
LogiCORE IP Gamma
Correction v5.00.a

Product Guide

PG004 April 24, 2012

Gamma Correction www.xilinx.com 2
PG004 April 24, 2012

Table of Contents

Chapter 1: Overview
Feature Summary. 7
Applications . 7
Licensing . 7
Installing Your License File . 9

Chapter 2: Product Specification
Standards Compliance . 10
Performance. 10
Resource Utilization. 11
Core Interfaces and Register Space . 15

Chapter 3: Customizing and Generating the Core
Graphical User Interface . 28

Chapter 4: Designing with the Core
General Design Guidelines . 34
Clock, Enable, and Reset Considerations . 35
System Considerations . 37

Chapter 5: Constraining the Core
Required Constraints . 40
Device, Package, and Speed Grade Selections. 40
Clock Frequencies . 40
Clock Management . 40
Clock Placement. 40
Banking . 40

http://www.xilinx.com

Gamma Correction www.xilinx.com 3
PG004 April 24, 2012

Transceiver Placement . 41
I/O Standard and Placement. 41

Chapter 6: Detailed Example Design
Demonstration Test Bench . 42
Test Bench Structure . 42
Running the Simulation . 43
Directory and File Contents. 43

Appendix A: Verification, Compliance, and Interoperability
Simulation . 45
Hardware Testing. 45
Interoperability . 46

Appendix B: Migrating

Appendix C: Debugging
Bringing up the AXI4-Lite Interface. 49
Bringing up the AXI4-Stream Interfaces . 50
Debugging Features . 52
Interfacing to Third-Party IP . 53

Appendix D: Application Software Development
Programmer’s Guide . 55

Appendix E: C Model Reference
Installation and Directory Structure . 58
Using the C-Model . 60
Gamma Correction Input and Output Video Structure . 62
Initializing the Gamma Correction Input Video Structure. 63
Example Code. 65
Compiling with the Gamma C-Model . 66

http://www.xilinx.com

Gamma Correction www.xilinx.com 4
PG004 April 24, 2012

Appendix F: Additional Resources
Xilinx Resources . 67
Solution Centers. 67
References . 67
Technical Support . 68
Ordering Information. 68
Revision History . 68
Notice of Disclaimer. 69

http://www.xilinx.com

Gamma Correction www.xilinx.com 5
PG004 April 24, 2012 Product Specification

Introduction
The Xilinx LogiCORE™ IP Gamma Correction core
provides customers with an optimized hardware
block for manipulating image data to match the
response of display devices. This core is
implemented using a look-up table structure
that is programmed to implement a gamma
correction curve transform on the input image
data. Programmable number of Gamma tables
enable having separate gamma tables for all
color channels, separate tables for luminance
and chrominance channels, or one gamma table
to be shared by all color channels.

Features
• Programmable gamma table supports gamma

correction or any user defined function
• One, two or three channel independent or

shared look-up table structure allow potential
resource reduction

• AXI4-Stream data interfaces
• Supports 8, 10 and 12-bits per color

component input and output
• Supports Spatial resolutions from 32x32 up to

7680x7680

° Supports 1080P60 in all supported device
families

° Supports 4kx2k @24Hz in supported high
performance devices

• Optional features:

° Interpolated output values for 12-bit data
to reduce resource requirements

° AXI4-Lite Control interface allowing
real-time re-programming of gamma
tables

° Double buffering of control interface to
prevent image tearing

° Built-in throughput monitors to assist
with system optimization

° Bypass and test pattern generator mode
to assist with system bring up and debug

LogiCORE IP Gamma Correction
v5.00.a

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1)

Zynq 7000, Artix-7, Virtex®-7, Kintex®-7,
Virtex-6, Spartan®-6

Supported User
Interfaces

AXI4-Lite, AXI4-Stream(2)

Resources See Table 2-1 through Table 2-5.

Provided with Core

Documentation Product Guide

Design Files NGC netlist, Encrypted HDL

Example Design Not Provided

Test Bench Verilog (3)

Constraints File Not Provided

Simulation
Models

VHDL or Verilog Structural, C-Model (3)

Tested Design Tools

Design Entry
Tools

CORE Generator™ tool, Platform Studio (XPS) 14.1

Simulation(4) Mentor Graphics ModelSim, Xilinx® ISim 14.1

Synthesis Tools Xilinx Synthesis Technology (XST) 14.1

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release
notes for this core.

2. Video protocol as defined in the Video IP: AXI Feature
Adoption section of UG761 AXI Reference Guide.

3. HDL test bench and C-Model available on the product page on
Xilinx.com at http://www.xilinx.com/products/ipcenter/
EF-DI-GAMMA.htm

4. For the supported versions of the tools, see the ISE Design
Suite 14: Release Notes Guide.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v14_1/ug761_axi_reference_guide.pdf
http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf

Gamma Correction www.xilinx.com 6
PG004 April 24, 2012

Chapter 1

Overview
Gamma correction, also known as gamma compression or encoding, is used to encode
linear luminance or RGB values to match the non-linear characteristics of display devices.
Gamma correction helps to map data into a more perceptually uniform domain, so as to
optimize perceptual performance of a limited signal range, such as a limited number of bits
in each RGB component.

Gamma correction is, in the simplest cases, defined by

where the input and output values are between 0 and 1 (Figure 1-1). The case γ <1 is often
called gamma compression and γ >1 is called gamma expansion.

When used in conjunction with an embedded or external processor, the Gamma Correction
core supports frame-by-frame dynamic reprogramming of the gamma tables. The gamma
tables can be reprogrammed with arbitrary functions, supporting a wide range of
applications, such as intensity correction, feature enhancement, lin-log, log-lin conversion
and thresholding.

γ
inout VV =

X-Ref Target - Figure 1-1

Figure 1-1: Gamma Correction

http://www.xilinx.com

Gamma Correction www.xilinx.com 7
PG004 April 24, 2012

Feature Summary

The Gamma Correction core also offers various configuration options for a designer to
optimize the block RAM footprint required by the core.

The Gamma Correction core is implemented as a set of Look-Up-Tables that are used to
perform the data transformation. The width of the input data determines the number of
entries in the Look-Up-Table. For example, 8-bit input data would require 28 (256) entries in
the Look-Up-Table. The width of the output data determines the width of each entry in the
Look-Up-Table. For example, 12-bit output data would require that each entry in the table
be 12-bits wide.

Feature Summary
The Gamma Correction core provides programmable look-up tables for gamma correction.
A programmable number of Gamma tables allows for separate gamma tables for all color
channels, separate tables for luminance and chrominance channels, or one gamma table to
be shared by all color channels. Higher resolutions and frame rates can be supported in
Xilinx high-performance device families.

Applications
• Pre-processing block for image sensors

• Post-processing block for image data adjustment

• Intensity correction

• Video surveillance

• Consumer displays

• Video conferencing

• Machine vision

Licensing
The Gamma Correction core provides the following three licensing options:

• Simulation Only

• Full System Hardware Evaluation

• Full

http://www.xilinx.com

Gamma Correction www.xilinx.com 8
PG004 April 24, 2012

Licensing

After installing the required Xilinx ISE software and IP Service Packs, choose a license
option.

Simulation Only
The Simulation Only Evaluation license key is provided with the Xilinx tools. This key lets
you assess core functionality with either the example design provided with the Gamma
Correction core (if provided), or alongside your own design and demonstrates the various
interfaces to the core in simulation. (Functional simulation is supported by a dynamically
generated HDL structural model.)

No action is required to obtain the Simulation Only Evaluation license key; it is provided by
default with the Xilinx software.

Full System Hardware Evaluation
The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place-and-route the design, evaluate timing, and
perform functional simulation of the Gamma Correction core using a customer design or
the demonstration test bench provided with the core.

In addition, the license key lets you generate a bitstream from the placed and routed
design, which can then be downloaded to a supported device and tested in hardware. The
core can be tested in the target device for a limited time before timing out (resetting to
default values and the output video becoming black), at which time it can be reactivated by
reconfiguring the device.

The timeout period for this core is set to approximately 8 hours for a 74.25 MHz clock.
Using a faster or slower clock changes the timeout period proportionally. For example,
using a 150 MHz clock results in a timeout period of approximately 4 hours.

To obtain a Full System Hardware Evaluation license, do the following:

1. Navigate to the product page for this core.

2. Click Evaluate.

3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs.

Full
The Full license key is available when you purchase the core and provides full access to all
core functionality both in simulation and in hardware, including:

• Functional simulation support

• Full implementation support including place and route and bitstream generation

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm

Gamma Correction www.xilinx.com 9
PG004 April 24, 2012

Installing Your License File

• Full functionality in the programmed device with no time outs

To obtain a Full license key, you must purchase a license for the core. Click on the “Order”
link on the Xilinx.com IP core product page for information on purchasing a license for this
core. After doing so, click the “How do I generate a license key to activate this core?” link on
the Xilinx.com IP core product page for further instructions.

Installing Your License File
The Simulation Only Evaluation license key is provided with the ISE system and does not
require installation of an additional license file. For the Full System Hardware Evaluation
license and the Full license, an email will be sent to you containing instructions for installing
your license file. Additional details about IP license key installation can be found in the ISE
Design Suite Installation, Licensing and Release Notes document.

http://www.xilinx.com

Gamma Correction www.xilinx.com 10
PG004 April 24, 2012 Product Specification

Chapter 2

Product Specification

Standards Compliance
The Gamma Correction core is compliant with the AXI4-Stream Video Protocol and
AXI4-Lite interconnect standards. Refer to the Video IP: AXI Feature Adoption section of the
UG761 AXI Reference Guide for additional information.

Performance
The following sections detail the performance characteristics of the Gamma Correction core.

Maximum Frequencies
This section contains typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options, additional logic in the FPGA device,
using a different version of Xilinx tools and other factors. Refer to in Table 2-1 through
Table 2-5 for device-specific information.

Latency
The propagation delay of the Gamma Correction core is always five clock cycles.

Throughput
The Gamma Correction core outputs one sample per clock cycle.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v14_1/ug761_axi_reference_guide.pdf

Gamma Correction www.xilinx.com 11
PG004 April 24, 2012 Product Specification

Resource Utilization

Resource Utilization
For an accurate measure of the usage of primitives, slices, and CLBs for a particular instance,
check the Display Core Viewer after Generation check box in the CORE Generator
interface.

The information presented in Table 2-1 through Table 2-5 is a guide to the resource
utilization and maximum clock frequency of the Gamma Correction core for all input/output
width combinations for Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, and Spartan-6
FPGA families. This core does not use any DSP48s, dedicated I/O, or CLK resources. The
design was tested using ISE® v14.1 tools with default tool options for characterization data.
When the AXI4-Lite Register Interface is enabled, add the following values to the values in
the tables; LUT_FF Pairs: 510, LUTs: 395 and FFs: 305.

Table 2-1: Spartan-6

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM 16

/ 8 DSP48A1 Fmax
(MHz)

8 8 0 0 270 241 165 0 / 2 0 175

10 0 0 281 244 179 0 / 2 0 195

12 0 0 287 253 189 0 / 2 0 189

8 0 1 270 241 165 0 / 2 0 175

10 0 1 281 244 179 0 / 2 0 195

12 0 1 287 253 189 0 / 2 0 189

10 8 0 0 275 249 176 0 / 2 0 189

10 0 0 289 253 191 2 / 0 0 175

12 0 0 298 265 201 2 / 0 0 184

8 0 1 275 249 176 0 / 2 0 189

10 0 1 289 253 191 2 / 0 0 175

12 0 1 298 265 201 2 / 0 0 184

12 8 0 0 311 259 212 4 / 0 0 175

10 0 0 318 271 233 4 / 2 0 189

12 0 0 327 281 249 6 / 0 0 175

8 0 1 311 259 212 4 / 0 0 175

10 0 1 318 271 233 4 / 2 0 189

12 0 1 327 281 249 6 / 0 0 175

12 1 0 417 407 227 3 / 0 0 154

12 1 1 425 412 235 6 / 0 0 158

http://www.xilinx.com

Gamma Correction www.xilinx.com 12
PG004 April 24, 2012 Product Specification

Resource Utilization

Table 2-2: Virtex-7

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM

36/18 DSP48E1 Fmax
(MHz)

