
LogiCORE IP Image
Edge Enhancement
v3.0
Product Guide

PG003 October 19, 2011

LogiCORE IP Image Edge Enhancement www.xilinx.com 2
PG003 October 19, 2011

Chapter 1: Overview
Overview . 5
Standards Compliance . 5
Feature Summary . 5
Applications . 6
Licensing . 6
Obtaining Your License Key. 6
Performance . 7
Resource Utilization. 8

Chapter 2: Core Interfaces and Register Space
Core Symbol and Port Descriptions. 10

Chapter 3: Customizing and Generating the Core
Graphical User Interface (GUI) . 17
Parameter Values in the XCO File . 18
Output Generation . 19

Chapter 4: Designing with the Core
General Design Guidelines . 22
Clocking . 23
Resets. 23
Protocol Description . 23

Chapter 5: Constraining the Core
Required Constraints. 24
Device, Package, and Speed Grade Selections. 24
Clock Frequencies. 24
Clock Management . 24
Clock Placement . 24
Banking. 24
Transceiver Placement . 24
I/O Standard and Placement . 24

Chapter 6: Detailed Example Design
Overview . 25
Design File Hierarchy . 25
Operating Instructions . 26

Table of Contents

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 3
PG003 October 19, 2011

Support . 26

Appendix A: Verification, Compliance, and Interoperability
Simulation . 27
Hardware Testing . 27

Appendix B: Migrating
Special Considerations when Migrating to AXI . 28

Appendix C: Debugging
Evaluation Core Timeout . 29

Appendix D: Application Software Development

Appendix E: C Model Reference
Unpacking and Model Contents . 33
Installation . 35
Software Requirements . 35
Using the C Model . 36
C Model Example Code . 41

Appendix F: Additional Resources
Xilinx Resources . 43
Solution Centers . 43
References . 43
Technical Support. 43
Ordering Information . 44
Revision History . 44
Notice of Disclaimer . 44

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 4
PG003 October 19, 2011 Product Specification

Introduction
The Xilinx Image Edge Enhancement LogiCORE™ IP
provides users with an easy-to-use IP block to enhance
the edges of objects within each frame of video. The
core provides a set of standard Sobel and Laplacian fil-
ters with programmable gain that adjust the strength of
the edge enhancement effect.

Features
• Support for:

• High-definition (1080p60) resolutions

• Up to 4096 total pixels and 4096 total rows

• Programmable gain for edge directions

• Selectable processor interface:

• EDK pCore

• General Purpose Processor

• Constant Interface

• Support for 8-, 10-, or 12-bit input and output
precision

• YCrCb 444 input and output

• For use with Xilinx CORE Generator™ software
13.3 or later

• Xilinx Streaming Video Interface (XSVI) bus
simplifies connecting to other video IP

LogiCORE IP Image Edge
Enhancement v3.0 Product Guide

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family(1)

Spartan®-6, Virtex®-6, Virtex-7, Kintex™-7

Supported User
Interfaces

General Processor Interface, EDK pCore
AXI4-Lite, Constant Interface

Resources See Table 1-1 through Table 1-4.

Provided with Core

Documentation Product Specification

Design Files Netlists, EDK pCore files

Example
Design

Not Provided

Test Bench VHDL (2)

Constraints File Not Provided

Simulation
Models

VHDL, Verilog Structural Models and C
Model (2)

Tested Design Tools

Design Entry
Tools

CORE Generator™ tool, Platform Studio (XPS)

Simulation(3) Mentor Graphics ModelSim, Xilinx® ISim 13.3

Synthesis Tools ISE 13.3

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release notes
for this core.

2. HDL test bench and C Model available on the product page
on Xilinx.com at
http://www.xilinx.com/products/ipcenter/
EF-DI-IMG-ENHANCE.htm

3. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf

LogiCORE IP Image Edge Enhancement www.xilinx.com 5
PG003 October 19, 2011 Product Specification

Chapter 1

Overview

Overview
The edge enhancement core combines the outputs of Sobel and Laplacian operators with
the original image to emphasize edge content as shown in Figure 1-1.

Standards Compliance
AXI4-LITE Interface.

Feature Summary
The Image Edge Enhancement core uses Sobel and Laplacian filters to enhance edges of
objects. There is a programmable gain for each filter to adjust the strength of the edge
enhancement effect. This core works on YCbCr 4:4:4 data.

X-Ref Target - Figure 1-1

Figure 1-1: Image Edge Enhancement

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 6
PG003 October 19, 2011 Product Specification

Chapter 1: Overview

Applications
• Pre-processing Block for Image Sensors

• Video Surveillance

• Video Conferencing

• Video Capture Devices

Licensing
The Image Edge Enhancement core provides three licensing options. After installing the
required Xilinx ISE software and IP Service Packs, choose a license option.

Simulation Only
The Simulation Only Evaluation license key is provided with the Xilinx CORE Generator
tool. This key lets you assess core functionality with either the example design provided
with the Image Edge Enhancement core, or alongside your own design and demonstrates
the various interfaces to the core in simulation. (Functional simulation is supported by a
dynamically generated HDL structural model.)

Full System Hardware Evaluation
The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place-and-route the design, evaluate timing, and
perform functional simulation of the Image Edge Enhancement core.

In addition, the license key lets you generate a bitstream from the placed and routed
design, which can then be downloaded to a supported device and tested in hardware. The
core can be tested in the target device for a limited time before timing out (ceasing to
function), at which time it can be reactivated by reconfiguring the device.

Full
The Full license key is available when you purchase the core and provides full access to all
core functionality both in simulation and in hardware, including:

• Functional simulation support

• Full implementation support including place-and-route and bitstream generation

• Full functionality in the programmed device with no time outs

Obtaining Your License Key
This section contains information about obtaining a simulation, full system hardware, and
full license keys.

Simulation License
No action is required to obtain the Simulation Only Evaluation license key; it is provided
by default with the Xilinx CORE Generator software.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 7
PG003 October 19, 2011 Product Specification

Chapter 1: Overview

Full System Hardware Evaluation License
To obtain a Full System Hardware Evaluation license, do the following:

1. Navigate to the product page for this core.

2. Click Evaluate.

3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs.

Obtaining a Full License
To obtain a Full license key, you must purchase a license for the core. After doing so, click
the “Access Core” link on the Xilinx.com IP core product page for further instructions.

Installing Your License File
The Simulation Only Evaluation license key is provided with the ISE CORE Generator
system and does not require installation of an additional license file. For the Full System
Hardware Evaluation license and the Full license, an email will be sent to you containing
instructions for installing your license file. Additional details about IP license key
installation can be found in the ISE Design Suite Installation, Licensing and Release Notes
document.

Performance

Maximum Frequencies
The following are typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options, additional logic in the Field
Programmable Gate Array (FPGA) device, using a different version of Xilinx tools, and
other factors.

• Virtex®-7 FPGA: 250 MHz

• Kintex™-7 FPGA: 250 MHz

• Virtex-6 FPGA: 250 MHz

• Spartan®-6 FPGA: 150 MHz

Latency
The propagation delay of the Image Edge Enhancement core is one full scan line and 19
video clock cycles.

