
LogiCORE IP Video
Deinterlacer v1.0

Product Guide

PG017 October 19, 2011

LogiCORE IP Video Deinterlacer www.xilinx.com 2
PG017 October 19, 2011

Chapter 1: Overview
Standards Compliance . 8
Feature Summary . 8
Licensing . 9
Performance . 10
Resource Utilization. 10

Chapter 2: Core Interfaces and Register Space
Port Descriptions. 13
Register Space . 20

Chapter 3: Customizing and Generating the Core
Control Values . 27
CORE Generator Tool Graphical User Interface (GUI) . 28
EDK pCore GUI. 28
Video Deinterlacer Core Interfaces . 30
Parameter Values in the XCO File . 32
Output Generation . 33

Chapter 4: Designing with the Core
Deinterlacing . 36
T1 and T2 . 37
Cross Fade Ratio . 37
Initial State . 37
Architecture. 39
Memory Controller. 40
I/O Interface and Timing . 41
Clocking . 52
Resets. 52
Protocol Description . 53

Chapter 5: Constraining the Core
Required Constraints. 54
Device, Package, and Speed Grade Selections. 54
Clock Frequencies. 54
Clock Management . 54
Clock Placement . 54
Banking. 54

Table of Contents

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 3
PG017 October 19, 2011

Transceiver Placement . 54
I/O Standard and Placement . 54

Chapter 6: Detailed Example Design
Case 1: SD480i to SD480p. 55
Case 2: HD1080i to HD1080p . 56
Directory and File Contents . 56
Demonstration Test Bench . 58
Simulation . 58
Messages and Warnings . 58

Appendix A: Verification, Compliance, and Interoperability
Simulation . 59
Hardware Testing . 60

Appendix B: Debugging
Step 1: Video Pass Through Bring Up . 61
Step 2: Basic Deinterlacing . 61
Step 3: Full Deinterlacing Using Memory Controller . 62
Step 4: Check the Algorithms for Incorrect Video Output . 62
Step 5: Pulldown Testing and Pitfalls . 62

Appendix C: Application Software Development
pCore Driver Files. 63
pCore API Functions . 63

Appendix D: C Model Reference
Unpacking and Model Contents . 65
Installation . 67
Software Requirements . 67
Interface . 67
Example Code. 74
Command Line Options in Detail . 75
Simulation Options in Detail . 81

Appendix E: Additional Resources
Xilinx Resources . 83
Solution Centers . 83
References . 83
Technical Support. 83
Ordering Information . 84
Revision History . 84

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 4
PG017 October 19, 2011

Notice of Disclaimer . 84

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 5
PG017 October 19, 2011 Product Specification

Introduction
The Xilinx Video Deinterlacer LogiCORETM IP
provides a flexible video processing block for
deinterlacing video into a progressive video structure.
The core supports image sizes up to 2kx2k with YUV
4:4:4, 4:2:2 or 4:20 and RGB image formats. The core is
programmable through a comprehensive register
interface for setting and controlling internal operations
and more using logic or a microprocessor. An interrupt
status mechanism is used for smooth transitioning of
changing input video streams to alternative raster
structures and planes. The LogiCore IP is provided
with two different interfaces: General Purpose
Processor and EDK pCore AXI-4 Lite.

Features
• Supports video frame sizes up to 2048x2048 pixels

• Supports video frames sizes down to 128x128

• Supports YUV-4:4:4, 4:2:0 and 4:2:0 and RGB color
spaces

• Supports 8, 10 or 12-bit color depth per plane

• Provides smooth transition of output video when
changing video standards

• Progressive Segmented Frame (PsF) conversion

• Progressive or Interlaced Format Pass Through

• AXI-MM interface or 3 Port MPMC interface for
highest quality deinterlacing

• Provides processor interfaces for EDK pCore and
General Purpose Processor

• Supports easy integration with other Xilinx Video
IP Cores, including the OSD, VDMA and Video
Scaler

LogiCORE IP Video Deinterlacer
v1.0

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family (1)

Spartan®-6, Virtex®-6

Supported User
Interfaces

AXI4, AXI4-Lite, AXI4-Stream, General Purpose
Processor (GPP)

Resources Frequency

Configuration LUTs FFs DSP
Slices

Block
RAMs Max. Freq.

Spartan-6 See Table 1-1 150 MHz

Virtex-6 See Table 1-2 225 MHz

Provided with Core

Documentation Product Specification, Data Sheet, User Guide

Design Files Netlist, EDK pCore files

Example Design Not Provided

Test Bench VHDL (2)

Constraints File Not Provided

Simulation
Model VHDL, Verilog Structural, C Model (2)

Tested Design Tools

Design Entry
Tools

Integrated Software Environment (ISE) 13.3
Xilinx Platform Studio (XPS) 13.3

Simulation (3) Mentor Graphics ModelSim

Synthesis Tools Xilinx Synthesis Technology (XST)

Support

Provided by Xilinx @ www.xilinx.com/support

1. For a complete listing of supported devices, see the release notes
for this core.

2. HDL test bench and C Model available on the product page
on Xilinx.com at http://www.xilinx.com/products/
ipcenter/EF-DI-DEINTERLACER.htm

3. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

http://www.xilinx.com
http://www.xilinx.com/support
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/products/ipcenter/EF-DI-DEINTERLACER.htm
http://www.xilinx.com/products/ipcenter/EF-DI-DEINTERLACER.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf

LogiCORE IP Video Deinterlacer www.xilinx.com 6
PG017 October 19, 2011 Product Specification

Chapter 1

Overview

A vast majority of display technologies and video compression techniques use progressive
scanning techniques for applications. These technologies require a way to convert
interlaced material to progressive scanning methods. The Xilinx Video Deinterlacer core
provides the mechanism for achieving this goal.

The Xilinx Video Deinterlacer converts live incoming interlaced video streams into
progressive video streams. This process is performed in real time as the input video passes
through the video deinterlacer.

By definition, interlaced images have temporal motion between the two fields that
comprise an interlaced frame. The conversion to a progressive format recombines these
two fields into one single frame. The raw recombination of interlaced video streams results
in unsightly motion artifacts in the progressive output image. For this reason, the video
deinterlacer uses additional motion tracking and diagonal edge enhancement techniques
to ensure that these artifacts are removed where possible. This results in a high-quality
progressive output image.

In addition to deinterlacing, the video deinterlacer fully supports both progressive pass
through, "Progressive Segmented Frames" (PsF) and "Pull down" encoded streams.

The core supports a wide range of industry standard video encoding and packing
methods, including:

• 8, 10 or 12 bits per pixel

• YUV or RGB color spaces (static or dynamically configurable)

• 4:2:0, 4:2:2 or 4:4:4 packing (static or dynamically configurable)

The video deinterlacer requires an external memory store to maintain a three field triple
buffer. The core interfaces to external memory using a Xilinx VFBC protocol port or
axi-interconnect through the AXI-MM port.

The video deinterlacer supports highly scalable resolutions with a range of 128x128 up to
2048x2048, such as:

• Supported standard SD formats are 480i, 480p, 576i, 576p

• Supported standard HD formats are 720p, 1080i, 1080p

• Digital Cinema 2K

• All PC resolutions (for example, 640x480, 1024x768, 1280x1024, 1920x1200)

The core is highly configurable and can be optimized for the smallest FPGA footprint.

Figure 1-1 illustrates the internal architecture of the video deinterlacer. The video
deinterlacer comprises two main video processing kernels and a memory controller
interface.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 7
PG017 October 19, 2011 Product Specification

Chapter 1: Overview

The deinterlacer is a stream-based core that processes interlaced video on the fly to
produce a progressive video output. In a multiple video standard environment, the
deinterlacer is software programmable to process interlaced, progressive or Progressive
Segmented Frame (PsF) video structures, allowing the video deinterlacer to remain in the
system datapath at all times.

The deinterlacer is fully autonomous in its processing, but the deinterlacing effects of the
kernels can be altered by system software on a dynamic basis.

The deinterlacing algorithm is based on a combination of motion adaptive concepts
combined with diagonal interpolation techniques, resulting in a high quality deinterlaced
image.

X-Ref Target - Figure 1-1

Figure 1-1: Architecture of Video Deinterlacer

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 8
PG017 October 19, 2011 Product Specification

Chapter 1: Overview

Figure 1-2 shows a traditional output from a motion adaptive deinterlacer. The staircase
effect of fast moving video causes a field interpolation distortion effect on the output
video.

Using the deinterlacer core, a blend of motion and diagonal algorithms are combined to
create the image in Figure 1-3. The deinterlacer's algorithms recognize motion and detect
diagonal vectors. These are combined to form a cleaner pixel that is used in the output
video.

Standards Compliance
The Video Deinterlacer core is compliant with the AXI4-Lite and AXI4-Stream standards as
defined in the AXI Reference Guide (UG761).

Feature Summary
Applications include:

• Conversion of interlaced SD TV to progressive SD

• Conversion of CCD image data to a progressive image

• Reconstruction of original 24P film rate from an interlaced source

• Combined with Xilinx Video Scaler, SD to HD up-conversion system

X-Ref Target - Figure 1-2

Figure 1-2: Classic Motion Adaptive Deinterlacing Techniques

X-Ref Target - Figure 1-3

Figure 1-3: Xilinx Video Deinterlacer Deinterlacing Algorithm

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 9
PG017 October 19, 2011 Product Specification

Chapter 1: Overview

Licensing

Ordering Information
The Video Deinterlacer core is provided under the SignOnce IP Site License and can be
generated using the Xilinx CORE Generator system. The CORE Generator system is
shipped with Xilinx ISE Design Suite software.

A simulation evaluation license for the core is shipped with the CORE Generator system.
To access the full functionality of the core, including FPGA bitstream generation, a full
license must be obtained from Xilinx. For more information, visit the Video Deinterlacer
product page.

Contact your local Xilinx sales representative for pricing and availability of additional
Xilinx LogiCORE IP modules and software. Information about additional Xilinx
LogiCORE IP modules is available on the Xilinx IP Center.

Licensing Options
The Xilinx video deinterlacer LogiCORE system provides three licensing options. After
installing the required Xilinx ISE software and IP Service Packs, choose a license option.

Simulation Only

The Simulation Only Evaluation license key is provided with the Xilinx CORE Generator
tool. This key lets you assess the core functionality with your own design and
demonstrates the various interfaces on the core in simulation. (Functional simulation is
supported by a dynamically-generated HDL structural model.)

Full System Hardware Evaluation

The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place and route the design, evaluate timing, and
perform back-annotated gate-level simulation of the core.

In addition, the license key lets you generate a bitstream from the placed and routed
design, which can then be downloaded to a supported device and tested in hardware. The
core can be tested in the target device for a limited time before timing out (ceasing to
function), at which time it can be reactivated by reconfiguring the device.

Full

The Full license key is provided when you purchase the core and provides full access to all
core functionality both in simulation and in hardware, including:

• Functional simulation support

• Back annotated gate-level simulation support

• Full implementation support including place and route and bitstream generation

• Full functionality in the programmed device with no time outs

Simulation License

No action is required to obtain the Simulation Only Evaluation license key; it is provided
by default with the Xilinx CORE Generator software.

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/products/ipcenter/EF-DI-DE-INTERLACER.htm
http://www.xilinx.com/products/ipcenter/EF-DI-DE-INTERLACER.htm
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/ipcenter
http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 10
PG017 October 19, 2011 Product Specification

Chapter 1: Overview

Performance

Deinterlacing Quality Configurations
The deinterlacer comprises these possible quality levels of deinterlacing:

• On the fly field interpolation (lowest quality)

• On the fly field interpolation with diagonal enhancement

• Motion adaptive

• Motion adaptive and diagonal enhancement (highest quality)

The deinterlacer can either be statically configured at core generation time or dynamically
configured via the AXI4-Lite interface to perform any of the previous deinterlacing
techniques on input video.

Inclusion of the motion adaptive (C_MOTION=1) core requires a MPMC or AXI-MM
based external memory interface. The external infterface is used to provide the highest
possible quality of deinterlacing. Opting out of the motion adaption core (C_MOTION=0)
removes the need for an external memory interface and significantly reduces the FPGA
resources required. However, the trade-off is lower quality of the output image. The
VFBC/AXI-MM interface ports are not used in this configuration.

Inclusion of the diagonal (C_DIAG=1) core requires only standard FPGA resources (DSP
and block RAM) with the benefit of increased image quality.

Latency
Latency equals the average approximate 3 video lines from first pixel entering the core to
first pixel coming out of video output port.

Throughput
The deinterlacer creates 2 pixels for every input pixel. Due to this, the deinterlacer requires
that the video clock be at minimum twice the video input pixel rate, to allow the internal
processing enough clock cycles to generate the output pixels.

There is a 1 line push back buffer at the input of the deinterlacer, to allow for a small
amount of sporadic pixel loading into the deinterlacer. But systems that may exhibit more
fluctations on input data loading should consider external line buffer blocks that are
beyond the scope of the deinterlacer.

There is a 1000 pixel output push back buffer, to allow for small fluctations in the ability for
a downstream component to accept data.

If either the input or output buffers overflow, the deinterlacer will raise an interrupt and
automatically flush the video pipe and attempt to resynchronise with the passing video on
the next frame boundary. All input video will be dropped during this resynchronisation
phase.

Resource Utilization
Following are typical clock frequencies for the target families:

• Spartan-6: 150 MHz

• Virtex-6: 225 MHz

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 11
PG017 October 19, 2011 Product Specification

Chapter 1: Overview

The maximum achievable clock can vary and can depend on the size of the device, various
aspects of the system design, and other variables.

Resources required for Spartan-6 and Virtex-6 are shown in the following tables.

Table 1-1: Virtex-6 Resource Estimates

Feature Quality
Memory
Interface

BRAM
36bit

FIFO FF LUT DSP48E1

Basic Field Interpolation,
Low none 2 4 ~ 6

842 ~
997

895 ~
1010 12

Basic Field Interpolation with
diagonal enhancement Average none 4 4 ~ 6

1810 ~
2198

2008 ~
2527 25

Motion based, no diagonal, 32-bit
AXI-MM High AXI 32-bit 10 10 ~ 12

2890 -
3084

3129 ~
3201 14

Full Motion & Diagonal, 32-Bit
AXI-MM Highest AXI 32-bit 10 10 ~ 12

3821 ~
4237

4136 ~
4686 27

Motion based, no diagonal, 64-bit
VFBC Highest VFBC 64-bit 6 16 ~ 18

2438 ~
2956

2876 ~
3021 27

Full Motion & Diagonal, 64-bit VFBC
Highest VFBC 64-bit 6 16 ~ 18

3597 ~
4013

3975 ~
4457

27

Extra Features and Incremental Resource Changes

Add Cadence Processing - +1 - +600 +630 +1

Decrease max video supported
width between 128 ~ 1024 pixels

- - -1 -2 -

Increase AXI to 64-bit instead of
32-bit

Highest AXI 64 +3 - +40 +50 -

Increase AXI to 128-bit instead of
32-bit

Highest AXI 128 +9 - +120 +100 -

Increase AXI to 256-bit instead of
32-bit

Highest AXI 256 +21 - +240 +200 -

GPP Mode instead of AXI-Lite slave
CPU Interface

- - - - -200 -360 -

Table 1-2: Spartan-6 Resource Estimates

Feature Quality
Memory
Interface

BRAM 18bit FIFO FF LUT DSP48A1

Basic Field Interpolation
Lowest none 11 ~ 14 -

1132 ~
1339

1135 ~
1248

12

Basic Field Interpolation with
diagonal enhancement

Low none 14 ~ 17 -
2112 ~
2541

2289 ~
2811

25

Motion based, no diagonal, 32-bit
AXI-MM

High AXI 32-bit 31 ~ 36 -
4059 ~
4367

3966 ~
4027

14

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 12
PG017 October 19, 2011 Product Specification

Chapter 1: Overview

Full Motion & Diagonal, 32-Bit
AXI-MM

Highest AXI 32-bit 34 ~ 36 -
4901 ~
5430

4988 ~
5394

27

Motion based, no diagonal, 64-bit
VFBC

Highest VFBC 64-bit 33 ~35 -
4323 ~
4912

4462 ~
4854

27

Full Motion & Diagonal, 64-bit
VFBC

Highest VFBC 64-bit 33 ~ 35 -
5265 ~
5867

5303 ~
5776

27

Add Cadence Processing - +1 - +600 +630 +1

Decrease Max Video Supported

128 ~ 1024 pixels - - -4 - -

Increase AXI to 64-bit instead of
32-bit

Highest AXI 64 +12 - +120 +140 -

Increase AXI to 128-bit instead of
32-bit

Highest AXI 128 +19 - +380 +300 -

Increase AXI to 256-bit instead of
32-bit

Highest AXI 256 +41 - +790 +670 -

GPP Mode instead of AXI-Lite slave
CPU Interface

- - - - -

Table 1-2: Spartan-6 Resource Estimates

Feature Quality
Memory
Interface

BRAM 18bit FIFO FF LUT DSP48A1

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 13
PG017 October 19, 2011

Chapter 2

Core Interfaces and Register Space

This chapter provides detailed descriptions for each interface. In addition, detailed
information about configuration and control registers is included.