8 8 0 0 222 199 151 0 / 2 0 273

10 0 0 232 203 163 0 / 2 0 293

12 0 0 242 213 175 0 / 2 0 293

8 0 1 222 199 151 0 / 2 0 303

10 0 1 232 203 163 0 / 2 0 293

12 0 1 242 213 175 0 / 2 0 293

10 8 0 0 231 207 163 0 / 2 0 303

10 0 0 242 213 175 0 / 2 0 283

12 0 0 252 224 187 0 / 2 0 283

8 0 1 231 207 163 0 / 2 0 303

10 0 1 242 213 175 0 / 2 0 283

12 0 1 252 224 187 0 / 2 0 283

12 8 0 0 241 219 175 2 / 0 0 303

10 0 0 250 223 187 2 / 2 0 283

12 0 0 267 229 199 2 / 2 0 293

8 0 1 275 250 182 2 / 0 0 263

10 0 1 283 258 194 2 / 2 0 273

12 0 1 299 261 206 2 / 2 0 273

12 1 0 416 400 220 0 / 3 0 273

12 1 1 425 408 230 3 / 0 0 273

Table 2-3: Virtex-6

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM

36/18 DSP48E1 Fmax
(MHz)

8 8 0 0 223 197 151 0 / 2 0 315

10 0 0 233 201 163 0 / 2 0 307

12 0 0 247 211 175 0 / 2 0 315

8 0 1 223 197 151 0 / 2 0 315

10 0 1 233 201 163 0 / 2 0 307

12 0 1 247 211 175 0 / 2 0 315

http://www.xilinx.com

Gamma Correction www.xilinx.com 13
PG004 April 24, 2012 Product Specification

Resource Utilization

10 8 0 0 234 208 163 0 / 2 0 277

10 0 0 237 215 175 0 / 2 0 307

12 0 0 258 219 187 0 / 2 0 300

8 0 1 234 208 163 0 / 2 0 277

10 0 1 237 215 175 0 / 2 0 307

12 0 1 258 219 187 0 / 2 0 300

12 8 0 0 237 221 175 2 / 0 0 300

10 0 0 250 225 187 2 / 2 0 307

12 0 0 265 233 199 2 / 2 0 285

8 0 1 237 221 175 2 / 0 0 300

10 0 1 250 225 187 2 / 2 0 307

12 0 1 265 233 199 2 / 2 0 285

12 1 0 382 375 211 0 / 3 0 255

12 1 1 388 380 216 3 / 0 0 248

Table 2-4: Kintex-7 (Zynq-7000)

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM

36/18 DSP48E1 Fmax
(MHz)

8 8 0 0 223 197 151 0 / 2 0 295

10 0 0 227 205 163 0 / 2 0 304

12 0 0 247 209 175 0 / 2 0 304

8 0 1 223 197 151 0 / 2 0 295

10 0 1 227 205 163 0 / 2 0 304

12 0 1 247 209 175 0 / 2 0 304

10 8 0 0 234 207 163 0 / 2 0 311

10 0 0 235 213 175 0 / 2 0 304

12 0 0 258 219 187 0 / 2 0 304

8 0 1 234 207 163 0 / 2 0 311

10 0 1 235 213 175 0 / 2 0 304

12 0 1 258 219 187 0 / 2 0 304

Table 2-3: Virtex-6 (Cont’d)

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM

36/18 DSP48E1 Fmax
(MHz)

http://www.xilinx.com

Gamma Correction www.xilinx.com 14
PG004 April 24, 2012 Product Specification

Resource Utilization

12 8 0 0 243 217 175 2 / 0 0 295

10 0 0 239 227 187 2 / 2 0 295

12 0 0 268 229 199 2 / 2 0 295

8 0 1 243 217 175 2 / 0 0 295

10 0 1 239 227 187 2 / 2 0 295

12 0 1 268 229 199 2 / 2 0 295

12 1 0 394 377 213 0 / 3 0 246

12 1 1 402 382 223 3 / 0 0 243

Table 2-5: Artix-7 (Zynq-7000)

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM

36/18 DSP48E1 Fmax
(MHz)

8 8 0 0 223 196 151 0 / 2 0 197

10 0 0 233 200 163 0 / 2 0 197

12 0 0 242 214 175 0 / 2 0 206

8 0 1 223 196 151 0 / 2 0 197

10 0 1 233 200 163 0 / 2 0 197

12 0 1 242 214 175 0 / 2 0 206

10 8 0 0 226 211 163 0 / 2 0 214

10 0 0 239 214 175 0 / 2 0 214

12 0 0 248 227 187 0 / 2 0 206

8 0 1 226 211 163 0 / 2 0 214

10 0 1 239 214 175 0 / 2 0 214

12 0 1 248 227 187 0 / 2 0 206

12 8 0 0 241 218 175 2 / 0 0 206

10 0 0 253 220 187 2 / 2 0 214

12 0 0 258 232 199 2 / 2 0 206

8 0 1 241 218 175 2 / 0 0 206

10 0 1 253 220 187 2 / 2 0 214

12 0 1 258 232 199 2 / 2 0 206

12 1 0 412 397 211 0 / 3 0 197

12 1 1 423 402 216 3 / 0 0 195

Table 2-4: Kintex-7 (Zynq-7000) (Cont’d)

Input
Data

Width

Output
Data

Width
Interpolation Double

Buffering
LUT-FF
Pairs LUTs FFs RAM

36/18 DSP48E1 Fmax
(MHz)

http://www.xilinx.com

Gamma Correction www.xilinx.com 15
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

Core Interfaces and Register Space

Port Descriptions
The Gamma Correction core uses industry standard control and data interfaces to connect
to other system components. The following sections describe the various interfaces
available with the core. Figure 2-1 illustrates an I/O diagram of the Gamma Correction core.
Some signals are optional and not present for all configurations of the core. The AXI4-Lite
interface and the IRQ pin are present only when the core is configured via the GUI with an
AXI4-Lite control interface. The INTC_IF interface is present only when the core is
configured via the GUI with the INTC interface enabled.

X-Ref Target - Figure 2-1

Figure 2-1: Gamma Correction core Top-Level Signaling Interface

http://www.xilinx.com

Gamma Correction www.xilinx.com 16
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

Common Interface Signals
Table 2-6 summarizes the signals which are either shared by, or not part of the dedicated
AXI4-Stream data or AXI4-Lite control interfaces.

The ACLK, ACLKEN and ARESETn signals are shared between the core, the AXI4-Stream
data interfaces, and the AXI4-Lite control interface. Refer to The Interrupt Subsystem for a
description of the INTC_IF and IRQ pins.

ACLK

All signals, including the AXI4-Stream and AXI4-Lite component interfaces, must be
synchronous to the core clock signal ACLK. All interface input signals are sampled on the
rising edge of ACLK. All output signal changes occur after the rising edge of ACLK.

ACLKEN

The ACLKEN pin is an active-high, synchronous clock-enable input pertaining to both the
AXI4-Stream and AXI4-Lite interfaces. Setting ACLKEN low (de-asserted) halts the operation
of the core despite rising edges on the ACLK pin. Internal states are maintained, and output
signal levels are held until ACLKEN is asserted again. When ACLKEN is de-asserted, core
inputs are not sampled, except ARESETn, which supersedes ACLKEN.

ARESETn

The ARESETn pin is an active-low, synchronous reset input pertaining to both the
AXI4-Stream and AXI4-Lite interfaces. ARESETn supersedes ACLKEN, and when set to 0, the
core resets at the next rising edge of ACLK even if ACLKEN is de-asserted.

Data Interface
The Gamma Correction core receives and transmits data using AXI4-Stream interfaces that
implement a video protocol as defined in the Video IP: AXI Feature Adoption section of the
UG761 AXI Reference Guide.

Table 2-6: Common Interface Signals

Signal Name Direction Width Description

ACLK In 1 Clock

ACLKEN In 1 Clock Enable

ARESETn In 1 Active low synchronous

INTC_IF Out 9 Optional External Interrupt Controller Interface. Available only
when INTC_IF is selected on GUI.

IRQ Out 1 Optional Interrupt Request Pin. Available only when AXI4-Liter
interface is selected on GUI.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v14_1/ug761_axi_reference_guide.pdf

Gamma Correction www.xilinx.com 17
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

AXI4-Stream Signal Names and Descriptions

Table 2-7 describes the AXI4-Stream signal names and descriptions.

Video Data

The AXI4-Stream interface specif ication restricts TDATA widths to integer multiples of
8 bits. Therefore, 10 and 12 bit data must be padded with zeros on the MSB to form N*8-bit
wide vector before connecting to s_axis_video_tdata. Padding does not affect the size
of the core.

Similarly, RGB data on the Gamma Correction core output m_axis_video_tdata is
packed and padded to multiples of 8 bits as necessary, as seen in Figure 2-2. Zero padding
the most significant bits is only necessary for 10 and 12 bit wide data.

READY/VALID Handshake

A valid transfer occurs whenever READY, VALID, ACLKEN, and ARESETn are high at the
rising edge of ACLK, as seen in Figure 2-3. During valid transfers, DATA only carries active
video data. Blank periods and ancillary data packets are not transferred via the AXI4-Stream
video protocol.

Table 2-7: AXI4-Stream Data Interface Signal Descriptions

Signal Name Direction Width Description

s_axis_video_tdata In 8,16,24,32,40 Input Video Data

s_axis_video_tvalid In 1 Input Video Valid Signal

s_axis_video_tready Out 1 Input Ready

s_axis_video_tuser In 1 Input Video Start Of Frame

s_axis_video_tlast In 1 Input Video End Of Line

m_axis_video_tdata Out 8,16,24,32,40 Output Video Data

m_axis_video_tvalid Out 1 Output Valid

m_axis_video_tready In 1 Output Ready

m_axis_video_tuser Out 1 Output Video Start Of Frame

m_axis_video_tlast Out 1 Output Video End Of Line

X-Ref Target - Figure 2-2

Figure 2-2: RGB Data Encoding on m_axis_video_tdata

http://www.xilinx.com

Gamma Correction www.xilinx.com 18
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

Guidelines on Driving s_axis_video_tvalid

Once s_axis_video_tvalid is asserted, no interface signals (except the Gamma
Correction core driving s_axis_video_tready) may change value until the transaction
completes (s_axis_video_tready, s_axis_video_tvalid ACLKEN high on the rising
edge of ACLK). Once asserted, s_axis_video_tvalid may only be de-asserted after a
transaction has completed. Transactions may not be retracted or aborted. In any cycle
following a transaction, s_axis_video_tvalid can either be de-asserted or remain
asserted to initiate a new transfer.

Guidelines on Driving m_axis_video_tready

The m_axis_video_tready signal may be asserted before, during or after the cycle in
which the Gamma Correction core asserted m_axis_video_tvalid. The assertion of
m_axis_video_tready may be dependent on the value of m_axis_video_tvalid. A slave
that can immediately accept data qualif ied by m_axis_video_tvalid, should pre-assert
its m_axis_video_tready signal until data is received. Alternatively,
m_axis_video_tready can be registered and driven the cycle following VALID
assertion. It is recommended that the AXI4-Stream slave should drive READY
independently, or pre-assert READY to minimize latency.

Start of Frame Signals - m_axis_video_tuser0, s_axis_video_tuser0

The Start-Of-Frame (SOF) signal, physically transmitted over the AXI4-Stream TUSER0
signal, marks the f irst pixel of a video frame. The SOF pulse is 1 valid transaction wide, and
must coincide with the first pixel of the frame, as seen in Figure 2-3. SOF serves as a frame
synchronization signal, which allows downstream cores to re-initialize, and detect the f irst
pixel of a frame. The SOF signal may be asserted an arbitrary number of ACLK cycles before
the first pixel value is presented on DATA , as long as a VALID is not asserted.

X-Ref Target - Figure 2-3

Figure 2-3: Example of READY/VALID Handshake, Start of a New Frame

http://www.xilinx.com

Gamma Correction www.xilinx.com 19
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

End of Line Signals - m_axis_video_tlast, s_axis_video_tlast

The End-Of-Line signal, physically transmitted over the AXI4-Stream TLAST signal, marks
the last pixel of a line. The EOL pulse is 1 valid transaction wide, and must coincide with the
last pixel of a scan-line, as seen in Figure 2-4.

Control Interface
When configuring the core, the user has the option to add an AXI4-Lite register interface to
dynamically control the behavior of the core. The AXI4-Lite slave interface facilitates
integrating the core into a processor system, or along with other video or AXI4-Lite
compliant IP, connected via AXI4-Lite interface to an AXI4-Lite master. In a static
configuration with a fixed set of parameters (constant configuration), the core is
instantiated without the AXI4-Lite control interface, which reduces the core Slice footprint.

Constant Configuration

The constant configuration caters to users who will use the core in one setup that will not
need to change over time. In constant configuration the image resolution (number of active
pixels per scan line and the number of active scan lines per frame) and the Gamma
Correction Look-Up-Tables (LUTs) are hard coded into the core via the Gamma Correction
core GUI. Since there is no AXI4-Lite interface, the core is not programmable, but can be
reset, enabled, or disabled using the ARESETn and ACLKEN ports.