Throughput
The Image Edge Enhancement core outputs one YCbCr 4:4:4 sample per clock cycle.

http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_img-enhance.htm
http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 8
PG003 October 19, 2011 Product Specification

Chapter 1: Overview

Resource Utilization
Information presented in Tables 1-1 through 1-4 is a guideline to the resource utilization of
the Image Edge Enhancement core for Spartan-6, Virtex-6, Virtex-7, and Kintex-7 FPGA
families. The General Purpose Processor interface was selected. This core does not use any
dedicated IO or clock resources. The design was tested using Xilinx ISE® v11.4i tools with
area constraints (see table footnotes) and default tool options.

For an accurate measure of the usage of device resources (for example, block RAMs,
flip-flops, and LUTs) for a particular instance, click View Resource Utilization in the
CORE Generator GUI after generating the core.

1. Speedfile: PRODUCTION 1.20 2011-09-26

1. Speedfile: PRODUCTION 1.10 2011-09-26

Table 1-1: Resource Utilization and Target Speed for Spartan-6 (1) - xc6slx9,csg324,C,-2

Data
Width

Maximum
Number of

Columns and
Rows

LUT6-FF
pairs

LUTs FFs RAM36/18 DSP48E1
Clock Frequency

(MHz)

8 1024 1,691 1,500 1,268 3/0 1 249

8 2200 1,795 1,536 1,307 9/0 1 219

10 1024 1,395 1,111 1,419 7/1 2 151

10 2200 1,549 1,129 1,459 14/1 2 151

12 1024 2,162 1,780 1,644 21/0 2 203

12 2200 1,889 1,406 1,628 30/0 2 196

Table 1-2: Resource Utilization and Target Speed for Virtex-6 (1) - xc6vcx75t,ff484,C,-1

Data
Width

Maximum
Number of

Columns and
Rows

LUT6-FF
pairs

LUTs FFs RAM36/18 DSP48E1
Clock Frequency

(MHz)

8 1024 1,237 949 1,185 1/1 1 274

8 2200 1,251 1,019 1,226 4/1 1 274

10 1024 1,389 1,054 1,363 4/0 1 274

10 2200 1,386 1,109 1,404 7/0 1 274

12 1024 1,546 1,167 1,541 11/0 1 274

12 2200 1,654 1,209 1,582 15/0 1 274

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 9
PG003 October 19, 2011 Product Specification

Chapter 1: Overview

1. Speedfile: ADVANCED 1.01 2011-09-26

1. Speedfile: ADVANCED 1.02 2011-09-26

Table 1-3: Resource Utilization and Target Speed for Virtex-7 (1) - xc7k70t,fbg676,C,-1

Data
Width

Maximum
Number of

Columns and
Rows

LUT6-FF
pairs

LUTs FFs RAM36/18 DSP48E1
Clock Frequency

(MHz)

8 1024 1,235 951 1,185 1/1 1 370

8 2200 1,281 1,008 1,226 4/1 1 352

10 1024 1,322 1,077 1,363 4/0 1 344

10 2200 1,523 1,116 1,404 7/0 1 335

12 1024 1,565 1,164 1,541 11/0 1 309

12 2200 1,598 1,235 1,582 15/0 1 335

Table 1-4: Resource Utilization and Target Speed for Kintex-7 (1) - xc7k70t,fbg676,C,-1

Data
Width

Maximum
Number of

Columns and
Rows

LUT6-FF
pairs

LUTs FFs RAM36/18 DSP48E1
Clock Frequency

(MHz)

8 1024 1,318 891 1,185 1/1 1 303

8 2200 1,340 1,012 1,226 4/1 1 310

10 1024 1,422 1,048 1,363 4/0 1 303

10 2200 1,458 1,125 1,404 7/0 1 310

12 1024 1,555 1,172 1,541 11/0 1 336

12 2200 1,579 1,253 1,582 15/0 1 336

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 10
PG003 October 19, 2011

Chapter 2

Core Interfaces and Register Space

Core Symbol and Port Descriptions
The Image Edge Enhancement core can be configured with three different interface
options, each resulting in a slightly different set of ports. The Streaming Video Interface is
a set of signals that is common to all three interface options and to all video iPipe cores. It
is described in Table 2-1.

Xilinx Streaming Video Interface
The Xilinx Streaming Video Interface (XSVI) is a set of signals common to all of the Xilinx
video cores used to stream video data between IP cores. XSVI is also defined as an
Embedded Development Kit (EDK) bus type so that the tool can automatically create input
and output connections to the core. This definition is embedded in the pCore interface
provided with the IP, and it allows an easy way to cascade connections of Xilinx Video
Cores. The Image Edge Enhancement IP core uses the following subset of the XSVI signals:.

The Image Edge Enhancement IP Core uses the following sub-set of the XSVI signals:

• video_data

• vblank

• hblank

• active_video

Other XSVI signals on the XSVI input bus, such as video_clk, vsync, hsync, field_id, and
active_chr do not affect the function of this core.

Note: These signals are neither propagated, nor driven on the XSVI output of this core.

The following is an example EDK Microprocessor Peripheral Definition (.MPD) file
definition:

Input Side:

BUS_INTERFACE BUS = XSVI_ENHANCE_IN, BUS_TYPE = TARGET, BUS_STD = XSVI
PORT hblank_i =hblank, DIR=I, BUS=XSVI_ENHANCE_IN
PORT vblank_i =vblank, DIR=I, BUS=XSVI_ENHANCE_IN
PORT active_video_i =active_video,DIR=I, BUS=XSVI_ENHANCE_IN
PORT video_data_i =video_data, DIR=I,VEC=[C_DATA_WIDTH-1:0],
BUS=XSVI_ENHANCE_IN

Output Side:

BUS_INTERFACE BUS = XSVI_ENHANCE_OUT, BUS_TYPE = INITIATOR, BUS_STD =
XSVI
PORT hblank_o =hblank, DIR=I, BUS=XSVI_ENHANCE_OUT
PORT vblank_o =vblank, DIR=I, BUS=XSVI_ENHANCE_OUT

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 11
PG003 October 19, 2011

Chapter 2: Core Interfaces and Register Space

PORT active_video_o =active_video,DIR=I, BUS=XSVI_ENHANCE_OUT
PORT video_data_o =video_data,
DIR=I,VEC=[3*C_DATA_WIDTH1:0],BUS=XSVI_ENHANCE_OUT

The Image Edge Enhancement IP core is fully synchronous to the core clock, clk.
Consequently, the input XSVI bus is expected to be synchronous to the input clock, clk.
Similarly, to avoid clock resampling issues, the output XSVI bus for this IP is synchronous
to the core clock, clk. The video_clk signals of the input and output XSVI buses are not
used.

Constant Interface
The Constant Interface has no ports other than the Streaming Video Interface, as this
interface does not provide additional programmability. The Constant Interface Core
Symbol is shown in Figure 2-1 and described in Table 2-1. The Streaming Video Interface is
a set of signals that is common in all interface options.