Port Descriptions

Core Interfaces

Memory Mapped Interface

When configured to support motion based deinterlacing, the Video Deinterlacer requires
an external memory port to perform this operation. The core can be configured to support
either a single bi-directional AXI4-Memory Mapped interface or a triple-port-
VFBC-interface.

The core provides registers to allow you to specify the location in external memory of the
data-buffers that are used by the motion tracking algorithm.

Processor Interface

When configured as an EDK pCore an AXI4-Lite interface is made available for use by a
system CPU or other AXI master. The processor interfaces gives full access to the
Deinterlacer's internal registers and interrupt systems. The internal status of the
Deinterlacer can also be monitored through this interface

General Purpose Processor Interface

When configured in General Purpose Processor mode all internal control and status
signals are brought to the top level for direct connection to an external controller or tie-offs.

Video Streaming Input Interface

The core has a single video input port. The video input port is always defined to be XSVI
protocol, but its width and packing modes are controlled in CoreGen.

Video Streaming Output interface

The core has a single video output port. This port can be configured to be XSVI or
AXI4-Streaming Protocol.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 14
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Common I/O Signals
The EDK pCore interface and the General Purpose Processor interface share some common
global signals. These are :

The cores video interface pins are shown below:

Port Name Dir Width Description

vid_clk I 1
Main system video clock. Synchronous to XSVI in

and out ports

ce I 1
Main system video clock enable. Used to throttle

data passing through the deinterlacer.

sclr I 1 asynchronous system reset.

vfbc_clk I 1
VFBC/AXI master clock. All VFBC or AXI-MM

ports are synchronous to this clock

fsync_out O 1
Frame Synchronization Pulse for down-stream

devices such as AXI_VDMA

XSVI Input Video Interface

xsvi_video_data_in I
[C_STREAMS*
C_DEPTH-1:0]

Input video data, packed
according to XSVI interface

specification.

xsiv_hblank_in I 1
Input video horizontal blanking,

active high

xsvi_vblank_in I 1
Input video vertical blanking,

active high

xsvi_active_video_in I 1
Input video active video strobe,

active high

xsvi_active_chroma_in I 1
Input video active chroma strobe,
active-High. Only used if 422 or
420 packing modes are selected

xsvi_field_id_in I 1 Input video field id flag

XSVI Output Interface

xsvi_video_data_out O
[C_STREAMS*
C_DEPTH-1:0]

Output video data, packed
according to XSVI interface

specification.

xsvi_hblank_out O 1
Output video horizontal blanking,

active-High

xsvi_vblank_out O 1
Output video vertical blanking,

active-High

xsvi_active_chroma_out O 1
Output video chroma strobe,

active high. Only used if 422 or 420
packing modes are selected

xsvi_active_video_out O 1
Output video active video strobe,

active high

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 15
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

External Memory Interface Signals

When configured as a VFBC Memory interface the following signals are present:

xsvi_en_out O 1 Output video enable strobe

AXI4-Streaming Output Interface

m_axis_tdata I
[C_M_AXIS_T
DATA_WIDTH

-1:0]

Output video data, packed
according to AXI4S-XSVI interface

specification

m_axis_tkeep O
[C_M_AXIS_T
DATA_WIDTH

/8-1:0]
Output video keep strobe

m_axis_tstrb O
[C_M_AXIS_T
DATA_WIDTH

/8-1:0]
Output video data strobe

m_axis_tvalid O 1 Output video data is valid enable

m_axis_tready I 1 Output video data acknowledge

m_axis_tlast O 1
Output video end of video line

marker

VFBC Port 0

vfbc0_cmd_reset O 1 VFBC command reset

vfbc0_cmd_full I 1 VFBC command full flag

vfbc0_cmd_write O 1 VFBC command write strobe

vfbc0_cmd_data O [31:0] VFBC command write data

vfbc0_wd_almost_full I 1 VFBC write data fifo almost full flag

vfbc0_wd_full I 1 VFBC write data fifo full flag

vfbc0_wd_data O [31:0] VFBC write data

vfbc0_wd_write O 1 VFBC write data fifo write strobe

vfbc0_wd_reset O 1 VFBC write data fifo reset

vfbc0_wd_flush O 1 VFBC write data fifo flush

vfbc0_wd_end_burst O 1 VFBC write data burst end flag

vfbc0_rd_reset O 1 VFBC read data fifo reset

vfbc0_rd_read O 1 VFBC read data read strobe

vfbc0_rd_data I [31:0] VFBC read data

vfbc0_rd_end_burst O 1 VFBC read data burst end flag

vfbc0_rd_almost_empty I 1 VFBC read data fifo almost empty flag

vfbc0_rd_empty I 1 VFBC read data fifo empty flag

VFBC Port 1

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 16
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

vfbc1_cmd_reset O 1 VFBC command reset

vfbc1_cmd_full I 1 VFBC command full flag

vfbc1_cmd_write O 1 VFBC command write strobe

vfbc1_cmd_data O [31:0] VFBC command write data

vfbc1_wd_almost_full I 1 VFBC write data fifo almost full flag

vfbc1_wd_full I 1 VFBC write data fifo full flag

vfbc1_wd_data O [31:0] VFBC write data

vfbc1_wd_write O 1 VFBC write data fifo write strobe

vfbc1_wd_reset O 1 VFBC write data fifo reset

vfbc1_wd_flush O 1 VFBC write data fifo flush

vfbc1_wd_end_burst O 1 VFBC write data burst end flag

vfbc1_rd_reset O 1 VFBC read data fifo reset

vfbc1_rd_read O 1 VFBC read data read strobe

vfbc1_rd_data I [31:0] VFBC read data

vfbc1_rd_end_burst O 1 VFBC read data burst end flag

vfbc1_rd_almost_empty I 1 VFBC read data fifo almost empty flag

vfbc1_rd_empty I 1 VFBC read data fifo empty flag

VFBC Port 2

vfbc2_cmd_reset O 1 VFBC command reset

vfbc2_cmd_full I 1 VFBC command full flag

vfbc2_cmd_write O 1 VFBC command write strobe

vfbc2_cmd_data O [31:0] VFBC command write data

vfbc2_wd_almost_full I 1 VFBC write data fifo almost full flag

vfbc2_wd_full I 1 VFBC write data fifo full flag

vfbc2_wd_data O [31:0] VFBC write data

vfbc2_wd_write O 1 VFBC write data fifo write strobe

vfbc2_wd_reset O 1 VFBC write data fifo reset

vfbc2_wd_flush O 1 VFBC write data fifo flush

vfbc2_wd_end_burst O 1 VFBC write data burst end flag

vfbc2_rd_reset O 1 VFBC read data fifo reset

vfbc2_rd_read O 1 VFBC read data read strobe

vfbc2_rd_data I [31:0] VFBC read data

vfbc2_rd_end_burst O 1 VFBC read data burst end flag

vfbc2_rd_almost_empty I 1 VFBC read data fifo almost empty flag

vfbc2_rd_empty I 1 VFBC read data fifo empty flag

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 17
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

When Configured with a AXI-MM interface the following signals are present:

AXI4-Lite Slave Interface

m_axi_awaddr O [31:0] AXI Write Address

m_axi_awid O
[C_M_AXI_THR
EAD_ID_WIDT

H-1]
AXI Write Thread ID

m_axi_awlen O [7:0] AXI Write Burst Length

m_axi_awsize O [2:0] AXI Write Beat Size

m_axi_awburst O [1:0] AXI Write Burst Type

m_axi_awlock O 1 AXI Write Transaction lock

m_axi_awcache O [3:0] AXI Write Cache Type

m_axi_awprot O [2:0] AXI Write Protection Level

m_axi_awqos O [3:0] AXI Write Quality of Service

m_axi_awvalid O 1 AXI Write Address Valid

m_axi_awready I 1 AXI Write Address acknowledge

m_axi_wdata O
[C_M_AXI_DAT
A_WIDTH-1:0]

AXI Write Data

m_axi_wstrb O
[C_M_AXI_DAT

A_WIDTH/
8-1:0]

AXI Write Data Strobes

m_ax_wlast O 1 AXI Write Burst Last Beat

m_axi_wvalid O 1 AXI Write Data Valid

m_axi_wready I 1 AXI Write Data acknowledge

m_axi_bid I
[C_M_AXI_THR
EAD_ID_WIDT

H-1:0]
AXI Write Response Thread ID

m_axi_bresp I 2 AXI Write Response

m_axi_bvalid I 1 AXI Write Response Valid

m_axi_bready O 1 AXI Write Response Acknowledge

m_axi_arid O
[C_M_AXI_THR
EAD_ID_WIDT

H-1:0]
AXI Read Thread ID

m_axi_araddr O [31:0] AXI Read Address

m_axi_arlen O [7:0] AXI Read Burst Length

m_axi_arsize O [2:0] AXI Read Burst beat size

m_axi_arburst O [1:0] AXI Read Burst type

m_axi_arlock O 1 AXI Read Transaction Locked

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 18
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Configuration Interface Signals

When configured as a general purpose processer interface control mechanism. The
following pins are present:

m_axi_arcache O [3:0]
AXI Read Transaction Protection

Level

m_axi_arprot O [2:0] AXI Read Cache type

m_axi_arqos O [3:0] AXI Read Quality of Service

m_axi_arvalid O 1 AXI Read Address Valid

m_axi_arready I 1 AXI Read Address acknowledge

m_axi_rid I
[C_M_AXI_THR
EAD_ID_WIDT

H-1:0]
AXI Read Data Thread ID

m_axi_rdata I
[C_M_AXI_DAT
A_WIDTH-1:0] AXI Read Data

m_axi_rresp I 1 AXI Read Response

m_axi_rlast I 1
AXI Read Data Burst Last beat

strobe.

m_axi_rvalid I 1 AXI Read Response Valid

m_axi_rready O 1 AXI Reset Response acknowledge

General Purpose Processor Interface

gpp_update_req I 1 Internal register update request

gpp_update_done O 1 Internal register updates are completed

gpp_bypass I 1 Force deinterlacer pass through

gpp_fs_base_0 I [31:0] Base address of Page 0 Field Buffer

gpp_fs_base_1 I [31:0] Base address of Page 1 Field Buffer

gpp_fs_base_2 I [31:0] Base address of Page 2 Field Buffer

gpp_fs_words I [23:0] Size in 32 bit words of Field Page size

gpp_deint_pack I [1:0]

Video Packing format

0 : 4:2:0 Packing

1 : 4:2:2 Packing

2 : 4:4:4 Packing

3 : Reserved

gpp_deint_debug I [7:0] colourisation of output video

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 19
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

When configured as an EDK pCore the following AXI4-Lite interface is present:

gpp_deint_mode I [2:0]

deinterlacing algorithm mode

0 = Field interpolation

1 = Motion Adaptive

2 = Diagonal Compensating

3 = Motion & Diagonal Compensating

4 = Line duplication

gpp_deint_thresh_t1 I [9:0] Motion adaptive threshold T1

gpp_deint_thresh_t2 I [9:0] Motion adaptive threshold T2

gpp_deint_xfade_scale I [15:0] Cross Fade Ratio

gpp_deint_xsize I [10:0] Horizontal frame size

gpp_deint_ysize I [10:0] Vertical input frame size

gpp_deint_col I 1

Colourspace

0 = YUV

1 = RGB

gpp_deint_black I
[C_DEPTH

*3-1:0]
Definition of black for the active

colourspace

gpp_deint_pull_en_22 I 1 pulldown 2:2 controller enable

gpp_deint_pull_en_32 I 1 pulldown 3:2 controller enable

gpp_deint_order I 1

First Field is odd/even

0 = even (PAL/HD)

1 = odd (NTSC)

gpp_version O [31:0] hardware version id major.minor.rev

gpp_irq_req O [15:0] interrupt request lines

AXI4-Lite Slave Interface

s_axi_aclk I 1 CPU clock. The AXI slave interface
is synchronous to this clock

s_axi_awaddr I [31:0] AXI Write Address

s_axi_awvalid I 1 AXI Write Address Valid

s_axi_awready O 1 AXI Write Address acknowledge

s_axi_wdata I [31:0] AXI Write Data

s_axi_wvalid I 1 AXI Write Data Valid

s_axi_wready O 1 AXI Write Data acknowledge

s_axi_bresp O 2 AXI Write Response

s_axi_bvalid O 1 AXI Write Response Valid

s_axi_bready I 1 AXI Write Response Acknowledge

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 20
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Register Space
This section provides the programming interface register information.

All registers power up with 0x0. Only the control, mode and interrupt control registers are
reset to 0x0 during a software reset, all other registers retain their current settings.

s_axi_araddr I [31:0] AXI Read Address

s_axi_arvalid I 1 AXI Read Address Valid

s_axi_arready O 1 AXI Read Address acknowledge

s_axi_rdata O [31:0] AXI Read Data

s_axi_rresp O 1 AXI Read Response

s_axi_rvalid O 1 AXI Read Response Valid

s_axi_rready I 1 AXI Reset Response acknowledge

ip2intc_irpt O 1
CPU interrupt request. Active High

Level interrupt synchronous to
s_axi_aclk

Table 2-1: Register Map

Address Name Read/Write Description

0x0000 control R/W General Control register

0x0004 mode R/W Deinterlacer modes

0x0008 interrupt control R/W Interrupt enable and disable register

0x000C interrupt status R/W1C Interrupt status and clear register

0x0010 height R/W Input frame height

0x0014 width R/W Input frame width

0x0018 threshold T1 R/W Motion adaptive threshold T1

0x001C threshold T2 R/W Motion adaptive threshold T2

0x0020 cross fade scale R/W Cross fade scaling

0x0024 buffer 0 base R/W External triple buffer 0 base address

0x0028 buffer 1 base R/W External triple buffer 1 base address

0x002C buffer 2 base R/W External triple buffer 2 base address

0x0030 buffer size R/W External triple buffer segment size

0x00F0 version R Hardware version id

0x0100 soft reset R/W Internal soft reset

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 21
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

.

Table 2-2: Control Register

0x0000 Control R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved b u

Name Bits Description

Reserved 31:2 Reserved

Deinterlacer Enable 1 While the deinterlacer is disable, active video passes through the
deinterlacer in its original form.

Note: All Blanking information is always stripped by the
deinterlacer.

Update Request 0 Setting this bit to ‘1’ arms the deinterlacer to perform a register
shadow update on the next frame boundary.

Setting this bit to ‘0’ cancels any pending shadow request.

Table 2-3: Mode Register

0x0004 Mode R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved d m Reserved p s o pac
k

c de

Name Bits Description

Reserved 31:18 Reserved

Colorize Diagonal 17 Enable colorizing output image with diagonal algorithm output

Colorize Motion 16 Enable colorizing output image with motion algorithm output

Reserved 15:9 Reserved

Pull-down Enable 2:2 8 Allow Pull-down detector to automatically control deinterlacer

Pull-down Enable 3:2 7 Allow Pull-down detector to automatically control deinterlacer

PsF Enable 6 Progressive Segmented Frame Enable (PsF mode)

Field Order 5 Sets the first field order for input video

When set ‘1’ the field order maps to NTSC / 480i

When set ‘0’ the field order maps to PAL / HD / 3G

Packing Format 4:3 Sets the XSVI packing formats used on the input and output

When set to 0: 4:2:0 packing is used

When set to 1: 4:2:2 packing is used

When set to 2: 4:4:4 packing is used

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 22
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Color Space 2 Colorspace of video
When set to ‘0’ YUV colorspace is used
When set to ‘1’ RGB colorspace is used

Deinterlacing
Algorithm

1:0 Sets the deinterlacing method used
When set to ‘0’ pure field interpolating techniques are used
When set to ‘1’ only motion adaptive engine is used
When set to ‘2’ only the diagonal engine is used
When set to ‘3’ both motion and diagonal engines are used

Table 2-4: Interrupt Control Register

0x0008 Status R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved

Name Bits Description

Reserved 31:12 Reserved

Framestore Rd Err 1 11 Enable Error detection on Third VFBC Port or AXI-MM Port

Framestore Rd Err 0 10 Enable Error detection on Second VFBC Port or AXI-MM Port

Framestore Wr Err 9 Enable Error detection on First VFBC Port or AXI-MM Port

Framestore Wr Marker 8 Enable Framestore integrity checking

Reserved 7 Reserved

Frame Interrupt 6 Enables the video frame border interrupt when set to ‘1’

Pull-down off 5 Enable pull-down loss detection

Pull-down on 4 Enable pull-down activation detection

Deinterlacer Error 3 Enable internal diagnostic error interrupt

Synch off 2 Enable loss of video lock detector

Synch on 1 Enable lock of input video detector

Update Interrupt 0 Enables the register shadow update done interrupt when set to ‘1’

Table 2-3: Mode Register

Table 2-5: Interrupt Status Register

0x000C Status R/W1C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved

Name Bits Description

Reserved 31:12 Reserved

Framestore Rd Err 1 11 The Third VFBC Port or AXI-MM Port is experiencing FIFO under
run

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 23
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Framestore Rd Err 0 10 The Second VFBC Port or AXI-MM Port is experiencing FIFO
Under run

Framestore Wr Err 9 The First VFBC Port or AXI-MM Port is experiencing FIFO
Overrun

Framestore Wr Marker 8 The framestore is experiencing video data frames that do not
match the programmed settings

Reserved 7 Reserved

Frame Interrupt 6 A Video frame boundary has passed.