AXI4-Lite Interface

The AXI4-Lite interface allows a user to dynamically control parameters within the core.
Core configuration can be accomplished using an AXI4-Stream master state machine, or an
embedded ARM or soft system processor such as MicroBlaze.

The Gamma Correction core can be controlled via the AXI4-Lite interface using read and
write transactions to the Gamma register space.

X-Ref Target - Figure 2-4

Figure 2-4: Use of EOL and SOF Signals

http://www.xilinx.com

Gamma Correction www.xilinx.com 20
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

Register Space
The standardized Xilinx Video IP register space is partitioned to control-, timing-, and core
specific registers. The Gamma Correction core uses only one timing related register,
ACTIVE_SIZE (0x0020), which allows specifying the input frame dimensions. The core has
two core specif ic registers, the Gamma_Addr_Data (0x0104) which is used to reprogram the
Gamma Look-Up-Tables and the Gamma_Table_Update (0x0100) which is used to tell the
Gamma Correction core when to move to a new LUT.

Table 2-8: AXI4-Lite Interface Signals

Signal Name Direction Width Description

s_axi_lite_awvalid In 1 AXI4-Lite Write Address Channel Write Address Valid.

s_axi_lite_awread Out 1 AXI4-Lite Write Address Channel Write Address Ready.
Indicates DMA ready to accept the write address.

s_axi_lite_awaddr In 32 AXI4-Lite Write Address Bus

s_axi_lite_wvalid In 1 AXI4-Lite Write Data Channel Write Data Valid.

s_axi_lite_wready Out 1 AXI4-Lite Write Data Channel Write Data Ready.
Indicates DMA is ready to accept the write data.

s_axi_lite_wdata In 32 AXI4-Lite Write Data Bus

s_axi_lite_bresp Out 2 AXI4-Lite Write Response Channel. Indicates results of
the write transfer.

s_axi_lite_bvalid Out 1 AXI4-Lite Write Response Channel Response Valid.
Indicates response is valid.

s_axi_lite_bready In 1 AXI4-Lite Write Response Channel Ready. Indicates
target is ready to receive response.

s_axi_lite_arvalid In 1 AXI4-Lite Read Address Channel Read Address Valid

s_axi_lite_arready Out 1 Ready. Indicates DMA is ready to accept the read
address.

s_axi_lite_araddr In 32 AXI4-Lite Read Address Bus

s_axi_lite_rvalid Out 1 AXI4-Lite Read Data Channel Read Data Valid

s_axi_lite_rready In 1 AXI4-Lite Read Data Channel Read Data Ready.
Indicates target is ready to accept the read data.

s_axi_lite_rdata Out 32 AXI4-Lite Read Data Bus

s_axi_lite_rresp Out 2 AXI4-Lite Read Response Channel Response. Indicates
results of the read transfer.

http://www.xilinx.com

Gamma Correction www.xilinx.com 21
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

1. Only available when the debugging features option is enabled in the GUI at the time the core is instantiated.

CONTROL (0x0000) Register

Bit 0 of the CONTROL register, SW_ENABLE, facilitates enabling and disabling the core from
software. Writing '0' to this bit effectively disables the core halting further operations,
which blocks the propagation of all video signals. After Power up, or Global Reset, the
SW_ENABLE defaults to 0 for the AXI4-Lite interface. Similar to the ACLKEN pin, the

Table 2-9: Register Names and Descriptions

Address
(hex)

BASEADDR
+

Register Name Access
Type

Double
Buffered Default Value Register Description

0x0000 CONTROL R/W N Power-on-Reset
: 0x0

Bit 0: SW_ENABLE
Bit 1: REG_UPDATE
Bit 4: BYPASS(1)

Bit 5: TEST_PATTERN(1)

Bit 30: FRAME_SYNC_RESET (1: reset)
Bit 31: SW_RESET (1: reset)

0x0004 STATUS R/W No 0
Bit 0: PROC_STARTED
Bit 1: EOF
Bit 16: SLAVE_ERROR

0x0008 ERROR R/W No 0

Bit 0: SLAVE_EOL_EARLY
Bit 1: SLAVE_EOL_LATE
Bit 2: SLAVE_SOF_EARLY
Bit 3: SLAVE_SOF_LATE

0x000C IRQ_ENABLE R/W No 0 16-0: Interrupt enable bits
corresponding to STATUS bits

0x0010 VERSION R N/A 0x0500a000

7-0: REVISION_NUMBER
11-8: PATCH_ID
15-12: VERSION_REVISION
23-16: VERSION_MINOR
31-24: VERSION_MAJOR

0x0014 SYSDEBUG0 R N/A 0 0-31: Frame Throughput monitor(1)

0x0018 SYSDEBUG1 R N/A 0 0-31: Line Throughput monitor(1)

0x001C SYSDEBUG2 R N/A 0 0-31: Pixel Throughput monitor(1)

0x0020 ACTIVE_SIZE R/W Yes Specified via
GUI

12-0: Number of Active Pixels per
Scanline
28-16: Number of Active Lines per
Frame

0x0100 Gamma_Table_
Update R/W Yes 0 Denotes when the core should swap to

the inactive LUT.

0x0104 Gamma_Addr_
Data R/W No 0

[31-16]: Target address in gamma LUT
[15-0]: Value to write to gamma LUT

http://www.xilinx.com

Gamma Correction www.xilinx.com 22
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

SW_ENABLE flag is not synchronized with the AXI4-Stream interfaces: Enabling or Disabling
the core takes effect immediately, irrespective of the core processing status. Disabling the
core for extended periods may lead to image tearing.

Bit 1 of the CONTROL register, REG_UPDATE is a write done semaphore for the host
processor, which facilitates committing all user and timing register updates simultaneously.
The Gamma Correction core ACTIVE_SIZE and BAYER_PHASE registers are double
buffered. One set of registers (the processor registers) is directly accessed by the processor
interface, while the other set (the active set) is actively used by the core. New values written
to the processor registers will get copied over to the active set at the end of the
AXI4-Stream frame, if and only if REG_UPDATE is set. Setting REG_UPDATE to 0 before
updating multiple register values, then setting REG_UPDATE to 1 when updates are
completed ensures all registers are updated simultaneously at the frame boundary without
causing image tearing.

Bit 4 of the CONTROL register, BYPASS, switches the core to bypass mode if debug features
are enabled. In bypass mode the Gamma Correction core processing function is bypassed,
and the core repeats AXI4-Stream input samples on its output. Refer to Debugging Features
in Appendix C for more information. If debug features were not included at instantiation,
this flag has no effect on the operation of the core. Switching bypass mode on or off is not
synchronized to frame processing, therefore can lead to image tearing.

Bit 5 of the CONTROL register, TEST_PATTERN, switches the core to test-pattern generator
mode if debug features are enabled. Refer to Debugging Features in Appendix C for more
information. If debug features were not included at instantiation, this flag has no effect on
the operation of the core. Switching test-pattern generator mode on or off is not
synchronized to frame processing, therefore can lead to image tearing.

Bits 30 and 31 of the CONTROL register, FRAME_SYNC_RESET and SW_RESET facilitate
software reset. Setting SW_RESET reinitializes the core to GUI default values, all internal
registers and outputs are cleared and held at initial values until SW_RESET is set to 0. The
SW_RESET flag is not synchronized with the AXI4-Stream interfaces. Resetting the core
while frame processing is in progress will cause image tearing. For applications where the
soft-ware reset functionality is desirable, but image tearing has to be avoided a frame
synchronized software reset (FRAME_SYNC_RESET) is available. Setting
FRAME_SYNC_RESET to 1 will reset the core at the end of the frame being processed, or
immediately if the core is between frames when the FRAME_SYNC_RESET was asserted.
After reset, the FRAME_SYNC_RESET bit is automatically cleared, so the core can get ready
to process the next frame of video as soon as possible. The default value of both RESET bits
is 0. Core instances with no AXI4-Lite control interface can only be reset via the ARESETn
pin.

STATUS (0x0004) Register

All bits of the STATUS register can be used to request an interrupt from the host processor.
To facilitate identif ication of the interrupt source, bits of the STATUS register remain set

http://www.xilinx.com

Gamma Correction www.xilinx.com 23
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

after an event associated with the particular STATUS register bit, even if the event condition
is not present at the time the interrupt is serviced.

Bits of the STATUS register can be cleared individually by writing '1' to the bit position to be
cleared.

Bit 0 of the STATUS register, PROC_STARTED, indicates that processing of a frame has
commenced via the AXI4-Stream interface.

Bit 1 of the STATUS register, End-of-frame (EOF), indicates that the processing of a frame
has completed.

Bit 16 of the STATUS register, SLAVE_ERROR, indicates that one of the conditions
monitored by the ERROR register has occurred.

ERROR (0x0008) Register

Bit 16 of the STATUS register, SLAVE_ERROR, indicates that one of the conditions
monitored by the ERROR register has occurred. This bit can be used to request an interrupt
from the host processor. To facilitate identif ication of the interrupt source, bits of the
STATUS and ERROR registers remain set after an event associated with the particular ERROR
register bit, even if the event condition is not present at the time the interrupt is serviced.

Bits of the ERROR register can be cleared individually by writing '1' to the bit position to be
cleared.

Bit 0 of the ERROR register, EOL_EARLY, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the latest and the
preceding End-Of-Line (EOL) signal was less than the value programmed into the
ACTIVE_SIZE register.

Bit 1 of the ERROR register, EOL_LATE, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the last EOL signal
surpassed the value programmed into the ACTIVE_SIZE register.

Bit 2 of the ERROR register, SOF_EARLY, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the latest and the
preceding Start-Of-Frame (SOF) signal was less than the value programmed into the
ACTIVE_SIZE register.

Bit 3 of the ERROR register, SOF_LATE, indicates an error during processing a video frame
via the AXI4-Stream slave port. The number of pixels received between the last SOF signal
surpassed the value programmed into the ACTIVE_SIZE register.

IRQ_ENABLE (0x000C) Register

Any bits of the STATUS register can generate a host-processor interrupt request via the IRQ
pin. The Interrupt Enable register facilitates selecting which bits of STATUS register will

http://www.xilinx.com

Gamma Correction www.xilinx.com 24
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

assert IRQ. Bits of the STATUS registers are masked by (AND) corresponding bits of the
IRQ_ENABLE register and the resulting terms are combined (OR) together to generate IRQ.

Version (0x0010) Register

Bit f ields of the Version Register facilitate software identif ication of the exact version of the
hardware peripheral incorporated into a system. The core driver can take advantage of this
Read-Only value to verify that the software is matched to the correct version of the
hardware. See Table 2-9 for details.

SYSDEBUG0 (0x0014) Register

The SYSDEBUG0, or Frame Throughput Monitor, register indicates the number of frames
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Debugging Features in Appendix C for more information.

SYSDEBUG1 (0x0018) Register

The SYSDEBUG1, or Line Throughput Monitor, register indicates the number of lines
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Debugging Features in Appendix C for more information.

SYSDEBUG2 (0x001C) Register

The SYSDEBUG2, or Pixel Throughput Monitor, register indicates the number of pixels
processed since power-up or the last time the core was reset. The SYSDEBUG registers can
be useful to identify external memory / Frame buffer / or throughput bottlenecks in a video
system. Refer to Debugging Features in Appendix C for more information.

ACTIVE_SIZE (0x0020) Register

The ACTIVE_SIZE register encodes the number of active pixels per scan line and the
number of active scan lines per frame. The lower half-word (bits 12:0) encodes the number
of active pixels per scan line. Supported values are between 32 and the value provided in
the Maximum number of pixels per scan line f ield in the GUI. The upper half-word (bits
28:16) encodes the number of active lines per frame. Supported values are 32 to 7680. To
avoid processing errors, the user should restrict values written to ACTIVE_SIZE to the
range supported by the core instance.

Gamma_Table_Update (0x0100)

The Gamma_Table_Update register is used when the Gamma Correction core is configured
to use Double Buffered Look-Up-Tables. When configured to use double buffered
Look-Up-Tables, the Gamma Correction core uses two banks of memory for Look-Up-Table.

http://www.xilinx.com

Gamma Correction www.xilinx.com 25
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

One bank is active and process valid data. The other bank is inactive and can be
programmed with new values by way of the AX4-Lite interface. Once the inactive bank has
been fully programmed, the Gamma Correction core can be signaled to swap banks by
setting bit 0 of the Gamma_Table Update register to 1.

Gamma_Addr_Data (0x0104)

The Gamma Look-Up-Tables can be reprogrammed dynamically through the AXI4-Lite
interface. A new value is written to the Look-Up-Table by writing the address of the
Look-Up-Table location and the new data value to the Gamma_Addr_Data register.