Table 2-1 contains the Constant Interface port descriptions. Detailed descriptions of the
ports are provided following the table.

X-Ref Target - Figure 2-1

Figure 2-1: Core Symbol for Constant Interface

Table 2-1: Port Descriptions for the Constant Interface

Port Name Port Width Direction Description

video_data_in 3*WIDTH IN Data input bus

hblank_in 1 IN Horizontal blanking input

vblank_in 1 IN Vertical blanking input

active_video_in 1 IN Active video signal input

video_data_out 3*WIDTH OUT Data output bus

hblank_out 1 OUT Horizontal blanking output

vblank_out 1 OUT Vertical blanking output

active_video_out 1 OUT Active video signal output

clk 1 IN Rising-edge clock

ce 1 IN Clock enable (active high)

sclr 1 IN Synchronous clear – reset (active high)

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 12
PG003 October 19, 2011

Chapter 2: Core Interfaces and Register Space

• video_data_in: This bus contains the luminance and chrominance inputs in the
following order from MSB to LSB [Cb ; Cr : Y]. Each component is expected in WIDTH
bits wide unsigned integer representation.

• hblank_in: The hblank_in signal conveys information about the blank/non-blank
regions of video scan lines.

• vblank_in: The vblank_in signal conveys information about the blank/non-blank
regions of video frames, and is used by the Image Edge Enhancement core to detect
the end of a frame, when user registers can be copied to active registers to avoid
visual tearing of the image.

• active_video_in: The active_video_in signal is high when valid data is presented
at the input. Input data to the core, video_data_in, is ignored when
active_video_in is low.

• clk - clock: Master clock in the design, synchronous with, or identical to, the video
clock. For the EDK pCore Interface, this port is named sysgen_clk.

• ce - clock enable: Pulling CE low suspends all operations within the core. Outputs are
held, and no input signals are sampled except for reset (SCLR takes precedence over
CE). For the EDK pCore Interface, this port is named sysgen_ce.

• sclr - synchronous clear: Pulling SCLR high results in resetting all output pins to zero
or their default values. Internal registers within the XtremeDSP™ slice and
D-flip-flops are cleared.

• video_data_out: This bus contains the luminance and chrominance outputs in the
following order from MSB to LSB [Cb ; Cr : Y]. Each component is expected in WIDTH
bits wide unsigned integer representation.

• hblank_out and vblank_out: The corresponding input signals are delayed so
blanking outputs are in phase with the video data output, maintaining the integrity of
the video stream.

• active_video_out: The active_video_out signal is high when valid data is present
at the output. When active_video_out is low, video_data_out is not valid even
if it is non-zero.

EDK pCore Interface
The EDK pCore Interface generates AXI4-Lite interface ports in addition to the Streaming
Video Signals. The AXI4-Lite signals are automatically connected when the generated
pCore is inserted into an EDK project. The Core Symbol for the EDK pCore Interface is
shown in Figure 2-2. The Streaming Video Interface is described in the previous section
(Table 2-1). For more information on the AXI4-Lite signals, see AXI Reference Guide.

Bits 3WIDTH-1:2WIDTH 2WIDTH-1:WIDTH WIDTH-1:0

Video Data Signals Cb or U Cr or V Y

Bits 3WIDTH-1:2WIDTH 2WIDTH-1:WIDTH WIDTH-1:0

Video Data Signals Cb or U Cr or V Y

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html

LogiCORE IP Image Edge Enhancement www.xilinx.com 13
PG003 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Many imaging applications include an embedded processor to dynamically control the
parameters within an integrated system. CORE Generator software can generate the core
with a pCore interface, which can easily be added to an EDK project as a hardware
peripheral. This pCore provides a memory- mapped interface for the programmable
registers within the core, which are described in Table 2-2.

X-Ref Target - Figure 2-2

Figure 2-2: Core Symbol for the EDK pCore Interface

Table 2-2: EDK pCore Interface Register Descriptions

Address
Offset (hex)

Register Name
Access

Type
Default Value

(hex)
Description

BASEADDR
+ 0x800

enhance_reg00_co
ntrol

R/W 0x00000001

Bit 0
Software enable

• 0 – Not enabled
• 1 – Enabled

Bit 1

Host processor write done semaphore

• 0 – Host processor actively updating registers
• 1 – Register update completed by host

processor

BASEADDR
+ 0x804

enhance_reg01_res
et

R/W 0x00000000 Bit 0
Software reset

• 0 – Not reset
• 1 – Reset

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 14
PG003 October 19, 2011

Chapter 2: Core Interfaces and Register Space

All of the registers are readable, enabling the MicroBlaze™ processor to verify writes or
read current values contained within the registers. The default values of some of the
registers are defined in the Graphical User Interface (GUI) section.

This core supports an enable/disable function. When disabled, the normal operation of the
hardware is halted and video signals are not propagated. This function is controlled by
setting Software Enable, bit 0 of enhance_reg00_control register, to 0. The default
value of Software Enable is 1 (enabled).

The in-system reset of the core is controlled by asserting enhance_reg01_reset (bit 0),
which returns the gains to their default values, specified through the Graphical User
Interface when the core is instantiated. The core control signals and output are forced to 0
until the software reset bit is deasserted.

The gain registers are double buffered in hardware to ensure no image tearing happens if
the gain values are modified in the active area of a frame. This double buffering provides
system control that is more flexible and easier to use by decoupling the register updates
from the blanking period, allowing software a much larger window in which to update the
parameter values. The updated values for the gain registers are latched into the shadow
registers immediately after writing, while the actual gains used are stored in the working
registers. The rising edge of vblank_in triggers the values from the shadow registers to
be copied to the working registers when bit 1 of enhance_reg00_control is set to 1.
This semaphore bit helps to prevent changing the gains mid-frame.

Any reads of registers return the values stored in the shadow registers.

General Purpose Processor Interface
The General Purpose Processor Interface exposes the gains as a port. The Core Symbol for
the General Purpose Processor Interface is shown in Figure 2-3. The Streaming Video
Interface is described in the previous section (Table 2-1). The ports are described in
Table 2-3.