Pull-down off 5 Pull-down detector has seen pull down sequence disappear.

Pull-down on 4 Pull-down detector has found a pull down sequence.

Deinterlacer Error 3 Internal deinterlacer FIFO overrun error.

Synch off 2 Deinterlacer has lost synchronization to input video

Synch on 1 Deinterlacer is synchronized to input video

Update Interrupt 0 A internal register update has occurred

Table 2-5: Interrupt Status Register

Table 2-6: Height Register

0x0010 Height R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved Height

Name Bits Description

Reserved 31:11 Reserved

Height 10:0 Input pixel height of video frame

Table 2-7: Width Register

0x0014 Width R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved Width

Name Bits Description

Reserved 31:11 Reserved

Width 10:0 Input pixel width of video frame

Table 2-8: Threshold T1 Register

0x0018 Threshold T1 R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 24
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Reserved T1

Name Bits Description

Reserved 31:10 Reserved

T1 setting 9:0 Motion Adaptive T1 threshold value

Table 2-8: Threshold T1 Register

Table 2-9: Threshold T2 Register

0x001C Threshold T2 R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved T2

Name Bits Description

Reserved 31:3 Reserved

T2 setting 0 Motion Adaptive T2 threshold value

Table 2-10: Cross Fade Scale Register

0x0020 Cross Fade Scale R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved xfade

Name Bits Description

Reserved 31:16 Reserved

Cross Fade Scale 15:0 Motion Adaptive cross fade scaling factor. MUST be
programmed using this equation:

scale = (4096*256)/(register T2- register T1)

Table 2-11: Buffer 0 Register

0x0024 Buffer 0 R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R Base

Name Bits Description

Buffer 0 Base 31:0 Base address in external memory of the first field buffer

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 25
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Table 2-12: Buffer 1 Register

0x0028 Buffer 1 R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R Base

Name Bits Description

Buffer 1 Base 31:0 Base address in external memory of the second field buffer

Table 2-13: Buffer 2 Register

0x002C Buffer 2 R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R Base

Name Bits Description

Buffer 2 Base 31:0 Base address in external memory of the third field buffer

Table 2-14: Pull-down High Threshold

0x0038 Buffer Size R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved size

Name Bits Description

Reserved 31:24 Reserved

Pull-down high 23:0 Motion threshold for pull-down high detection

Table 2-15: Version ID

0x00F0 Buffer Size R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 Reserved

Name Bits Description

Major Version 31:28 Major version as a single 4-bit hexadecimal value.

Minor Version 27:20 Minor version as two separate 4-bit hexadecimal values (00 - FF).

Revision Letter 19:16 Revision letter as a hexadecimal character from 'a' - 'f'; mapping is:
0XA-'>a', 0xB->'b', 0xC->'c', 0xD->'d', and so on.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 26
PG017 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Patch Revision 15:12 Core Generator Patch Revision.

Reserved 11:0 Reserved

Table 2-15: Version ID

Table 2-16: Soft Reset

0x0100 Buffer Size R/W

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Reserved R

Name Bits Description

Reserved 31:24 Reserved

Soft Reset 0 Resets the “Mode”, “Control” and “Interrupt Control” registers to
zero.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 27
PG017 October 19, 2011

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Control Values
In both GPP and pcore modes, the control values are provided dynamically at the input of
the deinterlacer and can be changed during run time.

For the pcore version of the core, CORE Generator software provides the GPP core placed
in a wrapper, which allows you to parameterize the deinterlacer core in EDK. The ports are
driven by registers on a AXI4-Lite bus. The address is decoded in the wrapper. A
MicroBlaze™ processor software driver is provided in source code form to drive these
ports.

The parameters that can be set dynamically via AXI4-Lite registers are:

• packing: controls the YUV packing mode used; 4:2:2, 4:2:0 or 4:4:4

• kernel mode: controls what deinterlacer algorithms are used

• threshold T1: controls the low motion threshold

• threshold T2: controls the high motion threshold

• cross fade ratio: controls the scaling factor used by the cross fader

• xsize, ysize: controls the active window size of the output video frame

• field order: sets the field order as: HD,PAL or NTSC

• color: selects which color space is processed, YUV or RGB

• black: sets the pixel value for black inside the core, dependent on color space setting

• fswords: set the amount of 32-bit words that are required to store one field of video in
the external memory buffer

• fsbase0,1,2: sets the 31-bit base addresses of the three external field buffers

• PsF mode: controls if the deinterlacer is processing interlaced, PsF or progressive
image structures

• pull-down mode: controls if the pull-down controller is activated

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 28
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

CORE Generator Tool Graphical User Interface (GUI)
The CORE Generator tool GUI is shown in Figure 3-1. Field descriptions are provided in
Parameter Values in the XCO File. Each field sets a parameter used at build time to
configure different hardware options.

EDK pCore GUI
When the deinterlacer core is generated from CORE Generator as an EDK pCore it is
generated with each option set to the default value. All customizations of a video
deinterlacer pCore are done with the EDK pCore GUI. Figure 3-2 illustrates the EDK pCore
GUI for the video deinterlacer. The options in the EDK pCore GUI for the video
deinterlacer correspond to the same options in the CORE Generator GUI for the video
deinterlacer.

X-Ref Target - Figure 3-1

Figure 3-1: CORE Generator GUI

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 29
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

The following table provide the design parameters, allowable values, and descriptions for
the video deinterlacer system. Parameter values that are strings or that contain alpha
numeric characters must be uppercase.

X-Ref Target - Figure 3-2

Figure 3-2: Video Deinterlacer Configuration Screen

Table 3-1: System Parameters

Parameter Name Default Value Allowable Values Description

C_BASEADDR 0x10000000 Valid Address System base address

C_HIGHADDR 0x100000FF Valid Address System high address

C_FAMILY Virtex6 Virtex-6 Spartan-6 Target FPGA family

C_MAX_XSIZE 720 128-2048 Maximum raster width supported

C_GPP 0 0,1 Selects between AXI4-Lite or GPP
configuration interfaces

C_STREAMS 3 2,3 Number of simultaneous color planes

C_DEPTH 8 8,10,12 Bit depth of a pixel

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 30
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

Video Deinterlacer Core Interfaces
There are many video systems that use an integrated MicroBlaze™ processor soft core to
dynamically control the parameters within the system. This is especially important when
several independent image processing cores are integrated into a single FPGA. The video
deinterlacer core can be configured with one of two interfaces: an EDK pCore Interface or
a General Purpose Processor Interface.

EDK pCore Interface
The pCore interface creates a core that can be added to an EDK project as a hardware
peripheral. This section describes the register set, the pCore driver files, and the I/O
signals associated with the video deinterlacer core.

After it is generated by CORE Generate software, the new video deinterlacer pCore is
located in the
CORE Generator project directory at Component_Name/pcores/deinterlacer_v1_00_a. The
pCore
should be copied to the user's EDK_Project/pcores directory or to a user pCores repository.
The video deinterlacer pCore driver software is located in the CORE Generator project
directory at
Component_Name/drivers/deinterlacer_v1_00_a. The driver software should be copied to

C_DYN 1 0,1 Dynamic colorspace enabling

0=Static Color Space

1=Dynamic Color Space

C_PULLDOWN 1 0,1 Cadence/Pull-down detection

0=No pull-down detection

1=Full pull-down detection

C_COL 1 0,1 Static color space setting

0=YUV

1= RGB

C_DIAG 1 0,1 Statically include the diagonal kernel

C_MOTION 1 0,1 Statically include the motion kernel

C_OUTPUT_TYPE 1 0,1 Output video interface type

0=XSVI

1=AXI4-Streaming

C_AXI 1 0,1 Memory Interface Protocol

0=VFBC

1=AXI4-MM

C_AXI_TDATA_WIDTH 16 16, 24, 32, 40, 48 Ouput AXI Streaming data width

C_AXI_DATA_WIDTH 64 32, 64, 128, 256 AXI-MM Data Width

C_AXI_THREAD_ID_WIDTH 1 0,1 AXI-MM Thread ID Width

Table 3-1: System Parameters

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 31
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

the user's
EDK_Project/drivers directory or to a user pCores repository.

pCore Register Set

The pCore interface provides a memory mapped interface for the programmable registers
within the core, which are defined in Register Space.

Note: All registers power up with 0x0. Only the control, mode and interrupt control registers are
reset to 0x0 during a software reset; all other registers retain their current settings.

pCore Driver Files

The video deinterlacer pCore includes a C language software driver that the user can use
to control the video deinterlacer. A high-level API is provided to hide the details of the
video deinterlacer, and application developers are encouraged to use it to access the device
features. A low-level API is also provided if developers prefer to access the devices directly
through the system registers described in the previous section.

Table 3-3 lists the files that are included with the video deinterlacer pCore driver.

Table 3-2: Video Deinterlacer pCore Memory Mapped Register Set

Address Name Read/Write Description

0x0000 control R/W General Control register

0x0004 mode R/W Deinterlacer modes

0x0008 interrupt control R/W Interrupt enable and disable register

0x000C interrupt status R/W1C Interrupt status and clear register

0x0010 height R/W input frame height

0x0014 width R/W input frame width

0x0018 threshold T1 R/W motion adaptive threshold T1

0x001C threshold T2 R/W motion adaptive threshold T2

0x0020 cross fade scale R/W cross fade scaling

0x0024 buffer 0 base R/W external triple buffer 0 base address

0x0028 buffer 1 base R/W external triple buffer 1 base address

0x002C buffer 2 base R/W external triple buffer 2 base address

0x0030 buffer size R/W external triple buffer segment size

0x00F0 version R hardware version id

0x0100 soft reset R/W Internal soft reset

Table 3-3: Software Driver Files Provided With the Video Deinterlacer pCore

File Name Description

xdeint.h Contains all prototypes of high-level API to access all of the features of the video
deinterlacer device.

xdeint.c Contains the implementation of high-level API to access all of the features of the video
deinterlacer device

xdeint_intr.c Contains the implementation of high-level API to access the interrupt feature of the
video deinterlacer device.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 32
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

Parameter Values in the XCO File
Table 3-4 defines valid entries for the Xilinx CORE Generator (XCO) parameters. Xilinx
strongly suggests that XCO parameters are not manually edited in the XCO file; instead,
use the CORE Generator software GUI to configure the core and perform range and
parameter value checking. The XCO parameters are helpful in defining the interface to
other Xilinx tools.

xdeint_sinit.c Contains static initialization methods for the video deinterlacer device.

xdeint_g.c Contains a template for a configuration table of video deinterlacer devices. This file is
used by the high-level API and is automatically generated to match the video
deinterlacer device configuration by EDK/SDK tools when the software project is
built.

xdeint_hw.h Contains low-level API (that is, identifiers and register-level driver API) that can be
used to access the video deinterlacer device.

xdeint_i.h Contains internal functions of the video deinterlacer device driver. The application
should never need to invoke any function/macro in this file

example.c An example that demonstrates how to configure the video deinterlacer device using
the high-level API.

Table 3-3: Software Driver Files Provided With the Video Deinterlacer pCore

Table 3-4: XCO Parameters

XCO Parameter Default Valid Values

component_name v_deinterlacer_v1_0_u0 ASCII text using characters: a..z, 0..9 and "_" starting with
a letter.

Note: "v_deinterlacer_v1_0" is not allowed.

c_col 0 0,1

C_depth 8 8,10,12

C_diag 1 0,1

C_dyn 1 0,1

C_pulldown 1 0,1

C_motion 1 0,1

C_output_type 1 0,1

C_max_size 1920 128-2048

C_streams 3 2,3

C_m_axi_clk_freq_hz 200000000 Positive Integer

C_m_axi_data_width 128 32,64,128,256

C_m_axi_thread_id_width 2 1-4

C_m_axi_tdata_width 24 16,24,32,40,64

C_s_axi_clk_freq_hz 50000000 Positive Integer

C_simulation 1 0,1

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 33
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

Output Generation
The output files generated from the Xilinx CORE Generator software for the Video
Deinterlacer core always include EDK pCore specific and CORE Generator specific files.
The output files are placed in the project directory.

EDK pCore Files
As part of its output, CORE Generator outputs a set of pCore filesthat can be easily
incorporated into an EDK project. The pCore output consists of a hardware pCore and a
software driver. The pCore has the following directory structure:

<Component_Name>/edk

• -drivers

- deinterlacer_v1_01_a

- data

- example

- src

• pcores

- deinterlacer_v1_00_a

- data

- hdl

- vhdl

File Details

• <project directory>
This is the top-level directory. It contains xco and other assorted files.

• <project directory>/<component_name>/edk/pcores/deinterlacer_v1_00_a/data
This directory contains files that EDK uses to define the interface to the pCore.

• < project directory>/<component_name>/edk/pcores/deinterlacer_v1_00_a/hdl/
vhdl

C_gpp 0 0,1

C_axi 1 0,1

C_baseaddr 0x10000000 ASCII text of 32bit hexadecimal value.

C_highaddr 0x100000FF ASCII text of 32bit hexadecimal value.

Table 3-4: XCO Parameters

XCO Parameter Default Valid Values

Name Description

<component_name>.xco Log file from CORE Generator software describing which options were used to generate
the core. An XCO file can also be used as an input to the CORE Generator software.

<component_name>_flist.txt A text file listing all of the output files produced when the customized core was
generated in the CORE Generator software.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 34
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

This directory contains the Hardware Description Language (HDL) files that
implement the pCore.

• < project directory>/<component_name>/edk/drivers/deinterlacer_v1_01_a /data
This directory contains files that Software Development Kit (SDK) uses to define the
operation of the pCore's software driver.

• < project directory>/<component_name>/edk/drivers/ deinterlacer_v1_01_a /src
This directory contains the source code of the pCore's software driver.

General Purpose Processor Files
When the interface selection is set to General Purpose Processor, CORE Generator then
outputs the core as a netlist that can be inserted into a processor interface wrapper or
instantiated directly in an HDL design. The output is placed in the <project directory>.

File Details

The CORE Generator software output consists of some or all the following files.

Name Description

xdeint.c Provides the Application Program Interface (API) access to all features of the Video
Deinterlacer device driver.

xdeint.h Provides the API access to all features of the Video Deinterlacer device driver.

xdeint_g.c Contains a template for a configuration table of Video Deinterlacer core.

xdeint_hw.h Contains identifiers and register-level driver functions (or macros) that can be used to access
the Video Deinterlacer core.

xdeint_intr.c Contains interrupt-related functions of the Video Deinterlacer device driver.

xdeint_sinit.c Contains static initialization methods for the Video Deinterlacer device driver.

Name Description

<component_name>_readme.txt Readme file for the core.

<component_name>.ngc The netlist for the core.

<component_name>.veo
<component_name>.vho

The HDL template for instantiating the core.

<component_name>.v
<component_name>.vhd

The structural simulation model for the core. It is used for functionally
simulating the core.

<component_name>_synth.v
<component_name>_synth.vhd

Synthesis instantiation wrapper file.

<component_name>.xco Log file from CORE Generator software describing which options were used to
generate the core. An XCO file can also be used as an input to the CORE
Generator software.

<component_name>_flist.txt A text file listing all of the output files produced when the customized core was
generated in the CORE Generator software.