Updating the Gamma Tables Using the AXI4-Lite Interface

The double- and single-buffered interfaces require that each write operation contain a valid
address and data. Bits [31-16] of the Gamma_Addr_Data register are designated as the
look-up table address, while bits [15-0] represent the value of word to be written into the
gamma look-up table(s). The valid address range for the data depends on the input width,
number of shared look-up tables, and whether interpolation is used, as shown in Table 2-10
and Table 2-11.

1. The number of lookup tables used is as follows:
3: when Independent look-up tables for each Color Channel is selected
2: when Identical look-up tables for Chrominance Channels Only is selected
1: when Identical look-up tables for all Color Channels is selected

Table 2-10: Valid Address Ranges for Gamma Correction Look-up Tables for RGB Data

Input Width Look-up Tables(1) Interpolation Red Baseaddr,
Range

Green Baseaddr,
Range

Blue Baseaddr,
Range

8 3 0 0x0000, 0x00FF 0x0100, 0x01FF 0x0200, 0x02FF

8 2 0 0x0000, 0x00FF 0x0100, 0x01FF N/A

8 1 0 0x0000, 0x00FF N/A N/A

10 3 0 0x0000, 0x03FF 0x0400, 0x07FF 0x0800, 0x0BFF

10 2 0 0x0000, 0x03FF 0x0400, 0x07FF N/A

10 1 0 0x0000, 0x03FF N/A N/A

12 3 0 0x0000, 0x0FFF 0x1000, 0x1FFF 0x2000, 0x2FFF

12 2 0 0x0000, 0x0FFF 0x1000, 0x1FFF N/A

12 1 0 0x0000, 0x0FFF N/A N/A

12 3 1 0x0000, 0x03FF 0x0400 0x0800, 0x0BFF

12 2 1 0x0000, 0x03FF 0x0400 N/A

12 1 1 0x0000, 0x03FF N/A N/A

http://www.xilinx.com

Gamma Correction www.xilinx.com 26
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

1. The number of lookup tables used is as follows:
3: when Independent look-up tables for each Color Channel is selected
2: when Identical look-up tables for Chrominance Channels Only is selected
1: when Identical look-up tables for all Color Channels is selected

The Interrupt Subsystem

STATUS register bits can trigger interrupts so embedded application developers can
quickly identify faulty interfaces or incorrectly parameterized cores in a video system.
Irrespective of whether the AXI4-Lite control interface is present or not, the Gamma
Correction core detects AXI4-Stream framing errors, as well as the beginning and the end of
frame processing.

When the core is instantiated with an AXI4-Lite Control interface, the optional interrupt
request pin (IRQ) is present. Events associated with bits of the STATUS register can
generate a (level triggered) interrupt, if the corresponding bits of the interrupt enable
register (IRQ_ENABLE) are set. Once set by the corresponding event, bits of the STATUS
register stay set until the user application clears them by writing '1' to the desired bit
positions. Using this mechanism the system processor can identify and clear the interrupt
source.

Without the AXI4-Lite interface the user can still benefit from the core signaling error and
status events. By selecting the Enable INTC Port check-box on the GUI, the core generates
the optional INTC_IF port. This vector of signals gives parallel access to the individual
interrupt sources, as seen in Table 2-12.

Table 2-11: Valid Address Ranges for Gamma Correction Look-up Tables for YCrCb 4:4:4/4:2:2/4:2:2 or
Mono data

Input Width Look-up Tables(1) Interpolation Y/Mono
Baseaddr, Range

Cb or (Cb/Cr)
Baseaddr, Range

Cr Baseaddr,
Range

8 3 0 0x0000, 0x00FF 0x0100, 0x01FF 0x0200, 0x02FF

8 2 0 0x0000, 0x00FF 0x0100, 0x01FF N/A

8 1 0 0x0000, 0x00FF N/A N/A

10 3 0 0x0000, 0x03FF 0x0400, 0x07FF 0x0800, 0x0BFF

10 2 0 0x0000, 0x03FF 0x0400, 0x07FF N/A

10 1 0 0x0000, 0x03FF N/A N/A

12 3 0 0x0000, 0x0FFF 0x1000, 0x1FFF 0x2000, 0x2FFF

12 2 0 0x0000, 0x0FFF 0x1000, 0x1FFF N/A

12 1 0 0x0000, 0x0FFF N/A N/A

12 3 1 0x0000, 0x03FF 0x0400 0x0800, 0x0BFF

12 2 1 0x0000, 0x03FF 0x0400 N/A

12 1 1 0x0000, 0x03FF N/A N/A

http://www.xilinx.com

Gamma Correction www.xilinx.com 27
PG004 April 24, 2012 Product Specification

Core Interfaces and Register Space

Unlike STATUS and ERROR flags, INTC_IF signals are not held, rather stay asserted only
while the corresponding event persists.

In a system integration tool, such as EDK, the interrupt controller INTC IP can be used to
register the selected INTC_IF signals as edge triggered interrupt sources. The INTC IP
provides functionality to mask (enable or disable), as well as identify individual interrupt
sources from software. Alternatively, for an external processor or MCU the user can custom
build a priority interrupt controller to aggregate interrupt requests and identify interrupt
sources.

Table 2-12: INTC_IF Signal Functions

INTC_IF signal Function

0 Frame processing start

1 Frame processing complete

2 Reserved

3 Reserved

4 Slave_Error

5 EOL Early

6 EOL Late

7 SOF Early

8 SOF Late

http://www.xilinx.com

Gamma Correction www.xilinx.com 28
PG004 April 24, 2012

Chapter 3

Customizing and Generating the Core
This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface
The Gamma Correction core is easily configured to meet the user's specif ic needs through
the CORE Generator or EDK GUI. This section provides a quick reference to parameters that
can be configured at generation time. Figure 3-1 shows the main CORE Generator Gamma
Correction screen. Figure 3-2 shows the main EDK Gamma Correction screen.

X-Ref Target - Figure 3-1

Figure 3-1: Gamma Correction Main Screen

http://www.xilinx.com

Gamma Correction www.xilinx.com 29
PG004 April 24, 2012

Graphical User Interface

The main screen displays a representation of the IP symbol on the left side, and the
parameter assignments on the right side, which are described as follows:

• Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9 and “_”. The name v_gamma_v5_00_a is not allowed.

• Video Format: Specif ies the format of the video to be processed. Permitted values are
RGB and YUV 4:4:4, YUV 4:2:2, YUV 4:2:0 and Mono.

• Input Data Width: Specifies the bit width of the input color channel for each
component. Permitted values are 8, 10 and 12 bits.

• Output Data Width: Specif ies the bit width of the output color channel for each
component. Permitted values are 8, 10 and 12 bits.

• Number of Active Pixels per Scan line: When the AXI4-Lite control interface is
enabled, the generated core will use the value specified in the CORE Generator GUI as
the default value for the lower half-word of the ACTIVE_SIZE register. When an
AXI4-Lite interface is not present, the GUI selection permanently defines the horizontal
size of the frames the generated core instance is to process.

• Number of Active Lines per Frame: When the AXI4-Lite control interface is enabled,
the generated core will use the value specif ied in the CORE Generator GUI as the
default value for the upper half-word of the ACTIVE_SIZE register. When an AXI4-Lite
interface is not present, the GUI selection permanently defines the vertical size
(number of lines) of the frames the generated core instance is to process.

• Optional Features:

° AXI4-Lite Register Interface: When selected, the core will be generated with an
AXI4-Lite interface, which gives access to dynamically program and change
processing parameters. For more information, refer to Control Interface in
Chapter 3.

° Include Debugging Features: When selected, the core will be generated with
debugging features, which simplify system design, testing and debugging. For more
information, refer to Debugging Features in Appendix C.

Note: Debugging features are only available when the AXI4-Lite Register Interface is
selected.

° INTC Interface: When selected, the core will generate the optional INTC_IF port,
which gives parallel access to signals indicating frame processing status and error
conditions. For more information, refer to The Interrupt Subsystem in Chapter 3.

° Double-Buffered Interface: Double-buffering is used to eliminate tearing of the
output images by writing to an inactive look-up table, then providing the ability to
swap inactive and active look-up tables. This feature is only available for the
AXI4-Lite Interface. However, using this feature may increase the memory footprint
of the core.

• Optimization: Specif ies options to reduce memory usage.

http://www.xilinx.com

Gamma Correction www.xilinx.com 30
PG004 April 24, 2012

Graphical User Interface

° Independent Look-up Tables for each Color Channel: When selected, each color
channel uses a separate look-up table, permitting each channel to implement a
distinct function. This option requires the most Block RAM resources. In the EDK
GUI, the equivalent selection is LUTS = 3.

° Identical Look-up Tables for Chrominance Channels Only: When selected, the
chrominance channels (Cr, Cb) will share the same look-up table contents. (This also
applies to the U and V channels for YUV or the Green and Blue channels of RGB).
When two channels can use the same look-up table, the required number of write
operations to modify the function stored in the look-up tables is reduced, and in
some cases the number of Block RAM resources required is reduced. In the EDK GUI,
the equivalent selection is LUTS = 2.

° Identical Look-up Tables for all Color Channels: When selected, the red, green,
and blue (or luminance and chrominance channels) all share the same look-up table
contents. When all channels can use the same look-up tables, the required number
of write operations to modify the function stored in the look-up tables is reduced,
and in some cases the number of Block RAM resources required is reduced. In the
EDK GUI, the equivalent selection is LUTS = 1.

° Use Interpolation: Interpolation is used to reduce block RAM counts when using
12-bit input from 4k entries per look-up table to only 1k per look-up table.

• Gamma Look-Up Table Initialization

° Load Initialization File: When selected, the Load Initialization File feature allows a
custom COE file to be loaded which specifies the contents of the gamma look-up
tables. This permits the Gamma Correction core to be used to implement any
function for a variety of tasks.

° Calculate Gamma Value: When selected, specif ies the gamma value for initializing
the look-up tables. Permitted values are floating-point values from 0.1 to 10. If the
Input Data Width is different from the Output Data Width, the generated tables are
sized and scaled appropriately.

Figure 3-1 shows the main Gamma Correction EDK screen.

http://www.xilinx.com

Gamma Correction www.xilinx.com 31
PG004 April 24, 2012

Graphical User Interface

The definitions of the EDK GUI controls are identical to the corresponding CORE Generator
GUI functions.

X-Ref Target - Figure 3-2

Figure 3-2: Gamma Correction EDK Screen

http://www.xilinx.com

Gamma Correction www.xilinx.com 32
PG004 April 24, 2012

Graphical User Interface

Parameter Values in the XCO File
Table 3-1 defines valid entries for the XCO parameters. Xilinx strongly suggests that XCO
parameters are not manually edited in the XCO file; instead, use the CORE Generator
software GUI to configure the core and perform range and parameter value checking. The
XCO parameters are helpful in defining the interface to other Xilinx tools.

Output Generation
CORE Generator will output the core as a netlist that can be inserted into a processor
interface wrapper or instantiated directly in an HDL design. The output is placed in the
<project director>.

File Details

The CORE Generator output consists of some or all the f iles in Table 3-2.

Table 3-1: XCO Parameters

XCO Parameter Default Value

component_name v_ccm_v4_00_a_u0

s_axis_video_data_width 8

m_axis_video_data_width 8

s_axis_video_format RGB

m_axis_video_format RGB

intpol false

luts 1

dbl_buf false

load_init_file 0

default_gamma1 0.45

default_gamma2 0.45

default_gamma3 0.45

coe_file no_coe_file_loaded

active_cols 1920

active_rows 1080

has_axi4_lite false

has_debug false

has_intc_if false

http://www.xilinx.com

Gamma Correction www.xilinx.com 33
PG004 April 24, 2012

Graphical User Interface

Table 3-2: CORE Generator Output Files

Name Description

<component_name>_readme.txt Readme file for the core.

<component_name>.ngc The netlist for the core.

<component_name>.veo The HDL template for instantiating the core.

<component_name>.vho

<component_name>.v The structural simulation model for the core. It is used for functionally
simulating the core.

<component_name>.vhd

<component_name>.xco Log f ile from CORE Generator software describing which options were
used to generate the core. An XCO file can also be used as an input
to the CORE Generator software.

http://www.xilinx.com

Gamma Correction www.xilinx.com 34
PG004 April 24, 2012

Chapter 4

Designing with the Core

General Design Guidelines
The Gamma Correction core uses a Look-up Table (LUT) programmed with a Gamma
Correction Curve or user-defined function to convert input data to output data.The core
processes samples provided via an AXI4-Stream slave interface, outputs pixels via an
AXI4-Stream master interface, and can be controlled via an optional AXI4-Lite interface. The
Gamma block cannot change the input/output image sizes, the input and output pixel clock
rates, or the frame rate. It is recommended that the Gamma Correction core is used in
conjunction with the Video In to AXI4-Stream and Video Timing Controller cores. The Video
Timing Controller core measures the timing parameters, such as number of active scan
lines, number of active pixels per scan line of the image sensor. The Video In to AXI4-Stream
core converts a clocked parallel video interface with sync and or blank signals to
AXI4-Stream.