BASEADDR
+ 0x808

enhance_reg02_gai
n_H R/W From GUI Gain of Horizontal Sobel filter

Allowed values are 0 to
2 in increments of 0.25
represented by four
unsigned bits with two
integer bits and two
fractional bits

Bits: Gain value

0000: 0.00

0001: 0.25

0010: 0.50

0011: 0.75

0100: 1.00

0101: 1.25

0110: 1.50

0111: 1.75

1XXX: 2.00

BASEADDR
+ 0x80C

enhance_reg03_gai
n_V

R/W From GUI Gain of Vertical Sobel filter

BASEADDR
+ 0x810

enhance_reg04_gai
n_D

R/W From GUI Gain of Diagonal Sobel filters

BASEADDR
+ 0x814

enhance_reg05_gai
n_Lap

R/W From GUI Gain of Laplacian filter

Table 2-2: EDK pCore Interface Register Descriptions (Cont’d)

Address
Offset (hex)

Register Name
Access

Type
Default Value

(hex)
Description

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 15
PG003 October 19, 2011

Chapter 2: Core Interfaces and Register Space

X-Ref Target - Figure 2-3

Figure 2-3: Core Symbol for the General Purpose Processor Interface

Table 2-3: Optional Ports for the General Purpose Processor Interface

Port Name Port Width Direction Description

enhance_control 2 IN

Bit 0: Software enable

Bit 1: Host processor write done semaphore

• 0 – Host processor actively updating registers
• 1 – Register update completed by host

processor

enhance_gain_H 4 IN

Gain of Horizontal Sobel filter

Possible bit values: 0000 to 1000 in increments of
0001

Gain is represented as four unsigned bits with
two integer bits and two fractional bits (1.0 is
represented as 0100)

enhance_gain_V 4 IN

Gain of Vertical Sobel filter

Possible bit values: 0000 to 1000 in increments of
0001

Gain is represented as four unsigned bits with
two integer bits and two fractional bits (1.0 is
represented as 0100)

enhance_gain_D 4 IN

Gain of Diagonal Sobel filters

Possible bit values: 0000 to 1000 in increments of
0001

Gain is represented as four unsigned bits with
two integer bits and two fractional bits (1.0 is
represented as 0100)

enhance_gain_Lap 4 IN

Gain of Laplacian filter

Possible bit values: 0000 to 1000 in increments of
0001

Gain is represented as four unsigned bits with
two integer bits and two fractional bits (1.0 is
represented as 0100)

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 16
PG003 October 19, 2011

Chapter 2: Core Interfaces and Register Space

The General Purpose Processor Interface exposes the gain registers as ports. The General
Purpose Processor Interface is provided as an option to design a system with a
user-defined bus interface (decoding logic and register banks) to an arbitrary processor.

The gain ports have the double-buffer control mechanism described in the previous section
to prevent tearing. However, an external register bank (shadow register bank) has to be
supplied by the user-defined bus interface. Values from this register bank (external to the
Image Edge Enhancement core) are copied over to the internal registers at the rising edge
of vblank_in when bit 1 of the enhance_reg00_control register is set to '1'.

See General Purpose Processor Interface for more information.

Constant Interface
The Constant Interface does not provide an option for the gains to be changed in system.
Also, there is no processor interface and the core is not programmable, but can be reset and
enabled/disabled using the SCLR and CE ports. The ports for the Constant Interface are
described in detail in Constant Interface.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 17
PG003 October 19, 2011

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface (GUI)
The Image Edge Enhancement core is easily configured to meet user-specific needs
through the CORE Generator graphical user interface (GUI). This section provides a quick
reference to the parameters that can be configured at generation time. Figure 3-1 shows the
main Image Edge Enhancement screen.

The GUI displays a representation of the IP symbol on the left side, and the parameter
assignments on the right side, which are described as follows:

• Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9 and "_".

• Data Width (WIDTH): Specifies the bit width of the input channel for each
component. The allowed values are 8, 10, and 12.

X-Ref Target - Figure 3-1

Figure 3-1: Image Edge Enhancement Main Screen

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 18
PG003 October 19, 2011

Chapter 3: Customizing and Generating the Core

• Maximum Number of Columns (MAX_COLS): Specifies the maximum number of
columns that can be processed by the core. Permitted values are from 256 to 4096.
Specifying this value is necessary to establish the internal widths of counters and
control-logic components as well as the depth of line buffers. Using a tight
upper-bound on possible values of MAX_COLS results in optimal block RAM usage.
However, feeding the configured Image Edge Enhancement instance timing signals
that violate the MAX_COLS constraint leads to data and output timing signal
corruption.

• Maximum Number of Rows (MAX_ROWS): Specifies the maximum number of rows
that can be processed by the core. Permitted values are from 256 to 4096. Specifying
this value is necessary to establish the internal widths of counters and control-logic
components. Feeding the configured Image Edge Enhancement instance timing
signals that violate the MAX_ROWS constraint leads to data and output timing signal
corruption.

• Horizontal Sobel, Vertical Sobel, Diagonal Sobel, and Laplacian Gains: Specifies
the default gain to be applied for each filter. The possible values are 0.0 to 2.0 in
increments of 0.25.

• Interface Selection: As described in the previous sections, this option allows for the
configuration of two different interfaces for the core.

• EDK pCore Interface: CORE Generator software generates a pCore that can be
easily imported into an EDK project as a hardware peripheral, and gains can be
programmed via a register. Double buffering is used to eliminate tearing of
output images. See EDK pCore Interface in Chapter 2.

• General Purpose Processor Interface: CORE Generator software generates a set
of ports to be used to program the core. See General Purpose Processor Interface
in Chapter 2

Constant Interface: The gains are constant, and therefore no programming is necessary.
The constant value is set in the GUI.

Parameter Values in the XCO File
Table 1 defines valid entries for the XCO parameters. Xilinx strongly suggests that XCO
parameters are not manually edited in the XCO file; instead, use the CORE Generator
software GUI to configure the core and perform range and parameter value checking. The
XCO parameters are helpful in defining the interface to other Xilinx tools.

XCO Parameter Default Valid Values

component_name edge_enhancement
ASCII text using characters: a..z, 0..9 and "_" starting

with a letter.

Note: "v_enhance_v3_0" is not allowed.

interface_selection EDK_Pcore EDK_Pcore, General_Purpose Processor, Constant

data_width 8 8, 10, 12

diagonal_sobel_gain 1 0 to 2 in 0.25 increments

horizontal_sobel_gain 1 0 to 2 in 0.25 increments

vertical_sobel_gain 1 0 to 2 in 0.25 increments

laplacian_gain 1 0 to 2 in 0.25 increments

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 19
PG003 October 19, 2011

Chapter 3: Customizing and Generating the Core

Output Generation
The output files generated from the Xilinx CORE Generator software for the core depend
upon whether the interface selection is set to EDK pCore or General Purpose Processor/
Constant. The output files are placed in the project directory.

<Component_Name>

• drivers

• enhance_v3_00_a

- data

- build

- example

- src

• pcores

• axi_enhance_v3_00_a

- data

- hdl

- vhdl

File Details

<project directory>

This is the top-level directory. It contains xco and other assorted files.

<project directory>/<component_name>/pcores/axi_enhance_v3_00_a/data

This directory contains files that EDK uses to define the interface to the pCore.

< project directory>/<component_name>/pcores/axi_enhance_v3_00_a/hdl/vhdl

This directory contains the HDL files that implement the pCore.

maximum_number_of_columns 1280 32 to 4095

maximum_number_of_rows 720 32 to 4095

XCO Parameter Default Valid Values

Name Description

<component_name>.xco
Log file from CORE Generator software describing which

options were used to generate the core. An XCO file can also
be used as an input to the CORE Generator software.

<component_name>_flist.txt
A text file listing all of the output files produced when the

customized core was generated in theCORE Generator
software.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 20
PG003 October 19, 2011

Chapter 3: Customizing and Generating the Core

< project directory>/<component_name>/drivers/enhance_v3_00_a/data

This directory contains files that SDK uses to define the operation of the pCore's software
driver.