<component_name>.asy IP symbol file

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 35
PG017 October 19, 2011

Chapter 3: Customizing and Generating the Core

<component_name>.gise

<component_name>.xise ISE® software subproject files for use when including the core in ISE software
designs.

Name Description

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 36
PG017 October 19, 2011

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

Deinterlacing
The deinterlacer contains two processing kernels: the motion adaptive and the diagonal
detection and adaptation processing kernels. These kernels work together to form each
deinterlaced pixel.

The motion adaptive kernel has two threshold parameters that can be adjusted by the user
if required. These two parameters are T1 and T2. They are used as threshold points for
measuring between no motion, average motion, and excessive motion. In each of these
categories, the deinterlacer generates the output pixels using different techniques.
Figure 4-1 shows the conceptual relationship of the T1 and T2 parameters to the
deinterlacer pixel creator.
X-Ref Target - Figure 4-1

Figure 4-1: Output Pixel Decision Criteria

��������	
��

�
�	
��

����������	
��

��

��

��
��������
������������
���
���������������
�����
�����������

����������
�����
�����������

���������
���
�����

	
��
���������
�����

�
�	
��
 ���������
���
�����

 ���
��������

���
�

�
���
���
�

!
��
���������������

"���#�!
��
�������������������
��������$������
�������
���%�������
���������������������$�����

����!
��
���������������&

��������	
��

����������	
��

��

��

��
���������������
�����
������������
����
���'�
�����
�����������

��������
���'�
�����
�����������

(�)!
��
)����

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 37
PG017 October 19, 2011

Chapter 4: Designing with the Core

T1 and T2
T1 and T2 can be set to these default values:

Typical SDI YUV defaults: T1 = 10, T2 = 70

Typical SDI RGB defaults: T1 = 100, T2 = 200

Generally, they should not be altered, but users can alter them depending on the noise level
of the input video signal. If the input video source is noisy, this may be detected as
excessive motion and the output image may be of lower quality. In this case, the motion
detection threshold can be increased by the application software. In this case, the motion
detection threshold can be increased by application software.

Cross Fade Ratio
The cross fade scale register is derived directly from T1 and T2 according to this fixed
equation:

xfade ratio = (4096*256)/(T2-T1)

This value is used internally to control cross fading between kernel pixels and the frame
store pixels. This register must be changed whenever T1 or T2 are altered to ensure the
correct operation of the cross fader.

Initial State
The deinterlacer kernel must have two fields of video history to produce its desired output.
During a video input standard change, start-up condition, change of format or error state,
there is no video history for the deinterlacer to use. For these frames (if enabled via
software), the deinterlacer produces progressive video outputs without the aid of the
motion adaptive kernel. As a result, these initial frames appear softer in format until the
memory interface has obtained sufficient history for producing the required output
quality.

Figure 4-2 illustrates the sequencing of the deinterlacer output with respect to input
variance. The diagram shows the two initial frames (1 and 2) being created from raw
passing video and then the remainder being produced with the aid of the historical data.

The second image shows a normally operating deinterlacer that is suddenly subjected to a
change in input video. The deinterlacer then resets the memory interface and reverts to a
lower quality, while it builds up new picture history over the first two frames. It then
reverts to fully operational state.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 38
PG017 October 19, 2011

Chapter 4: Designing with the Core

X-Ref Target - Figure 4-2

Figure 4-2: Examples of Deinterlacer Start-up Conditions

�

�

� �

�

* +

*

, -

&� �� $�

.� �

�. � �

$� &

*

(�)����)�������

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 39
PG017 October 19, 2011

Chapter 4: Designing with the Core

Architecture
The Xilinx Video Deinterlacer converts a live input video stream into a progressive video
structure. Figure 4-3 illustrates a high-level view of the ports of the deinterlacer.

In conjunction with the video path, the VFBC or AXI4-MM ports read and write passing
video fields to and from a memory buffer. These fields of information are used by the
deinterlacer internal processing blocks to produce the final progressive video output.

In creating progressive pictures, the output frame rate of the deinterlacer is always twice
the input rate and produces one pixel per clock. The video clock used must meet this
system requirement. The input pixel rate must be less than or equal to the video clock rate
divided by two. The output pixel rate is always twice the input pixel rate. A single
common video clock is used for the entire video path.

The video deinterlacer input can be either from live video or a stored video feed. The Xilinx
Streaming Video Interface (XSVI) input bus is clock enabled to allow for continuous or
burst input rates. An optional full flag allows for push back of input data when the
deinterlacer is receiving input from a non-live video feed. The XSVI output bus is also
clock enabled and produces output pixels whenever there is a pixel inside the deinterlacer
to be generated. The video deinterlacer has only minimal buffering inside. It is important
to not overflow the input FIFO.

X-Ref Target - Figure 4-3

Figure 4-3: Deinterlacer Data Path Overview

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 40
PG017 October 19, 2011

Chapter 4: Designing with the Core

Memory Controller
The deinterlacing process requires two previous fields of video information to determine
the amount of per-pixel motion present in the passing video. It then selects the most
appropriate method of deinterlacing each pixel using these streams.

An external memory store is used in a triple buffer concept to store and extract passing
video fields and associating sideband data. At the end of each output frame, the memory
controller moves its base pointers to the next buffer and starts again. Figure 4-4 illustrates
the triple buffer movement:

The memory ports operate in a unidirectional manner, 1 write and 2 read. It continuously
stores the incoming field with its motion vector and extracts fields n-1 and field n-2 from
the other two buffers.

To provide efficient memory utilization, the pixel stream and error stream are tightly
packed into the VFBC or AXI4-MM data streams. Depending on the configured bit depth,
there are three different packing formats. The stored video image should not be used by
other modules. This information is an internal memory pool, although it can be monitored
if needed.

Figure 4-5 illustrates the memory packing algorithm. Fields marked "pix" indicate 444
pixels and fields marked "err" are the associated motion error vector.

X-Ref Target - Figure 4-4

Figure 4-4: Triple Buffer Usage

X-Ref Target - Figure 4-5

Figure 4-5: VFBC Data Packing Format

��������	�
�������������������	�
�����������

�

���

���

�
����
���

�����
�
��
/�����0�������

����

/�����0�������
����

/�����������
������

�

��
��

�
��

��
��
��
�

�� ���

�

���

/�����0�������
����

/�����0�������
����

/�����������
������

(�)������������

1���2����2
�
21����

�����1����

1���������1���*

1���*����*

1���2����2

3�����!
��
�+����4�������2����4���

2�222

2�22�

2�22�

2�22*

2�22+
2�22,

2�22-

1���2�
2

����21����

�����1����

1���������1���*

1���*����*

1���2�
2

����2

�2�����!
��
*2����4�������2����4���

1���
�

1���2

�������!
��
*-����4�������2����4���

�
2

1
21����

1���������

�����

1����
1
�1���*

1���*����*

5�������6�+����� 5�������6�������

����2

(�)���%��

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 41
PG017 October 19, 2011

Chapter 4: Designing with the Core

Memory Size
When calculating memory requirements for the deinterlacer, the packing method and
input video field size must be considered. For 8 and 10-bit color depth, the ratio is (5/4)
because five words are required to store four pixel/error pairs. For 12-bit color depth, the
ratio is (3/2) because three words are required to store two pixel/error pairs. For example:

8-bit image with 720 wide requires : 720 * (5/4) dwords = "900" per line

12-bit image with 1920 wide requires: 1920 * (3/2) dwords = "2880" per line

Consequently, for a full 12-bit image that is 1920 wide and 540 lines per field, a buffer of
2880 * 540 = 1.55 Mwords = 6.22 Mbytes is required. The total for the triple store is 18.7
Mbytes of storage.

Note: The ratios of 5/4 and 3/2 impose a line width limitation on the deinterlacer. The number of
dwords per line must result in an integer value. For example, this would not be allowed: 719 8-bit
pixels = 719* (5/4) = 898.75.

Consequently, for 8 or 10-bit images, the xsize parameter must be divisible by 4, and for
12-bit images, the xsize parameter must be divisible by 2.

I/O Interface and Timing

AXI4-Lite and GPP Interface
When selected via CORE Generator, an AXI4-Lite interface is included in the IP module.
This interface is used to configure the deinterlacer dynamically during run time. While the
interface operates in its own clock domain, the transfer of register information into the
deinterlacer and memory controller is done synchronously. All registers are shadowed in
their respective domains.

There are three categories of registers inside the core:

• Global Registers

Located in the AXI4-Lite clock domain and used internally by the deinterlacer for core
wide operations, including forcing modes and completely disabling the deinterlacer.

• Deinterlacer Configuration Registers

Used to specify most of the aspects in deinterlacing, including algorithm selection,
threshold control, raster size, color space and so on.

• Memory Controller Configuration Registers

Used to set up the triple field buffer memory regions that are required by the
deinterlacer core.

Dynamic Reconfiguration

When working with multiple input standard streams that can change from frame to frame,
the deinterlacer can transition smoothly from one format to the next without producing
any unnecessary data at its output. This is achieved through the AXI4-Lite interface
scheduler.

When system software programs the AXI4-Lite registers, only registers within the
AXI4-Lite domain are affected. These registers can be freely written to or read from. After
the software has committed to a new configuration, it writes to the global register and
asserts an update request.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 42
PG017 October 19, 2011

Chapter 4: Designing with the Core

After this request is queued, all of the deinterlacer registers become read-only (apart from
the global register). Upon the next frame boundary, the deinterlacer shadows all registers
and begins processing using the new settings. This synchronous transfer ensures a clean
transition from one format to the next.

If the software decides to stop the update request, it can cancel it using the global register.
This operation occurs immediately as a force operation and should generally not be used
under normal operating conditions. The disabling can occur coincident with the actual
internal update and can cause the deinterlacer to generate unnecessary output.

Interrupts

The deinterlacer core provides eleven interrupt events to ensure efficient use of the system
AXI4-Lite when using a deinterlacer. All interrupts have their own status register and can
be independently enabled, disabled, and cleared. Under normal operating conditions, the
deinterlacer does not require AXI4-Lite interaction. However, interrupts can be used to aid
in monitoring the system state.

These interrupts are:

• Internal register update has occurred

Used to acknowledge the register update request event.

• Deinterlacer synchronized

Indicates input video raster is stable and matches programmed x/y sizes known to
deinterlacer.

• Deinterlacer has lost synchronization

Indicates different input video raster to programmed x/y/ sizes, or input is not stable.

• Deinterlacer internal FIFO over run error

Occurs if video clock is not fast enough to process input video.

• Pull down controller is activating

Indicates that a pull-down cadence is detected and output video is now derived by the
cadence.

• Pull down controller is deactivating

Indicates that the pull-down controller has detected the disappearance of the cadence,
and the deinterlacer is reverting to normal mode.

AXI4-Lite Timing
The AXI4-Lite interface is used for programming the video deinterlacer operational modes
and interrupt system. Read or write accesses to the AXI4-Lite port are considered low
bandwidth and as such the slave port only processes one AXI4-Lite access at a time. If the
deinterlacer is presented with a simultaneous read and write operation, the write
operation takes precedence and the read operation stalls. Once the write operation is
complete, the read operation completes.

Figure 4-6 shows several write operations followed by several read operations and
illustrates the read and write timing of the AXI4-Lite interface.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 43
PG017 October 19, 2011

Chapter 4: Designing with the Core

All AXI4-Lite signals not required by the AXI4-Lite specification have no connection to the
deinterlacer.

General Purpose Processor (GPP) Interface
The video deinterlacer can be configured to have a simple GPP interface instead of an
AXI4-Lite port. This interface exposes all the GPP accessible registers for direct control by
the system designer. The exception is that an interrupt mechanism is not available. The
target system must monitor the status lines on the GPP to determine if any failures or faults
have occurred.

The GPP signals are synchronous to the GPP clock domain. The internals of the
deinterlacer operate using several clock domains. The same update mechanism for
internal registers is used by the GPP port. The controlling system must prime the GPP
signals on the GPP clock domain and then raise the "update request" input line. The
deinterlacer then updates its internal registers on the next available frame interrupt and
responds by raising the "update done" GPP output signal. The user should then lower the
"update request" signal. This technique allows for the synchronous changing of
deinterlacer operations resulting in an output that is always glitch free.

Control Interface
There are two control interface options available in CORE Generator software; EDK pCore
or GPP. The interface types differ primarily in the method of delivery of the user-defined
control values.

Control Values

In both GPP and pcore modes, the control values are provided dynamically at the input of
the deinterlacer and can be changed during run time.

For the pcore version of the core, CORE Generator software provides the GPP core placed
in a wrapper, which allows you to parameterize the deinterlacer core in EDK. The ports are
driven by registers on a AXI4-Lite bus. The address is decoded in the wrapper. A
MicroBlaze™ processor software driver is provided in source code form to drive these
ports.

X-Ref Target - Figure 4-6

Figure 4-6: AXI Slave Write and Read Operations

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 44
PG017 October 19, 2011

Chapter 4: Designing with the Core

The parameters that can be set dynamically via AXI4-Lite registers are:

• packing: controls the YUV packing mode used; 4:2:2, 4:2:0 or 4:4:4

• kernel mode: controls what deinterlacer algorithms are used

• threshold T1: controls the low motion threshold

• threshold T2: controls the high motion threshold

• cross fade ratio: controls the scaling factor used by the cross fader

• xsize, ysize: controls the active window size of the output video frame

• field order: sets the field order as: HD,PAL or NTSC

• color: selects which color space is processed, YUV or RGB

• black: sets the pixel value for black inside the core, dependent on color space setting

• fswords: set the amount of 32-bit words that are required to store one field of video in
the external memory buffer

• fsbase0,1,2: sets the 32-bit base addresses of the three external field buffers

• PsF mode: controls if the deinterlacer is processing interlaced, PsF or progressive
image structures

• pull-down mode: controls if the pull-down controller is activated

Memory Interface
The video deinterlacer motion kernel requires video frame history to deinterlace the input
video stream. The input video stream is processed and stored into an external memory
store along with specific associating sideband information. The external memory store is
then used in the reconstruction of the output video stream.

The memory controller splits up external memory into a rolling three video-field store,
where one field is written to while two fields are read from. This triple field buffer is
controlled autonomously by the deinterlacer and driven through the VFBC streams.

The AXI4-Lite interface allocates the base addresses of the three field buffers and the
physical size of a buffer. System software can dynamically alter this on the fly if required to
adapt to changing video formats.

The memory interface runs in its own clock domain. The clock rate of this interface must
run at a slightly higher rate than the video interface clock. The bandwidth requirements of
the memory interface are discussed in VFBC/MPMC Memory and Interface Option.

AXI4 Memory and Interface
The key features of the AXI-MM port are:

• Single port to move all 3 deinterlacer streams, reducing AXI-interoconnect overhead

• Asynchronous clock to Deinterlacer video path, allowing AXI clock to match
interconnect to ensure highest efficiency bursting.

• Mutli thread support. To allow multiple data streams to move across a common bus

• Multiple outstanding requests. To reduce system latency impacts

• Scalable from 32 to 256 bits wide.

The AXI4-MM port stores and extracts video fields and error information used by the
deinterlacer core. The AXI4-MM port operates in a multi-threaded bi-directional manner.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 45
PG017 October 19, 2011

Chapter 4: Designing with the Core

The internal Deinterlacer has 3 independent data streams all moving the internal packed
data format. These streams comprise of one write stream and two read streams.

To further provide efficient memory utilization, the pixel stream and error stream are
packed into the AXI data streams. Depending on the configured bit depth, there are three
different packing formats.

Figure 4-7 illustrates the memory packing algorithm. Fields marked "pix" indicate 444
pixels and fields marked "err" are the associated motion error vector.

When calculating external memory requirements for the deinterlacer, the packing method
and input video field size must be considered. For 8 and 10-bit color depth, the ratio is 5/
4 as 5 words are required to store 4 pixel/error pairs. For 12-bit color depth, the ratio is 3/
2 as 3 words are required to store 2 pixel/error pairs.

For example:

An 8-bit image with 720 wide requires : 720 * (5/4) dwords = "900" per line

A 12-bit image with 1920 wide requires: 1920 * (3/2) dwords = "2880" per line

Write Stream

The AXI memory controller uses the AXI-Write channel to push all write data onto the
AXI-interconnect at the configured data-width given. All bursts are a fixed length of 32
beats in length (m_axi_awlen). Thus for wider data bus widths more data is conveyed per
burst.

All write operations ensure highest bus efficiency with back-to-back data packing and no
narrow transactions. The Deinterlacer will only request a AXI transaction if it has data to
immediately move.