Typically, the Gamma Correction core is part of a larger video processing system such as the
Image Sensor Pipeline (ISP) System shown in Figure 4-1.

X-Ref Target - Figure 4-1

Figure 4-1: Image Sensor Pipeline System with Gamma Correction Core

http://www.xilinx.com

Gamma Correction www.xilinx.com 35
PG004 April 24, 2012

Clock, Enable, and Reset Considerations

The Gamma Correction core allows you to select an input data width that is different then
the output data width. The core is implemented as a set of Look-Up-Tables that are used to
perform the data transformation. The width of the input data determines the number of
entries in the Look-Up-Table. For example, 8-bit input data would require 28 (256) entries in
the Look-Up-Table. The width of the output data determines the width of each entry in the
Look-Up-Table. For example, 12-bit output data would require that each entry in the table
be 12-bits wide. When the Calculate Gamma Value option is used when generating the
core, the tables are properly sized and scaled to match the selected input and output data
widths. When the Load Initialization File option is used, the tables are properly sized to
match the input data width, but the user is responsible for properly scaling the data. The
user is also responsible for properly scaling the data when new values are loaded into the
core using the AXI4-Lite processor interface.

Clock, Enable, and Reset Considerations

ACLK
The master and slave AXI4-Stream video interfaces use the ACLK clock signal as their shared
clock reference, as shown in Figure 4-2.

The ACLK pin is also shared between the AXI4-Lite and AXI4-Stream interfaces, the Gamma
Correction core does not contain optional clock-domain crossing logic. If in the user system
the AXI4-Lite Control interface clock (CLK_LITE) is different from the AXI4-Stream clock
(CLK_STREAM), and

• (FCLK_STREAM > FCLK_LITE) then clock-domain crossing logic needs to be inserted in front
of the AXI4-Lite Control interface and the Gamma Correction core can be clocked at the
AXI4-Stream clock via ACLK,

• (FCLK_STREAM < FCLK_LITE) then clock-domain crossing logic needs to be inserted before
the AXI4-Stream interface, and the Gamma Correction core needs to be clocked at the
AXI4-Lite clock via the ACLK pin, as shown in Figure 4-3. Alternatively, if FCLK_LITE

X-Ref Target - Figure 4-2

Figure 4-2: Example of ACLK Routing in an ISP Processing Pipeline

http://www.xilinx.com

Gamma Correction www.xilinx.com 36
PG004 April 24, 2012

Clock, Enable, and Reset Considerations

greater than of the FMAX of the Gamma Correction core, clock domain crossing logic
can be inserted in front of the AXI4-Lite Control interface.

In either case, Xilinx System Integrator tools, such as EDK, can automatically infer
clock-domain crossing logic using the AXI interconnect core, when the tool detects that the
master / slave side of AXI4 interfaces operate on different CLK rates. For manual
instantiation of clock-domain crossing logic, HDL users can take advantage of the FIFO
Generator IP core, as shown in Figure 4-3.

ACLKEN
The Gamma Correction core has two enable options: the ACLKEN pin (hardware clock
enable), and the software reset option provided via the AXI4-Lite control interface (when
present).

ACLKEN is by no means synchronized internally to AXI4-Stream frame processing therefore
de-asserting ACLKEN for extended periods of time may lead to image tearing.

The ACLKEN pin facilitates:

• Multi-cycle path designs (high speed clock division without clock gating),

• Standby operation of subsystems to save on power

• Hardware controlled bring-up of system components

Note: When ACLKEN (clock enable) pins are used (toggled) in conjunction with a common clock
source driving the master and slave sides of an AXI4-Stream interface, to prevent transaction errors
the ACLKEN pins associated with the master and slave component interfaces must also be driven by
the same signal (Figure 3-2).

Note: When two cores connected via AXI4-Stream interfaces, where only the master or the slave
interface has an ACLKEN port, which is not permanently tied high, the two interfaces should be
connected via the AXI4-Stream Interconnect or AXI-FIFO cores to avoid data corruption (Figure 3-3).

X-Ref Target - Figure 4-3

Figure 4-3: Gamma Correction core Top-Level Signaling Interface

http://www.xilinx.com

Gamma Correction www.xilinx.com 37
PG004 April 24, 2012

System Considerations

ARESETn
The Gamma Correction core has two reset source: the ARESETn pin (hardware reset), and
the software reset option provided via the AXI4-Lite control interface (when present).

Note: ARESETn is by no means synchronized internally to AXI4-Stream frame processing, therefore
de-asserting ARESETn while a frame is being process will lead to image tearing.

The external reset pulse needs to be held for 32 ACLK cycles to reset the core.

Note: When a system with multiple-clocks and corresponding reset signals are being reset, the reset
generator has to ensure all reset signals are asserted/de-asserted long enough that all interfaces and
clock-domains in all IP cores are correctly reinitialized.

System Considerations
When using the Gamma Correction core, it needs to be configured for the actual image
sensor frame-size to operate properly. To gather the frame size information from the input
video, it can be connected to the Video In to AXI4-Stream input and the Video Timing
Controller cores. The timing detector logic in the Video Timing Controller will gather the
video timing signals. The AXI4-Lite control interface on the Video Timing Controller allows
the system processor to read out the measured frame dimensions, and program all
downstream cores, such as the Gamma, with the appropriate image dimensions.

If the target system uses only one unchanging setup of the Gamma registers, the user may
choose to create a constant configuration by removing the AXI4-Lite interface. This option
allows reducing the core Slice footprint.

Programming Sequence
If processing parameters such as the image size needs to be changed on the fly, or the
system needs to be reinitialized, it is recommended that pipelined Xilinx IP video cores are
disabled/reset from system output towards the system input, and programmed/enabled
from system input to system output. STATUS register bits allow system processors to
identify the processing states of individual constituent cores, and successively disable a
pipeline as one core after another is f inished processing the last frame of data.

Error Propagation and Recovery
Parameterization and/or configuration registers define the dimensions of video frames
video IP should process. Starting from a known state, based on these configuration settings
the IP can predict when the beginning of the next frame is expected. Similarly, the IP can
predict when the last pixel of each scan line is expected. SOF detected before it was
expected (early), or SOF not present when it is expected (late), EOL detected before

http://www.xilinx.com

Gamma Correction www.xilinx.com 38
PG004 April 24, 2012

System Considerations

expected (early), or EOL not present when expected (late), signals error conditions
indicative of either upstream communication errors or incorrect core configuration.

When SOF is detected early, the output SOF signal is generated early, terminating the
previous frame immediately. When SOF is detected late, the output SOF signal is generated
according to the programmed values. Extra lines / pixels from the previous frame are
dropped until the input SOF is captured.

Similarly, when EOL is detected early, the output EOL signal is generated early, terminating
the previous line immediately. When EOL is detected late, the output EOL signal is
generated according to the programmed values. Extra pixels from the previous line are
dropped until the input EOL is captured.

http://www.xilinx.com

Gamma Correction www.xilinx.com 39
PG004 April 24, 2012

System Considerations

Shared Look-Up Tables
When multiple channels require the same correction curve, a single look-up table may be
shared between two or more channels. Sharing look-up tables between multiple channels
reduces the number of write operations required to update the look-up tables when using
the AXI4-Lite interface. It also can reduce the number of Block RAM resources used.

Interpolation of Look-up Table Contents
When the gamma function is configured for 12-bit input data, an optional look-up table
interpolation is provided to reduce the size of look-up tables and thereby the number of
block RAMs. This interpolation stores every 4th sample in the look-up table (Figure 4-4),
which can reduce the number of block RAMs used by 75%. The Gamma Correction core
supports linear interpolation, which trades off block RAM(s) for adders to implement the
1-to-4 interpolation. When used to interpolate sufficiently smooth functions, such as the
power functions used for gamma correction, the interpolation error is orders of magnitude
smaller than the output quantization error.

\
X-Ref Target - Figure 4-4

Figure 4-4: Interpolation of Look-up Table Contents

http://www.xilinx.com

Gamma Correction www.xilinx.com 40
PG004 April 24, 2012

Chapter 5

Constraining the Core

Required Constraints
The ACLK pin should be constrained at the pixel clock rate desired for your video stream.

Device, Package, and Speed Grade Selections
There are no device, package, or speed grade requirements for this core. For a complete
listing of supported devices, see the release notes for this core.

Clock Frequencies
The pixel clock frequency is the required frequency for this core. See Maximum Frequencies
in Chapter 2.

Clock Management
There is only one clock for this core.

Clock Placement
There are no specific Clock placement requirements for this core.

Banking
There are no specific Banking rules for this core.

http://www.xilinx.com

Gamma Correction www.xilinx.com 41
PG004 April 24, 2012

Transceiver Placement

Transceiver Placement
There are no Transceiver Placement requirements for this core.

I/O Standard and Placement
There are no specific I/O standards and placement requirements for this core.

http://www.xilinx.com

Gamma Correction www.xilinx.com 42
PG004 April 24, 2012

Chapter 6

Detailed Example Design
No example design is available at the time for the LogiCORE IP Gamma Correction v5.00.a
core.

Demonstration Test Bench
A demonstration test bench is provided which enables core users to observe core behavior
in a typical use scenario. The user is encouraged to make simple modif ications to the test
conditions and observe the changes in the waveform.

Test Bench Structure
The top-level entity, tb_main.v, instantiates the following modules:

• DUT

The Gamma core instance under test.

• axi4lite_mst

The AXI4-Lite master module, which initiates AXI4-Lite transactions to program core
registers.

• axi4s_video_mst

The AXI4-Stream master module, which opens the stimuli txt f ile and initiates
AXI4-Stream transactions to provide stimuli data for the core

• axi4s_video_slv

The AXI4-Stream slave module, which opens the result txt f ile and verif ies AXI4-Stream
transactions from the core

• ce_gen

Programmable Clock Enable (ACLKEN) generator

http://www.xilinx.com

Gamma Correction www.xilinx.com 43
PG004 April 24, 2012

Running the Simulation

Running the Simulation
• Simulation using ModelSim for Linux:

From the console, Type "source run_mti.sh".

• Simulation using iSim for Linux:
From the console, Type "source run_isim.sh".

• Simulation using ModelSim for Windows:
Double-click on "run_mti.bat" f ile.

• Simulation using iSim:
Double-click on "run_isim.bat" f ile.

Directory and File Contents
The directory structure underneath the top-level folder is:

• expected:
Contains the pre-generated expected/golden data used by the test bench to compare
actual output data.

• stimuli:
Contains the pre-generated input data used by the test bench to stimulate the core
(including register programming values).

• Results:
Actual output data will be written to a file in this folder.

• Src:
Contains the .vhd simulation files and the .xco CORE Generator parameterization f ile of
the core instance. The .vhd f ile is a netlist generated using CORE Generator. The .xco
f ile can be used to regenerate a new netlist using CORE Generator.

The available core C-model can be used to generate stimuli and expected results for any
user bmp image. For more information, refer to Appendix E, C Model Reference.

The top-level directory contains packages and Verilog modules used by the test bench, as
well as:

• isim_wave.wcfg:
Waveform configuration for ISIM

• mti_wave.do:
Waveform configuration for ModelSim

http://www.xilinx.com

Gamma Correction www.xilinx.com 44
PG004 April 24, 2012

Directory and File Contents

• run_isim.bat:
Runscript for iSim in Windows

• run_isim.sh:
Runscript for iSim in Linux

• run_mti.bat:
Runscript for ModelSim in Windows

• run_mti.sh:
Runscript for ModelSim in Linux

http://www.xilinx.com

Gamma Correction www.xilinx.com 45
PG004 April 24, 2012

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A highly parameterizable test bench was used to test the Gamma Correction core. Testing
included the following:

• Register accesses

• Processing multiple frames of data

• AXI4-Stream bidirectional data-throttling tests

• Testing detection, and recovery from various AXI4-Stream framing error scenarios

• Testing different ACLKEN and ARESETn assertion scenarios

• Testing of various frame sizes

• Varying parameter settings

Hardware Testing
The Gamma Correction core has been validated in hardware at Xilinx to represent a variety
of parameterizations, including the following:

• A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4-Lite interconnect and various other peripherals. The software for the test system
included pre-generated input and output data along with live video stream. The
MicroBlaze processor was responsible for:

° Initializing the appropriate input and output buffers

° Initializing the Gamma Correction core

° Launching the test

° Comparing the output of the core against the expected results

° Reporting the Pass/Fail status of the test and any errors that were found

http://www.xilinx.com

Gamma Correction www.xilinx.com 46
PG004 April 24, 2012

Interoperability

Interoperability
The core slave (input) AXI4-Stream interface can work directly with any Xilinx Video core
that can produce the video format for which the Gamma Correction core is configured. The
core master (output) RGB interface can work directly with any Xilinx Video core which can
consume the video format for which the Gamma Correction core is configured.

http://www.xilinx.com

Gamma Correction www.xilinx.com 47
PG004 April 24, 2012

Appendix B

Migrating
From version v4.0 to v5.00.a of the Gamma Correction core the following signif icant
changes took place:

• XSVI interfaces were replaced by AXI4-Stream interfaces

• Since AXI4-Stream does not carry video timing data, the timing detector and timing
generator modules were trimmed.