< project directory>/<component_name>/drivers/enhance_v3_00_a/example

This directory contains some example code using the pCore's software driver.

< project directory>/<component_name>/drivers/enhance_v3_00_a/src

This directory contains the source code of the pCore's software driver.

General Purpose Processor or Constant Interface Files
When the interface selection is set to General Purpose Processor, CORE Generator will
output the core as a netlist that can be inserted into a processor interface wrapper or
instantiated directly in an HDL design. The output is placed in the <project director>.

File Details

The CORE Generator output consists of some or all the following files.

Name Description

enhance.c Provides the API access to all features of the device driver.

enhance.h Provides the API access to all features of the device driver.

Name Description

<component_name>_readme.txt Readme file for the core.

<component_name>.ngc The netlist for the core.

<component_name>.veo
The HDL template for instantiating the core.

<component_name>.vho

<component_name>.v The structural simulation model for the core.
It is used for functionally simulating the core.<component_name>.vhd

<component_name>.xco

Log file from CORE Generator software
describing which options were used to

generate the core. An XCO file can also be
used as an input to the CORE Generator

software.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 21
PG003 October 19, 2011

Chapter 4

Designing with the Core

The Sobel operators are defined in Equations 4-1, 4-2, and 4-3.

Equation 4-1

Equation 4-2

Equation 4-3

The Laplacian is defined in Equation 4-4.

Equation 4-4

Human visual systems detect the boundary of objects best when they are accompanied by
sudden changes in brightness. The edge enhancement core exploits this and enhances only
the luminance channel. This has the added benefit of eliminating color shifts at the
boundary of objects, which are common when enhancing the chrominance components by
similar methods. The luminance component is processed through the core in two
dimensions using two line buffers. The chrominance components are passed through the
core with the proper delay to match luminance processing. This core can accept
chrominance components represented as signed or unsigned integers with or without the
128 offset.

Defining Gains
The amount and direction of the edge enhancement can be controlled through
programmable gains gH (horizontal), gV (vertical), gD (diagonal), and gLap (Laplacian).
Here, a vertical edge is defined as a feature running from top to bottom of an image.
Similarly, a horizontal edge runs from left to right across the image. The diagonal direction
covers both upper left to lower right and upper right to lower left diagonals.

 1 2 1
Horizontal Sobel 0 0 0

1 2 1

− − 
 =  
  

 1 0 1
Vertical Sobel 2 0 2

1 0 1

− 
 = − 
 − 

 2 1 0 0 1 2
Diagonal Sobels 1 0 1 and 1 0 1

0 1 2 2 1 0

− −   
   = − −   
   − −   

 0 1 0
Laplacian 1 4 1

0 1 0

− 
 = − − 
 − 

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 22
PG003 October 19, 2011

Chapter 4: Designing with the Core

Gains can be set to values in the range of 0.0 to 2.0 (see the EDK pCore Interface and
General Purpose Processor Interface sections for details). If a particular direction is not
desired, that gain can be set to zero to eliminate emphasis in that direction. For example, if
vertical edges do not need to be enhanced, the gain gV should be set to zero.

Additionally, there is an image content dependent gain, K, used to modify the Sobel and
Laplacian output. In areas of the image that are smooth and of low contrast, the gain is low
to avoid emphasizing noise. This gain is automatically and dynamically calculated by the
core on a pixel basis, and it is designed to produce a good compromise between
enhancement of features and undesired noise.

If the total gain used [(gH+gV+gD+gLap)*K] exceeds 1.0, clipping and clamping circuitry
limits the enhancement of the edge content. Setting the gains with values greater than 1.0
allows over-enhancing the image to produce special effects like embossing.

Over-emphasis of edges may bring out noise at the edge transitions, and therefore this core
may be used in conjunction with noise reduction cores such as the Image Noise Reduction
LogiCORE IP to improve the results.

General Design Guidelines

Control Signals and Timing
Figure 4-1 shows a typical timing example with two frames of data.

The propagation delay of the Image Edge Enhancement core is one full scan line and 19
video clock cycles. The output timing signals (vblank_out, hblank_out, and
active_video_out) are delayed appropriately so that the output video data is framed
correctly by the timing signals.

Deasserting CE suspends processing, which may be useful for data-throttling, to
temporarily cease processing of a video stream to match the delay of other processing
components.

The control signals vblank_out, hblank_out, and active_video_out are created
using a timing detector and generator within the core. The internal timing module
assumes the following:

• One horizontal blanking period per row

• One vertical blanking period per frame

• A minimum active frame size of four rows and eight columns

• A minimum horizontal blanking period of two columns

• A minimum vertical blanking period of three rows

During the detection of the timing control signals, the core cannot guarantee the correct
video data output. Therefore, the data output, video_data_out, of the first frame of data
is set to zero even though active_video_out is high.

X-Ref Target - Figure 4-1

Figure 4-1: Timing Example

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 23
PG003 October 19, 2011

Chapter 4: Designing with the Core

When SCLR is asserted, all data and control signal outputs are forced to zero. If the input
control signal was high at the time SCLR was asserted, the corresponding output control
signal goes low and stays low until the next expected rising edge.

Clocking
The Image Edge Enhancement core has one clock ("clk") that is used to clock the entire core.
This includes the AXI interface and the core logic.

Resets
The Image Edge Enhancement core has one reset ("sclr") that is used for the entire core. The
reset is active high.

Protocol Description
For the pCore version of the Image Edge Enhancement core, the register interface is
compliant with the AXI4-Lite interface.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 24
PG003 October 19, 2011

Chapter 5

Constraining the Core

Required Constraints
The clk pin should be constrained at the maximum pixel clock rate desired for the video
stream.

Device, Package, and Speed Grade Selections
There are no device, package, or speed grade requirements for this core. This core has not
been characterized for use in low power devices.

Clock Frequencies
The clk pin should be run at the required pixel clock frequency for the Edge Enhancement
core. See Maximum Frequency in Performance in Chapter 1.

Clock Management
There is only one clock for this core. For pCore users, the AXI interconnect handles the
cross clock domain crossing.

Clock Placement
There are no specific clock placement requirements for this core.

Banking
There are no specific banking rules for this core.

Transceiver Placement
There are no transceivers used in this core.

I/O Standard and Placement
There are no specific I/O standard or placement requirements.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 25
PG003 October 19, 2011

Chapter 6

Detailed Example Design

Overview
This describes how to use the files that come with this demo testbench package for Image
Edge Enhancement v3.0.

This demo testbench is provided as a simple introductory package that enables core users
to observe the core generated by Coregen operating in a waveform simulator. The user is
encouraged to observe core-specific aspects in the waveform, make simple modifications
to the test conditions, and observe the changes in the waveform.

For more information about Image Edge Enhancement v3.0, refer to the following link:
http://www.xilinx.com/products/ipcenter/EF-DI-IMG-ENHANCE.htm

Design File Hierarchy
The directory structure underneath this top-level folder is described below:

• Expected

Contains the pre-generated expected/golden data used by the testbench to compare
actual output data.

• Stimuli

Contains the pre-generated input data used by the testbench to stimulate the core
(including register programming values).

• Results

Actual output data will be written to a file in this folder.

• src

Contains the .vhd & .xco files of the core.

• The .vhd file is a netlist generated using Coregen.

You can regenerate a new netlist using the .xco file in Coregen.

• tb_src

Contains the top-level testbench design.

This directory also contains other packages used by the testbench.

• isim_wave.wcfg - Waveform configuration for ISIM

• mti_wave.do - Waveform configuration for ModelSim

• run_isim.bat - Runscript for iSim in Windows OS

• run_isim.sh - Runscript for iSim in Linux OS

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 26
PG003 October 19, 2011

Chapter 6: Detailed Example Design

• run_mti.bat - Runscript for ModelSim in Windows OS

• run_mti.sh - Runscript for ModelSim in Linux OS

Operating Instructions
Simulation using ModelSim for Linux :

• From the console, Type "source run_mti.sh".

Simulation using ModelSim for Windows :

• Double click on "run_mti.bat" file.

Simulation using iSim for Linux :

• From the console, Type "source run_isim.sh".

Simulation using iSim for Windows :

• Double click on "run_isim.bat" file.

Support
To obtain technical support for this reference design, go to www.xilinx.com/support to
locate answers to known issues in the Xilinx Answers Database or to create a WebCase.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 27
PG003 October 19, 2011

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A highly parameterizable test bench used to test the Image Edge Enhancement core.
Testing includes the following:

• Register accesses

• Testing the vertical, horizontal, and diagonal Sobel filters

• Testing the Laplacian filter

• Testing of all the filter gains

• Testing of various frame sizes

• Testing of various data widths

Hardware Testing
The Image Edge Enhancement core has been tested in a variety of hardware platforms at
Xilinx to represent a variety of parameterizations.

A test design was developed for the core that incorporated a MicroBlaze processor,
AXI4-LITE Interface and various other peripherals.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 28
PG003 October 19, 2011

Appendix B

Migrating

Special Considerations when Migrating to AXI
The Image Edge Enhancement v3.0 interface changed from the PLB processor interface to
the EDK pCore AXI4-Lite interface. As a result, all of the PLB-related connections have
been replaced with an AXI4-Lite interface. For more information, see the AXI Reference
Guide.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 29
PG003 October 19, 2011

Appendix C

Debugging

Evaluation Core Timeout
The Image Edge Enhancement hardware evaluation core times out after approximately 8
hours of operation. The output is driven to zero. This results in a dark-green screen for
YUV color systems.

See Solution Centers in Appendix F for information helpful to the debugging progress.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 30
PG003 October 19, 2011

Appendix D

Application Software Development

Figure D-1 shows a software flow diagram for updating registers during the operation of
the core. See the EDK pCore Interface.

X-Ref Target - Figure D-1

Figure D-1: Image Edge Enhancement Programming Flow Chart

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 31
PG003 October 19, 2011

Appendix D: Application Software Development

Programmer's Guide

The software API is provided to allow easy access to the Image Edge Enhancement pCore's
registers defined in Table 2-1. To utilize the API functions provided, the following two
header files must be included in the user C code:

#include "enhance.h"
#include "xparameters.h"

The hardware settings of your system, including the base address of your Image Edge
Enhancement core, are defined in the xparameters.h file. The enhance.h file contains
the macro function definitions for controlling the Image Edge Enhancement pCore.

For examples on API function calls and integration into a user application, the drivers
subdirectory of the pCore contains a file, example.c, in the enhance_v3_00_a/
example subfolder. This file is a sample C program that demonstrates how to use the
Image Edge Enhancement pCore API.

EDK pCore API Functions

This section describes the functions included in the C driver (enhance.c and enhance.h)
generated for the EDK pCore API.

ENHANCE_Enable(uint32 BaseAddress);

• This macro enables an Image Edge Enhancement instance.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h).

ENHANCE_Disable(uint32 BaseAddress);

• This macro disables an Image Edge Enhancement instance.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h).

ENHANCE_Reset(uint32 BaseAddress);

• This macro resets an Image Edge Enhancement instance. This reset effects the core
immediately, and may cause image tearing. Reset affects the gain registers, forces
video_data_out to 0, and forces timing signal outputs to their reset state until
ENHANCE_ClearReset() is called.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h)

ENHANCE_ClearReset(uint32 BaseAddress);

• This macro clears the reset flag of the core, which allows it to re-sync with the input
video stream and return to normal operation.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h).

Reading and Writing pCore Registers

Each software register defined in Table 1 has a constant defined in enhance.h that is set to
the offset for that register. Reading a value from a register uses the base address and offset
for the register:

Xuint32 value = ENHANCE_ReadReg(XPAR_ENHANCE_0_BASEADDR, ENHANCE_REG03_GAIN_H);

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 32
PG003 October 19, 2011

Appendix D: Application Software Development

This macro returns the 32-bit unsigned integer value of the register. The definition of this
macro is

ENHANCE_ReadReg(uint32 BaseAddress, uint32 RegOffset)

• Read the given register.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h).

• RegOffset is the register offset of the register (defined in Table 1).

To write to a register, use the ENHANCE_WriteReg() function using the base address of
the Image Edge Enhancement pCore instance (from xparameters.h), the offset of the
desired register, and the data to write. For example:

ENHANCE_WriteReg(XPAR_ENHANCE_0_BASEADDR, ENHANCE_REG03_GAIN_H, 1);

The definition of this macro is:

ENHANCE_WriteReg(uint32 BaseAddress, uint32 RegOffset, uint32 Data)

• Write the given register.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h).

• RegOffset is the register offset of the register (defined in Table 1).

• Data is the 32-bit value to write to the register.

ENHANCE_RegUpdateEnable(uint32 BaseAddress);

• Calling RegUpdateEnable causes the Image Edge Enhancement to start using the
updated gain values on the next rising edge of VBlank_in. The user must manually
disable the register update after a sufficient amount of time to prevent continuous
updates.

• This function only works when the Image Edge Enhancement core is enabled.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h)

ENHANCE_RegUpdateDisable(uint32 BaseAddress);

• Disabling the Register Update prevents the Image Edge Enhancement gain registers
from updating. Xilinx recommends that the Register Update be disabled while
writing to the registers in the core, until the write operation is complete. While
disabled, writes to the registers are stored, but do not affect the core's behavior.

• This function only works when the Image Edge Enhancement core is enabled.

• BaseAddress is the Xilinx EDK base address of the Image Edge Enhancement core
(from xparameters.h)

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 33
PG003 October 19, 2011

Appendix E

C Model Reference

Unpacking and Model Contents
Unzip the v_enhance_v3_0_bitacc_model.zip file, containing the bit accurate
models for the Image Edge Enhancement IP Core. This creates the directory structure and
files in Table E-1.

Table E-1: Directory Structure and Files of the Image Edge Enhancement v3.0 Bit Accurate C Model

File Name Contents

README.txt Release notes

pg003_v_enhance.pdf LogiCORE IP Image Edge Enhancement Bit Accurate C Model User
Guide

v_enhance_v3_0_bitacc_cmodel.h Model header file

rgb_utils.h Header file declaring the RGB image/video container type and support
functions

yuv_utils.h Header file declaring the YUV (.yuv) image file I/O functions

bmp_utils.h Header file declaring the bitmap (.bmp) image file I/O functions

video_utils.h Header file declaring the generalized image/video container type, I/O
and support functions

run_bitacc_cmodel.c Example code calling the C model

kodim19_128x192.bmp 128x192 sample test image of the lighthouse image from the True Color
Kodak test images

/lin64 Precompiled bit accurate ANSI C reference model for simulation on
64-bit Linux platforms

libIp_v_enhance_v3_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by

libIp_v_enhance_v3_0_bitacc_cmodel.so

/lin32 Precompiled bit accurate ANSI C reference model for simulation on
32-bit Linux platforms

libIp_v_enhance_v3_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by

libIp_v_enhance_v3_0_bitacc_cmodel.so

/nt32 Precompiled bit accurate ANSI C reference model for simulation on
32-bit Windows platforms.

http://www.xilinx.com
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

LogiCORE IP Image Edge Enhancement www.xilinx.com 34
PG003 October 19, 2011

Appendix E: C Model Reference

libIp_v_enhance_v3_0_bitacc_cmodel.lib Precompiled library file for win32 compilation

/nt64 Precompiled bit accurate ANSI C reference model for simulation on
64-bit Windows platforms.

libIp_v_enhance_v3_0_bitacc_cmodel.lib Precompiled library file for win64 compilation

Table E-1: Directory Structure and Files of the Image Edge Enhancement v3.0 Bit Accurate C Model

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 35
PG003 October 19, 2011

Appendix E: C Model Reference

Installation
For Linux, make sure these files are in a directory that is in your $LD_LIBRARY_PATH
environment variable:

• libIp_v_enhance_v3_0_bitacc_cmodel.so

• libstlport.so.5.1

Software Requirements
The Image Edge Enhancement v3.0 C models were compiled and tested with the software
listed in Table E-2.

Table E-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

32- and 64-bit Linux GCC 4.1.1

32- and 64-bit Windows Microsoft Visual Studio 2005

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 36
PG003 October 19, 2011

Appendix E: C Model Reference

Using the C Model
The bit accurate C model is accessed through a set of functions and data structures that are
declared in the v_enhance_v3_0_bitacc_cmodel.h file.

Before using the model, the structures holding the inputs, generics and output of the Image
Edge Enhancement instance must be defined:

struct xilinx_ip_v_enhance_v3_0_generics enhance_generics;
struct xilinx_ip_v_enhance_v3_0_inputs enhance_inputs;
struct xilinx_ip_v_enhance_v3_0_outputs enhance_outputs;

The declaration of these structures is in the v_enhance_v3_0_bitacc_cmodel.h file.

Table E-3 lists the generic parameters taken by the Image Edge Enhancement v3.0 IP core
bit accurate model, as well as the default values. For an actual instance of the core, these
parameters can only be set in generation time through the CORE Generator™ GUI.

Calling xilinx_ip_v_enhance_v3_0_get_default_generics(&enhance_gener
ics) initializes the generics structure with the Image Edge Enhancement GUI defaults,
listed in Table E-3.

Table E-3: Model Generic Parameters and Default Values

Generic variable Type
Default
Value

Range Description

DATA_WIDTH int 8 8,10,12 Data width

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 37
PG003 October 19, 2011

Appendix E: C Model Reference

Direction gain can also be set dynamically through the pCore and General Purpose
Processor interfaces. Consequently, these values are passed as inputs to the core, along
with the actual test image, or video sequence (Table E-4).

1 For the description of the input structure, see Initializing the Image Edge Enhancement Input Video
Structure.

The structure enhance_inputs defines the values of run time parameters and the actual
input image. Calling xilinx_ip_v_enhance_v3_0_get_default_inputs(&enhan
ce_generics, &enhance_inputs) initializes the input structure with the default
values (see Table E-4).

Note: The video_in variable is not initialized because the initialization depends on the actual test
image to be simulated. Chapter 4, C Model Example Code describes the initialization of the
video_in structure.

After the inputs are defined, the model can be simulated by calling this function:

int xilinx_ip_v_enhance_v3_0_bitacc_simulate(
struct xilinx_ip_v_enhance_v3_0_generics* generics,
struct xilinx_ip_v_enhance_v3_0_inputs* inputs,
struct xilinx_ip_v_enhance_v3_0_outputs* outputs).

Results are included in the outputs structure, which contains only one member, type
video_struct. After the outputs are evaluated and saved, dynamically allocated
memory for input and output video structures must be released by calling this function:

void xilinx_ip_v_enhance_v3_0_destroy(
struct xilinx_ip_v_enhance_v3_0_inputs *input,
struct xilinx_ip_v_enhance_v3_0_outputs *output).

Successful execution of all provided functions, except for the destroy function, return
value 0. A non-zero error code indicates that problems occurred during function calls.

Image Edge Enhancement Input and Output Video Structure
Input images or video streams can be provided to the Image Edge Enhancement v3.0
reference model using the video_struct structure, defined in video_utils.h:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table E-4: Core Generic Parameters and Default Values

Input
Variable

Type
Default
Value

Range Description

video_in video_struct null N/A Container to hold input image or video data.1

gain_h int 1 Allowed values are 0 to
2 in increments of 0.25

Horizontal gain

gain_v int 1 Allowed values are 0 to
2 in increments of 0.25

Vertical gain

gain_d int 1 Allowed values are 0 to
2 in increments of 0.25

Diagonal gain

gain_lap int 1 Allowed values are 0 to
2 in increments of 0.25

Laplacian filter gain

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 38
PG003 October 19, 2011

Appendix E: C Model Reference

Table E-5: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per frame.

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for YUV data. Frame dimensions
are assumed constant through all frames of the video stream.
However different planes, such as y, u and v can have different
dimensions.

cols Number of columns per frame.

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for YUV data. Frame dimensions
are assumed constant through all frames of the video stream.
However different planes, such as y, u and v can have different
dimensions.

bits_per_component Number of bits per color channel/component.All image planes
are assumed to have the same color/component representation.
Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.

Named constants to be assigned to mode are listed in Table E-6.

data Set of five pointers to three dimensional arrays containing data
for image planes.

Data is in 16-bit unsigned integer format accessed as
data[plane][frame][row][col].

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 39
PG003 October 19, 2011

Appendix E: C Model Reference

The Image Edge Enhancement core supports the mode FORMAT_C444.

Initializing the Image Edge Enhancement Input Video Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with
an image or video. The bmp_util.h and video_util.h header files packaged with the
bit accurate C models contain functions to facilitate file I/O.

YUV Image Files

The header yuv_utils.h file declares functions that help access files in standard YUV
format. It operates on images with three planes (Y, U and V). The following functions
operate on arguments of type yuv8_video_struct, which is defined in yuv_utils.h.

int write_yuv8(FILE *outfile, struct yuv8_video_struct *yuv8_video);
int read_yuv8(FILE *infile, struct yuv8_video_struct *yuv8_video);

Exchanging data between yuv8_video_struct and general video_struct type
frames/videos is facilitated by these functions:

int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in,
struct video_struct* video_out);

int copy_video_to_yuv8(struct video_struct* video_in,
struct yuv8_video_struct* yuv8_out);

Note: All image/video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Moreover, the input structure must have the dynamically allocated container (data
or r, g, b) structures already allocated and initialized with the input frame(s). If the output container
structure is pre-allocated at the time of the function call, the utility functions verify and issue an error
if the output container size does not match the size of the expected output. If the output container
structure is not pre-allocated, the utility functions create the appropriate container to hold results.

Table E-6: Named Video Modes with Corresponding Planes and Representations

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 444 YUV, or YCrCb image/video data

FORMAT_C422 3 422 format YUV video, (u, v chrominance channels
horizontally sub-sampled)

FORMAT_C420 3 420 format YUV video, (u, v sub-sampled both horizontally
and vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with Motion

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 40
PG003 October 19, 2011

Appendix E: C Model Reference

Binary Image/Video Files

The video_utils.h header file declares functions that help load and save generalized
video files in raw, uncompressed format.

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

These functions serialize the video_struct structure. The corresponding file contains a
small, plain text header defining, "Mode", "Frames", "Rows", "Columns", and "Bits per
Pixel". The plain text header is followed by binary data, 16-bits per component in scan line
continuous format. Subsequent frames contain as many component planes as defined by
the video mode value selected. Also, the size (rows, columns) of component planes can
differ within each frame as defined by the actual video mode selected.

Working with Video_struct Containers

The video_utils.h header file defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

The video_planes_per_mode function returns the number of component planes
defined by the mode variable, as described in Table E-6. The video_rows_per_plane
and video_cols_per_plane functions return the number of rows and columns in a
given plane of the selected video structure. The following example demonstrates using
these functions in conjunction to process all pixels within a video stream stored in the
in_video variable:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]
 }
 }
 }
}

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 41
PG003 October 19, 2011

Appendix E: C Model Reference

C Model Example Code
An example C file, run_bitacc_cmodel.c, is provided to demonstrate the steps
required to run the model. After following the compilation instructions, run the example
executable. The executable takes the path/name of the input file and the path/name of the
output file as parameters. If invoked with insufficient parameters, this help message is
issued:

Usage: run_bitacc_cmodel in_file out_file

in_file : path/name of the input (BIN file)

out_file : path/name of the output (BIN file)

The structure of .bin files are described in Binary Image/Video Files.

To ease modifying and debugging the provided top-level demonstrator using the built-in
debugging environment of Visual Studio, the top-level command line parameters can be
specified through the Project Property Pages using these steps:

1. In the Solution Explorer pane, right-click the project name and select Properties in the
context menu.

2. Select Debugging on the left pane of the Property Pages dialog box.

3. Enter the paths and file names of the input and output images in the Command
Arguments field.

Compiling Image Edge Enhancement C Model with Example Wrapper

Linux (32-bit and 64-bit)

To compile the example code, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where you unzipped the model zip file using a command such as:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 directory to the root directory:

libstlport.so.5.1

libIp_v_enhance_v3_0_bitacc_cmodel.so

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 42
PG003 October 19, 2011

Appendix E: C Model Reference

3. In the root directory, compile using the GNU C Compiler with this command:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_enhance_v3_0_bitacc_cmodel
-Wl,-rpath,.

gcc –m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_enhance_v3_0_bitacc_cmodel
-Wl,-rpath,.

Windows (32-bit and 64-bit)

The precompiled library v_enhance_v3_0_bitacc_cmodel.lib, and top-level
demonstration code run_bitacc_cmodel.c should be compiled with an ANSI C
compliant compiler under Windows. An example procedure is provided here using
Microsoft Visual Studio.

1. In Visual Studio, create a new, empty Win32 Console Application project.

2. As existing items, add:

a. libIp_v_enhance_v3_0_bitacc_cmodel.lib to the Resource Files folder of
the project

b. run_bitacc_cmodel.c to the Source Files folder of the project

c. v_enhance_v3_0_bitacc_cmodel.h to the Header Files folder of the project

3. After the project is created and populated, it must be compiled and linked (built) to
create a win32 executable. To perform the build step, select "Build Solution" from the
Build menu. An executable matching the project name has been created either in the
Debug or Release subdirectories under the project location based on whether "Debug"
or "Release" has been selected in the "Configuration Manager" under the Build menu.

http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 43
PG003 October 19, 2011

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
These documents provide supplemental material useful with this user guide:

1. AXI Reference Guide.

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com

LogiCORE IP Image Edge Enhancement www.xilinx.com 44
PG003 October 19, 2011

Appendix F: Additional Resources

Ordering Information
The Image Enhancement core is provided under the the Xilinx Core License Agreement
and can be generated using the Xilinx® CORE Generator™ system. The CORE Generator
system is shipped with Xilinx ISE® Design Suite software.

A simulation evaluation license for the core is shipped with the CORE Generator system.
To access the full functionality of the core, including FPGA bitstream generation, a full
license must be obtained from Xilinx. For more information, visit the product page for this
core.

Contact your local Xilinx sales representative for pricing and availability of additional
Xilinx LogiCORE IP modules and software. Information about additional Xilinx
LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_img-enhance.htm
http://www.xilinx.com

	LogiCORE IP Image Edge Enhancement v3.0
	Table of Contents
	Overview
	Overview
	Standards Compliance
	Feature Summary
	Applications
	Licensing
	Simulation Only
	Full System Hardware Evaluation
	Full

	Obtaining Your License Key
	Simulation License
	Full System Hardware Evaluation License
	Obtaining a Full License
	Installing Your License File

	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization

	Core Interfaces and Register Space
	Core Symbol and Port Descriptions
	Xilinx Streaming Video Interface
	Constant Interface
	EDK pCore Interface
	General Purpose Processor Interface
	Constant Interface

	Customizing and Generating the Core
	Graphical User Interface (GUI)
	Parameter Values in the XCO File
	Output Generation
	File Details
	General Purpose Processor or Constant Interface Files

	Designing with the Core
	Defining Gains
	General Design Guidelines
	Control Signals and Timing

	Clocking
	Resets
	Protocol Description

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Detailed Example Design
	Overview
	Design File Hierarchy
	Operating Instructions
	Support

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Migrating
	Special Considerations when Migrating to AXI

	Debugging
	Evaluation Core Timeout

	Application Software Development
	C Model Reference
	Unpacking and Model Contents
	Installation
	Software Requirements
	Using the C Model
	Image Edge Enhancement Input and Output Video Structure
	Initializing the Image Edge Enhancement Input Video Structure

	C Model Example Code
	Compiling Image Edge Enhancement C Model with Example Wrapper

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