The write stream will only generate 1 outstanding transaction at a time. A typical burst is
shown below of beat length 0x1F, to address 0x41700E00. The initial queing of the burst can
be seen, followed by a continuos of 32 beat burst of data. Whilst "m_axi_wvalid" is
constantly high, the "m_axi_wready" pushback from the AXI-interconnect is
demonstrating possible throttling by a downstream memory controller.

X-Ref Target - Figure 4-7

Figure 4-7: VFBC Data Packing Format

1���2����2
�
21����

�����1����

1���������1���*

1���*����*

1���2����2

3�����!
��
�+����4�������2����4���

2�222

2�22�

2�22�

2�22*

2�22+
2�22,

2�22-

1���2�
2

����21����

�����1����

1���������1���*

1���*����*

1���2�
2

����2

�2�����!
��
*2����4�������2����4���

1���
�

1���2

�������!
��
*-����4�������2����4���

�
2

1
21����

1���������

�����

1����
1
�1���*

1���*����*

5�������6�+����� 5�������6�������

����2

(�)���%��

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 46
PG017 October 19, 2011

Chapter 4: Designing with the Core

Read Stream

The AXI memory controller uses the RD channels of AXI to extract 2 streams of video
information from the external memory interface. To ensure efficient use of the AXI bus and
external memory controller, the deinterlacer's memory controller uses :

• Multiple outstanding reads to ensure system latency's have no impact on the
deinterlacer processing.

• Multiple thread-id's to all for 2 read-streams to share a single common AXI port.

Any downstream memory controller must be configured to support the above features.
The Xilinx AXI-Memory controller can easily be configured for such a usage model.

To ensure no wasted AXI bandwidth or interconnect throttling occurs, the Deinterlacer
will only issue read requests if it can fully accept the read data. The read-ready strobe is
permanently tied high (m_axi_rready).

All bursts are a fixed length of 32 beats in length (m_axi_arlen). Thus for wider data bus
widths more data is conveyed per burst. No narrow bursting is done

Each of the 2 streams are given a static unique AXI "thread-id", these being 0 & 1.When
transactions are posted onto the AXI-interconnect, the downstream module will maintain
a list of the id's of each request and return the id alongside the returning data burst. The
Deinterlacer then routes the inbound data to the correct internal read stream.

In order to cater for unpredictable system latencies the Deinterlacer per thread-id issues up
to 2 outstanding read request. A maximum of 4 outstanding requests can be seen in
systems with high read latency, and the target memory control should be configured to
support this mode of operation.

Shown below is a multi-threaded read operation, the diagram is highlighted to indicate
thread 0 and 1's independent read requests, followed by the returning data (tagged with
the correct id) The diagram also illustrates an external memory controller that is unable to
fully supply data to the axi-interconnect at its line rate, and thus m_axi_rvalid is toggling
throughout the read data bursts.

X-Ref Target - Figure 4-8

Figure 4-8: Write Stream Burst

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 47
PG017 October 19, 2011

Chapter 4: Designing with the Core

Clocking

There is a minimum clock requirement on the AXI clock (vfbc_clk). The AXI-MM domain
must provide the deinterlacer with its data in a timely manner. This requirement combined
with the packing formats inside the AXI controller and the data width of the AXI-MM bus
yield a minimum clock rate.

The formulas below are theoretical minimums that assume the read and write streams can
process data with 100% efficiency. If the system cannot achieve this, the AXI clock rate
should be scaled accordingly to cater for the correct system efficiency.

The base formula is:

write_32bit_words_second = packing ratio * pixel rate

read_32bit_words_second = 2 * packing ratio * pixel rate

axi_clk= read_32bit_words_second*(axi_data_width/32)

Shown below is a selection of examples of the above equations.

1. The signal is named vfbc_clk instead of the typical m_axi_aclk. This is due to the clock pin being shared
with either the VFBC or AXI implementations.

VFBC/MPMC Memory and Interface Option
The VFBC ports store and extract video fields and error information used by the
deinterlacer core. Each VFBC port operates in a unidirectional manner, with port 0 as a
write port and ports 1, 2 as read ports.

X-Ref Target - Figure 4-9

Figure 4-9: Read Stream Burst

AXI Clock
Rate

Pixel Rate Packing Ratio Reads/Sec Writes/Sec
AXI Data

Width

33.75MHz
(SD)

13.5MHz
8bit = (5/4) 33.75MHz 16.875MHz 32bits

185.6MHz
(HD)

74.25MHz
8bit = (5/4) 185.6MHz 92.8MHz 32bits

46.4MHz
(HD)

74.25MHz
8bit = (5/4) 185.6MHz 92.8MHz 128bits

111.3MHz
(HD)

74.25MHz
12bit = (3/4) 222.75MHz 111.3MHz 64bits

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 48
PG017 October 19, 2011

Chapter 4: Designing with the Core

To provide efficient memory utilization, the pixel stream and error stream are packed into
the VFBC data streams. Depending on the configured bit depth, there are three different
packing formats.

Figure 4-7 illustrates the memory packing algorithm. Fields marked "pix" indicate 444
pixels and fields marked "err" are the associated motion error vector.

When calculating memory requirements for the deinterlacer, the packing method and
input video field size must be considered. For 8 and 10-bit color depth, the ratio is 5/4 as 5
words are required to store 4 pixel/error pairs. For 12-bit color depth, the ratio is 3/2 as 3
words are required to store 2 pixel/error pairs.

For example:

An 8-bit image with 720 wide requires : 720 * (5/4) dwords = "900" per line

A 12-bit image with 1920 wide requires: 1920 * (3/2) dwords = "2880" per line

VFBC Clocking

There is a minimum clock requirement on the VFBC clock. The VFBC domain must
provide the deinterlacer with its data in a timely manner. This requirement combined with
the packing formats inside the VFBC controllers give a minimum clock rate. The formula
is:

vfbc clock = packing ratio * pixel rate

For example, using a triple port, given an input pixel rate of 13.5 MHz (SD Video) and 8-bit
color depth, the VFBC Clock must run at least (5/4) * 13.5 MHz = 16.875 MHz so the VFBC
can sink and source data fast enough. Due to memory latencies, a sensible safety margin of
50% above the calculated minimum is recommended. This 50% overhead leaves a minium
memory clock rate of 34 MHz.

VFBC Write Stream

Each field of data is pushed into the VFBC interface as data passes into the XSVI input bus.
The VFBC write controller breaks up the passing video frame into bursts of 128*32bit
words. Each burst is then transmitted across the VFBC port. For video frame sizes that do

X-Ref Target - Figure 4-10

Figure 4-10: VFBC Data Packing Format

1���2����2
�
21����

�����1����

1���������1���*

1���*����*

1���2����2

3�����!
��
�+����4�������2����4���

2�222

2�22�

2�22�

2�22*

2�22+
2�22,

2�22-

1���2�
2

����21����

�����1����

1���������1���*

1���*����*

1���2�
2

����2

�2�����!
��
*2����4�������2����4���

1���
�

1���2

�������!
��
*-����4�������2����4���

�
2

1
21����

1���������

�����

1����
1
�1���*

1���*����*

5�������6�+����� 5�������6�������

����2

(�)���%��

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 49
PG017 October 19, 2011

Chapter 4: Designing with the Core

not end at a 128 words boundary, the VFBC write controller still generates the 128 word
burst and pads the remaining data.

Figure 4-11 illustrates the VFBC Write Stream processing SD-Video. A short burst of write
data and overlapping command access occur. The VFBC Write stream maintains at least
one command queued in advance, so that the data stream can be kept continuous.

VFBC Read Stream

Each field that passes through the deinterlacer requires two fields worth of history to be
extracted from the memory interface. Two VFBC read streams extract this information in
bursts of 128*32bit words. Each burst is then stored in a deinterlacer FIFO ready for
processing by the deinterlacer kernels. For video frame sizes that do not end at a 128 word
boundary, the VFBC read controller generates a 128 word burst and then abandons the
extra data.

To provide the data in a timely manner, both read queues are always primed with an
outstanding command. This enables the memory controller to immediately move onto the
next read burst after it has completed the previous burst.

Video Interface
The video deinterlacer has one input and output video port. The input video timing
(hblank/vblank) is used solely to identify the first pixel of each input frame. The specific
width of the horizontal and height of vertical blanking intervals are not significant but
must have a minimum width of one video clock pulse.

The deinterlacer only processes the active video portion of the input video, all other
blanking data is discarded. Critically, the core generates pixels at twice the input rate of

X-Ref Target - Figure 4-11

Figure 4-11: VFBC Write Stream

X-Ref Target - Figure 4-12

Figure 4-12: VFBC Read Stream

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 50
PG017 October 19, 2011

Chapter 4: Designing with the Core

input video data. To ensure the system can process the input data without loosing pixels, a
core wide video clock-enable strobe is provided.

This must be used on the input side to throttle the input video to half the video clock rate.
The waveform of the clock enable must only maintain an average of 50% active, the period
of this signal can be random. Figure 4-13 illustrates an example video clocking of the
deinterlacer.

The core output is always progressive in format when the deinterlacer is enabled and a
synthetic video timing frame is constructed around the output stream to provide vertical
and horizontal blanking strobes for downstream cores.

Figure 4-14 illustrates typical input and output frame structures.

The video deinterlacer can process either 4:2:0, 4:2:2 or 4:4:4 video formats. These can either
be statically set at core configuration time or can be configured to be dynamically
controllable by system software.

X-Ref Target - Figure 4-13

Figure 4-13: Input to Output Video Clock Ratio for SD

�������������������

7�����������6��*&,	89:

;���

 ����������

��������������
�������������

7�����������6��<	89:

;���
���
�%�
�<	89

;���
���
�%������

(�)����

X-Ref Target - Figure 4-14

Figure 4-14: Input and Output Video Timing Formats

/������$�
��

������������%��

/������$����

������������%��

=���%�

2

����%
�2

/������$�
��

������������%��

�������;���

���������������� ��������
���������

/������$�
��

������������%��

�������;���

/�����>��������/��!�

?��
��>��������/��!�
(�)����
)���!�

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 51
PG017 October 19, 2011

Chapter 4: Designing with the Core

Figure 4-15 illustrates the video timing of the various supported packing formats.

When using the motion kernel, the deinterlacer must have two fields of video history to
create the desired output. During a video input standard change, start-up condition or
error state, there is no video history for the deinterlacer to use. For these frames, the
deinterlacer produces progressive video outputs without the aid of the motion adaptive
kernel. Consequently, these initial frames appear softer in format until the memory
interface has obtained sufficient history so that it can produce the required output quality.

Figure 4-16 illustrates the sequencing of the deinterlacer output with respect to input
variance. The diagram shows the two initial frames (1 and 2) being created from raw
passing video and then the remainder (3-7) being produced with the aid of the historical
data.

The second image shows a normally operating deinterlacer that is suddenly subjected to a
change in input video. The deinterlacer then resets the memory interface and reverts to a

X-Ref Target - Figure 4-15

Figure 4-15: XSVI Input and Output Packing Formats

;���
���
�%

��
�%������

@ @ @ @ @ @ @ @
�������;���

;���
� ���7<A2:
� � � � � � � �

; ; ; ; ; ; ; ;

;���
� ���7�,A3:
;���
� ���7�*A�-:

 !"�#$#$#

��������=�
!�

@ @ @ @ @ @ @ @;���
� ���7<A2:
� � � �

; ; ; ;

;���
� ���7�,A3:

 !"�#$#$#�%
��#$�$�����#$�$&�����'

;���
� ���7�*A�-:

��������=�
!�

@ @ @ @ @ @ @ @;���
� ���7<A2:
� ; � ; � ; � ;;���
� ���7�,A3:

 !"�#$�$�

��������=�
!�

��������=�
!�

@ @ @ @ @ @ @ @;���
� ���7<A2:
� ; � ;;���
� ���7�,A3:

 !"�#$�$&

(�)����
)���%��

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 52
PG017 October 19, 2011

Chapter 4: Designing with the Core

lower quality, while it builds up new picture history over the first two frames. It then
reverts to a fully operational state from then on.

Clocking
To provide a compact design, the deinterlacer provides only minimal buffering required in
performing the deinterlacing operation. Extra buffering required by the use of the full/
pause-flags as system push back are outside the scope of this module.

The Video Deinterlacer comprises these clock domains:

• Video Clock Domain: All video passes through this common clock domain and the
deinterlacer core resides here.

• AXI4-Lite Clock Domain: The AXI4-Lite interface and interrupt signalling operates on
its own exclusive domain.

• Memory Clock Domain: All memory ports use a common clock that is exclusive to the
memory interface(s).

• The user can combine or keep these clock domains separate as per their architecture
requirements.

Resets
The Video Deinterlacer core has multiple reset inputs, one for each clock domain. The
Video Deinterlacer core comprises these reset inputs.

• Video Clock Domain: sclr (active high)

• AXI4-LiteClock Domain: s_axi_aresetn (active low)

• Memory Clock Domain: m_axi_aresetn (active low)

X-Ref Target - Figure 4-16

Figure 4-16: Examples of Deinterlacer Start-up Conditions

�

�

� �

�

* +

*

, -

&� �� $�

.� �

�. � �

$� &

*

(�)����)�������

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 53
PG017 October 19, 2011

Chapter 4: Designing with the Core

Protocol Description
The Video Deinterlacer core register interface is compliant with the AXI4-Lite interface.
The memory interface is compliant with the AXI4 Memory Mapped interface. The Video
Deinterlacer output interface can be configured to be compliant with the AXI4-Stream
interface.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 54
PG017 October 19, 2011

Chapter 5

Constraining the Core

Required Constraints
There are no required constraints for the Video Deinterlacer core.

Device, Package, and Speed Grade Selections
There are no Device, Package or Speed Grade requirements for the Video Deinterlacer core.

Clock Frequencies
There are no specific clock frequency requirements for this core.

This core has not been characterized for use in low power devices.

Clock Management
The Video Deinterlacer core has 3 clock inputs: vid_clk, vfbc_clk, and s_axi_aclk.
The vid_clk is used for core processing. The vfbc_clk is used for the input/output
VFBC or AXI Memory Mapped interfaces. The s_axi_aclk is used for the AXI4-Stream
output interface. All 3 clock domains can be considered asynchronous to each other. No
relationship is required.

Clock Placement
There are no specific Clock placement requirements for this core.

Banking
There are no specific Banking rules for this core.

Transceiver Placement
There are no Transceiver Placement requirements for this core.

I/O Standard and Placement
There are no specific I/O standards and placement requirements for this core.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 55
PG017 October 19, 2011

Chapter 6

Detailed Example Design

The deinterlacer is typically used in the broadcast video conversions of SD and HD
material to progressive formats for subsequent display on a display monitor.

Case 1: SD480i to SD480p
One typical use of the deinterlacer is the fixed conversion of NTSC to 480p video. In this
application, the deinterlacer uses the GPP interface and the configuration values are
statically wired at the top layer of the final design. A CPU is not required for this
implementation.

The core is configured to process an 8-Bit 4:2:2 YUV stream coming from a XSVI SDI input
stream. The T1, T2 and cross fade ratio settings are wired to their default values. Full
deinterlacing is enabled.

Given a pixel rate of 13.5 MHz for SD video, the video clock required is at least 27 MHz as
shown in Figure 6-1. This can be derived from the incoming video and passed through a
DCM to double the clock rate.

The memory clock is set by considering the bit depth and pixel rate. Since 8-bit video is
used, the packing ratio is 5/4. A safety margin of 70% VFBC utilization is used. Taking
these factors into account, the minimum memory clock rate is:

Memory clock = [13.5 MHz * (5/4) *] / 0.70 = 24.1 MHz

The SDI system clock minimum is 13.5 MHz. Using a minimal clock approach, the video
clock and memory clock can be connected and run at a common multiple of 13.5 MHz.
27 MHz is the first DCM multiple to satisfy the requirements of both the memory clock and
video clock.

X-Ref Target - Figure 6-1

Figure 6-1: Example SD Data Path

�������������������

7�����������6��*&,	89:

;���

 ����������

��������������
�������������

7�����������6��<	89:

;���
���
�%�
�<	89

;���
���
�%������

(�)����

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 56
PG017 October 19, 2011

Chapter 6: Detailed Example Design

The memory bandwidth can now be determined. The deinterlacer has three memory
streams, so the effective memory bandwidth of SD is:

24.1 MWords/Second * 3 streams = 72.3 MW/s or 289 Mbytes/s

Case 2: HD1080i to HD1080p
Another typical use of the deinterlacer is for the conversion of 1080iHD to 1080pHD video.
In this application, the deinterlacer uses the AXI4-Lite interface and the configuration
values are dynamically set by the system software.

The core is configured to process a 10-bit 4:4:4 YUV stream from a XSVI SDI input stream.
The T1, T2 and cross fade ratio settings are set to their default values; full deinterlacing is
enabled.

Given a pixel rate of 74.25 MHz for HD video, the video clock required is at least 148.5
MHz as shown in Figure 6-2.

The memory clock is set by considering the bit depth and pixel rate. Using 12-bit video, the
packing ratio is 3/4, and with a safety margin of 60% VFBC utilization, the minimum
memory clock rate is:

Memory clock = [74.25 MHz * (3/2)] / 0.60 = 185 MHz

The memory bandwidth can now be determined. The deinterlacer has three memory
streams, so the effective memory bandwidth of SD is:

185 MWords/Second * 3 streams = 556 MW/s or 2.2 GBytes/s

For example, selecting a 32-bit DDR interface with a fabric clock rate of 200 MHz, physical
clock rate of 400 MHz and DDR3-800 device, the theoretical bandwidth is 3.2 GBytes/s.
This device configuration would sustain the deinterlacer, leaving 1 GB/s for other
applications.

Directory and File Contents
• Expected

• c_deinter0000.bmp

• c_deinter0001.bmp

• c_deinter0002.bmp

• c_deinter0003.bmp

X-Ref Target - Figure 6-2

Figure 6-2: Example HD Data Path

�������������������

7�����������6�<�&�,	89:

;���

 ����������

��������������
�������������

7�����������6��+3&,	89:

;���
���
�%�
�+3&,	89

;���
���
�%������

(�)����

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 57
PG017 October 19, 2011

Chapter 6: Detailed Example Design

• c_deinter0004.bmp

• c_deinter0005.bmp

• c_deinter0006.bmp

• c_deinter0007.bmp

• c_deinter0008.bmp

• c_deinter0009.bmp

• c_deinter0010.bmp

• c_deinter0011.bmp

• c_deinter0012.bmp

• c_deinter0013.bmp

• c_deinter0014.bmp

• c_deinter0015.bmp

• c_deinter0016.bmp

• c_deinter0017.bmp

• c_deinter0018.bmp

• c_deinter0019.bmp

• c_deinter0020.bmp

• Stimuli

• FormulaOne_035.yuv

• FormulaOne_036.yuv

• FormulaOne_037.yuv

• FormulaOne_038.yuv

• FormulaOne_039.yuv

• FormulaOne_040.yuv

• FormulaOne_041.yuv

• FormulaOne_042.yuv

• FormulaOne_043.yuv

• FormulaOne_044.yuv

• FormulaOne_045.yuv

• FormulaOne_046.yuv

• FormulaOne_047.yuv

• FormulaOne_048.yuv

• Results

• src

• v_deinterlacer_v1_0_u0.vhd

• v_deinterlacer_v1_0_u0.xco

• tb_src

• axi_model.vhd

• bmp_reader.vhd

• bmp_writer.vhd

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 58
PG017 October 19, 2011

Chapter 6: Detailed Example Design

• include_deint_tb.vhd

• mpmc_model.vhd

• testbench.vhd

• vid_gold.vhd

• vid_reader.vhd

• vid_writer.vhd

• yuv_writer.vhd

• isim_wave.wcfg - Waveform configuration file for iSim

• mti_wave.do - Waveform configuration for ModelSim

• run_isim.bat - Runscript for iSim in Windows OS

• run_isim.sh - Runscript for iSim in Linux OS

• run_mti.bat - Runscript for ModelSim in Windows OS

• run_mti.sh - Runscript for ModelSim in Linux OS

Demonstration Test Bench
A demonstration test bench is provided as a simple introductory package that enables you
to observe the core generated by the CORE Generator tool operating in a waveform
simulator. You are encouraged to observe core-specific aspects in the waveform, make
simple modifications to the test conditions, and observe the changes in the waveform.

Simulation
• Simulation using ModelSim for Linux:

From the console, Type source run_mti.sh.

• Simulation using ModelSim for Windows:
Double-click on run_mti.bat file.

• Simulation using iSim for Linux:
From the console, Type source run_isim.sh.

• Simulation using iSim for Linux:
Double-click on run_isim.bat file.

Messages and Warnings
"Memory Collision Errors" have been observed when running the demonstration test
bench. The issue has been investigated and it has been determined that these errors can be
safely ignored. This error message can be suppressed in ModelSim when the global
SIM_COLLISION_CHECK option is set to NONE.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 59
PG017 October 19, 2011

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A validation suite consisting of a precompiled Windows C model and RTL test bench
framework is included with the video deinterlacer. Both environments allow users to
stream their own 24-bit true color BMP or YUV8/YUV10 files into the simulator and
produce real BMP output files. This advantage allows for real world examples to be tested
with the deinterlacer in advance. Additionally, an AVI video sequence file is also generated
by the C model, allowing users to view animated results of the simulation in their chosen
video program.

Additional system simulation and FPGA colorization is available via the AXI4-Lite
interface to illustrate the algorithms operation and decision matrix in live operation. This
can be useful if dynamic control of the thresholds is done by the system software.
Figure A-1 shows a normal fully deinterlaced output. Note the smoothed lines of the
deinterlacer.

X-Ref Target - Figure A-1

Figure A-1: No Colorization

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 60
PG017 October 19, 2011

Appendix A: Verification, Compliance, and Interoperability

Figure A-2 is the same image with full diagonal colorization enabled. The green highlight
shows the diagonal edges that were detected and then enhanced.

Figure A-3 is the same image with full motion colorization enabled. The three lines are
moving upward. The three trailing motion vectors are in red around each white line. The
red lines show the front and back edge motion of the line.

Hardware Testing
Xilinx has a Real Time Video Engine reference design that has incorporated the
Deinterlacer. The RTVE design targets both Spartan-6 and Virtex-6 FPGA platforms.

X-Ref Target - Figure A-2

Figure A-2: Diagonal Colorization

X-Ref Target - Figure A-3

Figure A-3: Motion Colorization

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 61
PG017 October 19, 2011

Appendix B

Debugging

Step 1: Video Pass Through Bring Up
When initially bringing up the Deinterlacer in a simulator or FPGA environment, the
Deinterlacer can be configured to use minimal external interfaces. Use of the interrupt
mechanism is strongly advised, as this gives a real time indication of possible system
issues.

After system reset the Deinterlacer will start in bypass mode. This mode of operation
requires no external memory interface for the Deinterlacer to move video through itself. It
does require that the input and output video streams are operational.

By using the interrupt mechanism, the user can determine if the system is stable as no error
interrupts will occur. At this point video should be passing through the Deinterlacer data
path in its native format, (except all blanking will have been removed) System designers
should observe the video output matches the video input.

If error interrupts occur, the likelihood is that either the input or output fifo's have over
run.

• Input fifo overrun occurs if the output fifo is stalled for too long, or the vid_clk is
not running fast enough.

• Output fifo overrun occurs if the output fifo is stalled for too long (>1000 clks)

Step 2: Basic Deinterlacing
The user should configure the deinterlacer registers for the correct video raster size, basic
"field interpolation mode" and then schedule the Deinterlacer to start on the next frame. At
the next frame boundary the Deinterlacer will become "synchronised" this can be seen at
the top level pin "deint_sync" and also by an interrupt or reading the status register.

At this point the Deinterlacer will now start producing deinterlaced video output. The
output video interface pixel rate will now double. If a fault occurs then the Deinterlacer
will either lose sync or generate a fifo error. The porbable reasons for these are :

• Loss of sync; due to automatic recovery from an internal fifo overrun error, or the
X/Y dimensions do not match the input video X/Y dimensions. The Deinterlacer
must internal track X/Y so these registers must match.

• System error; if this is the first time the error has been seen, then the likelihood is
either that the vid_clk is not fast enough to allow pixel output at 2x the input rate, or
the output fifo has stalled the video and a backlog of >1000 pixels has occurred inside
the Deinterlacer.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 62
PG017 October 19, 2011

Appendix B: Debugging

Step 3: Full Deinterlacing Using Memory Controller
At this point the Deinterlacer should be doing on the fly deinterlacing without the use of
the VFBC/AXI-MM port. Program the base addresses of the triple buffers to target a
unique area of eternal memory. Update the mode register to select motion/full
deinterlacing method. The Deinterlacer will on the next frame boundary start the memory
interface port.

Under normal operation only the frame interrupt should ever trigger.

If a system error occurs, they can be broken down into 3 types

• Write stream overflow; the VFBC write port or AXI-Write port does not have enough
bandwidth to keep up with the demand off the Deinterlacer. If possible and
applicable, either increase the vfbc_clk rate or in the case of AXI, increase the data
width of this port.

• Read stream 0, Read stream 1 underflow; Either of the two internal read datapaths
fifo's have under run. This is generally due to eccessive system latency, or to slow a
vfbc_clk rate.

Possible chipscope analysis using an AXI -Bus-Monitor would best help understand the
bottleneck here.

Step 4: Check the Algorithms for Incorrect Video Output
By using the inbuilt colourisation mode, the diagonal and motion kernel operations can be
tracked. Turn on the colourisation modes and observe the output video. Using a known
video test sequence the colourisation should show the motion aritfiacts and diagonal edge
detections (only in moving objects). If the motion trails do not match the image then there
is most likely data corruption in the external memory interface port. Although the
transactions might be running cleanly, the triple buffers data would seem to be corrupt.

If corruption is visible, by activating PsF mode, the Deinterlacer is forced to use the
external memory for every Deinterlaced video line. By enabling this mode, the user can
validate the external memory is not corrupt.

Step 5: Pulldown Testing and Pitfalls
When applicable, the inbuilt cadence detectors can be individually enabled / disabled.
Once enabled, the detectors will periodically activate/deactivate. In images with low/no
motion the cadence detectors may disable until such time as significant motion occurs
again. This is normal operation. If the user is monitoring the pulldown interrupts they will
see this periodic cycling.

For instance, in the case of scene changes through black, the cadence detector may also
drop out momentarily. As no motion is visible at this point the quality of the video output
will still be of highest quality even though the cadence detector is inactive.

Failure to detect a cadence in a known sequence that should have 3:2 or 2:2 is generally
down to poor quality video that has undergone various compression's/re-authoring steps.
For example in converting a DVD to SDI, the quality of the hardware decoders and
subsequent scalers, colour-space converters, chroma-resamplers etc.. can all introduce
sufficient noise and artifacts that makes the cadence become undetectable. This is specially
in the case of 2:2 footage, 3:2 encoding is a more robust mechanism.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 63
PG017 October 19, 2011

Appendix C

Application Software Development

pCore Driver Files
The Deinterlacer pCore includes a software driver written in the C programming language
that the user can use to control the core. A high-level API provides application developers
easy access to the features of the Xilinx® Object Segmentation core. A low-level API is also
provided for developers to access the core directly through the system registers described
in the previous section.

Table C-1 lists the files included with the Deinterlacer pCore driver.

pCore API Functions
This section describes the functions included in the pcore Driver files generated for the
Deinterlacer pCore. The software API is provide to allow easy access to the registers of the
pCore as defined in Table 2-1. To utilize the API functions provided, the following header
files must be included in the user's C code:

#include "xparameters.h"

#include "xdeint.h"

Table C-1:

Name Description

xdeint.h
Contains all prototypes of high-level API to access all of the features

of the Xilinx Video Deinterlacer device.

xdeint.c
Contains the implementation of high-level API to access all of the

features of the Xilinx Video Deinterlacer device

xdeint_intr.c
Contains the implementation of high-level API to access the interrupt

feature of the Xilinx Video Deinterlacer device.

xdeint_sinit.c
Contains static initialization methods for the Xilinx Video

Deinterlacer device.

xdeint_g.c

Contains a template for a configuration table of Xilinx Video
Deinterlacer devices. This file is used by the high-level API and is

automatically generated to match the Xilinx Video Deinterlacer
device configuration by Xilinx EDK/SDK tools when the software

project is built.

xdeint_hw.h
Contains low-level API (that is, identifiers and register-level driver

API) that can be used to

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 64
PG017 October 19, 2011

Appendix C: Application Software Development

The hardware settings of your system, including the base address of your Object
Segmentation core are defined in the xparameters.h file. The xdeint.h file provides the API
access to all of the features of the Deinterlacer device driver. More detailed documentation
of the API functions can be found by opening the file index.html in the pCore directory
deinterlacer_v1_00_a/doc/html/api

pCore API Functions in xdeint.c
• int XDeint_ConfigInitialize(XDeint *InstancePtr, XDeint_Config *CfgPtr,u32

EffectiveAddr)

This function initializes an Deinterlacer device

• XDeint_SetFramestore(XDeint *InstancePtr,u32 FieldAddr1, u32 FieldAddr2,u32
FieldAddr3, u32 FrameSize)

This function initialises the buffer pointers used by the deinterlacers external memory
interface

• XDeint_SetVideo(XDeint *InstancePtr, u32 Packing, u32 Colour, u32 Order, u32 PSF)

This function sets up the type of video processing to perform

• XDeint_SetThresholds(XDeint *InstancePtr u32 t1, u32 t2)

This function alters the default motion thresholds

• XDeint_SetPulldown(XDeint *InstancePtr u32 lo, u32 hi, u32 enable)

This function enabled/disables the pulldown/cadence detectors

• void XDeint_GetVersion(XDeint *InstancePtr, u16 *Major, u16 *Minor, u16 *Revision)

This function returns the hardware version

• void XDeint_SetSize(XDeint *InstancePtr, u32 Width, u32 Height)

This function sets the video frame aperture of the input video.

Functions in xdeint_sinit.c
• XDeint_Config *XDeint_LookupConfig(u16 DeviceId)

This function returns a references to an Xdeint_config structure based on the unique
device ID given

Functions in xdeint_intr.c
• void XDeint_IntrHandler(void *InstancePtr)

This function is the interrupt handler for the Deinterlacer driver

• int XDeint_SetCallBack(XDeint *InstancePtr,void *CallBackFunc)

This function installs an asynchronous callback function for the given handler type.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 65
PG017 October 19, 2011

Appendix D

C Model Reference

The Xilinx LogiCORE™ IP Video Deinterlacer has a bit accurate C model for 32-bit
Windows, 64-bit Windows, 32-bit Linux and 64-bit Linux platforms. The model has an
interface consisting of a set of C functions, which reside in a statically link library (shared
library). Full details of the interface are given in Interface. An example piece of C code is
provided in Example Code to show how to call the model. The model is bit accurate, as it
produces exactly the same output data as the core on a frame-by-frame basis. However, the
model is not cycle accurate, as it does not model the core's latency or its interface signals.
The latest version of the model is available for download on the Xilinx LogiCORE IP Video
Deinterlacer web page at:

http://www.xilinx.com/products/ipcenter/EF-DI-DEINTERLACER.htm

Unpacking and Model Contents
Unzip the deinterlacer_v1_0_bitacc_model.zip file, containing the bit accurate
models for the Video Deinterlacer IP Core. This creates the directory structure and files in
Table D-1.

