Example Design
	Directory and File Contents
	Demonstration Test Bench
	Simulation

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Migrating
	Parameter Changes in the XCO File
	Port Changes
	Functionality Changes
	Special Considerations when Migrating to AXI

	Debugging
	Application Software Development
	General EDK Programming Guidelines
	Programmer’s Guide


	C Model Reference
	Installation and Directory Structure
	Software Requirements
	Installation
	C-Model File Contents

	Using the C-Model
	CFA Input and Output Video Structure
	Initializing the CFA Input Video Structure


	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer



