LogiCORE IP Object
Segmentation v2.0

Product Guide

PGO018 October 19, 2011

& XILINX.

Table of Contents

Chapter 1: Overview

Standards Compliance 6
Operating System Requirements 6
Feature Summary 6
Applications 7
Licensing 7
Performance 8
Resource Utilization. 9

Chapter 2: Core Interfaces and Register Space

Port Descriptions. 11
Register Space 21

Chapter 3: Customizing and Generating the Core

Graphical User Interface (GUD) 25
Parameter Valuesinthe XCOFile 27
Output Generation............ 28

Chapter 4: Designing with the Core

Architecture. 31
Data Structures. 36
General Design Guidelines oL 43
Clocking 51
Resets. 51
Protocol Description 51

Chapter 5: Constraining the Core

Required Constraints. 52

Chapter 6: Detailed Example Design

Directory and File Contents 53
Demonstration Test Bench 54
Simulation......... 54
Messagesand Warnings. i 54

Appendix A: Verification, Compliance, and Interoperability

Simulation. 55
Hardware Testing............. 55
LogiCORE IP Object Segmentation v2.0 www.xilinx.com

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix B: Debugging

Appendix C: Application Software Development

pCore Driver Files. 57
pCore API Functions 57

Appendix D: C Model Reference

Features. 60
OV OIVIOW . ..o 60
Additional Core ReSources i 60
Technical Support. 61
Feedback. 61
User Instructions. 62
Interface e 63
Object Segmentation Metadata OQutput 75

Appendix E: Additional Resources

Xilinx ReSOUICES 80
Listof Acronyms. 80
Solution Centers 81
References 81
Technical Support. 81
Ordering Information 82
Revision History 82
Notice of Disclaimer 82
LogiCORE IP Object Segmentation v2.0 www.xilinx.com

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

LogiCORE IP Object
Segmentation v2.0

Introduction

The Xilinx® LogiCORE™ Intellectual Property (IP)
Object Segmentation core provides a
hardware-accelerated method for identifying objects of
interest within a video stream. The user provides a set
of object criteria that describes the objects of interest
and the core processes statistical data generated by the
Image Characterization LogiCORE IP to “find” the
objects of interest. The objects are output as Metadata
for subsequent higher level analysis and processing.
The core is programmed either directly through the
register set when using the General Purpose Processor
configuration or by using the supplied software drivers
when using the Embedded Development Kit (EDK)
pCore configuration.

Features

User-defined object criteria:

¢ Up to eight Feature Combinations (upper and
lower thresholds on mean, variance, edge,
motion and color information)

¢ Up to four Feature Selections (any Boolean
combination of the eight feature combinations)

® Detects up to 31 objects per Feature Selection and
up to 124 objects per frame

* Operates at all resolutions and frame rates
supported by Image Characterization block (up to
720P60 and 1080P30)

e Selectable processor interface
e EDK pCore

LogiCORE IP Facts Table

Core Specifics

Supported
Device Virtex®-7, Kintex™.-7, Virtex-6, Spartan®-6
Family(l)
S ted U

upportedLser AXI4, AXI4-Lite, General Purpose Processor
Interfaces
Resources See Table 1-1, Table 1-2, Table 1-3 and Table 1-4.

Provided with Core

Design Files Netlist or EDK pCore
E It

xafnp € Not Provided
Design
Test Bench Provided on the product page (Verilog)

Constraints File Not Provided

VHSIC Hardware Description Language

Simulation (VHDL) or Verilog Structural model
Model C model provided on the product page
Tested Design Tools
Design Entry Integrated Software Environment (ISE®) 13.3
Tools Xilinx Platform Studio (XPS) 13.3
Simulation(2) ModelSim

Synthesi
TZZIS ?28)18 Xilinx Synthesis Technology (XST)

Support

Provided by Xilinx @ www.xilinx.com /support

. For a complete listing of supported devices, see the release notes
for this core.

e General Purpose Processor 2. For the supported versions of the tools, see the ISE Design Suite 13:
Release Notes Guide.
e Advanced eXtensible Interface (AXI4) memory
mapped interface; AXI4-Lite processor interface
(EDK pCore)
e For use with Xilinx CORE Generator™ tool 13.3
LogiCORE IP Object Segmentation v2.0 www.xilinx.com 4

PG018 October 19, 2011

Product Specification

http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/irn.pdf

& XILINX.

Chapter 1

Overview

The Object Segmentation core is part of a trio of IP Cores (along with Motion Adaptive
Noise Reduction and Image Characterization) that enables video analytics systems. These
cores provide a hardware-based solution for the computationally-intensive pixel level
processing required in video analytics. They produce object Metadata for processing by a
system processor or other processing block, eliminating the burden of pixel processing for
these components. This approach enables video analytics solutions that can operate at
high-definition resolutions and full-frame rates.

In the video analytics system, objects are defined as a rectangular region that matches a set
of defined object characteristics (Figure 1-1). The Object Segmentation core plays a key role
in the video analytics system. It is responsible for parsing a data structure that describes
the characteristics of an image and then "finding" the objects in the image that meet a set of
object characteristics.

At a high level, the video analytics system takes a frame of video and subdivides it into a
2-D grid of NxN subdivisions called image blocks. For each image block, a set of statistics
is calculated. The Object Segmentation core then compares the statistics of each image
block against a set of thresholds that define upper and lower bounds. An image block
whose statistics match the set of thresholds is considered an object block. After all of the
image blocks have been tested, the core aggregates the object blocks into full objects. Two
blocks are aggregated if they are neighbors horizontally, vertically, or diagonally. After all
the object blocks have been aggregated into full objects, each object is analyzed to define a
box that completely bounds the object. The bounding box defines the object. The final step
for the Object Segmentation core is to generate Metadata that consists of a list of all the
objects that were found in the image. The Metadata is written to external memory where it
can be read by a software application that performs higher-level analysis and processing.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 5

PG018 October 19, 2011

Product Specification

http://www.xilinx.com

& XILINX. Chapter 1: Overview

iy |

et | L

Figure 1-1: Object Segmentation Image View

Standards Compliance

The Object Segmentation core is compliant with the AXI4 and AXI4-Lite interconnect
standards as defined in the AXI Reference Guide (UG761).

Operating System Requirements

For a list of System Requirements, see ISE Design Suite 13: Release Notes Guide.

Feature Summary

The Object Segmentation core supports up to eight Feature Combinations as described in
the Feature Combination section. The user has the option of selecting 1- 8 Feature
Combinations when generating the core. Selecting fewer Feature Combinations conserves
resources. The Object Segmentation core supports up to four Feature Selects as described
in the Feature Select section. The user has the option of selecting 1- 4 Feature Selects when
generating the core. Selecting fewer Feature Selects conserves resources.

LogiCORE IP Object Segmentation v2.0 www.xilinx.com 6
PGO018 October 19, 2011 Product Specification

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/irn.pdf
http://www.xilinx.com

& XILINX. Chapter 1: Overview

For each Feature Select that is instantiated, the core can detect up to 31 objects per frame. If
four Feature Selects are instantiated, up to 124 objects can be detected for each frame.

The Object Segmentation core is capable of operating at all resolutions, frame rates and
block sizes that are supported by the Xilinx® Image Characterization v2.0 IP core.

When generating the Object Segmentation core, the user has the option of selecting the
type of processor interface that is instantiated on the core. The first option is an EDK pCore
interface that can be easily incorporated into an EDK project. The second option is a
General Purpose Processor interface. This option exposes the core's registers to the user.
The user can wrap the exposed registers in an interface that is compliant with the systems

processor.
Applications
* Video Surveillance
¢ Industrial Control
* Machine Vision
¢ Automotive
e Other video applications requiring video analytics
Licensing

The Xilinx Image Characterization core provides three licensing options. After installing
the required Xilinx ISE® software and IP Service Packs, choose a license option.

Simulation Only

The Simulation Only Evaluation license key is provided with the Xilinx CORE Generator™
tool. This key lets you assess the core functionality with your own design and
demonstrates the various interfaces on the core in simulation. (Functional simulation is
supported by a dynamically-generated Hardware Description Language (HDL) structural
model.)

Full System Hardware Evaluation License

To obtain a Full System Hardware Evaluation license:

1. Navigate to the product page for this core.
2. Click Evaluate.

3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs.

Obtaining a Full License

To obtain a Full license key, you must purchase a license for the core. After doing so, click
the "Access Core" link on the Xilinx.com IP core product page for further instructions.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 7
PGO018 October 19, 2011 Product Specification

http://www.xilinx.com/products/ipcenter/EF-DI-VID-OBJ-SEG.htm
http://www.xilinx.com

& XILINX. Chapter 1: Overview

Installing Your License File

The Simulation Only Evaluation license key is provided with the ISE software CORE
Generator system and does not require installation of an additional license file. For the Full
System Hardware Evaluation license and the Full license, an email will be sent to you
containing instructions for installing your license file. Additional details about IP license
key installation can be found in the ISE Design Suite Installation, Licensing and Release
Notes document.

Performance

The following sections detail the performance characteristics of the Object Segmentation
v2.0 core.

Maximum Frequency

The following are typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options, additional logic in the Field
Programmable Gate Array (FPGA) device, using a different version of Xilinx tools, and
other factors.

e Virtex®-7 FPGA: 225 MHz

¢ Kintex™-7 FPGA: 150 MHz
e Virtex-6 FPGA: 225 MHz

e Spartan®-6 FPGA: 150 MHz

Latency

The Object Segmentation core outputs a Metadata structure after it has fully processed the
input Image Characterization data structure. The Object Segmentation core requires
approximately 40 clock cycles to process each set of block statistics in the Image
Characterization data structure. Therefore, the latency depends on the number of blocks in
the Image Characterization data structure.

Throughput

The Object Segmentation core process the input Image Characterization data structure in
two passes. During the first pass, the core outputs one 32-bit word for each set of block
statistics in the Image Characterization data structure. During the second pass, the core
outputs the Metadata data structure. The size of the Metadata data structure that is output
depends on the number of Feature Selects that are instantiated in the core. For each Feature
Select, the Object Segmentation core outputs 192 32-bit words. The core also outputs a data
structure header that consists of 32 32-bit words.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 8
PGO018 October 19, 2011 Product Specification

http://www.xilinx.com

& XILINX. Chapter 1: Overview

Resource Utilization

Resources required for the Object Segmentation core have been estimated for these FPGAs:
Virtex-7 (Table 1-1), Kintex-7 (Table 1-2), Virtex-6 (Table 1-3) and Spartan-6 (Table 1-4).

Start the resource count with the resources from the "Base Core" which includes the
resources for one Feature Combination and one Feature Select. If using more than one
Feature Combination, multiply the resources in the Each additional Feature Combination
row by the number of extra Feature Combinations and add the results to the resource
count. If using more than one Feature Select, multiply the resources in the Each additional
Feature Select row by the number of extra Feature Selects and add the results to the
resource count. If using the pCore Interface, add the corresponding resources to the results
count.

Table 1-1: Virtex-7 Resource Estimates

Block RAMs

Feature LUTs FFs (36/18) DSP48E1s

Base Core (Feature Combination = 1, Feature Select = 1) 3883 3315 2/4 4

Each additional Feature Combination 200 149 0/0 0

Each additional Feature Select 642 562 1/0 0

pCore Interface 850 800 0/0 0
Table 1-2: Kintex-7 Resource Estimates

Block RAMs

Feature LUTs FFs (36/18) DSP48A1s

Base Core (Feature Combination = 1, Feature Select = 1) 3890 3315 2/4 4

Each additional Feature Combination 210 149 0/0 0

Each additional Feature Select 669 562 1/0 0

pCore Interface 850 800 0/0 0
Table 1-3: Virtex-6 Resource Estimates

Block RAMs
Feature LUTs FFs (36/18) DSP48E1s

Base Core (Feature Combination = 1, Feature Select = 1) 3265 3315 2/4 4

Each additional Feature Combination 223 149 0/0 0

Each additional Feature Select 578 559 1/0 0

pCore Interface 850 800 0/0 0
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 9

PGO018 October 19, 2011 Product Specification

http://www.xilinx.com

& XILINX. Chapter 1: Overview

Table 1-4: Spartan-6 Resource Estimates

Feature LUTs FFs B'°Z’1"67:3‘;\Ms DSP48E1s
Base Core (Feature Combination = 1, Feature Select = 1) 3086 3322 5/3 4
Each additional Feature Combination 205 150 0/0 0
Each additional Feature Select 650 575 1/0 0
pCore Interface 850 800 0/0 0
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 10

PGO018 October 19, 2011 Product Specification

http://www.xilinx.com

& XILINX.
Chapter 2

Core Interfaces and Register Space

This chapter provides detailed descriptions for the supported interfaces, along with details
about the configuration and control registers for the Object Segmentation core.