Table D-1: Directory Structure and Files of the Video Deinterlacer v1.0 Bit Accurate C Model

File Name Contents

./doc Documentation directory

README.txt Release notes

pg017_deinterlacer.pdf LogiCORE IP Video Deinterlacer Product Guide

Makefile Makefile for running gcc via make for 32-bit and 64-bit Linux platforms

deinterlacer_v1_0_bitacc_cmodel.h Model header file

yuv_utils.h header file declaring the YUV image / video container type and
support functions including .yuv file I/O

rgb_utils.h header file declaring the RGB image / video container type and
support functions

bmp_utils.h header file declaring the bitmap (.bmp) image file I/O functions.

video_utils.h header file declaring the generalized image / video container type, I/
O and support functions

video_fio.h header file declaring support functions for testbench stimulus file I/O

run_bitacc_cmodel.c example code calling the C model

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 66
PG017 October 19, 2011

Appendix D: C Model Reference

./lin64 Directory containing Precompiled bit accurate ANSI C reference model
for simulation on 64-bit Linux platforms.

libIp_deinterlacer_v1_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 Xilinx STL library, referenced by
libIp_deinterlacer_v1_0_bitacc_cmodel.so

run_bitacc_cmodel 64-bit Linux fixed configuration executable

run_bitacc_cmodel_config 64-bit Linux programmable configuration executable

./lin Directory containing Precompiled bit accurate ANSI C reference model
for simulation on 32-bit Linux platforms.

libIp_deinterlacer_v1_0_bitacc_cmodel.so

Model shared object library

libstlport.so.5.1 Xilinx STL library, referenced by
libIp_deinterlacer_v1_0_bitacc_cmodel.so

run_bitacc_cmodel 32-bit Linux fixed configuration executable

run_bitacc_cmodel_config 32-bit Linux programmable configuration executable

./nt64 Directory containing Precompiled bit accurate ANSI C reference model
for simulation on 64-bit Windows platforms.

libIp_deinterlacer_v1_0_bitacc_cmodel.dll Precompiled dynamic link library file for 64-bit Windows platforms
compilation

libIp_deinterlacer_v1_0_bitacc_cmodel.lib Precompiled static library file for 64-bit Windows platforms
compilation

stlport.5.1.dll Xilinx STL library

run_bitacc_cmodel.exe 64-bit Windows fixed configuration executable

run_bitacc_cmodel_config.exe 64-bit Windows programmable configuration executable

./nt Precompiled bit accurate ANSI C reference model for simulation on
32-bit Windows platforms.

libIp_deinterlacer_v1_0_bitacc_cmodel.dll Precompiled dynamic link library file for 32-bit Windows platforms
compilation

libIp_deinterlacer_v1_0_bitacc_cmodel.lib Precompiled static library file for 32-bit Windows platforms
compilation

stlport.5.1.dll Xilinx STL library

run_bitacc_cmodel.exe 32-bit Windows fixed configuration executable

run_bitacc_cmodel_config.exe 32-bit Windows programmable configuration executable

./examples Example input files to be used with the run_bitacc_cmodel executable

FormulaOne_035.yuv Example YUV input file

FormulaOne_036.yuv Example YUV input file

FormulaOne_037.yuv Example YUV input file

Table D-1: Directory Structure and Files of the Video Deinterlacer v1.0 Bit Accurate C Model

File Name Contents

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 67
PG017 October 19, 2011

Appendix D: C Model Reference

Installation
For Linux, make sure the following files are in a directory in the $LD_LIBRARY_PATH
environment variable:

• libIp_deinterlacer_v1_0_bitacc_cmodel.so

• libstlport.so.5.1

Software Requirements
The Video Deinterlacer C models were compiled and tested with the software listed in
Table D-2.

Interface
The Xilinx LogiCORE IP Video Deinterlacer bit-accurate C model core function is provided
as a statically linked library. The bit-accurate C model is accessed through a set of functions
and data structures, declared in the header file
deinterlacer_v1_0_bitacc_cmodel.h. A higher-level software project may make
function-calls to the functions below:

/**
 * Create a new state structure for this C-Model.
 *
 * IMPORTANT: Client is responsible for calling
 * xilinx_ip_deinterlacer_v1_0_destroy_state()
 * to free state memory.
 *
 * @param generics Generics to be used to configure C-Model
 * state.
 *
 * @returns xilinx_ip_deinterlacer_v1_0_state* Pointer to the internal
 * state.

 FormulaOne_038.yuv Example YUV input file

 FormulaOne_039.yuv Example YUV input file

 FormulaOne_040.yuv Example YUV input file

 FormulaOne_041.yuv Example YUV input file

 FormulaOne_042.yuv Example YUV input file

Table D-1: Directory Structure and Files of the Video Deinterlacer v1.0 Bit Accurate C Model

File Name Contents

Table D-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

64-bit Linux GCC 3.4.6 & 4.1.1

32-bit Linux GCC 3.4.6 & 4.1.1

64-bit Windows Microsoft Visual Studio 2008

32-bit Windows Microsoft Visual Studio 2008

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 68
PG017 October 19, 2011

Appendix D: C Model Reference

 */
struct xilinx_ip_deinterlacer_v1_0_state*
xilinx_ip_deinterlacer_v1_0_create_state(struct
xilinx_ip_deinterlacer_v1_0_generics generics);

/**
 * Simulate this bit-accurate C-Model.
 *
 * @param state Internal state of this C-Model. State
 * may span multiple simulations.
 * @param inputs Inputs to this C-Model.
 * @param outputs Outputs from this C-Model.
 *
 * @returns Exit code Zero for SUCCESS, Non-zero otherwise.
 */
int xilinx_ip_deinterlacer_v1_0_bitacc_simulate
(
 struct xilinx_ip_deinterlacer_v1_0_state* state,
 struct xilinx_ip_deinterlacer_v1_0_inputs inputs,
 struct xilinx_ip_deinterlacer_v1_0_outputs* outputs
);

Before using the model, the structures holding the generics, inputs, and outputs of the
Deinterlacer instance have to be defined:

struct xilinx_ip_deinterlacer_v1_0_generics generics;
struct xilinx_ip_deinterlacer_v1_0_inputs inputs;
struct xilinx_ip_deinterlacer_v1_0_outputs outputs;

Declaration of the above structures can be found in
deinterlacer_v1_0_bitacc_cmodel.h.

Before making the function calls, the following steps are necessary:

1. Populate the 'generics' structure. It defines the values of build-time parameters. Please
see Deinterlacer Generics Structure for more information on the structure and an
example of how to initialize.

2. Populate the 'inputs' structure. It defines the values of run-time parameters. Please see
Deinterlacer Inputs Structure for more information on the structure and an example of
how to initialize.

3. Populate the 'outputs' structure. Please see Deinterlacer Outputs Structure for more
information on the structure and an example of how to initialize.

After the inputs are defined and all video_structs initialized the model can be
simulated by calling the following functions

 state = xilinx_ip_deinterlacer_v1_0_create_state(generics);
 if (state == NULL) {
 printf("ERROR: could not create state object\n");
 return 1;
 }

 // Simulate the core
 printf("Running the C model...\n");
 if(xilinx_ip_deinterlacer_v1_0_bitacc_simulate(state, inputs,
&outputs) != 0) {
 printf("ERROR: simulation did not complete successfully\n");
 return 1;
 } else {
 printf("Simulation completed successfully\n");

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 69
PG017 October 19, 2011

Appendix D: C Model Reference

 }

Results are provided in the outputs structure, which contains only one member of type
video_struct. More information on the video_struct structure can be found in
Deinterlacer Video Structure. Successful execution of all provided functions return value 0,
otherwise a non-zero error code indicates that problems were encountered during function
calls.

Deinterlacer Generics Structure
The Xilinx LogiCORE IP Video Deinterlacer Core bit accurate C model takes multiple
generic parameters. All generic parameters are integers or integer arrays. See Table D-3 for
generic definitions.

Calling xilinx_ip_deinterlacer_v1_0_get_default_generics() initializes the
generics structure, xilinx_ip_deinterlacer_v1_0_generics, with the deinterlacer
defaults. An example of initialization of the generics structure is as follows:

generics = xilinx_ip_deinterlacer_v1_0_get_default_generics(); //Get
Defaults

Deinterlacer Inputs Structure
The structure xilinx_ip_deinterlacer_v1_0_inputs defines the values of run time
parameters and the actual input video frames/images.

struct xilinx_ip_deinterlacer_v1_0_inputs
{
 struct video_struct video_in;

Table D-3: Deinterlacer Generics Structure

Generic Designation

C_STREAMS Number of simultaneous color planes

Valid values are 2 or 3.

C_DEPTH Bit depth of a pixel

Valid values are 8, 10 or 12

C_DIAG Enable the diagonal kernel

0 = disables the diagonal kernel

1 = enables the diagonal kernel

C_MOTION Enable the motion kernel

0 = disables the motion kernel

1 = enables the motion kernel

C_PULLDOWN Cadence/Pull-down detection

0 = No pull-down detection

1 = Full pull-down detection

C_COL Static color space setting

0 = YUV

1 = RGB

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 70
PG017 October 19, 2011

Appendix D: C Model Reference

 struct deinterlacer_cfg_struct *cfg;
 struct deinterlacer_pull_struct *pull;

}; // end xilinx_ip_deinterlacer_v1_0_inputs

The video_in variable is an array of video_struct structures, one structure per layer. See
the Deinterlacer Video Structure for a description of the video_in structure. The
video_in structure must be initialized.

Deinterlacer Config Structure
The cfg variable is a pointer to the deinterlacer_cfg_struct. The
deinterlacer_cfg_struct is defined as:

struct deinterlacer_cfg_struct
{
 int frame;
 int bmpfiles;
 int txtfiles;
 int rate;
 int t1;
 int t2;
 int pull_lo;
 int pull_hi;
 int pixel_scale;
 int filewidth;
 int fileheight;
 int depth;
 int format;
 int mode;
 int order;
 int pulldown;
 int cropx;
 int cropy;
 int width;
 int height;
 int length;
 int index;
 int debug;
 int pixel_mask;
 char source[256];
 char prefix[256];
 char num_len;
 char suffix[256];
 char golden[256];
 FILE *avifile;

 int lut[4096];

};

Pulldown Structure
The pull variable is a pointer to the deinterlacer_pull_struct. The
deinterlacer_pull_struct is defined as:

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 71
PG017 October 19, 2011

Appendix D: C Model Reference

struct deinterlacer_pull_struct{
 // Internal 22 State Machine
 int trained_22;
 int trained_22_d1;
 int last_22_delta;
 int confidence_22;

 // Internacer 32 State Machine
 int cx_32;
 int switch_32;
 int next_field_32;
 int bad_time_32;
 int bad_32;
 int trained_32;
 int trained_32_d1;
 int state_32;
 int p24_32;

 // Top level cotrol
 int active_32_early;
 int active_32;
 int active_22_early;
 int active_22;
 int mux_switch;
 int next_field;
 int p24;
};

Deinterlacer Outputs Structure
The structure xilinx_ip_deinterlacer_v1_0_outputs provides the actual output
video frames/images of the deinterlacer core. This structure is a wrapper to the standard
video_struct used by other Xilinx video core C models.

struct xilinx_ip_ deinterlacer_v1_0_outputs
{
struct video_struct video_out;
}; // xilinx_ip_deinterlacer_v1_0_outputs
The video_out structure must be initialized. The following code shows a
typical
video_out initialization.
// Setup Output Video Buffer
outputs.video_out.frames = inputs.num_frames;
outputs.video_out.rows = inputs.frame_cfg->y_size;
outputs.video_out.cols = inputs.frame_cfg->x_size;
outputs.video_out.mode = FORMAT_C444;
outputs.video_out.bits_per_component = generics.C_DATA_WIDTH;
outputs.video_out.data[0] = NULL;
outputs.video_out.data[1] = NULL;
outputs.video_out.data[2] = NULL;

Deinterlacer Video Structure
Input images or video streams can be provided to the Deinterlacer v1.0 reference model
using the video_struct structure, defined in video_utils.h. Output images or video
streams are also placed within a video_struct structure. The video_struct is defined
as:

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 72
PG017 October 19, 2011

Appendix D: C Model Reference

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5];
};

The structure member variables are defined in Table D-4.

Table D-5 shows the named constants for video modes with corresponding planes and
representations.

Table D-4: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure

rows Number of rows per frame

Pertains to the image plane with the most rows and columns, such
as the luminance channel for YUV data. Frame dimensions are
assumed constant through the all frames of the video stream,
however different planes, such as y, u and v can have different
smaller dimensions.

cols Number of columns per frame

Pertains to the image plane with the most rows and columns, such
as the luminance channel for YUV data. Frame dimensions are
assumed constant through the all frames of the video stream,
however different planes, such as y, u and v can have different
smaller dimensions.

bits_per_component Number of bits per color channel/component.

All image planes are assumed to have the same color/ component
representation. Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.

Named constants to be assigned to mode are listed in Table D-5.

data Of 5 pointers to 3 dimensional arrays containing data for image
planes. data is in 16 bit unsigned integer format accessed as
data[plane][frame][row][col]

Table D-5: Named Constants for Video Modes

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome - Luminance only.

FORMAT_RGB 3 RGB image / video data

FORMAT_C444 3 444 YUV, or YCrCb image / video data

FORMAT_C422 3 422 format YUV video, (u,v chrominance channels
horizontally sub-sampled)

FORMAT_C420 3 420 format YUV video, (u,v sub-sampled both
horizontally and vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 73
PG017 October 19, 2011

Appendix D: C Model Reference

Working With Video_struct Containers
The video_utils.h file defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

Function video_planes_per_mode returns the number of component planes defined by the
mode variable, as described in Table D-5. Functions video_rows_per_plane and
video_cols_per_plane return the number of rows and columns in a given plane of the
selected video structure. The following example demonstrates using these functions in
conjunction to process all pixels within a video stream stored in variable in_video, with
this construct:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode);
plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {
 // User defined pixel operations on
 // in_video->data[plane][frame][row][col]
 }
 }
 }
}

Delete the Video Structure
Large arrays such as the video_in element in the video structure must be deleted to free up
memory. As an example, the following function is defined as part of the video_utils
package.

void free_video_buff(struct video_struct* video)
{
 int plane, frame, row;

 if (video->data[0] != NULL) {
 for (plane = 0; plane <video_planes_per_mode(video->mode); plane++)
{
 for (frame = 0; frame < video->frames; frame++) {
 for (row = 0; row<video_rows_per_plane(video,plane); row++) {
 free(video->data[plane][frame][row]);
 }

FORMAT_RGBA 4 RGB image / video data with alpha (transparency)
channel

FORMAT_C420_M 5 420 YUV video with Motion or Alpha

FORMAT_C422_M 5 422 YUV video with Motion or Alpha

FORMAT_C444_M 5 444 YUV video with Motion or Alpha

FORMAT_RGBM 5 RGB video with Motion

Table D-5: Named Constants for Video Modes (Cont’d)

Mode Planes Video Representation

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 74
PG017 October 19, 2011

Appendix D: C Model Reference

 free(video->data[plane][frame]);
 }
 free(video->data[plane]);
 }
 }
}

This function can be called in the following way to free the video input buffers (up to eight)
and the video output buffer:

// Free Layer Buffers
for(i=0; i < generics.C_NUM_LAYERS; i++)
{
printf("Freeing Layer Video Buffer #%d...\n", i);
free_video_buff(&inputs.video_in[i]);
}
printf("Freeing Output Buffer...\n");
free_video_buff(&outputs.video_out);

Example Code
Two example C files, run_bitacc_cmodel.c and run_bitacc_cmodel_config.c,
are provided. The 32-bit and 64-bit Windows and Linux executables for these examples are
also included.

The run_bitacc_cmodel example executable provides:

• Shows a fixed implementation of the Deinterlacer

• Contains an example of how to write an application that makes all necessary function
calls to the Deinterlacer C model core function.

• Contains an example of how to populate the video structures at the input and output,
including allocation of memory to these structures.

• Uses a YUV file reading function to extract video information from YUV files for use
by the model.

• Uses a YUV file writing function to provide an output YUV file, which allows the user
to visualize the result of the core.

The run_bitacc_cmodel example executable does not use command line parameters.
To run the executable:

1. Use the cd command to go to the platform directory (lin64, lin, win64 or win32).

2. Enter this command at the shell or DOS prompt:

run_bitacc_cmodel

The run_bitacc_cmodel_config example executable provides:

• Shows configurable implementations of the Deinterlacer configured from command
line arguments.

• Includes a command line parser, allowing the user to pass parameters into the model
for multiple test cases.

• Uses YUV or BMP file reading functions to extract video information from YUV or
BMP files for use by the model.

• Uses YUV or BMP file writing functions to provide an output YUV or BMP file, which
allows the user to visualize the result of the core.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 75
PG017 October 19, 2011

Appendix D: C Model Reference

The run_bitacc_cmodel_config example executable uses multiple command line
parameters. To run the executable:

1. Use the cd command to go to the platform directory (lin64, lin, win64 or win32).

2. Enter this command at the shell or DOS prompt:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full
-length 2 -source test_000.yuv

Command Line Options in Detail
The following is a detailed list of the options:

• -core: selects which gate-level model is run; excluding this option defaults to RTL
simulation.

• -format: selects the input file format; possible input formats are 422YUV8, 422YUV10,
444BMP.

• -rate: selects output AVI files frame rate.

• -order: selects which field order is used to store the source files. By choosing "pal", line
1 is temporally used before line 2. By choosing NTSC, this order is reversed,

• -pulldown: selects the operation of the pulldown detector; it can be either switched
on or off.

• -mode: selects what internal processing is used to generate a deinterlaced image.
If "none" is selected, the output is field interpolated. If "motion" is selected, then only
the motion adaptive algorithm is used. If "diag" is selected, then only the diagonal
algorithm is used. If "full", then all features are enabled.

• -cropx, -cropy, -cropxsize, -cropysize: allow for a region of interest to be extracted
from a given source image; the origin of a picture is assumed to be 0,0 and only even x
offsets are allowed.

• -width: sets the full pixel width of the input file image and is required.

• -height: sets the full pixel height of the input file image and is required.