• The pCore, General Purpose Processor and Transparent modes became obsolete and
were removed

• Native support for EDK have been added - the Gamma Correction core appears in the
EDK IP Catalog

• Debugging features have been added

• The AXI4-Lite control interface register map is standardized between Xilinx video cores

Because of the complex nature of these changes, replacing a v4.0 version of the core in a
customer design is not trivial. An existing EDK pCore, Transparent, or Constant Gamma
instance can be converted from XSVI to AXI4-Stream, using the Video In to AXI4-Stream
core or components from XAPP521 (v1.0), Bridging Xilinx Streaming Video Interface with the
AXI4-Stream Protocol located at:
http://www.xilinx.com/support/documentation/application_notes/xapp521_XSVI_AXI4.pdf.

A v4.0 pCore instance in EDK can be replaced from v5.00.a directly from the EDK IP Catalog.
However, the application software needs to be updated for the changed functionality and
addresses of the IRQ_ENABLE, STATUS, ERROR, and core-specific registers. Consider
replacing a legacy Gamma pCore from EDK with a v5.00.a instance without AXI4-Lite
interface to save resources.

If the user design explicitly used the timing detector or generator functionality of the
Gamma Correction core, consider adding the Video Timing Controller core to migrate the
functionality.

An ISE design using the General Purpose Processor interface, all of the above steps might be
necessary:

• Timing detection, generation using the Video Timing Controller Core

• Replacing XSVI interfaces with conversion modules described in XAPP521 or try using
the Video In to AXI4-Stream core

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp521_XSVI_AXI4.pdf

Gamma Correction www.xilinx.com 48
PG004 April 24, 2012

• Updating the Gamma Correction core instance to v5.00.a with or without AXI4-Lite
interface

The INTC interface and debug functionality are new features for v5.00.a. When migrating an
existing design, these functions may be disabled.

http://www.xilinx.com

Gamma Correction www.xilinx.com 49
PG004 April 24, 2012

Appendix C

Debugging
It is recommended to prototype the system with the AXI4-Stream interface enabled, so
status and error detection, reset, and dynamic size programming can be used during
debugging.

The following steps are recommended to bring-up/debug the core in a video/imaging
system:

1. Bring up the AXI4-Lite interface

2. Bring up the AXI4-Stream interfaces

° (Optional) Balancing throughput

Once the core is working as expected, the user may consider 'hardening' the configuration
by replacing the Gamma Correction core with an instance where GUI default values are set
to the established register values, but the AXI4-Lite interface is disabled. This configuration
reduces the core slice footprint.

Bringing up the AXI4-Lite Interface
Table C-1 describes how to troubleshoot the AXI4-Lite interface.

Table C-1: Troubleshooting the AXI4-Lite Interface

Symptom Solution

Readback from the Version
Register via the AXI4-Lite interface
times out, or a core instance
without an AXI4-Lite interface
seems non-responsive.

Is the ACLK pin connected?
In EDK, verify the ACLK pin connection in the system.mpd file.
Does the core receive ACLK?
The ACLK pin is shared by the AXI4-Lite and AXI4-Stream
interfaces. The VERSION_REGISTER readout issue may be
indicative of the core not receiving video clock, suggesting an
upstream problem in the AXI4-Stream interface.

Readback from the Version
Register via the AXI4-Lite interface
times out, or a core instance
without an AXI4-Lite interface
seems non-responsive.

Is the core enabled? Is ACLKEN connected to vcc?
In EDK, verify that signal ACLKEN is connected in system.mpd to
either net_vcc or to a designated clock enable signal.

http://www.xilinx.com

Gamma Correction www.xilinx.com 50
PG004 April 24, 2012

Bringing up the AXI4-Stream Interfaces

Assuming the AXI4-Lite interface works, the second step is to bring up the AXI4-Stream
interfaces.

Bringing up the AXI4-Stream Interfaces
Table C-2 describes how to troubleshoot the AXI4-Stream interface.

Readback from the Version
Register via the AXI4-Lite interface
times out, or a core instance
without an AXI4-Lite interface
seems non-responsive.

Is the core in reset?
ARESETn should be connected to vcc for the core not to be in
reset. In EDK, verify that signal ARESETn is connected in
system.mpd as to either net_vcc or to a designated reset signal.

Readback value for the
VERSION_REGISTER is different
from expected default values

The core and/or the driver in a legacy EDK/SDK project has not
been updated. Ensure that old core versions, implementation files,
and implementation caches have been cleared.

Table C-2: Troubleshooting AXI4-Stream Interface

Symptom Solution

Bit 0 of the ERROR register
reads back set.

Bit 0 of the ERROR register, EOL_EARLY, indicates the number of pixels
received between the latest and the preceding End-Of-Line (EOL) signal
was less than the value programmed into the ACTIVE_SIZE register. If the
value was provided by the Video Timing Controller core, read out
ACTIVE_SIZE register value from the VTC core again, and make sure that
the TIMING_LOCKED flag is set in the VTC core. Otherwise, using
Chipscope, measure the number of active AXI4-Stream transactions
between EOL pulses.

Bit 1 of the ERROR register
reads back set.

Bit 1 of the ERROR register, EOL_LATE, indicates the number of pixels
received between the last End-Of-Line (EOL) signal surpassed the value
programmed into the ACTIVE_SIZE register. If the value was provided by
the Video Timing Controller core, read out ACTIVE_SIZE register value
from the VTC core again, and make sure that the TIMING_LOCKED flag is
set in the VTC core. Otherwise, using Chipscope, measure the number of
active AXI4-Stream transactions between EOL pulses.

Bit 2 or Bit 3 of the ERROR
register reads back set.

Bit 2 of the ERROR register, SOF_EARLY, and bit 3 of the ERROR register
SOF_LATE indicate the number of pixels received between the latest and
the preceding Start-Of-Frame (SOF) differ from the value programmed into
the ACTIVE_SIZE register. If the value was provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.
Otherwise, using Chipscope, measure the number EOL pulses between
subsequent SOF pulses.

Table C-1: Troubleshooting the AXI4-Lite Interface (Cont’d)

Symptom Solution

http://www.xilinx.com

Gamma Correction www.xilinx.com 51
PG004 April 24, 2012

Bringing up the AXI4-Stream Interfaces

If the AXI4-Stream communication is healthy, but the data seems corrupted, the next step is
to find the correct configuration for the Gamma Correction core.

s_axis_video_tready stuck
low, the upstream core
cannot send data.

During initialization, line-, and frame-flushing, the Gamma Correction core
keeps its s_axis_video_tready input low. Afterwards, the core should
assert s_axis_video_tready automatically.
Is m_axis_video_tready low? If so, the Gamma Correction core cannot
send data downstream, and the internal FIFOs are full.

m_axis_video_tvalid stuck
low, the downstream core
is not receiving data

1. No data is generated during the f irst two lines of processing.

2. If the programmed active number of pixels per line is radically
smaller than the actual line length, the core drops most of the
pixels waiting for the (s_axis_video_tlast) End-of-line
signal. Check the ERROR register.

Generated SOF signal
(m_axis_video_tuser0)
signal misplaced.

Check the ERROR register.

Generated EOL signal
(m_axis_video_tlast)
signal misplaced.

Check the ERROR register.

Data samples lost between
Upstream core and the
Gamma Correction core.
Inconsistent EOL and/or
SOF periods received.

1. Are the Master and Slave AXi4-Stream interfaces in the same
clock domain?

2. Is proper clock-domain crossing logic instantiated between
the upstream core and the Gamma Correction core
(Asynchronous FIFO)?

3. Did the design meet timing?

4. Is the frequency of the clock source driving the Gamma ACLK
pin lower than the reported Fmax reached?

Data samples lost between
Downstream core and the
Gamma Correction core.
Inconsistent EOL and/or
SOF periods received.

1. Are the Master and Slave AXi4-Stream interfaces in the same
clock domain?

2. Is proper clock-domain crossing logic instantiated between
the upstream core and the Gamma Correction core
(Asynchronous FIFO)?

3. Did the design meet timing?

4. Is the frequency of the clock source driving the Gamma ACLK
pin lower than the reported Fmax reached?

Table C-2: Troubleshooting AXI4-Stream Interface

Symptom Solution

http://www.xilinx.com

Gamma Correction www.xilinx.com 52
PG004 April 24, 2012

Debugging Features

Debugging Features
The Gamma Correction core is equipped with optional debugging features which aim to
accelerate system bring-up, optimize memory and data-path architecture and reduce time
to market. The optional debug features can be turned on/off via the Include Debug
Features checkbox on the GUI when an AXI4-Lite interface is present. Turning off debug
features reduces the core Slice footprint.

Core Bypass Option
The bypass option facilitates establishing a straight through connection between input
(AXI4-Stream slave) and output (AXI4-Stream master) interfaces bypassing any processing
functionality.

Flag BYPASS (bit 4 of the CONTROL register) can turn bypass on (1) or off, when the core
instance Debugging Features were enabled at generation. Within the IP this switch controls
multiplexers in the AXI4-Stream path.

In bypass mode the Gamma Correction core processing function is bypassed, and the core
repeats AXI4-Stream input samples on its output. In bypass mode sensor samples are
presented via the Green component output, while Red and Blue component outputs are set
to zero.

Starting a system with all processing cores set to bypass, then by turning bypass off from
the system input towards the system output allows verif ication of subsequent cores with
known good stimuli.

Built in Test-Pattern Generator
The optional built-in test-pattern generator facilitates to temporarily feed the output
AXI4-Stream master interface with a predefined pattern.

Flag TEST_PATTERN (bit 5 of the CONTROL register) can turn test-pattern generation on (1)
or off, when the core instance Debugging Features were enabled at generation. Within the
IP this switch controls multiplexers in the AXI4-Stream path, switching between the regular
core processing output and the test-pattern generator. When enabled, a set of counters
generate 256 scan-lines of color-bars, each color bar 64 pixels wide, repetitively cycling
through Black, Red, Green, Yellow, Blue, Magenta, Cyan, and White colors till the end of
each scan-line. After the Color-Bars segment, the rest of the frame is f illed with a
monochrome horizontal and vertical ramp.

Starting a system with all processing cores set to test-pattern mode, then by turning
test-pattern generation off from the system output towards the system input allows
successive bring-up and parameterization of subsequent cores.

http://www.xilinx.com

Gamma Correction www.xilinx.com 53
PG004 April 24, 2012

Interfacing to Third-Party IP

Throughput Monitors
Throughput monitors enable the user to monitor processing performance within the core.
This information can be used to help debug frame-buffer bandwidth limitation issues, and
if possible, allow video application software to balance memory pathways.

Often times video systems, with multiport access to a shared external memory, have
different processing islands. For example a pre-processing sub-system working in the input
video clock domain may clean up, transform, and write a video stream, or multiple video
streams, to memory. The processing sub-system may read the frames out, process, scale,
encode, then write frames back to the frame buffer, in a separate processing clock domain.
Finally, the output sub-system may format the data and read out frames locked to an
external clock.

Typically, access to external memory using a multiport memory controller involves
arbitration between competing streams. However, to maximize the throughput of the
system, different memory ports may need different specific priorities. To fine tune the
arbitration and dynamically balance frame rates, it is beneficial to have access to
throughput information measured in different video data paths.

The SYSDEBUG0 (0x0014), or Frame Throughput Monitor, register indicates the number of
frames processed since power-up or the last time the core was reset. The SYSDEBUG1
(0x0018), or Line Throughput Monitor, register indicates the number of lines processed
since power-up or the last time the core was reset. The SYSDEBUG2 (0x001C), or Pixel
Throughput Monitor, register indicates the number of pixels processed since power-up or
the last time the core was reset.

Priorities of memory access points can be modified by the application software dynamically
to equalize frame, or partial frame rates.

Interfacing to Third-Party IP
Table C-3 describes how to troubleshoot third-party interfaces.

http://www.xilinx.com

Gamma Correction www.xilinx.com 54
PG004 April 24, 2012

Interfacing to Third-Party IP

Table C-3: Troubleshooting Third-Party Interfaces

Symptom Solution

Severe color distortion or
color-swap when interfacing to
third-party video IP.