Port Descriptions

Core Interfaces

AXl14 Memory Interface

The Object Segmentation core uses an AXI4 interface to connect to the AXI4 Interconnect.
The AXI4 Interconnect provides the access to external memory. The core provides registers
that allow the user to specify the location in memory of the various data buffers that the
Object Segmentation core accesses. See Table 2-4 for more details on these registers.

Processor Interface

There are many video systems developed that use an integrated processor system to
dynamically control the parameters within the system. This is especially important when
several independent image processing cores are integrated into a single FPGA. The Object
Segmentation core can be configured with one of two interfaces: an EDK pCore Interface or
a General Purpose Processor Interface.

Common I/O Signals

The EDK pCore interface and the General Purpose Processor interface share a number of
the same Input/Output (I/O) signals. The signals that both interfaces share are specified in
Table 2-1.

Table 2-1: Common /O Signals

Pin Name Dir Width Description
Core Signals
clk I 1 Core clock
fsync_in I 1 Frame Synchronization
buffer_ptr I I Buffer Select input
LogiCORE IP Object Segmentation v2.0 www.xilinx.com 11

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-1: Common I/O Signals (Contd)

Pin Name Dir Width Description

AXI4 Memory Map to Stream (MM2S) Read Address Channel
m_axi_mm?2s_araddr @) 32 MM2S Read Address
m_axi_mm?2s_arlen @) 8 MM2S Read Length Qualifier
m_axi_mm?2s_arsize O 3 MM2S Read Size Qualifier
m_axi_mm?2s_arburst O 2 MM2S Read Burst Type Qualifier
m_axi_mm?2s_arprot O 3 MM2S Read Protection Qualifier
m_axi_mm?2s_arcache O 4 MM2S Read Cache Qualifier
m_axi_mm?2s_arvalid (@) 1 MM2S Read Address Valid Qualifier
m_axi_mm?2s_arready I 1 MM2S Read Address Ready Status

AXI14 MM2S Read Data Channel

m_axi_mm2s_rdata I 32 MM2S Read Data
m_axi_mm2s_rresp I 2 MM2S Read Response
m_axi_mm?2s_rlast I 1 MM2S Read Last Indication
m_axi_mm?2s_rvalid I 1 MM2S Read Valid Handshake
m_axi_mm?2s_rready O 1 MM2S Read Ready Handshake

AXI4-Stream to Memory Map (S2MM) Write Address Channel

m_axi_s2mm_awaddr O 32 S2MM Write Address
m_axi_s2mm_awlen O 8 S2MM Write Length Qualifier
m_axi_s2mm_awsize O 3 S2MM Write Size Qualifier
m_axi_s2mm_awburst O 2 S2MM Write Burst Type Qualifier
m_axi_s2mm_awprot (@) 3 S2MM Write Protection Qualifier
m_axi_s2mm_awcache (@ 4 S2MM Write Cache Qualifier
m_axi_s2mm_awvalid O 1 S2MM Write Address Valid Qualifier
m_axi_s2mm_awready | I 1 S2MM Write Address Ready Qualifier

AXl4 S2MM Write Data Channel

m_axi_s2mm_wdata @) 32 S2MM Write Data
m_axi_s2mm_wstrb O 4 S2MM Write Strobes
m_axi_s2mm_wlast O 1 S2MM Write Last Indication
m_axi_s2mm_wvalid O 1 S2MM Write Valid Handshake
m_axi_s2mm_wready I 1 S2MM Write Ready Handshake

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

12

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-1: Common I/O Signals (Contd)

Pin Name

Dir

Width

Description

AXI4 S2MM Write Response Channel

m_axi_s2mm_bresp I 2 S2MM Write Response Data
m_axi_s2mm_bvalid I 1 S2MM Write Response Valid Handshake
m_axi_s2mm_bready (@) 1 S2MM Write Response Ready Handshake

EDK pCore Interface

The pCore interface creates a core that can be easily added to an EDK Project as a hardware
peripheral. This section describes the I/O signals associated with the Object Segmentation

pCore.

The I/0 signals for the Object Segmentation pCore are shown in Figure 2-1. The signals
can be broken into two groups: Common I/O signals and AXI4-Lite signals. The Common
1/0O signals are specified in Table 2-1. The AXI4-Lite signals are specified in Table 2-2.

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

13

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Core Signals

clk
fsync_in
buffer_ptr

AXI4 MM2S Interface

m_axi_mm2s_aclk
m_axi_mm2s_arready
m_axi_mm2s_rdata
m_axi_mma2s_rresp
m_axi_mm2s_rlast
m_axi_mm2s_rvalid
m_axi_mm2s_rrready

m_axi_mm2s_araddr
m_axi_mm2s_arlen
m_axi_mm2s_arsize
m_axi_mm2s_arburst
m_axi_mm2s_arprot
m_axi_mm2s_arcache
m_axi_mm2s_arvalid

AXI4 S2MM Interface

m_axi_s2mm_aclk
m_axi_s2mm_awready
m_axi_s2mm_wready
m_axi_s2mm_bresp
m_axi_s2mm_bvalid

m_axi_s2mm_awaddr
m_axi_s2mm_awlen
m_axi_s2mm_awsize
m_axi_s2mm_awburst
m_axi_s2mm_awprot
m_axi_s2mm_awcache
m_axi_s2mm_awvalid
m_axi_s2mm_wdata
m_axi_s2mm_wstrb
m_axi_s2mm_wlast
m_axi_s2mm_wvalid
m_axi_s2mm_bready

AXIl4-Lite Interface

S_AXI_ACLK IP2INTC_Irpt
S_AXI_ARESETN S_AXI_AWREADY
S_AXI_AWADDR S_AXI_BRESP
S_AXI_AWVALID S_AXI_BVALID
S_AXI_WDATA S_AXI_ARREADY
S_AXI_WSTRB S_AXI_RDATA
S_AXI_WVALID S_AXI_RRESP
S_AXI_BREADY S_AXI_RVALID
S_AXI_ARADDR
S_AXI_ARVALID
S_AXI_RREADY

Figure 2-1: pCore I/O Diagram

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

14

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-2: AXl4-Lite pCore I/O Signals

Pin Name

Dir

Width

Description

AXI

4-Lite Global System Signals (1)

S_AXI_ARESETN

1

AXI4-Lite Reset, active low

IP2INTC _Irpt

1

Interrupt request output

AXl4-Lite Write Address Channel Signals (1

~

S_AXI_AWADDR

[(C_S_AXI_ADDR_WIDTH-1):0]

AXI4-Lite Write Address Bus. The
write address bus gives the

address of the write transaction.

S_AXI_AWVALID

AXI4-Lite Write Address Channel
Write Address Valid. This signal
indicates that valid

write address is available.
e 1 = Write address is valid.

e 0 = Write address is not valid.

S_AXI_AWREADY

AXI4-Lite Write Address Channel
Write Address Ready.

Indicates core is ready to accept the
write address.

* 1 = Ready to accept address.
* 0 = Not ready to accept address.

AXl4-Lite Write Data Channel Signals (1)

S_AXI_WDATA [(C_S_AXI_DATA_WIDTH-1):0] AXI4-Lite Write Data Bus.
AXI4-Lite Write Strobes. This signal
S_AXI_WSTRB [C_S_AXI_DATA_WIDTH/8-1:0] | indicates which byte lanes

to update in memory.

S_AXI_WVALID

AXI4-Lite Write Data Channel
Write Data Valid. This signal
indicates that valid write data

and strobes are available.
¢ 1 = Write data/strobes are valid.

e 0 = Write data/strobes are not
valid.

S_AXI_WREADY

AXI4-Lite Write Data Channel
Write Data Ready.

Indicates core is ready to accept the
write data.

* 1 = Ready to accept data.
® 0 = Not ready to accept data.

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

15

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-2: AXIl4-Lite pCore I/O Signals (Contd)

Pin Name

Dir

Width

Description

AXl4-Lite Write Response Channel Signals (

1)

S_AXI_BRESP ?)

[1:0]

AXI4-Lite Write Response Channel.
Indicates results of

the write transfer.

® 00b = OKAY - Normal access has
been successful.

¢ 01b = EXOKAY - Not supported.
® 10b = SLVERR - Error.
¢ 11b = DECERR - Not supported.

S_AXI_BVALID

AXI4-Lite Write Response Channel
Response Valid.

Indicates response is valid.
* 1 = Response is valid.

* 0 = Response is not valid.

S_AXI_BREADY

AXI4-Lite Write Response Channel
Ready. Indicates

Master is ready to receive response.
® 1 = Ready to receive response.

* 0 = Not ready to receive response.

AXl4-Lite Read Address Channel Signals (1

~

S_AXI_ARADDR

[(C_S_AXI_ADDR_WIDTH-1):0]

AXI4-Lite Read Address Bus. The
read address bus gives the

address of a read transaction

AXI4-Lite Read Address Channel
Read Address Valid.

5_AXI_ARVALID 1 e 1 = Read address is valid.
¢ 0 = Read address is not valid.
AXI4-Lite Read Address Channel
Read Address Ready.
Indicates core is ready to accept the
S_AXI_ARREADY 1

read address.
¢ 1 = Ready to accept address.

* 0 = Not ready to accept address.

LogiCORE IP Object Segmentation v2.0
PG018 October 19, 2011

www.Xxilinx.com

16

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-2: AXIl4-Lite pCore I/O Signals (Contd)

Pin Name Dir Width Description
AXl4-Lite Read Data Channel Signals (1)
S_AXI_RDATA O [(C_S_AXI_DATA_WIDTH-1):0] AXI4-Lite Read Data Bus.

S_AXI_RRESP @

AXI4-Lite Read Response Channel
Response. Indicates

results of the read transfer.

¢ 00b = OKAY - Normal access has
been successful.

¢ 01b = EXOKAY - Not supported.
® 10b = SLVERR - Error.
¢ 11b = DECERR - Not supported.

o) [1:0]

S_AXI_RVALID

AXI4-Lite Read Data Channel Read
Data Valid. This signal indicates
that the required

o) 1 read data is available and the read
transfer can complete.

1 = Read data is valid.
0 = Read data is not valid.

S_AXI_RREADY

AXI4-Lite Read Data Channel Read
Data Ready:.

Indicates master is ready to accept
the read data.

¢ 1 = Ready to accept data.

* 0 = Not ready to accept data.

1. The function and timing of these signals are defined in the AMBA® AXI Protocol Version: 2.0 Specification.

2. For signals S_AXI_RRESP[1:0] and S_AXI_BRESP[1:0], the core does not generate the Decode Error ('11') response. Other responses
like '00' (OKAY) and '10' (SLVERR) are generated by the core based upon certain conditions.

General Purpose Processor Interface

The other interface option is the General Purpose Processor (GPP) interface. The GPP
Interface is shown in Figure 2-2 and consists of the Common I/O signals listed in Table 2-1
and the Dynamic Configuration Interface signals detailed in Table 2-3. The signals in
Table 2-3 correspond to the registers in Table 2-4.