• -length: sets the number of files read by the chosen core; it should be set greater than
three to allow enough priming of the motion adaptive datapath.

• -txt: used by the C model to generate a .txt equivalent file set of the source images,
which are then used by the VHDL or Verilog models.

• -source: path and file name of the first file to be read.

• -debug: enables colorized images to be generated.

Initializing the Deinterlacer Input Video Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with
an image or video. The bmp_util.h, yuv_utils.h, rgb_utils.h and video_util.h
header files packaged with the bit accurate C models contain functions to facilitate file I/O.

Bitmap Image Files

The rgb_utils.h and bmp_utils.h files declare functions that help access files in Windows
bitmap format (http://en.wikipedia.org/wiki/BMP_file_format). However, this format

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 76
PG017 October 19, 2011

Appendix D: C Model Reference

limits color depth to a maximum of 8 bits per pixel, and operates on images with three
planes (R,G,B). Consequently, the following functions operate on arguments type
rgb8_video_struct, which is defined in rgb_utils.h. Also, both functions support only true
color, non-indexed formats with 24 bits per pixel.

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

These functions are used to dynamically allocate and free memory for RGB structure
storage:

int alloc_rgb8_frame_buff(struct rgb8_video_struct* rgb8video);
void free_rgb_frame_buff(struct rgb_video_struct* rgb_video);

Exchanging data between rgb8_video_struct and general video_struct type frames/videos
is facilitated by functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);
int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

Note: All image / video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Additionally, the input structure must have the dynamically allocated containers
(data, r, g, b, y, u, and v arrays) already allocated and initialized with the input frame(s). If the output
container structure is pre-allocated at the time of the function call, the utility functions verify and issue
an error if the output container size does not match the size of the expected output. If the output
container structure is not pre-allocated, the utility functions create the appropriate container to hold
results.

YUV Image/Video Files

The yuv_utils.h file declares functions that support file access in YUV format. These
functions are used to dynamically allocate and free memory for YUV structure storage:

int alloc_yuv8_frame_buff(struct yuv8_video_struct* yuv8video);
void free_yuv_frame_buff(struct yuv_video_struct* yuv_video);

These functions allow reading and writing of YUV functions (used to initialize or write
yuv8_video data):

int write_yuv(FILE *outfile, struct yuv8_video_struct *yuv8_video);
int read_yuv(FILE *infile, struct yuv8_video_struct *yuv8_video);

Exchanging data between yuv8_video_struct and general video_struct type frames/
videos is facilitated by functions:

int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in,
struct video_struct* video_out);
int copy_video_to_yuv8(struct video_struct* video_in,
struct yuv8_video_struct* yuv8_out);

YUV formats (4:2:0, 4:2:2 and 4:4:4) can be converted with these functions:

int yuv8_420to444(struct yuv8_video_struct* video_in, struct
yuv8_video_struct* video_out);
int yuv8_422to444(struct yuv8_video_struct* video_in, struct
yuv8_video_struct* video_out);
int yuv8_444to420(struct yuv8_video_struct* video_in, struct
yuv8_video_struct* video_out);
int yuv8_444to422(struct yuv8_video_struct* video_in, struct
yuv8_video_struct* video_out);

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 77
PG017 October 19, 2011

Appendix D: C Model Reference

Binary Image/Video Files

The video_utils.h file declares functions that help load and save generalized video files in
raw, uncompressed format. These functions effectively serialize the video_struct structure:

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

The corresponding file contains a small, plain text header defining, "Mode", "Frames",
"Rows", "Columns", and "Bits per Pixel". The plain text header is followed by binary data,
16-bits per component in scan line continuous format. Subsequent frames contain as many
component planes as defined by the video mode value selected. Also, the size (rows,
columns) of component planes can differ within each frame as defined by the actual video
mode selected.

These functions are used to dynamically allocate and free memory for video structure
storage:

int alloc_video_buff(struct video_struct* video);
void free_video_buff(struct video_struct* video);

Compiling on 32-bit and 64-bit Windows Platforms
Precompiled library deinterlacer_v1_0_bitacc_cmodel.lib, top level demonstration code
run_bitacc_cmodel_config.c and example code run_bitacc_cmodel.c must be compiled
with an ANSI C compliant compiler under Windows 32-bit or Windows 64-bit. This
section describes an example using Microsoft Visual Studio. In Visual Studio create a new,
empty Win32 Console Application project. As existing items, add:

• libIpdeinterlacer_v1_0_bitacc_cmodel.lib to the "Resource Files" folder
of the project

• run_bitacc_cmodel.c or the run_bitacc_cmodel_config.c to the
"Source Files" folder of the project

• deinterlacer_v1_0_bitacc_cmodel.h header file to the "Header Files" folder
of the project

• bmp_utils.h file to the "Header Files" folder of the project

• rgb_utils.h file to the "Header Files" folder of the project

• video_fio.h file to the "Header Files" folder of the project

• video_utils.h file to the "Header Files" folder of the project

• yuv_utils.h file to the "Header Files" folder of the project

To build the x64 executable for 64-bit Windows platforms, perform these steps. These steps
can be skipped if building the Win32 executable.

1. Right-click on the solution in the Solution Explorer and click Properties at the bottom
of the pop-up menu.

2. Click Configuration Manager.

3. In the Active solution platform drop-down box, select <New…>.

4. In the new platform drop-down box, select x64 and click OK.
Make sure that all the projects now have x64 as the default platform in the
Configuration Manager.

5. After the project is created and populated, it must be compiled and linked (built) to
create a Win32 or x64 executable. To perform the build step, select Build Solution from
the Build menu. An executable matching the project name is created either in the

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 78
PG017 October 19, 2011

Appendix D: C Model Reference

Debug or Release subdirectories under the project location based on whether "Debug"
or "Release" has been selected in the "Configuration Manager" under the Build menu.

Note: The run_bitacc_cmodel.c file is an example demonstration that reads no input but
generates an output .yuv file from internally generated test patterns. The
run_bitacc_cmodel_config.c file is a configurable demonstration and requires several input files
to run. See Running the Executables for information on command line arguments and input file
formats.

Compiling under 32-bit and 64-bit Linux Platforms

Example Demonstration

To compile the example demonstration, go to the directory where the header files, the
library files and run_bitacc_cmodel.c were unpacked. The libraries and header files
are referenced during the compilation and linking process. In this directory, perform these
steps:

1. Set your LD_LIBRARY_PATH environment variable to include the root directory where
the model zip file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin32 or /lin64 directory to the root directory:

libstlport.so.5.1
libIp_deinterlacer_v1_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler by typing this command at the
shell prompt:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_deinterlacer_v1_0_bitacc_cmodel
-Wl,-rpath,.
gcc -m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_deinterlacer_v1_0_bitacc_cmodel
-Wl,-rpath,.

4. This results in the creation of the executable run_bitacc_cmodel, which can be run
using this command:

./run_bitacc_cmodel

A make file is also included that runs GCC. To clean the executable and compile the
example code, enter this command at the shell prompt:

make clean all

Configurable Demonstration

To compile the configurable demonstration, go to the directory where the header files, the
library files and run_bitacc_cmodel_config.c were unpacked. The libraries and
header files are referenced during the compilation and linking process. In this directory
perform these steps:

1. Set your LD_LIBRARY_PATH environment variable to include the root directory
where the model zip-file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 directory to the root directory:

libstlport.so.5.1

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 79
PG017 October 19, 2011

Appendix D: C Model Reference

libIp_deinterlacer_v1_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler by entering this command at
the shell prompt:

gcc -x c++ run_bitacc_cmodel_config.c -o run_bitacc_cmodel_config -L.
-lIp_deinterlacer_v1_0_bitacc_cmodel -Wl,-rpath,.

4. This results in the creation of the executable run_bitacc_cmodel, which can be run
using this command:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full
-length 2 -source test_000.yuv

A make file is also included that runs GCC. To clean the executable and compile the
example code, enter this following command at the shell prompt:

make clean run_bitacc_cmodel_config

Running the Executables
Included in the zip file are precompiled executable files for use with 32-bit and 64-bit
Windows and Linux platforms. The instructions for running on each platform are included
in this section.

Example Demonstration

The example demonstration does not use command line parameters. To run on a 32-bit or
64-bit Linux platform, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where the model zip file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 (for 64-bit Linux) or from the /lin (for 32-bit Linux)
directory to the root directory:

libstlport.so.5.1
libIp_deinterlacer_v1_0_bitacc_cmodel.so
run_bitacc_cmodel

3. Execute the model. From the root directory, enter this command at a shell prompt:

run_bitacc_cmodel

To run on a 32-bit or 64-bit Windows platform, perform these steps:

1. Copy this file from the /nt64 (for 64-bit Windows) or from the /nt (for 32-bit Windows)
directory to the root directory:

run_bitacc_cmodel.exe

2. Execute the model. From the root directory, enter this command at a DOS prompt:

run_bitacc_cmodel

During successful execution, the c_deint0000.bmp file is created in the directory
containing the run_bitacc_cmodel executable. This file bitmap file. The example
demonstration is set up to generate 15 frames of video data at 200x120 24-bit format.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 80
PG017 October 19, 2011

Appendix D: C Model Reference

Configurable Demonstration

The configurable demonstration takes multiple command line parameters. To run on a
32-bit or 64-bit Linux platform, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where the model zip-file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 (for 64-bit Linux) or from the /lin (for 32-bit Linux)
directory to the root directory:

libstlport.so.5.1
libIp_deinterlacer_v1_0_bitacc_cmodel.so
run_bitacc_cmodel_config

3. Execute the model. From the root directory, enter this command at a shell prompt:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full
-length 2 -source test_000.yuv

To run on a 32-bit or 64-bit Windows platform, perform these steps:

1. Copy this file from the /nt64 (for 64-bit Windows) or from the /nt (for 32-bit Windows)
directory to the root directory:

run_bitacc_cmodel_config.exe

2. Execute the model. From the root directory, enter this command at a DOS prompt:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full
-length 2 -source test_000.yuv

During successful execution, multiple bitmap files are created in the directory containing
the run_bitacc_cmodel_config executable.

Each individual simulation is invoked using a binary executable script and some
command line parameters. The main parameters are used to steer the test and its target.
The options for a test are shown in Table D-6.

Table D-6: Simulation Options

Option Name Description Option Values Default

depth Bit depth of video stream 8 | 10 | 12 10

format File format used yuv8|yuv10|bmp| yuv8

packing Pixel packing structure 444 | 422 | 420 444

pulldown Cadence detector off | on off

mode Deinterlacing type full | none | motion | diag full

cropx Cropping Top Left X <numeric value> 0

cropy Cropping Top Left Y <numeric value> 0

cropxsize Cropping X size <numeric value> <default to width>

cropysize Cropping Y size <numeric value> <default to height>

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 81
PG017 October 19, 2011

Appendix D: C Model Reference

The "source", "length", "width" and "height" parameters are mandatory, all other missing
fields are set to their default.

The following command line shows how to run a C model based, 8-bit full deinterlacer on
sequence files "test000":

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full -length 2 -source
test_000.yuv

When running the C model output, two additional AVI files are generated. The first is an
animated version of the full deinterlaced sequence, and the second is a side-by-side
comparison movie of the motion adaptive and full deinterlacer in operation. This second
AVI file allows for easy visual comparison of the outputs. The user can preset the AVI
frame rate on the command line.

Simulation Options in Detail
The following is a detailed list of the options:

• -core: selects which gate-level model is run; excluding this option defaults to RTL
simulation.

• -format: selects the input file format; possible input formats are 422YUV8, 422YUV10,
444BMP.

• -rate: selects output AVI files frame rate.

• -order: selects which field order is used to store the source files. By choosing "pal", line
1 is temporally used before line 2. By choosing NTSC, this order is reversed,

• -pulldown: selects the operation of the pulldown detector; it can be either switched
on or off.

• -mode: selects what internal processing is used to generate a deinterlaced image. If
"none" is selected, the output is field interpolated. If "motion" is selected, then only the
motion adaptive algorithm is used. If "diag" is selected, then only the diagonal
algorithm is used. If "full", then all features are enabled.

• -cropx, -cropy, -cropxsize, -cropysize: allow for a region of interest to be extracted
from a given source image; the origin of a picture is assumed to be 0,0 and only even x
offsets are allowed.

• -width: sets the full pixel width of the input file image and is required.

• -height: sets the full pixel height of the input file image and is required.

• -length: sets the number of files read by the chosen core; it should be set greater than
three to allow enough priming of the motion adaptive datapath.

• -txt: used by the C model to generate a .txt equivalent file set of the source images,
which are then used by the VHDL or Verilog models.

width Input File Pixel width <numeric value> <error if missing>

height Input File Pixel height <numeric value> <error if missing>

length Number of files in sequence <numeric value> <error if missing>

source Sequence filename <filename> <error if missing>

golden Sequence filename <filename> <used only by compare>

debug Generate debug images <numeric value> 0

Table D-6: Simulation Options

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 82
PG017 October 19, 2011

Appendix D: C Model Reference

• -source: path and file name of the first file to be read.

• -debug: enables colorized images to be generated.

http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 83
PG017 October 19, 2011

Appendix E

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
These documents provide supplemental material useful with this user guide:

• UG761, AXI Reference Guide

• DS768, AXI Interconnect IP Data Sheet

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com

LogiCORE IP Video Deinterlacer www.xilinx.com 84
PG017 October 19, 2011

Appendix E: Additional Resources

Ordering Information
The Video Deinterlacer core is provided under the Xilinx Core License Agreement and can
be generated using the Xilinx® CORE Generator™ system. The CORE Generator system is
shipped with Xilinx ISE® Design Suite software.

A simulation evaluation license for the core is shipped with the CORE Generator system.
To access the full functionality of the core, including FPGA bitstream generation, a full
license must be obtained from Xilinx. For more information, visit the Video Deinterlacer
product page.

Contact your local Xilinx sales representative for pricing and availability of additional
Xilinx LogiCORE IP modules and software. Information about additional Xilinx
LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/products/ipcenter/EF-DI-DE-INTERLACER.htm
http://www.xilinx.com/products/ipcenter/EF-DI-DE-INTERLACER.htm
http://www.xilinx.com

	LogiCORE IP Video Deinterlacer v1.0
	Table of Contents
	Overview
	Standards Compliance
	Feature Summary
	Licensing
	Ordering Information
	Licensing Options

	Performance
	Deinterlacing Quality Configurations
	Latency
	Throughput

	Resource Utilization

	Core Interfaces and Register Space
	Port Descriptions
	Core Interfaces
	Common I/O Signals

	Register Space

	Customizing and Generating the Core
	Control Values
	CORE Generator Tool Graphical User Interface (GUI)
	EDK pCore GUI
	Video Deinterlacer Core Interfaces
	EDK pCore Interface

	Parameter Values in the XCO File
	Output Generation
	EDK pCore Files
	General Purpose Processor Files

	Designing with the Core
	Deinterlacing
	T1 and T2
	Cross Fade Ratio
	Initial State
	Architecture
	Memory Controller
	Memory Size

	I/O Interface and Timing
	AXI4-Lite and GPP Interface
	AXI4-Lite Timing
	General Purpose Processor (GPP) Interface
	Control Interface
	Memory Interface
	AXI4 Memory and Interface
	VFBC/MPMC Memory and Interface Option
	Video Interface

	Clocking
	Resets
	Protocol Description

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Detailed Example Design
	Case 1: SD480i to SD480p
	Case 2: HD1080i to HD1080p
	Directory and File Contents
	Demonstration Test Bench
	Simulation
	Messages and Warnings

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Debugging
	Step 1: Video Pass Through Bring Up
	Step 2: Basic Deinterlacing
	Step 3: Full Deinterlacing Using Memory Controller
	Step 4: Check the Algorithms for Incorrect Video Output
	Step 5: Pulldown Testing and Pitfalls

	Application Software Development
	pCore Driver Files
	pCore API Functions
	pCore API Functions in xdeint.c
	Functions in xdeint_sinit.c
	Functions in xdeint_intr.c

	C Model Reference
	Unpacking and Model Contents
	Installation
	Software Requirements
	Interface
	Deinterlacer Generics Structure
	Deinterlacer Inputs Structure
	Deinterlacer Config Structure
	Pulldown Structure
	Deinterlacer Outputs Structure
	Deinterlacer Video Structure
	Working With Video_struct Containers
	Delete the Video Structure

	Example Code
	Command Line Options in Detail
	Initializing the Deinterlacer Input Video Structure
	Compiling on 32-bit and 64-bit Windows Platforms
	Compiling under 32-bit and 64-bit Linux Platforms
	Running the Executables

	Simulation Options in Detail

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