Verify that the color component logical addressing on the
AXI4-Stream TDATA signal is in according to Data Interface in
Chapter 3. If misaligned:
In HDL, break up the TDATA vector to constituent components and
manually connect the slave and master interface sides.
In EDK, create a new vector for the slave side TDATA connection. In
the MPD file, manually assign components of the master-side
TDATA vector to sections of the new vector.

Severe color distortion or
color-swap when processing video
written to external memory using
the AXI-VDMA core.

Unless the particular software driver was developed with the
AXI4-Stream TDATA signal color component assignments
described in Data Interface in Chapter 3 in mind, there are no
guarantees that the software will correctly identify bits
corresponding to color components.
Verify that the color component logical addressing TDATA is in
alignment with the data format expected by the software drivers
reading/writing external memory. If misaligned:
In HDL, break up the TDATA vector to constituent components, and
manually connect the slave and master interface sides.
In EDK, create a new vector for the slave side TDATA connection. In
the MPD file, manually assign components of the master-side
TDATA vector to sections of the new vector.

http://www.xilinx.com

Gamma Correction www.xilinx.com 55
PG004 April 24, 2012

Appendix D

Application Software Development

Programmer’s Guide
The software API is provided to allow easy access to the Gamma AXI4-Lite registers defined
in Table 3-1. To utilize the API functions, the following two header files must be included in
the user C code:

#include "gamma.h"
#include "xparameters.h"

The hardware settings of your system, including the base address of your Gamma
Correction core, are defined in the xparameters.h f ile. The gamma.h f ile contains the
macro function definitions for controlling the Gamma pCore.

For examples on API function calls and integration into a user application, the drivers
subdirectory of the pCore contains a file, example.c, in the gamma_v5_00_a/example
subfolder. This f ile is a sample C program that demonstrates how to use the Gamma pCore
API.

Table D-1: Gamma Driver Function Definitions

Function Name and
Parameterization Description

GAMMA_Enable
(uint32 BaseAddress)

Enables a Gamma instance.

GAMMA_Disable
(uint32 BaseAddress)

Disables a Gamma instance.

GAMMA_Reset
(uint32 BaseAddress)

Immediately resets a Gamma instance. The core stays in reset until
the RESET flag is cleared.

GAMMA_ClearReset
(uint32 BaseAddress)

Clears the reset flag of the core, which allows it to re-sync with the
input video stream and return to normal operation.

GAMMA_AutoSynchReset
(uint32 BaseAddress)

Resets a Gamma instance at the end of the current frame being
processed, or immediately if the core is not currently processing a
frame.

GAMMA_ReadReg
(uint32 BaseAddress, uint32
RegOffset)

Returns the 32-bit unsigned integer value of the register. Read the
register selected by RegOffset (defined in Table 3-4).

http://www.xilinx.com

Gamma Correction www.xilinx.com 56
PG004 April 24, 2012

Programmer’s Guide

Software Reset
Software reset reinitializes registers of the AXI4-Lite control interface to their initial value,
resets FIFOs, forces m_axis_video_tvalid and s_axis_video_tready to 0.
GAMMA_Reset() and GAMMA_AutoSyncReset () reset the core immediately if the core
is not currently processing a frame. If the core is currently processing a frame calling
GAMMA_Reset(), or setting bit 30 of the CONTROL register to 1 will cause image tearing.
After calling GAMMA_Reset(), the core remains in reset until GAMMA_ClearReset() is
called.

Calling GAMMA_AutoSyncReset() automates this reset process by waiting until the core
f inishes processing the current frame, then asserting the reset signal internally, keeping the
core in reset only for 32 ACLK cycles, then deasserting the signal automatically. After calling
GAMMA_AutoSyncReset(), it is not necessary to call GAMMA_ClearReset() for the core
to return to normal operating mode.

Note: Calling GAMMA_AutoSyncReset() does not guarantee prompt, or real-time resetting of the
core. If the AXI4-Stream communication is halted mid frame, the core will not reset until the
upstream core f inishes sending the current frame or starts a new frame.

Double Buffering
Registers TABLE_UPDATE and ACTIVE_SIZE are double-buffered to ensure no image
tearing happens if values are modif ied during frame processing. Values from the AXI4-Liter
interface are latched into processor registers immediately after writing, and processor
register values are copied into the active register set at the Start Of Frame (SOF) signal.
Double-buffering decouples AXI4-Lite register updates from the AXI4-Stream processing,
allowing software a large window of opportunity to update processing parameter values
without image tearing.

If multiple register values are changed during frame processing, simple double buffering
would not guarantee that all register updates would take effect at the beginning of the
same frame. Using a semaphore mechanism, the RegUpdateEnable() and
RegUpdateDisable() functions allows synchronous commitment of register changes.
The Gamma Correction core will start using the updated ACTIVE_SIZE and TABLE_UPDATE

GAMMA_WriteReg
(uint32 BaseAddress, uint32
RegOffset, uint32 Data)

Write the register selected by RegOffset (defined in Table 3-4. Data
is the 32-bit value to write to the register.

GAMMA_RegUpdateEnable
(uint32 BaseAddress)

Enables copying double buffered registers at the beginning of the
next frame. Refer to Double Buffering for more information.

GAMMA_RegUpdateDisable
(uint32 BaseAddress)

Disables copying double buffered registers at the beginning of the
next frame. Refer to Double Buffering for more information.

Table D-1: Gamma Driver Function Definitions

Function Name and
Parameterization Description

http://www.xilinx.com

Gamma Correction www.xilinx.com 57
PG004 April 24, 2012

Programmer’s Guide

values only if the REGUPDATE flag of the CONTROL register is set (1), after the next
Start-Of-Frame signal (s_axis_video_tuser0) is received. Therefore, it is recommended
to disable the register update before writing multiple double-buffered registers, then
enable register update when register writes are completed.

Reading and Writing Registers
Each software register that is defined in Table 3-4 has a constant that is defined in gamma.h
which is set to the offset for that register listed in Table D-2. It is recommended that the
application software uses the predefined register names instead of register values when
accessing core registers, so future updates to the Gamma drivers which may change register
locations will not affect the application dependent on the Gamma driver.

Table D-2: Predefined Constants Defined in gamma.h

Constant Name Definition Value Target Register

GAMMA_CONTROL 0x0000 CONTROL

GAMMA_STATUS 0x0004 STATUS

GAMMA_ERROR 0x0008 ERROR

GAMMA_IRQ_ENABLE 0x000C IRQ_ENABLE

GAMMA_VERSION 0x0010 VERSION

GAMMA_SYSDEBUG0 0x0014 SYSDEBUG0

GAMMA_SYSDEBUG1 0x0018 SYSDEBUG1

GAMMA_SYSDEBUG2 0x001C SYSDEBUG2

GAMMA_ACTIVE_SIZE 0x0020 ACTIVE_SIZE

GAMMA_TABLE_UPDATE 0x0100 TABLE_UPDATE

GAMMA_ADDR_DATA 0x0104 ADDR_DATA

http://www.xilinx.com

Gamma Correction www.xilinx.com 58
PG004 April 24, 2012

Appendix E

C Model Reference

Installation and Directory Structure
This chapter contains information for installing the Gamma Correction C-Model, and
describes the f ile contents and directory structure.

Software Requirements
The Gamma Correction v5.00.a C-models were compiled and tested with the following
software versions.

Installation
The installation of the C-Model requires updates to the PATH variable, as described below.

Linux

Ensure that the directory in which the libIp_v_gamma_v5_00_a_bitacc_cmodel.so
and libstlport.so.5.1 f iles are located is in your $LD_LIBRARY_PATH environment
variable.

Table E-1: Supported Systems and Software Requirements

Platform C-Compiler

Linux 32-bit and 64-bit GCC 4.1.1

Windows 32-bit and 64-bit Microsoft Visual Studio 2005, Visual Studio 2008 (Visual C++ 8.0)

http://www.xilinx.com

Gamma Correction www.xilinx.com 59
PG004 April 24, 2012

Installation and Directory Structure

C-Model File Contents
Unzipping the v_gamma_v5_00_a_bitacc_model.zip f ile creates the following directory
structures and f iles which are described inTable E-2.

Table E-2: C-Model Files

File Description

/lin Pre-compiled bit accurate ANSI C reference model for simulation on
32-bit Linux Platforms

libIp_v_gamma_v5_00_a_bitacc_cmode
l.lib

Gamma Correction v5.00.a model shared object library (Linux platforms
only)

libstlport.so.5.1 STL library, referenced by the Gamma Correction library (Linux
platforms only)

run_bitacc_cmodel Pre-compiled bit accurate executable for simulation on 32-bit Linux
Platforms

/lin64 Pre-compiled bit accurate ANSI C reference model for simulation on
64-bit Linux Platforms

libIp_v_gamma_v5_00_a_bitacc_cmode
l.lib

Gamma Correction v5.00.a model shared object library (Linux platforms
only)

libstlport.so.5.1 STL library, referenced by the Gamma Correction library (Linux
platforms only)

run_bitacc_cmodel Pre-compiled bit accurate executable for simulation on 32-bit Linux
Platforms

/nt Pre-compiled bit accurate ANSI C reference model for simulation on
32-bit Windows Platforms

libIp_v_gamma_v5_00_a_bitacc_cmode
l.lib

Pre-compiled library file for win32 compilation

run_bitacc_cmodel.exe Pre-compiled bit accurate executable for simulation on 32-bit Windows
Platforms

/nt64 Pre-compiled bit accurate ANSI C reference model for simulation on
64-bit Windows Platforms

libIp_v_gamma_v5_00_a_bitacc_cmode
l.lib

Pre-compiled library file for win32 compilation

run_bitacc_cmodel.exe Pre-compiled bit accurate executable for simulation on 64-bit Windows
Platforms

README.txt Release notes

pg004_v_gamma.pdf Gamma Correction Core Product Guide

v_gamma_v5_00_a_bitacc_cmodel.h Model header file

rgb_utils.h Header f ile declaring the RGB image / video container type and support
functions

bmp_utils.h Header file declaring the bitmap (.bmp) image file I/O functions

http://www.xilinx.com

Gamma Correction www.xilinx.com 60
PG004 April 24, 2012

Using the C-Model

Using the C-Model
The bit accurate C model is accessed through a set of functions and data structures that are
declared in the v_gamma_v5_00_a_bitacc_cmodel.h f ile.

Before using the model, the structures holding the inputs, generics and output of the
Gamma Correction instance must be defined:

struct xilinx_ip_v_gamma_v5_00_a_generics gamma_generics;
struct xilinx_ip_v_gamma_v5_00_a_inputs gamma_inputs;
struct xilinx_ip_v_gamma_v5_00_a_outputs gamma_outputs;

The declaration of these structures is in the v_gamma_v5_00_a_bitacc_cmodel.h f ile.

Table E-3 lists the generic parameters taken by the Gamma Correction v4.0 IP core bit
accurate model, as well as the default values. For an actual instance of the core, these
parameters can only be set in generation time through the CORE Generator™ GUI.

.

video_utils.h Header f ile declaring the generalized image / video container type, I/O
and support functions.

Kodim19_128x192.bmp 128x192 sample test image of the Lighthouse image from the True-color
Kodak test images

run_bittacc_cmodel.c Example code calling the C-Model

Table E-2: C-Model Files (Cont’d)

File Description

Table E-3: Model Generic Parameters and Default Values

Generic variable Type Default
Value Range Description

IWIDTH int 8 8,10,12 Input data width.

OWIDTH int 8 8,10,12 Output data width.

VIDEO_FORMAT int 2 0,1,2,3,1
2

Video Format 0=YUV 4:2:2 1=YUV 4:4:4 2=RGB 3=YUV 4:2:0
4=Mono

INTPOL int 0 0,1 Interpolation 0=No Interpolationi 1=Use Interpolatioin
Interpolation is only valid for IWIDTH=12

NUM_CHANNELS int 3 1,2,3 Number of valid channels to be processed

LUTS int 3 1,2,3 Specifies how the Look-Up-Tables are initialized: 3=Each
channel has an independent LUT 2=Channel 1 has an
independent LUT, channels 2&3 use the same LUT 1=All
channels use the same LUT

default_gamma1 double 0.45 0.1 -
10.0

Double precision value used to initialize the default contents
of the gamma correction table for channel 1

http://www.xilinx.com

Gamma Correction www.xilinx.com 61
PG004 April 24, 2012

Using the C-Model

Calling xilinx_ip_v_gamma_v5_00_a_get_default_generics
(&gamma_generics) initializes the generics structure with the Gamma GUI defaults, listed
in Table E-3.