The directly exposed Dynamic Configuration Interface signals allow the user to wrap these
signals with a user-defined bus interface targeting any arbitrary processor. It is
recommended to disable the control[1] (Register Update enable) signal of the control
bus before updating the other Dynamic Configuration Interface signals. After the Dynamic
Configuration Interface signals are ready to be updated in the core, the control[1] signal
should be enabled. Values are written into the core on the falling edge of the fsync_in
input.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 17

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Core Signals

clk

sclr
fsync_in
buffer_ptr

AXI4 MM2S Interface

m_axi_mm?2s_aclk
m_axi_mma2s_arready
m_axi_mmz2s_rdata
m_axi_mma2s_rresp
m_axi_mma2s_rlast
m_axi_mm2s_rvalid
m_axi_mm2s_rready

m_axi_mm2s_araddr
m_axi_mm2s_arlen
m_axi_mma2s_arsize
m_axi_mm2s_arburst
m_axi_mm2s_arprot
m_axi_mm2s_arcache
m_axi_mm2s_arvalid

AXI4 S2MM Interface

m_axi_s2mm_aclk
m_axi_s2mm_awready
m_axi_s2mm_wready
m_axi_s2mm_bresp
m_axi_s2mm_bvalid

m_axi_s2mm_awaddr
m_axi_s2mm_awlen
m_axi_s2mm_awsize
m_axi_s2mm_awburst
m_axi_s2mm_awprot
m_axi_s2mm_awcache
m_axi_s2mm_awvalid
m_axi_s2mm_wdata
m_axi_s2mm_wstrb
m_axi_s2mm_wlast
m_axi_s2mm_wvalid
m_axi_s2mm_bready

Dynamic Configuration Interface

control
image_char_start_addr0
image_char_start_addr1

feature_select_data
feature_select_we

feature_select_write_bank_addr_we

feature_select_active_bank_addr

reg_update_done
status_done
status_error

meta_data_start_addrO mm2s_err
meta_data_start_addr1 s2mm_err
label_mask_start_addr status
feature_select_write_bank_addr version

feature_combination_write_bank_addr_we
feature_combination_data
feature_combination_we
feature_combination_active_bank_addr
num_h_blocks

num_v_blocks

num_total_blocks

block_size

Figure 2-2: General Purpose Processor I/0 Diagram

LogiCORE IP Object Segmentation v2.0
PG018 October 19, 2011

www.Xxilinx.com

18

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-3: Dynamic Configuration Interface Signals

Pin Name Dir Width Description
Control
sclr I 1 Synchronous Clear
reg_update_done O 1 Register Update Done
status_done 0] 1 Frame Done
status_error @) 1 Frame Error
mm?2s_err (@) 1 MM2S Channel Error
s2mm_err O 1 S2MM Channel Error
Registers
control I 4 Control Register
3 Buffer Select
0 = Use buffer_ptr to specify the Image
Characterization buffer to use.
1 = Toggle between Image
Characterization buffers.
2 Metadata Address Selection
0 = Meta_data_start_addr0 1 =
Meta_data_start_addrl
1 Register Update Enable
0 Core Enable
image_char_start_addr0 I 32 Image Characterization Start Address 0
image_char_start_addrl I 32 Image Characterization Start Address 1
meta_data_start_addr0 I 32 Metadata Start Address 0
meta_data_start_addrl I 32 Metadata Start Address 1
label_mask_start_addr0 I 32 Label Mask Start Address
feature_select_write_bank_addr I 3 Feature Select Write Bank Address (0 -7)
feature_select_write_bank_addr_we I 1 Feature Select Write Bank Address Write Enable
feature_select_data I 4 Feature Select Data
feature_select_we I 1 Feature Select Data Write Enable
feature_select_active_bank_addr I 3 Feature Select Active Bank Address (0 —7)
feature_combination_write_bank_addr I 4 Feature Combination Write Bank Address
3 Corresponds to Feature Combination
Active Bank Address
2:0 Write Feature Combination Bank
Address internal to core for feature
combination 0 - 7.
feature_combination_write_bank_addr_we I 1

LogiCORE IP Object Segmentation v2.0
PG018 October 19, 2011

www.Xxilinx.com

19

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-3: Dynamic Configuration Interface Signals (Cont'd)

feature_combination_data I 32
feature_combination_we I 1
feature_combination_active_bank_addr I 1 Feature Combination Active Bank Address
num_h_blocks I 10 Number of Horizontal Blocks
num_v_blocks I 10 Number of Vertical Blocks
num_total_blocks I 20 Total Number of Blocks (H x V)
block_size I 8 Block Size
status @) 1 Status Register

Meta Data Address.

Specifies which buffer is active.

0 = Meta_data_start_addrO

1 = Meta_data_start_addrl
version O 32 Version Register

31:28 Version Major

27:20 Version Minor

19:16 Version Revision

15:0 Reserved

LogiCORE IP Object Segmentation v2.0
PG018 October 19, 2011

www.Xxilinx.com

20

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Register Space

Register Space

The pCore interface provides a memory-mapped interface for the programmable registers
within the core, which are defined in Table 2-4.

Table 2-4: Object Segmentation pCore Memory Mapped Register Set

Address (hex) Reaister Name Access
BASEADDR + 9 Type

0x0000 Control R/W Control Register
31:4 Reserved

Description

3 Buffer Selection

0 = Use Buffer Ptr input to specify the Image
Characterization Buffer to be read

1 = Toggle between the Image Characterization Buffers.
Begin with buffer 0.

2 Meta Data Address Selection

0 = Meta Data Start Addr 0,

1 = Meta Data Start Addr 1

1 Register Update Enable.

This bit communicates to the IP Core to take new values
at the next fsync_in rising edge.

Usage: This bit is cleared when the IP Core next fsync_in
happens.

0 Enable the Object Segmentation core on the next
fsync_in

0x0004 Status R Status Register
31:1 Reserved

0 Meta Data Address.

Specifies which bulffer is actively being written to:
0 = Meta Data Start Addr 0,

1 = Meta Data Start Addr 1

0x0008 Status Error R Status Register for Errors
31:3 Reserved

2 MM2S Error.

This active high signal is asserted whenever a Error
condition is encountered within the MM2S.

1 S2MM Error.

This active high signal is asserted whenever a Error
condition is encountered within the S2MM.

0 Frame Error

The core did not finish before the beginning of the next
frame.

Usage: This bit is cleared when any value is written to
the register.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 21
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-4: Object Segmentation pCore Memory Mapped Register Set (Contd)

0x000C Status Done R General read register for status done
31:1 Reserved
0 Frame Done
Done bit can be polled by software for end of object
segmentation operation.
Usage: This bit is cleared when any value is written to
the register
0x0010 Image R/W Starting address for input Image Characterization Buffer 0
Characterization 31:0
Start Address 0 '
0x0014 Image R/W Starting address for input Image Characterization Buffer 1
Characterization 31:0
Start Address 1 ’
0x0018 Metadata Start R/W Starting address for output Metadata Buffer 0
Address 0 31:0
0x001C Metadata Start | R/W Offset address for output Metadata Buffer 1
Address 1 31:0
0x0020 Label Mask Start | R/W Starting address for label mask output
31:0
Address 0
0x0024 Reserved
0x0028 Reserved
0x002C Reserved
0x0030 Feature Select R/W Bank address of feature select being written
Write Bank
Address 31:3 Reserved
2:0 Bank address to which the Feature Select Data are
written
0x0034 Feature Select R/W Feature Select input data truth table
Data 31:4 Reserved
3:0 Data for Feature Select truth table, 256 values per bank
0x0038 Feature Select R/W Active Feature Select Bank
Active Bank
Address 31:3 Reserved
2:0 Feature Select Bank for next frame
0x003C Feature R/W Bank address of feature combination data being written
Combination
Write Bank Addr 314 Reserved
3 Corresponds to Feature Combination Active Bank
Address
2:0 Write Feature Combination Bank Address internal to
core for feature combination 0 - 7.
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 22

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Register Space

Table 2-4: Object Segmentation pCore Memory Mapped Register Set (Contd)

0x0040 Feature R/W Feature Combination input data for thresholds
g(;r;bination 31:0 Data for Feature Combination Thresholds, 40 values per
bank.
0x0044 Feature R/W Active feature combination bank for next frame
igg&%ﬁiﬁn 31:1 Reserved
Addr 0 Active Feature Combination Bank to be use for the next
frame.
0x0048 Number of R/W Number of horizontal blocks in the input data set
gl(())l;ilfsontal 31:10 Reserved
9:0 Number of horizontal blocks in the system, that is,
horizontal resolution divided by block size
0x004C Number of R/W Number of vertical blocks in the input data set
Vertical Blocks 31-10 Reserved
9:0 Number of vertical blocks in the system, that is, vertical
resolution divided by block size
0x0050 Number of Total | R/W Number of total blocks in the input data set
Blocks 31:20 Reserved
19:0 Number of total blocks in the system, that is, number of
horizontal blocks * number of vertical blocks
0x0054 Block Size R/W Block size of VA system
31:8 Reserved
7:0 Block Size
0x00F0 Version Register | R Version Register
31:28 Version Major
27:20 Version Minor
19:16 Version Revision
15:0 Reserved
0x0100 Software Reset | R/W Software Reset
31:1 Reserved
0 1 = reset core
0x021C GIER R/W Global Interrupt Enable
31 Mask to enable global interrupts
30:0 Reserved
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 23

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Register Space

Table 2-4: Object Segmentation pCore Memory Mapped Register Set (Contd)

0x0220 ISR R/W Interrupt Status Register
Read to determine the source of the interrupt Write to clear the
interrupt
31:4 Reserved
3 Edge sensitive interrupt for MM2S Error
2 Edge sensitive interrupt for S2MM Error
1 Edge sensitive interrupt for Frame Done
0 Edge sensitive interrupt for Frame Error
0x0228 IER R/W Interrupt Enable Register

0 = mask out an interrupt

1 = enable an interrupt

31:4 Reserved

3 Mask or Enable for MM2S Error
2 Mask or Enable for S2MM Error
1 Mask or Enable for Frame Done
0 Mask or Enable for Frame Error

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

24

http://www.xilinx.com

& XILINX.
Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface (GUI)

CORE Generator Software GUI

The Xilinx® Image Characterization core is easily configured to meet the developer's
specific needs through the CORE Generator™ software GUI. This section provides a quick
reference to the parameters that can be configured at generation time. The GUI is shown in

Figure 3-1.
Q Object Segmentation
Documents View
IP Symbol & % - -
i SPI
LOQ’C fP‘ Ob]ect Segmentatlon xilinx.com:ip:v_objseg:2.0
Component Mame |v_0bjseg_v2_0_u0
rInterface Selection
" EDK pCore
CLK—H
FSYNC_IN—3
BUFFER_PTR — " General Purpose Processor
-t [F] e
“E " ~Feature Information
-t 3] -
Number of Feature Combinations |8 >
Number of Feature Selects 4 >
Kl | |
% 1P Symbol | ¥ C-Model | %/ Testbench | Qatasheetl Qenerate| Cancel | Help |
Figure 3-1: Object Segmentation CORE Generator GUI

The screen displays a representation of the IP symbol on the left side, and the parameter

assignments on the right side, described as follows:

e Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters:atoz,0to9,and "_".

Note: The name "v_objseg_v2_0" is not allowed.
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 25

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 3: Customizing and Generating the Core

¢ Interface Selection: The Image Characterization core is generated with one of two
processor interfaces.

e EDK pCore Interface: CORE Generator software generates the core as a pCore
that can be easily imported into an EDK project as a hardware peripheral. The
core registers can then be programmed in real-time via an embedded
microprocessor. See the EDK pCore Interface section for details. When the EDK
pCore is selected, the rest of the options are disabled and set to the default value.
All modifications to the Object Segmentation pCore are made with the EDK GUL

* General Purpose Processor Interface: CORE Generator software generates a set
of ports that can be used to program the core. See the General Purpose Processor
Interface section for details. When the General Purpose Processor interface is
selected, the rest of the configuration options become active and can be used to
generate a customized Object Segmentation core.

e Feature Information

e Number of Feature Combinations: Sets the number of Feature Combination
units that are instantiated in the core. The range of valid choices is 1 - 8. The
higher the selected value the more resources that are used.

e Number of Feature Selects: Sets the number of Feature Select units that are
instantiated in the core. The range of valid choices is 1 - 4. The higher the selected
value the more resources that are used.

pCore Generation in the CORE Generator Software

When generated by the CORE Generator software, the new pCore is located in the CORE
Generator software project directory at
<Component_Name>/pcores/axi_objseg_v2_00_a. The pCore should be copied to the
user's <EDK_Project>/pcores directory or to a user pCores repository. The Object
Segmentation pCore driver software is located in the CORE Generator project directory at
<Component_Name>/drivers/os_v2_00_a. The driver software should be copied to the
user's <EDK_Project>/drivers directory or to a user pCores repository.

EDK pCore Graphical User Interface (GUI)

When the Xilinx Object Segmentation core is generated from the CORE Generator software
as an EDK pCore, it is generated with each option set to the default value. All
customizations of an Object Segmentation pCore are done with the EDK pCore graphical
user interface (GUI). Figure 3-2 illustrates the EDK pCore GUI for the Object Segmentation
pCore. All of the options in the EDK pCore GUI for the Object Segmentation core
correspond to the same options in the CORE Generator software GUI. See CORE
Generator Software GUI for details about each option.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 26

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 3: Customizing and Generating the Core

4% XPS Core Config - axi_objseg 0 - axi_objseqg_v2 00_a

Camponent Instance Mame Ia}{i_Dbjseg_El

= User | System | Interconnect Settir |’|ﬁ| EI =2
= all

Mumber of Feature Combinations |1 vl
Murnber of Feature Selects |1 vl

I [

[Show All Ports

(014 I Cancel Help

Figure 3-2: Object Segmentation pCore GUI

Parameter Values in the XCO File

Table 3-1 defines valid entries for the Xilinx CORE Generator (XCO) software parameters.
Xilinx strongly suggests that XCO parameters are not manually edited in the XCO file;
instead, use the CORE Generator software GUI to configure the core and perform range
and parameter value checking. The XCO parameters are helpful in defining the interface to
other Xilinx tools.

Table 3-1: XCO Parameters
XCO Parameter Default Valid Values

non

component_name v_objseg_v2_0_u0 | ASCII text using characters: a..z, 0..9 and "_" starting with a letter.

Note: "v_objseg_v2_0"is not allowed.

interface_selection EDK_pCore EDK_pCore, General_Purpose_Processor
num_feature_combinations | 8 1-8
num_feature_selects 4 1-4

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 27

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 3: Customizing and Generating the Core

Output Generation

The output files generated from the Xilinx CORE Generator software for the Object
Segmentation core depend upon whether the interface selection is set to EDK pCore or
General Purpose Processor. The output files are placed in the project directory.

EDK pCore Files

When the interface selection is set to EDK pCore, the CORE Generator tool then outputs
the core as a pCore that can be easily incorporated into an EDK project. The pCore output
consists of a hardware pCore and a software driver. The pCore has the following directory

structure:
¢ <Component_Name>
e drivers
- o0s_v2 00 a
e data
e doc
e html
e api
* example
® srC
® pcores
- axi_objseg_v2_00_a

e data
e hdl
e vhdl

File Details

* <project directory>
This is the top-level directory. It contains xco and other assorted files.

Name Description

<component_name>.Xco Log file from CORE Generator software describing which
options were used to generate the core. An XCO file can also
be used as an input to the CORE Generator software.

<component_name>_f{list.txt | A text file listing all of the output files produced when the
customized core was generated in the CORE Generator
software.

* <project directory>/<component_name>/pcores/axi_objseg_v2_00_a/data
This directory contains files that EDK uses to define the interface to the pCore.
® < project directory>/<component_name>/pcores/axi_objseg_v2_00_a/hdl/vhdl

This directory contains the Hardware Description Language (HDL) files that
implement the pCore.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 28
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 3: Customizing and Generating the Core

General Purpose Processor Files

® < project directory>/<component_name>/drivers/os_v2_00_a/data

This directory contains files that Software Development Kit (SDK) uses to define the
operation of the pCore's software driver.

® < project directory>/<component_name>/drivers/os_v2_00_a/doc/html/api

This directory contains HTML documentation files for the pCore's software driver.

® < project directory>/<component_name>/drivers/os_v2_00_a/src

This directory contains the source code of the pCore's software driver.

Name Description

X08.C Provides the Application Program Interface (API) access to all features of the
Object Segmentation device driver.

xo0s.h Provides the API access to all features of the Object Segmentation device driver.

X0S_g.C Contains a template for a configuration table of Object Segmentation core.

xos_hw.h | Contains identifiers and register-level driver functions (or macros) that can be
used to access the Object Segmentation core.

xos_intr.c | Contains interrupt-related functions of the Object Segmentation device driver.

driver.

xos_sinit.c | Contains static initialization methods for the Object Segmentation device

When the interface selection is set to General Purpose Processor, the CORE Generator tool
outputs the core as a netlist that can be inserted into a processor interface wrapper or
instantiated directly in an HDL design. The output is placed in the <project directory>.

File Details

The CORE Generator software output consists of some or all the following files.

Name

Description

<component_name>_readme.txt

Readme file for the core.

<component_name>.ngc

The netlist for the core.

<Comp0nent_name> .veo

<component_name>.vho

The HDL template for instantiating the core.

<component_name>.v

<component_name>.vhd

The structural simulation model for the core. It is used
for functionally simulating the core.

<component_name>.Xco

Log file from CORE Generator software describing
which options were used to generate the core. An XCO
file can also be used as an input to the CORE Generator
software.

<component_name>_flist.txt

A text file listing all of the output files produced when
the customized core was generated in the CORE
Generator software.

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

29

http://www.xilinx.com

& XILINX.

Chapter 3: Customizing and Generating the Core

<Comp0nent_name> .asy

IP symbol file.

<component_name>.gise

<component_name>.xise

ISE® software subproject files for use when including
the core in ISE software designs.

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

30

http://www.xilinx.com

& XILINX.

Chapter 4

Designing with the Core

Architecture

This chapter includes guidelines and additional information to make designing with the
core easier.

A high-level view of the Object Segmentation core is shown in Figure 4-1. The core uses an
AXI4 interface to transfer data between the core and buffers in external memory. The
Object Segmentation core uses a two-phase architecture to find and segment objects in a
video frame.

In the first phase, the core inputs the Image Characterization data structure and compares
it against the Feature Combination threshold values. The results of that processing are
combined to form the Feature Select results. The Feature Select results are processed to
create labeled regions within the data structure. This label data is written to external
memory and the list of labeled regions is processed to aggregate neighboring labels into an
object. After this is done, the second phase of processing begins by reading the label data
from external memory and remapping the labels into objects. After an object is defined, the
statistics of the object are calculated and written out as Metadata.

AXI4 Interface

} Data Mux }4—

\ J

f v

Feature
Combination

Feature Label Object Object Metadata
Select | ™| Generation Remapping | *| Statistcs | *| Generation

v

Label
Aggregation

Figure 4-1: Object Segmentation Block Diagram

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 31

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

Feature Combination

A Feature Combination (FC) is defined in the Feature Combination Threshold Data
Structure section. The Feature Combination Data Threshold Structure consists of a set of
threshold values with a lower and an upper bound. The Feature Combination Lower
Global Thresholds and Upper Global Thresholds in Table 4-2 match the Image
Characterization IP core Global Statistics output as shown in Table 4-6. Additionally, the
Feature Combination Lower Block Thresholds and Upper Block Thresholds in Table 4-2
match the Image Characterization IP core output Block Statistics shown in Table 4-7. A
Feature Combination unit must be properly initialized with a Feature Combination data
structure before it can begin processing.

A Feature Combination unit is implemented as a set of comparators. It compares the Image
Characterization data input against the Feature Combination data structure that is loaded
by the user. Each value in the Image Characterization data structure is compared against its
corresponding threshold values in the Feature Combination data structure. A value passes
the comparison if it meets the following criteria:

FC Lower Threshold < Image Characterization value < FC Upper Threshold

The first portion of the Image Characterization data that is read is the Global Statistics. As
the Global Statistics are read in they are compared against the Feature Combination Global
Thresholds. If any of the Global Statistics fail to match the threshold ranges, the entire
frame is considered invalid and no objects will be found in the image. If all of the Global
Statistics match the Global Statistics Thresholds, then processing advances to the Block
data processing.

Next the Image Characterization Block Data is tested against the Feature Combination
Block Thresholds. For each Image Characterization block a 1-bit result is calculated. If all of
the statistics for an Image Characterization Block match the Feature Combination Block
Thresholds, the block is given a value of '1'. If one or more of the statistics for an Image
Characterization Block fails to match the Feature Combination Block Thresholds, the block
is given a value of '0".

Up to eight separate Feature Combination units are supported by the Object Segmentation
core. Each Feature Combination unit is a separate entity and must be properly initialized
with a unique Feature Combination data structure. Each Feature Combination unit
generates a 1-bit result for each block in the Image Characterization data structure. These
eight 1-bit values are passed to the Feature Select Generation block for further processing.
If less than eight Feature Combination units are instantiated, the results are padded with
'0's in the MSB to make 8-bits.

Feature Select

The Feature Select block takes the eight 1-bit values from the Feature Combination block
and transforms them into a Feature Select. A Feature Select is defined as any logical
equation using the Feature Combination results as terms in the equation.

A Feature Select is implemented as a 1-bit x 256-entry look-up table. The 8 bits of Feature
Combination data are used as an address to this look-up table. The look-up table is used as
a truth table. The initialization of the look-up table determines the logical equation that
defines the Feature Select. See Feature Select Data Structure for more details.

The Feature Select block supports up to four Feature Selects. Each Feature Select generates
a 1-bit result for each block in the original Image Characterization data structure. These
four 1-bit results are passed on to the Label Generation block for further processing.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 32
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Label Generation

The Label Generation block is used to aggregate neighboring blocks with Feature Select
values of '1'. As each block is examined, if it is a value of '0' then it is ignored because it did
not test positive for Feature Select. If a block has a value of '1), it is assigned a label value.
If the block has a neighbor to its left, left upper diagonal, upper, or right upper diagonal
that already has a label value then the new block is assigned the same label value. If none
of the blocks neighbors has a label value then the block is assigned a new label value.
Figure 4-2 shows an example Feature Select result for an 8x8 block image. The blocks with
a value of '1' passed the Feature Select processing. Empty blocks did not pass the Feature
Select processing. Figure 4-3 shows the results of the Label Generation processing. The
Feature Select data is aggregated into four sets of labels. Labels 1, 3 and 4 are neighbors.

Figure 4-2: Feature Select Results for an 8x8 Frame

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 33

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

1 2
1 1 1 1 2 2
1 1 2
1 3 1 2
3 1
3 1
3 3 3
4 4 4

Figure 4-3: Label Data for an 8x8 Frame

There is a separate Label Generation circuit for each Feature Select. Label Generation
circuits run in parallel with each other. The Label data is written to an external memory
buffer to complete the first pass of processing.

Label Aggregation

The Label Aggregation block is active between the end of the first pass and the start of the
second pass of processing. The Label Aggregation is responsible for finding labels that are
neighbors and aggregating them into an object. The Label Generation block reports out a
list of labels that are neighbors. The Label Aggregation block recursively searches the list
for all labels that are connected and adds them to a list of new object values. This list of
object values is used during the second pass processing to remap labels into objects. There
is a separate Label Aggregation circuit for each Label Generation circuit. The Object
Segmentation core supports up to four Label Aggregation circuits.

Continuing with the example used in the previous section, the Label Generation block

reports that there are four labels (1, 2, 3 and 4) and that 3 connects to 1 and 4 connects to 3.
The Label Aggregation block processes this list and remaps the labels 1, 3 and 4 to object A
and label 2 to object B. This new object mapping is passed to the Object Remapping block.

Object Remapping

After the Label Aggregation block is finished consolidating labels into objects, the Object
Remapping block uses the object mapping list to assign new object values to the label data.
As the label data is read from memory, the Object Remapping block looks at the label
assigned to a block and remaps the block to a new object value. Figure 4-4 and Figure 4-5
illustrate the remapping process for the example use in the previous sections.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 34

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

1 2
1|1 1 1 2 2
1 1 2
1 3 1 2
3 1
3 1
3 3 3
4 | 4 | 4

Figure 4-4: Label Data for an 8x8 Frame

A B
A A A A B B
A A B
A A A B
A A
A A
A A A
A A A

Figure 4-5: Obiject Data for an 8x8 Frame

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 35
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

There is a separate Object Remapping circuit for each instantiated Feature Select for up to
four independent circuits.