1 For the description of the input structure, see Initializing the Gamma Correction Input Video Structure.

The structure gamma_inputs defines the values of run time parameters and the actual
input image. The TABLES 1-3 can be set dynamically through the AXI4-Lite interface.
Consequently, these values are passed as inputs to the core, along with the actual test
image, or video sequence (see Table E-4).

Calling xilinx_ip_v_gamma_v5_00_a_get_default_inputs(&gamma_generics,
&gamma_inputs) initializes members of the input structure default values (see Table E-4).

Note: The video_in variable is not initialized because the initialization depends on the actual test
image to be simulated. , Example Code describes the initialization of the video_in structure.

After the inputs are defined, the model can be simulated by calling this function:

int xilinx_ip_v_gamma_v5_00_a_bitacc_simulate(
struct xilinx_ip_v_gamma_v5_00_a_generics* generics,
struct xilinx_ip_v_gamma_v5_00_a_inputs* inputs,
struct xilinx_ip_v_gamma_v5_00_a_outputs* outputs).

Results are included in the outputs structure, which contains only one member, type
video_struct. After the outputs are evaluated and saved, dynamically allocated memory
for input and output video structures must be released by calling this function:

void xilinx_ip_v_gamma_v5_00_a_destroy(
struct xilinx_ip_v_gamma_v5_00_a_inputs *input,
struct xilinx_ip_v_gamma_v5_00_a_outputs *output).

default_gamma2 double 0.45 0.1 -
10.0

Double precision value used to initialize the default contents
of the gamma correction table for channel 2. Only valid
when LUTS > 1.

default_gamma3 double 0.45 0.1 -
10.0

Double precision value used to initialize the default contents
of the gamma correction table for channel 3. Only valid
when LUTS = 3.

Table E-3: Model Generic Parameters and Default Values

Table E-4: Core Generic Parameters and Default Values

Input
Variable Type Default Value Range Description

video_in video_struct Null N/A Container to hold input image or video
data.1

TABLE1 uint16[4096] Correction Tables for Channels 1,2 and
3. For RGB, R=1, G=2, B=3. For YUV
4:4:4, Y=1, U=2, V=3, For YUV 4:2:2/0,
Y=1, U/V=2. For Mono, Y=1.

TABLE2 uint16[4096]

TABLE3 uint16[4096]

round 255 k0.45

2550.45------------------

0 to 2OWIDTH 1– 1–

http://www.xilinx.com

Gamma Correction www.xilinx.com 62
PG004 April 24, 2012

Gamma Correction Input and Output Video Structure

Successful execution of all provided functions, except for the destroy function, return value
0. A non-zero error code indicates that problems occurred during function calls.

Gamma Correction Input and Output Video
Structure
Input images or video streams can be provided to the Gamma Correction v5.00.a reference
model using the video_struct structure, defined in video_utils.h:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table E-5: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per frame.
Pertaining to the image plane with the most rows and columns, such as the
luminance channel for YUV data. Frame dimensions are assumed constant
through all frames of the video stream. However different planes, such as y, u
and v can have different dimensions.

cols Number of columns per frame.
Pertaining to the image plane with the most rows and columns, such as the
luminance channel for YUV data. Frame dimensions are assumed constant
through all frames of the video stream. However different planes, such as y, u
and v can have different dimensions.

bits_per_component Number of bits per color channel/component.All image planes are assumed to
have the same color/component representation. Maximum number of bits per
component is 16.

mode Contains information about the designation of data planes.
Named constants to be assigned to mode are listed in Table E-6.

data Set of f ive pointers to three dimensional arrays containing data for image
planes.
Data is in 16-bit unsigned integer format accessed as
data[plane][frame][row][col].

Table E-6: Named Constants for Video Modes with Corresponding Planes and Representations
(1)

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only

FORMAT_RGB 3 RGB image/video data

http://www.xilinx.com

Gamma Correction www.xilinx.com 63
PG004 April 24, 2012

Initializing the Gamma Correction Input Video Structure

1. The Gamma Correction core supports the FORMAT_RGB, FORMAT_C444, FORMAT_C422, FORMAT_C420, and
FORMAT_MONO modes.

Initializing the Gamma Correction Input Video
Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with an
image or video. The bmp_util.h and video_util.h header f iles packaged with the bit
accurate C models contain functions to facilitate file I/O.

Bitmap Image Files
The header bmp_utils.h declares functions that help access files in Windows Bitmap
format (http://en.wikipedia.org/wiki/BMP_file_format). However, this format limits color
depth to a maximum of 8-bits per pixel, and operates on images with three planes (R,G,B).
Consequently, the following functions operate on arguments type rgb8_video_struct,
which is defined in rgb_utils.h. Also, both functions support only true-color,
non-indexed formats with 24-bits per pixel.

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

Exchanging data between rgb8_video_struct and general video_struct type
frames/videos is facilitated by these functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);

int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

FORMAT_C444 3 444 YUV, or YCrCb image/video data

FORMAT_C422 3 422 format YUV video, (u, v chrominance channels horizontally
sub-sampled)

FORMAT_C420 3 420 format YUV video, (u, v sub-sampled both horizontally and
vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with Motion

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

Table E-6: Named Constants for Video Modes with Corresponding Planes and Representations
(1)

http://en.wikipedia.org/wiki/BMP_file_format
http://www.xilinx.com

Gamma Correction www.xilinx.com 64
PG004 April 24, 2012

Initializing the Gamma Correction Input Video Structure

Note: All image/video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Moreover, the input structure must have the dynamically allocated container
(data or r, g, b) structures already allocated and initialized with the input frame(s). If the output
container structure is pre-allocated at the time of the function call, the utility functions verify and
issue an error if the output container size does not match the size of the expected output. If the
output container structure is not pre-allocated, the utility functions create the appropriate container
to hold results.

Binary Image/Video Files
The video_utils.h header f ile declares functions that help load and save generalized
video f iles in raw, uncompressed format.

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

These functions serialize the video_struct structure. The corresponding file contains a
small, plain text header defining, "Mode", "Frames", "Rows", "Columns", and "Bits per Pixel".
The plain text header is followed by binary data, 16-bits per component in scan line
continuous format. Subsequent frames contain as many component planes as defined by
the video mode value selected. Also, the size (rows, columns) of component planes can
differ within each frame as defined by the actual video mode selected.

Working with Video_struct Containers
The video_utils.h header f ile defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

The video_planes_per_mode function returns the number of component planes defined
by the mode variable, as described in Table E-6. The video_rows_per_plane and
video_cols_per_plane functions return the number of rows and columns in a given
plane of the selected video structure. The following example demonstrates using these
functions in conjunction to process all pixels within a video stream stored in the in_video
variable:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]
 }
 }
 }
}

http://www.xilinx.com

Gamma Correction www.xilinx.com 65
PG004 April 24, 2012

Example Code

Example Code
An example C f ile, run_bitacc_cmodel.c, is provided to demonstrate the steps required
to run the model. After following the compilation instructions, run the example executable.
The executable takes the path/name of the input file and the path/name of the output f ile
as parameters. If invoked with insufficient parameters, this help message is issued:

Usage: run_bitacc_cmodel in_file out_path

in_file : path/name of the input BMP file

out_path : path to the output files

During successful execution, two directories will be created at the location specified by the
out_path command line parameter. The first directory is the "expected" directory. This
directory will contain a BMP file that corresponds to the output of the first frame that was
processed. This directory will also contain a txt f ile called golden_1.txt. This txt f ile contains
the output of the model in a format that can be directly used with the demonstration test
bench. The second directory that is created is the "stimuli" directory. This directory will
contain a txt f ile called stimuli_1.txt. This txt f ile contains the input of the model in a format
that can be directly used with the demonstration test bench.

http://www.xilinx.com

Gamma Correction www.xilinx.com 66
PG004 April 24, 2012

Compiling with the Gamma C-Model

Compiling with the Gamma C-Model

Linux (32- and 64-bit)
To compile the example code, f irst ensure that the directory in which the files
libIp_v_gamma_v5_00_a_bitacc_cmodel.so and libstlport.so.5.1 are
located is present in your $LD_LIBRARY_PATH environment variable. These shared
libraries are referenced during the compilation and linking process. Then cd into the
directory where the header files, library f iles and run_bitacc_cmodel.c were unpacked. The
libraries and header files are referenced during the compilation and linking process.

Place the header f ile and C source f ile in a single directory. Then in that directory, compile
using the GNU C Compiler:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../gen_stim.c -o run_bitacc_cmodel -L.
-lIp_v_gamma_v5_00_a_bitacc_cmodel -Wl,-rpath,.

gcc -m64 -x c++ ../run_bitacc_cmodel.c ../gen_stim.c -o run_bitacc_cmodel -L.
-lIp_v_gamma_v5_00_a_bitacc_cmodel -Wl,-rpath,.

Windows (32- and 64-bit)
Precompiled library v_gamma_v5_00_a_bitacc_cmodel.dll, and top level demonstration
code run_bitacc_cmodel.c should be compiled with an ANSI C compliant compiler under
Windows. Here an example is presented using Microsoft Visual Studio.

In Visual Studio create a new, empty Windows Console Application project. As existing
items, add:

• The llibIpv_gamma_v5_00_a_bitacc_cmodel.dll f ile to the "Resource Files"
folder of the project

• The run_bitacc_cmodel.c and gen_stim.c f iles to the "Source Files" folder of the
project

• The v_gamma_v5_00_a_bitacc_cmodel.h header files to "Header Files" folder of
the project (optional)

After the project has been created and populated, it needs to be compiled and linked (built)
to create a win32 executable. To perform the build step, choose Build Solution from the
Build menu. An executable matching the project name has been created either in the Debug
or Release subdirectories under the project location based on whether Debug or Release
has been selected in the Configuration Manager under the Build menu.

http://www.xilinx.com

Gamma Correction www.xilinx.com 67
PG004 April 24, 2012

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

For a comprehensive listing of Video and Imaging application notes, white papers,
reference designs and related IP cores, see the Video and Imaging Resources page at:

http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
These documents provide supplemental material useful with this user guide:

1. UG761 AXI Reference Guide

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v14_1/ug761_axi_reference_guide.pdf
http://www.xilinx.com

Gamma Correction www.xilinx.com 68
PG004 April 24, 2012

Technical Support

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Ordering Information
The Gamma Correction v5.00.a core is provided under the Xilinx Core License Agreement
and can be generated using the Xilinx® CORE Generator™ system. The CORE Generator
system is shipped with Xilinx ISE® Design Suite software.

Contact your local Xilinx sales representative for pricing and availability of additional Xilinx
LogiCORE IP modules and software. Information about additional Xilinx LogiCORE IP
modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Date Version Revision
10/19/2011 1.0 Initial Xilinx release of Product Guide, replacing DS719 and UG829.

4/24/2012 2.0 Updated for core version. Added Zynq-7000 devices, added AXI4-Stream
interfaces, deprecated GPP interface.

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf

Gamma Correction www.xilinx.com 69
PG004 April 24, 2012

Notice of Disclaimer

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2011–2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Gamma Correction v5.00.a
	Table of Contents
	Overview
	Feature Summary
	Applications
	Licensing
	Simulation Only
	Full System Hardware Evaluation
	Full

	Installing Your License File

	Product Specification
	Standards Compliance
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization
	Core Interfaces and Register Space
	Port Descriptions
	Common Interface Signals
	Data Interface
	Control Interface
	Register Space

	Customizing and Generating the Core
	Graphical User Interface
	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	General Design Guidelines
	Clock, Enable, and Reset Considerations
	ACLK
	ACLKEN
	ARESETn

	System Considerations
	Programming Sequence
	Error Propagation and Recovery
	Shared Look-Up Tables
	Interpolation of Look-up Table Contents

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Detailed Example Design
	Demonstration Test Bench
	Test Bench Structure
	Running the Simulation
	Directory and File Contents

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing
	Interoperability

	Migrating
	Debugging
	Bringing up the AXI4-Lite Interface
	Bringing up the AXI4-Stream Interfaces
	Debugging Features
	Core Bypass Option
	Built in Test-Pattern Generator
	Throughput Monitors

	Interfacing to Third-Party IP

	Application Software Development
	Programmer’s Guide
	Software Reset
	Double Buffering
	Reading and Writing Registers

	C Model Reference
	Installation and Directory Structure
	Software Requirements
	Installation
	C-Model File Contents

	Using the C-Model
	Gamma Correction Input and Output Video Structure
	Initializing the Gamma Correction Input Video Structure
	Bitmap Image Files
	Binary Image/Video Files
	Working with Video_struct Containers

	Example Code
	Compiling with the Gamma C-Model
	Linux (32- and 64-bit)
	Windows (32- and 64-bit)

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