Object Statistics

The new object data is passed along to the Object Statistics block. The Object Statistics
block keeps track of the size of each object and calculates the coordinates of a rectangle that
would completely bound the object. The Object Statistics block also counts the number of
blocks that make up an object. For Figure 4-5, the Object Statistics block would count 20
blocks for object A and 5 blocks for object B.

There is a separate Object Statistics circuit for each instantiated Feature Select.

Metadata Generation

The calculated object statistics are passed from the Object Statistics block to the Metadata
Generation block. This block is responsible for taking the object statistics for each of the
Object Statistics circuits and formatting the data into the Object Segmentation Metadata
that is written to external memory. Metadata is written for each instantiated Feature Select.

Data Structures

The Object Segmentation core uses several different data structures. The Feature
Combination Threshold data structure and the Feature Select data structure define the data
that is used to initialize the Object Segmentation core prior to processing data. The Image
Characterization data structure defines the format of the input data that the core processes.
The Object Segmentation Metadata data structure defines the format of the output data
that the core produces for each frame of Image Characterization data.

Feature Combination Threshold Data Structure

The Object Segmentation core supports up to eight Feature Combination units. Each
Feature Combination unit requires the input of a set of threshold values. The set of
threshold values is defined by the Feature Combination Threshold data structure. The data
structure consists of a lower threshold and an upper threshold for each of the global and
block statistics in the Image Characterization Data Structure that is defined in the Image
Characterization Data Structure section.

The global and block mean ("_mean") statistics are 8-bit values and the thresholds can be
any value from 0 to 255. The global and block variance ("_var") statistics are 16-bit values
and the thresholds can have any value from 0 to 65535. Each block color_select value
represents the number of pixels in the block that matched the specified color range for that
color_select in the Image Characterization core. The color_select's value range is
determined by the block size used to produce the Image Characterization data, and by the
video format that is processed. Table 4-1 shows the possible value ranges for color_selects.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 36
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Table 4-1: Value Ranges for Image Characterization Color_Selects
Block Size Video Format 4:2:2 Video Format 4:2:0
64x64 0 to 2048 0to 1024
32x32 0to 512 0 to 256
16x16 0to 128 0 to 64
8x8 0to 32 Oto 16
4x4 0Oto8 Oto4

Each Feature Combination unit must be properly initialized before it can be used to
process input data. Table 4-2 shows the format of the Feature Combination Threshold data
structure and the order in which each element should be loaded. Each Feature
Combination unit is loaded independently. There are two memory banks associated with
each Feature Combination unit, with the active bank specified by a register value. This
configuration allows the user to load two different Feature Combination sets and then
switch between the two in real-time by changing the active bank register selection.
Changes to the active bank register are acted upon at the beginning of each frame. This
configuration also allows the user to calculate a new Feature Combination set, load the
new set into the inactive Feature Combination bank and then make the new set the active
bank in real-time. See Feature Combination Bank Programming for more details.

Table 4-2: Feature Combination Threshold Data Structure

Line # Byte 3 Byte 2 Byte 1 Byte 0

Lower Global Threshold

0x0 Low_Freq_Mean V_mean U_Mean Y_Mean

0x1 Saturation_Mean Motion_mean Edge_Mean High_Freq_Mean

0x2 U_Var Y_Var

0x3 Low_Freq_Var V_Var

Ox4 Edge_Var High_Freq_Var

0x5 Saturation_Var Motion_Var
Lower Block Threshold

0x6 Low_Freq_Mean V_mean U_Mean Y_Mean

0x7 Saturation_Mean Motion_mean Edge_Mean High_Freq_Mean

0x8 U_Var Y_Var

0x9 Low_Freq_Var V_Var

OxA Edge_Var High_Freq_Var

0xB Saturation_Var Motion_Var

0xC Color_Sel_2 Color_Sel 1

0xD Color_Sel_4 Color_Sel_3

OxE Color_Sel_6 Color_Sel_5

OxF Color_Sel_8 Color_Sel _7

0x10 Reserved

0x11 Reserved

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

37

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Table 4-2: Feature Combination Threshold Data Structure (Contd)

0x12 Reserved
0x13 Reserved
Upper Global Threshold
0x14 | Low_Freq_Mean V_mean U_Mean Y_Mean
0x15 | Saturation_Mean Motion_mean Edge_Mean High_Freq_Mean
0x16 U_Var Y_Var
0x17 Low_Freq_Var V_Var
0x18 Edge_Var High_Freq_Var
0x19 Saturation_Var Motion_Var
Upper Block Threshold
0x1A | Low_Freq_Mean V_mean U_Mean Y_Mean
0x1B | Saturation_Mean Motion_mean Edge_Mean High_Freq_Mean
0x1C U_Var Y_Var
0x1D Low_Freq_Var V_Var
Ox1E Edge_Var High_Freq_Var
0x1F Saturation_Var Motion_Var
0x20 Color_Sel 2 Color_Sel 1
0x21 Color_Sel_4 Color_Sel 3
0x22 Color_Sel_6 Color_Sel 5
0x23 Color_Sel_8 Color_Sel_7
0x24 Reserved
0x25 Reserved
0x26 Reserved
0x27 Reserved

Feature Select Data Structure

The Object Segmentation core supports up to four Feature Select units. A Feature Select
unit takes the 1-bit results from each of the Feature Combination units and applies a logical
expression to them. Each Feature Combination unit is represented as a separate entity in

the logical expression. All logical expressions are supported.

A Feature Select unit is implemented as a 1-bit x 256 entry RAM. The eight Feature
Combination units are used as address bits to the RAM. Feature Combination 1 is the Least
Significant Bit (LSB) and Feature Combination 8 is the Most Significant Bit (MSB) of the
address. The RAM creates a look-up table that can be used as a truth-table and therefore
allows the implementation of any logical expression of the eight Feature Combinations.

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

38

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

Because up to four Feature Selects are supported, each is implemented as one bit in a 4-bit
x 256 entry RAM. Feature Select 1 is the LSB and Feature Select 4 is the msb of the Random
Access Memory (RAM) output data as illustrated in Table 4-3. The Object Segmentation
core supports eight banks of Feature Select data. The active bank is selected through an
active bank register. This configuration allows the user to load multiple banks of Feature
Select data and then switch between the banks in real-time. Changes to the active bank
selection are processed at the beginning of a frame. Each Feature Select bank is loaded
independently which allows the loading of new Feature Select data at any time. See
Feature Select Bank Programming for more details.

Table 4-3: Feature Select Data Structure

cOmb'::::i”;:s(& | Bt Bit 2 Bit 1 Bit 0
0x00 (00000000 FS4_0 FS3.0 FS2.0 FS1_0
0x01 (00000001 FS4_1 FS3_1 FS2_1 FS1_1
0x02 (00000010) FS4_2 FS3_2 FS2_2 FS1_2
OXFD (11111101) | FS4 253 FS3_253 FS2_253 FS1_253
OXEE (11111110) FS4_254 FS3_254 FS2_254 FS1_254
OXFF (11111111 FS4_255 FS3_255 FS2_255 FS1_255

Image Characterization Data Structure

The Image Characterization Data Structure defines how the image characterization
statistics are organized in external memory. The data structure is made up of three pieces
which are located contiguously in memory:

¢ Frame Header (Table 4-5)

* Global Statistics and Histograms (Table 4-6)

e Block Statistics (Table 4-7)

The Frame Header, Global Statistics and Histograms are all static in size. The size of the
Block Statistics structure is dependent on the number of blocks in the processed image.
There will be one instance of the Block Statistics data structure for each block in the image.
The Block Statistics data structures are arranged contiguously in memory. The order of the

blocks corresponds to traversing through the blocks from left to right and from top to
bottom.

The values in the data structure use these bit widths:
e Mean ("_mean"): 8-bits

e Variance ("_var"): 16-bits

* Histogram: 32-bits (21-bits actual)

e Color_Select: 16-bits (12-bits actual)

¢ PAD: 32-bits (0x0000)

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 39
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

Table 4-4: Image Characterization Data Structure

Byte 3 Byte 2 Byte 1

Byte 0

Frame Header (32 words)

Global Statistics (32 words)

Histograms (1024 words)

Block Statistics — Block #1 (14 words)

Block Statistics — Block # HxV (14 words)

Table 4-5: Image Characterization Data Structure Frame Header

Byte 3 Byte 2 Byte 1

Byte 0

Struct_Valid

Frame_Index

PAD (x30)

Table 4-6: Image Characterization Data Structure Global Statistics

Byte 3 Byte 2 Byte 1

Byte 0

Low_Freq_Mean V_mean U_Mean

Y_Mean

Saturation_Mean Motion_mean Edge_Mean

High_Freq_Mean

U_Var

Y_Var

Low_Freq_Var

V_Var

Edge_Var High_Freq_Var

Saturation_Var Motion_Var

PAD (x26)

Y_Histogram (x256)

U_Histogram (x256)

V_Histogram (x256)

Hue_Histogram (x256)

LogiCORE IP Object Segmentation v2.0 www.xilinx.com
PG018 October 19, 2011

40

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Table 4-7: Image Characterization Data Structure Block Statistics

Byte 3 Byte 2 Byte 1 Byte 0
Low_Freq_Mean V_mean U_Mean Y_Mean
Saturation_Mean Motion_mean Edge_Mean High_Freq_Mean

U_Var Y_Var
Low_Freq_Var V_Var
Edge_Var High_Freq_Var
Saturation_Var Motion_Var
Color_Sel_2 Color_Sel 1
Color_Sel_4 Color_Sel_3
Color_Sel_6 Color_Sel_5
Color_Sel_8 Color_Sel_7
Reserved
Reserved
Reserved
Reserved

Note: The Block Statistics repeats once for each block in the image. For example, a 1280x720
image with block size 16 would result in 3600 contiguous instances of Block Statistics data.

Metadata Data Structure

The Metadata data structure contains all of the data calculated by the Object Segmentation
core to describe the objects found in the current Image Characterization data structure. The
Metadata data structure is a list of up to 31 objects described for up to four Feature Selects
resulting to a total of 124 objects that can be found for each frame.

The Metadata data structure begins with a header that is specified in Table 4-9. The
Structure_Valid entry specifies whether the entire frame has been written and is valid. It
holds a value of 0x00000001 if the data structure is incomplete. It holds a value of
OxFFFFFFFF if the data structure is complete. The Frame Index is a unique identifier for
each frame. The values for the number of objects correspond to the number of objects in the
Metadata data structure for the specified value. The data structure header also includes the
Global Image Characterization statistics that were copied directly from the Image
Characterization data structure.

After the Metadata header, the objects for FS1 are provided followed by the objects for FS2,
FS3 and FS4. The Object Segmentation core only writes out metadata for the Feature Selects
that are instantiated in the core. If only two Feature Selects are instantiated, then only the
metadata for FS1 and FS2 is written.

The metadata associated with an object is defined in Table 4-10, and consists of the
following information: FS#, object number, X/Y start/stop values, X/Y centroid values,
object density and object identifier. The FS# corresponds to the Feature Select that the
object belongs to. The object number is the number of the object in the list of objects for that
FS. The X/Y start/stop values define the coordinates of the bounding box that surrounds
the object. The X/Y centroid values are the coordinates of the center of the bounding box.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 41

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

The object density is the number of blocks inside the bounding box that belong to the
object. The object identifier is a unique value specified for each object.

Table 4-8: Object Segmentation Metadata Data Structure
Byte 3 Byte 2 Byte 1 Byte 0
Metadata Header (32 words)
FS1 Object Data (32 instances

FS2 Object Data (32 instances

)

()
FS3 Object Data (32 instances)
FS4 Object Data (32 instances)

Table 4-9: Object Segmentation Metadata Header
Byte 3 Byte 2 Byte 1 Byte 0
Struct_Valid

Frame_Index

Total Num_Objects

FS4_num_obj FS3_num_obj FS2_num_obj FS1_num_obj
Low_Freq_Mean V_mean U_Mean Y_Mean
Saturation_Mean Motion_mean Edge_Mean High_Freq_Mean

U_Var Y_Var
Low_Freq_Var V_Var
Edge_Var High_Freq_Var
Saturation_Var Motion_Var
PAD (x22)

Note: The Mean and Variance values are the global values from the corresponding Image
Characterization data structure.

Table 4-10: Object Segmentation Metadata Object Data

Byte 3 Byte 2 Byte 1 Byte 0
FS# Object_Number
X_stop X_start
Y_stop Y_start
Y_centroid X_centroid
Object_density
Object_identifier

Note: Repeat 6 object words for total of 32 objects. Object_number = 0 signals end of objects for
this Feature Select. The remaining objects to 32 will = 0.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 42
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

General Design Guidelines

Object Segmentation Control and Timing

The Object Segmentation core provides a great deal of operational flexibility through a
simple register set. The Feature Combinations and Feature Selects define the operation of
the core. These features are fully configurable and can be updated with configurations in
real-time. As a result, the Object Segmentation core must be properly initialized before it
can be used to process Image Characterization data. Each of the instantiated Feature
Combinations and Feature Selects must be initialized valid data structures as described in
the Feature Combination Threshold Data Structure and Feature Select Data Structure
sections.

The process of programming the Feature Combinations and Feature Selects is slightly
different depending upon whether the core is generated with an EDK pCore interface or a
General Purpose Processor interface. Both methods are discussed in the following sections.
The process of the programming the rest of the register set is essentially the same for both
interfaces.

pCore Bank Programming

Feature Select Bank Programming

The Object Segmentation core supports eight banks of Feature Select data regardless of the
number of Feature Selects that are instantiated. All of the Feature Select banks can be
loaded at any time. It is the user's responsibility to verify that a bank is not loaded while it
is in active use.

To load the Feature Selects:

1. Set the Feature Select Write Bank Address to the address (0 —7) of the bank to be
loaded.

2. Write 256 Feature Select data values to the Feature Select Data register. See the Feature
Select Data Structure section for more details.

3. Repeat steps 1 and 2 for any additional Feature Select banks to be loaded.

Specify the active Feature Select bank by writing the bank's address to the Feature
Select Active Bank Address register.

Feature Combination Bank Programming

The Object Segmentation core supports up to eight Feature Combinations. Each Feature
combination is implemented with two banks of Feature Combination data. This makes for
a total of up to 16 Feature Combination banks that can be independently loaded. All of the
Feature Combination banks can be loaded at any time. It is the user's responsibility to
verify that banks are not loaded while they are active.

To load the Feature Combinations:

1. Set the Feature Combination Write Bank Address to the address (0 —15) of the Feature
Combination bank to be loaded. See Table 2-4 or Table 2-3 for more detail on the
Feature Combination Write Bank Address register.

2. Write 40 Feature Combination data values to the Feature Combination Data register.
See the Feature Combination Threshold Data Structure section for more detail.

3. Repeat steps 1 and 2 for any additional Feature Combination banks to be loaded.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 43
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

4. Specify the active Feature Combination bank by writing the banks address to the
Feature Combination Active Bank Address register.

GPP Bank Programming

Feature Select Bank Programming

The Object Segmentation core supports eight banks of Feature Select data regardless of the
number of Feature Selects that are instantiated. All of the Feature Select banks can be
loaded at any time. It is the user’s responsibility to verify that a bank is not loaded while it
is in active use. See Figure 4-6.

To load the Feature Selects:

1. Set the Feature Select Write Bank Address to the address (0 —7) of the bank to be
loaded.

2. Write 256 Feature Select data values to the feature_select_data. The
feature_select_we signal must be toggled for the data to be written. See the
Feature Select Data Structure section for more details about the Feature Select data set.

3. Repeat steps 1 and 2 for any additional Feature Select banks to be loaded.

Specify the active Feature Select bank by writing the bank's address to the Feature
Select Active Bank Address register.

feature_select write_bank_addr |_
ST T I I I I
featureselectwe| L1l |/|\|/|\|/|\|/|\|/|\|S

feature_select_data |

Figure 4-6: Feature Select Bank Programming

Feature Combination Bank Programming

The Object Segmentation core supports up to eight Feature Combinations. Each Feature
Combination is implemented with two banks of Feature Combination data. This makes for
a total of up to 16 Feature Combination banks that can be independently loaded. All of the
Feature Combination banks can be loaded at any time. It is the user's responsibility to
verify that banks are not loaded while they are active. See Figure 4-7.

To load the Feature Combinations:

1. Set the Feature Combination Write Bank Address to the address (0 —15) of the Feature
Combination bank to be loaded. See Table 2-4 or Table 2-3 for information about the
Feature Combination Write Bank Address register.

1. Write 40 Feature Combination data values to the feature_combination_data. The
feature_combination_we signal must be toggled for the data to be written. See
the Feature Combination Threshold Data Structure section for more details on the
Feature Combination Threshold data set.

2. Repeat steps 1 and 2 for any additional Feature Combination banks to be loaded.

Specify the active Feature Combination bank by writing the banks address to the Feature
Combination Active Bank Address register

LogiCORE IP Object Segmentation v2.0 www.xilinx.com 44
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

feature_combination_write_bank_addr |_

|
feature_combination_we |

|||\|||\|||\|||\||||||x|||\|||\||

Figure 4-7: Feature Combination Bank Programming

Register Updates

The Object Segmentation core is controlled by a register set that must be initialized before
the core begins processing. See Table 2-4 for more detail about the Object Segmentation
register set. The registers should be initialized as follows:

1.

Set the register update enable bit of the control register (bit 1) to '0' to disable register
updates.

Load the Image Characterization Start Address 0 and 1 registers to the start addresses
of the Image Characterization data buffers. See the Buffer Management section for
more details.

Load the Metadata Start Address 0 and 1 registers to the start addresses of the
Metadata buffers.

Load the Label Mask Start Address 0 register to the start address of the Label data
buffer.

Load the Number of Horizontal Blocks register to the number of blocks in the
horizontal direction. Typically this value is the horizontal resolution of the processed
frame divided by the block size. Truncate any decimal portion.

Load the Number of Vertical Blocks register with the number of blocks in the vertical
direction. Typically this value is the vertical resolution of the processed frame divided
by the block size. Truncate any decimal portion.

Load the Number of Total Blocks with the number blocks that are going to be
processed per frame. This value should be the Number of Horizontal blocks x the
Number of Vertical blocks.

Load the Block Size register with the block size of the blocks that are being processed.
A block is defined as a NxN 2-D grid of pixels where N is the block size. The Image
Characterization core supports block sizes of 4, 8, 16, 32 and 64.

Set the register update enable bit of the control register (bit 1) to '1' and the core enable
bit of the control register (bit 0) to '1' to fully enable the core. All of the preceding
register values are written into the core on the next falling edge of the register values
are written into the core on the next falling edge of the £sync_in signal.

Any of the core's registers can be updated while the core is running. It is recommended
that the register update enable bit of the control register (bit 1) be set to '0’ before any
register are updated.

After all register changes have been written, the register update enable bit should be set to
'1". The new register values are written into the core on the next falling edge of the
fsync_in signal.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 45

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

Buffer Management

The Object Segmentation core makes use of five external memory buffers to handle the
transfer of data. The buffer locations are defined by registers that specify their starting
address location. Two of the buffers are used to input Image Characterization data. Two
buffers are used for outputting the Object Segmentation Metadata. The last buffer is used
to hold intermediate results from the first pass of processing until it is read in during the
second pass of processing.

The Image Characterization Start Addr 0/1 registers hold the start addresses of the buffers
that the Object Segmentation core uses to input Image Characterization data. Two buffers
are used so that the Image Characterization core can write to one buffer while the Object
Segmentation core can read from the other buffer. This arrangement ensures that the Object
Segmentation core is always processing a valid Image Characterization data structure.

The Buffer Selection bit (3) of the Control register (See Table 2-3) determines how the Image
Characterization Buffers are used. When the Buffer Selection bit = "0", the "buffer_ptr"
signal is sampled on the falling edge of "fsync_in" signal. If buf fer_ptr =0, Image
Characterization Buffer 0 is used. If buf fer_ptr = 1, Image Characterization Buffer 1 is
used. When the Buffer Selection bit = "1", Image Characterization Buffer 0 is used for the
first frame. For the next frame, Buffer 1 is use. The core continues to switch between buffers
on each successive frame.

The Metadata Start Addr 0/1 registers hold the start addresses of the buffers that the
Object Segmentation core uses when writing the Object Segmentation Metadata. The
Object Segmentation core uses the "Metadata Address Selection" register (control[2]) to
specify which buffer is being actively written. The Object Segmentation core only writes to
the active buffer. When the processor is ready to read the latest frame of Metadata, it first
modifies the Metadata Address Selection register to swap the inactive buffer to be the
active buffer and the active buffer to be the inactive buffer. After the next frame cycle
begins, the newly inactive buffer contains the Metadata from the previous frame and is
safe for the processor to access without danger of being overwritten. This mechanism is
used because a processor might need to use multiple frame cycles to process the Metadata.

The Label Mask Start Addr 0 register holds the start address of the buffer that the Object
Segmentation core uses to hold the intermediate Label data. This Label data is the output
of the first pass of processing and the input of the second pass of processing. Only the
Object Segmentation core uses this buffer, so there are no synchronization issues with
which to be concerned.

Interrupts

The Object Segmentation core can flag four interrupts. The Status Error and Status Done
interrupts report the processing operation of the core. The MM2S Error and S2MM Error
interrupts report errors that occurred while transferring data across the AXI4 interface.

Status Error

On the falling edge of £sync_in (which signifies the start of the next frame), the Object
Segmentation core checks to make sure that all of the Metadata from the previous frame
has been written to memory. If any data has not been written to memory, then the core flags
a status error. When using the General Purpose Processor interface, the error is indicated
by the logic '1' state of the status_error signal. The status_error signal is reset to '0'
on the next rising edge of £sync_in. When using the pCore interface, the status_error
signal is used to drive bit 0 of the interrupt controller. It also sets bit 0 of the Status Error
Register. The value in the Status Error Register can be reset by writing any value to the
register.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 46
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Status Done

When the Object Segmentation core finishes writing all of the Metadata to memory, it flags
that it has completed processing the current frame. When using the General Purpose
Processor interface, the status_done signal is set to '1'. The status_done signal is reset
to '0' on the falling edge of £sync_in, which denotes the start of the next frame. When
using the pCore interface, the status_done signal is used to drive bit 1 of the interrupt
controller. It also sets bit 0 of the Status Done Register. The value in the Status Done
Register can be reset by writing any value to the register.

MM2S Error

The MM2S Error is asserted whenever an error condition is encountered within the MM2S
portion of the AXI4 interface. When using the General Purpose Processor interface, the
mm2s_err signal is set to '1' when an error is reported. When using the pCore interface, the
mm2s_err signal is used to drive bit 3 of the interrupt controller. It also sets bit 2 of the
Status Error Register.

S2MM Error

The S2MM Error is asserted whenever an error condition is encountered within the S2MM
portion of the AXI4 interface. When using the General Purpose Processor interface, the
s2mm_err signal is set to '1' when an error is reported. When using the pCore interface, the
s2mm_err signal is used to drive bit 2 of the interrupt controller. It also sets bit 1 of the
Status Error Register.

Evaluation Core Timeout

When generated with a Full System Hardware license, the core includes a timeout circuit
that disables the core after a specific period of time. The timeout circuit can only be reset by
reloading the FPGA bitstream. The timeout period for this core is set to approximately 8
hours for a 75 MHz clock. Using a faster or slower clock changes the timeout period
proportionally. For example, using a 150 MHz clock results in a timeout period of
approximately four hours.

Example Case

The key to understanding how to use the Object Segmentation core lies in learning how to
properly configure the Feature Combinations and the Feature Selects, as described in the
previous sections.

For this example, we will use the Object Segmentation core to detect objects that match
either of the following feature descriptions:

1. Road signs that are Green with edges.
2. Road signs that are Yellow with edges.

For the purposes of this example we do not care to differentiate between the two feature
descriptions, we just want to find objects of either type. To accomplish this, two Feature
Combination units are needed; one to detect the "green signs" and one to detect the "yellow
signs". Only one Feature Select is needed for this example because we are looking for either
"green signs" or "yellow signs".

To properly setup the Object Segmentation core for this example, use the following
configuration options:

® Color Select 1 is configured to detect the color "Green"

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 47

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

1

* Color Select 2 is configured to detect the color "Yellow'
e The video format is 4:2:0

e The frame resolution is 1280x720

e The Block Size is 8x8

Then to set these register values:

e Number of Horizontal Blocks = 1280/8 = 160

e Number of Vertical Blocks = 720/8 = 90

e Number of Total Blocks = 160x90 = 14400

e Block Size =8

The next step is to configure the two Feature Combinations (FC1 and FC2). FC1 is looking

for blocks that match the "green sign" feature description. To do this, it sets lower and
upper block thresholds for "Color_Sel_1" (green) and for "Edge_Mean" (edges). FC2 is

looking for blocks that match the "yellow sign" feature description. To do this it sets lower
and upper block thresholds for "Color_Sel_2" (yellow) and for "Edge_Mean" (edges). For
FC1 and FC2, block values that are not part of the feature description should be set to their

widest threshold settings so that they do not limit the data comparisons.

For this example, the global statistics are not of interest so the corresponding global
thresholds in FC1 and FC2 should also be set to their widest threshold settings. Two

separate Feature Combination Threshold data structures are illustrated in Table 4-11, one

for FC1 and another for FC2. The values in red highlight the threshold values that
correspond to the feature descriptions for FC1 and FC2.

The FC1 Feature Combination Threshold data structure has these values:

1. Line 0x7 - The Edge_Mean lower block threshold was set to a value of 0x21

2. Line 0xC - the Color_Sel_1 lower block threshold was set to a value 0x0004

3. Line Ox1B - The Edge_Mean upper block threshold was set to a value of 0x53

4. Line 0x20 - The Color_Sel_1 upper block threshold was set to a value of 0x0010

LogiCORE IP Object Segmentation v2.0 www.xilinx.com

PG018 October 19, 2011

48

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

The FC2 Feature Combination Threshold data structure has these values:

1. Line 0x7 - The Edge_Mean lower block threshold was set to a value of 0x32

2. Line 0xC - the Color_Sel 1 lower block threshold was set to a value 0x0005

3. Line 0x1B - The Edge_Mean upper block threshold was set to a value of 0x61
4. Line 0x20 - The Color_Sel_1 upper block threshold was set to a value of 0x0012

Table 4-11: Feature Combination Threshold Data Structures for FC1 and FC2

Line # FC1 FC2

Lower Global Statistics

0x0 - 0x5 0x00000000 0x00000000
Lower Block Statistics

0x6 0x00000000 0x00000000
0x7 0x00002100 0x00003200
0x8-0xB 0x00000000 (0x00000000
0xC 0x00000004 0x00050000
0xD - 0x13 0x00000000 0x00000000
Upper Global Statistics

0x14 - 0x19 OxFFFFFFFF OxFFFFFFFF
Upper Block Statistics

0x1A OxFFFFFFFF OxFFFFFFFF
0x1B 0x00005300 0x00006100
0x1C - Ox1F OxFFFFFFFF OxFFFFFFFF
0x20 0xFFFF0010 0x0012FFFF
0x21 - 0x23 OxFFFFFFFF OxFFFFFFFF
0x24 -0x27 0x00000000 0x00000000

The last step is to configure the Feature Select (FS1). FS1 should combine FC1 and FC2 such

that any block that matches FC1 or FC2 is considered a member of FS1. FS1 can be
described by the following Boolean logic equation:

FS1=FC2 or FC1

This equation is implemented as a 1-bit x 256-entry look-up table. Table 4-12 has an 8-bit
address range. FC1 is mapped to the Isb of the address range, FC2 is mapped to the "Isb +
1" and FC8 is mapped to the "Isb + 7". In this example, Only FC1 and FC2 are instantiated
so FC3 - FC8 are each set to a value of "0". The Feature Select data structure that implements
the logic equation for FS1 in this example is shown in Table 4-12. The Feature Select data
structure is 4-bits wide and 256 entry deep regardless of the number of Feature Selects that

are instantiated. The entire data structure must be created and loaded to properly
configure the Feature Selects.

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

49

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Table 4-12: Feature Select Data Structure for FS1 = FC2 or FC1

FCaumeb, FO1zlth i Fs3 Fs2 Fst
0x00 (00000000) 0 0 0 0
0x01 (00000001) 0 0 0 1
0x02 (00000010) 0 0 0 1
0x03 (00000011) 0 0 0 1
0x04 (00000100) 0 0 0 0
0x05 (00000101) 0 0 0 0

0x06 — OxFF 0 0 0 0

Because FS4 - FS2 are not instantiated, the column under FS1 is the only portion of

Table 4-12 that is of concern. FC1 and FC2 are the only bits of the address range that can
change because FC8 - FC3 are not instantiated and therefore each is set to a value of "0". As
a result, the effective address range is 0x0 (00000000) - 0x3 (00000011). Because FS1 is equal
to the "FC1 or FC2", FS1 has a value of '1' any time FC1 is a '1' as well as anytime FC2isa'1'.

Use Model

Figure 4-8 illustrates using the Object Segmentation core in a larger system. In this system,
the Image Characterization core writes its calculated image statistics to an external
memory buffer. This external memory buffer is then read by the Object Segmentation core.
The core then analyzes the data with the user-defined object characteristics to find the
specified objects. A list of objects found is written back to an external Metadata buffer for
use in higher level analysis and processing. Such a system can be easily built using the
building blocks provided by Xilinx (for example, AXI_VDMA, Timing Controller, On
Screen Display (OSD).

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 50

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 4: Designing with the Core

AXI4 Interconnect
A A A A
\ \
AXI_VDMA AXI_VDMA AXI_VDMA
A A
XSVI
to
AXI_STREAM
A
- - Timing
Controller
Y Y \i
Camera . OosD
o Image Object
P> RGB->YCrCb MANR | Characterization Segmentation And ’
444 to 422 Display
AXI4 Interconnect (AXI4-Lite) MicroBlaze

X12254

Figure 4-8: Object Segmentation Example Use Model

Clocking

The Object Segmentation core has one clock ("clk") that is used to clock the entire core. This
includes the AXI interfaces and the core logic.

Resets

The Object Segmentation core has one reset ("sclr") that is used for the entire core. The reset
is active high.

Protocol Description

For the pCore version of the Object Segmentation core, the register interface is compliant
with the AXI4-Lite interface. The S2MM and MM2S interfaces are compliant with the AXI4
Memory Mapped interface.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 51
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.
Chapter 5

Constraining the Core

Required Constraints

There are no required constraints for the Object Segmentation core.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 52
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.
Chapter 6

Detailed Example Design

Directory and File Contents

Expected

The Expected directory contains the pre-generated expected/golden data used by the test
bench to compare to the actual output data.

e Label out.txt
e Meta_out.txt

Stimuli

The Stimuli directory contains the pre-generated input data used by the test bench to
simulate the core (including register programming values).

e c in.txt

e fs in.txt

e jc_stats.txt

e Jlabel in.txt

* reg in.txt

Results

The Results directory is where the actual simulation output data file are written.

Src

The src directory contains the .vhd and .xco files of the core. The .vhd file is a netlist
generated using CORE Generator™ software. The .xco file can be used with the CORE
Generator software to regenerate the netlist.

e v_objseg_v2_0_u0.vhd

* v_objseg_v2_0_u0.xco

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 53
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

th_src
The tb_src directory contains the top-level test bench design. This directory also contains
other packages used by the test bench.
e SimPack.sv
e tb_v_objseg_v2 OVHT.sv
e xi_config.sv
e isim_wave.wcfg - Waveform configuration file for iSim
* mti_wave.do - Waveform configuration for ModelSim
e run_isim.bat - Runscript for iSim in Windows OS
® run_isim.sh - Runscript for iSim in Linux OS
* run_mtibat - Runscript for ModelSim in Windows OS

e run_mti.sh - Runscript for ModelSim in Linux OS

Demonstration Test Bench

The demonstration test bench is provided as a simple introductory package that enables
core users to observe the core generated by the CORE Generator tool operating in a
waveform simulator. The user is encouraged to observe core-specific aspects in the
waveform, make simple modifications to the test conditions, and observe the changes in
the waveform.

Simulation

Simulation using ModelSim for Linux:

¢ From the console, Type "source run_mti.sh".
Simulation using ModelSim for Windows:

* Double-click on "run_mti.bat" file.
Simulation using iSim for Linux:

e Double-click on "run_isim.bat" file.

Messages and Warnings

"Memory Collision Errors" have been observed when running this demonstration test
bench. The issue has been investigated and it has been determined that these errors can be
safely ignored. This error message can be suppressed in ModelSim when the global
"SIM_COLLISION_CHECK" option is set to "NONE".

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 54
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix A

Verification, Compliance, and
Interoperability

Simulation

A highly parameterizable test bench was used to test the Object Segmentation core. Testing
included the following:

Register accesses
Processing of multiple frames of data
Testing of various frame sizes and block sizes

Varying instantiations of the core (Feature Selects = 1 — 4 and Feature Combinations =
1-8)

Varying Feature Select Bank usage

Varying Feature Combination Bank usage

Hardware Testing

The Object Segmentation core has been tested in a variety of hardware platforms at Xilinx
to represent a variety of parameterizations, including the following:

A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4 Interface and various other peripherals. The software for the test system
included pre-generated input and output for the Object Segmentation core. Various
tests could be supported by varying the configuration of the Object Segmentation core
or by loading a different software executable. The MicroBlaze processor was
responsible for:

¢ Initializing the appropriate input and output buffers in external memory.
¢ Initializing the Object Segmentation core.
¢ Launching the test.

e Comparing the output of the Object Segmentation core against the expected
results.

* Reporting the Pass/Fail status of the test and any errors that were found.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 55

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix B

Debugging

Following are some debugging tips:

Can the Version register be read properly? See Table 2-4 for register definitions.
Verify that the £sync_in input is being properly driven.

Verify that bits 0 and 1 of the core's Control register are both set to "1". Bit 0 is the Core
Enable bit. Bit 1 is the Register Update Enable bit.

Verify that the Feature Combination bank and Feature Select bank been initialized.

Verify that the Feature Combination Active bank and Feature Select Active bank
registers are specifying banks that have been properly initialized.

Check the "Status Error" and "Status Done" registers. Ideally the Status Error register
will read 0x00 and the Status Done register will read 0x01. Check Table 2-4 for
definitions of each bit.

Verify that the start addresses for the Image Characterization buffers, Metadata
buffers and Label buffer have been properly initialized.

Verify that the "Number of Horizontal Blocks", "Number of Vertical Blocks" and "Total
Number of Blocks" registers have been properly initialized. SeeTable 2-4 for register
definitions.

Verify that the "Block Size" register has been properly initialized. See Table 2-4 for
register definitions.

See Solution Centers in Appendix E for information helpful to the debugging
progress.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 56

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.
Appendix C

Application Software Development

pCore Driver Files

The Object Segmentation pCore includes a software driver written in the C programming
language that the user can use to control the core. A high-level API provides application
developers easy access to the features of the Xilinx® Object Segmentation core. A
low-level APlis also provided for developers to access the core directly through the system
registers described in Register Space in Chapter 2.

Table C-1 lists the files included with the Object Segmentation pCore driver.
Table C-1: Object Segmentation pCore Drivers

File name Description

X08.C Provides the API access to all features of the Object Segmentation device
driver.

x0s.h Provides the API access to all features of the Object Segmentation device
driver.

X0s_g.C Contains a template for a configuration table of Object Segmentation
core.

xos_hw.h Contains identifiers and register-level driver functions (or macros) that
can be used to access the Object Segmentation core.

xos_intr.c Contains interrupt-related functions of the Object Segmentation device
driver.

x0s_sinit.c Contains static initialization methods for the Object Segmentation device
driver.

pCore API Functions

This section describes the functions included in the pcore Driver files generated for the
Object Segmentation pCore. The software API is provide to allow easy access to the
registers of the pCore as defined in Table 2-2 in the Register Space section. To utilize the
API functions provided, the following header files must be included in the user's C code:

#include "xparameters.h"
#include "xos.h"

The hardware settings of your system, including the base address of your Object
Segmentation core are defined in the xparameters.h file. The xos.h file provides the API
access to all of the features of the Object Segmentation device driver.

More detailed documentation of the API functions can be found by opening the file
index.html in the pCore directory os_v2_00_a/doc/html/api.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 57
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix C: Application Software Development

Functions in xo0s.c

int XOS_Cfglnitialize (XOS *InstancePtr, XOS_Config *CfgPtr, u32 EffectiveAddr)
This function initializes an OS device.
void XOS_SetlmageStatAddr (XOS *InstancePtr, u32 Addrl, u32 Addr2)

This function sets up input image statistics frame buffer addresses for an OS device.

void XOS_GetlmageStatAddr (XOS *InstancePtr, u32 *Addr1Ptr, u32 *Addr2Ptr)

This function fetches the input image statistics frame buffer addresses for an OS
device.

void XOS_SetMetaDataAddr (XOS *InstancePtr, u32 Addrl, u32 Addr2)
This function sets up output meta data frame buffer addresses for an OS device.
void XOS_GetMetaDataAddr (XOS *InstancePtr, u32 *Addr1Ptr, u32 *Addr2Ptr)

This function fetches output meta data frame buffer addresses for an OS device.

void XOS_SetLabelMaskAddr (XOS *InstancePtr, u32 Addrl)

This function sets up the output label mask data frame buffer addresses for an OS
device.

void XOS_GetLabelMaskAddr (XOS *InstancePtr, u32 *Addr1Ptr)

This function fetches the output label mask data frame buffer addresses for an OS
device.

void XOS_FlipMetaDataAddr (XOS *InstancePtr)
This function flips the meta data output buffer for an OS device.
int XOS_FlipMetaDataAddrDone (XOS *InstancePtr)

This function checks if the meta data output buffer flip operation is done for an OS
device.

u32 * XOS_GetReadyMetaDataAddr (XOS *InstancePtr)
This function returns the active meta data output buffer address for an OS device.
void XOS_SetBlock (XOS *InstancePtr, XOS_DimensionCfg *DimensionCfgPtr)

This function sets up dimension related configuration information used by an OS
device.

void XOS_SetFeatureSelectWriteBankAddr (XOS *InstancePtr, u8 BankIndex)

This function sets the feature select write bank address to be used by an OS device.
void XOS_GetFeatureSelectWriteBankAddr (XOS *InstancePtr, u8 *BankIndex)

This function fetches the feature select write bank address being used by an OS device.
void XOS_SetFeatureSelectBank (XOS *InstancePtr, u8 *BankData)

This function loads a feature select bank to be used by an OS device.

void XOS_SetFeatureSelectActiveBankAddr (XOS *InstancePtr, u8 BankIndex)

This function sets the feature select active bank address to be used by an OS device.
void XOS_GetFeatureSelectActiveBankAddr (XOS *InstancePtr, u8 *BankIndex)

This function fetches the feature select active bank address being used by an OS
device.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 58

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix C: Application Software Development

void XOS_LoadFeatureSelectBank (XOS *InstancePtr, u8 BankIndex, u8 *BankData)
This function loads a feature select bank to be used by an OS device.
void XOS_SetFeatureCombinationWriteBankAddr (XOS *InstancePtr, u8 BankIndex)

This function sets the feature combination write bank address to be used by an OS
device.

void XOS_GetFeatureCombinationWriteBankAddr (XOS *InstancePtr, u8
*BankIndex)

This function fetches the feature combination write bank address being used by an OS
device.

void XOS_SetFeatureCombinationBank (XOS *InstancePtr, u32 *BankData)
This function loads a feature combination bank to be used by an OS device.
void XOS_SetFeatureCombinationActiveBankAddr (XOS *InstancePtr, u8 BankIndex)

This function sets the feature combination active bank address to be used by an OS
device.

void XOS_GetFeatureCombinationActiveBankAddr (XOS *InstancePtr, u8
*BankIndex)

This function fetches the feature combination active bank address being used by an OS
device.

void XOS_LoadFeatureCombinationBank (XOS *InstancePtr, u8 BankIndex, u32
*BankData)

This function loads a feature combination bank to be used by an OS device.

void XOS_GetVersion (XOS *InstancePtr, ul6 *Major, ul6 *Minor, ul6 *Revision)

This function returns the version of an OS device.

Functions in xos_sinit.c

XOS_Config * XOS_LookupConfig (ul6 Deviceld)

XOS_LookupConfig returns a reference to an XOS_Config structure based on the
unique device id, Deviceld.

Functions in xos_intr.c

void XOS_IntrHandler (void *InstancePtr)

This function is the interrupt handler for the Object Segmentation driver.

int XOS_SetCallBack (XOS *InstancePtr, u32 HandlerType, void *CallBackFunc, void
*CallBackRef)

This routine installs an asynchronous callback function for the given HandlerType:.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 59

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.
Appendix D

C Model Reference

The Xilinx® LogiCORE™ IP Object Segmentation v2.0 core has a bit accurate C model
designed for system modeling.

Features
* Bit accurate with Object Segmentation core (v_objseg_v2_0)
e Statically linked library (.lib, .o, .obj - Windows)
¢ Dynamically linked library (.so — Linux)
e Available for 32-bit Windows, 64-bit Windows, 32-bit Linux, and 64-bit Linux
platforms
® Supports all features of the Object Segmentation core that affect numerical results
¢ Designed for rapid integration into a larger system model
e Example C code is provided to show how to use the function
e Example application C code wrapper files support 8-bit image characterization input
only
Overview

The LogiCORE IP Object Segmentation core has a bit accurate C model for 32-bit Windows,
64-bit Windows, 32-bit Linux, and 64-bit Linux platforms. The model has an interface
consisting of a set of C functions, which reside in a statically link library (shared library).
Full details of the interface are provided in Interface. An example piece of C code is
provided to show how to call the model.

The model is bit accurate because it produces exactly the same output data as the core on
a frame-by-frame basis. However, the model is not cycle accurate because it does not
model the core's latency or its interface signals.

The latest version of the model is available for download on the LogiCORE IP Object
Segmentation Web page at:
http:/ /www.xilinx.com /products/ipcenter /EF-DI-VID-OBJ-SEG.htm

Additional Core Resources

For detailed information and updates about the Object Segmentation v2.0 core, see the
documents listed on the core product page at:

http:/ /www.xilinx.com /products/ipcenter /EF-DI-VID-OBJ-SEG.htm

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 60
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

Technical Support

Feedback

For technical support, go to www.xilinx.com/support. Questions are routed to a team with
expertise using the Object Segmentation core.

Xilinx provides technical support for use of this product as described in this product guide.

Xilinx cannot guarantee functionality or support of this product for designs that do not
follow these guidelines.

Xilinx welcomes comments and suggestions about the Object Segmentation v2.0 core and
the accompanying documentation.

Object Segmentation Bit Accurate C Model and IP Core

For comments or suggestions about the Object Segmentation core and bit accurate C
model, submit a WebCase from:
http:/ /www.xilinx.com /support/clearexpress/websupport.htm

Be sure to include the following information:
e Product name
e Core version number

e Explanation of your comments

Document

For comments or suggestions about the documentation for the Object Segmentation core
and bit accurate C model, submit a WebCase from:
http:/ /www.xilinx.com /support/clearexpress/websupport.htm

Be sure to include the following information:

¢ Document title

¢ Document number

e Page number(s) to which your comments refer

¢ Explanation of your comments

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 61

PG018 October 19, 2011

http://www.xilinx.com
www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/clearexpress/websupport.htm

& XILINX. Appendix D: C Model Reference

User Instructions

Unpacking and Model Contents

Unzip the v_objseg_v2_0_bitacc_model. zipfile, containing the bit accurate models
for the Object Segmentation IP Core. This creates the directory structure and files in
Table D-1.

Table D-1: Directory Structure and Files of the Object Segmentation Bit Accurate C Model

File Name Contents
README .txt Release notes
pg018_v_obj_seg.pdf LogiCORE IP Object Segmentation Product Guide
v_objseg_v2_0_bitacc_cmodel.h Model header file

Header file declaring the RGB image/video container type and support

rgb_utils.h functions

Header file declaring the generalized image/video container type, I/O

ideo_utils.h i
video_utils and support functions

Header file declaring the YUV image/video container type and support

uv_utils.h .
yuv_utils functions

Header file declaring the Image Characterization Statistics container type

ima har_stats_utils.h i
ge_char_stats_utils and support functions

run_bitacc_cmodel.c Example code calling the C model
ic_stats_512.txt Example Image Characterization statistics files
objseg_config 512.cfg Example configuration file

fcl.cfg Example Feature Combination configuration file
fsl.cfg Example Feature Select configuration file

Precompiled bit accurate American National Standards Institute (ANSI)
/lin C reference model for simulation on
32-bit Linux platforms

libIp_v_objseg_v2_0_bitacc_cmodel.so Model shared object library
libstlport.so.5.1 STL library, referenced by liblp_v_objseg_v2_0_bitacc_cmodel.so

. Precompiled bit accurate ANSI C reference model for simulation on
/lin64 T

64-bit Linux platforms
libIp_v_objseg_v2_0_bitacc_cmodel.so Model shared object library
libstlport.so.5.1 STL library, referenced by liblp_v_ic_v2_0_bitacc_cmodel.so
. Precompiled bit accurate ANSI C reference model for simulation on

/win32

32-bit Windows platforms

libIp_v_objseg_v2_0_bitacc_cmodel.lib Precompiled library file for Win32 compilation

Precompiled bit accurate ANSI C reference model for simulation on

/win64 64-bit Windows platforms
libIp_v_objseg_v2_0_bitacc_cmodel.lib Precompiled library file for Win64 compilation
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 62

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

Installation

Software

For Linux, make sure these files are in a directory that is in your $LD_LIBRARY_PATH
environment variable:

e libIp_v_objseg_v2_0_bitacc_cmodel.so
¢ libstlport.so.5.1

Requirements

The Object Segmentation C models were compiled and tested with the software listed in
Table D-2.

Table D-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler
32-bit Linux GCC4.11
64-bit Linux GCC4.11
32-bit Windows Microsoft Visual Studio 2008
64-bit Windows Microsoft Visual Studio 2008
Interface
The bit accurate C model is accessed through a set of functions and data structures,
declared in the header file v_objseg_v2_0_bitacc_cmodel.h
Before using the model, the structures holding the inputs, generics and output of the Image
Characterization instance must be defined:
struct xilinx ip_v_objseg_v2_0_generics objseg_generics;
struct xilinx_ip_v_objseg_v2_0_inputs objseg_inputs;
struct xilinx_ip_v_objseg_v2_0_outputs objseg_outputs
The declaration of these structures are in the v_objseg_v2_0_bitacc_cmodel .h file.
Calling xilinx_ip_v_objseg_v2_0_get_default_generics (and objseg_generics)
initializes the generics structure with the default values for each element of the structure.
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 63

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

frames = 1

The generics defaults are:

// Number of frames

num_feature_combinations = 8; // Number of Feature Combination units
num_feature_selects = 4; // Number of Feature Selection units
num_h_blocks = 160; // Number of Horizontal blocks in IC Stats
num_v_blocks = 90; // Number of Vertical blocks in IC Stats
num_total_blocks = 14400; // Number of Total blocks in IC Stats

block _size = 8;

// Block Size (4, 8,

// Global Stats Lower Thresholds

.global_y _mean = 0;
.global_u_mean = 0;
.global_v_mean = 0;
.global_1f mean = 0;
.global_hf mean = 0
.global_edge_mean = 0;
.global_mot_mean = 0;
.global_sat_mean = 0;
.global_y var = 0;
.global_u_var = 0;
.global_v_var
.global_1f var = 0;
.global_hf wvar = 0;
.global_edge_var = 0;
.global_mot_var = 0;
.global_sat_var = 0;

1l
o

// Global Stats Upper Thresholds

.global_y _mean = 255;
.global_u_mean = 255;
.global_v_mean = 255;
.global_1f mean = 255;
.global_hf_mean = 255;
.global_edge_mean = 255;
.global_mot_mean = 255;
.global_sat_mean = 255;
.global_y_var = 65535;
.global_u_var = 65535;
.global_v_var = 65535;
.global_1f_ var = 65535;
.global_hf_var = 65535;
.global_edge_var = 65535;
.global_mot_var = 65535;
.global_sat_var = 65535;

For fc[l] - fc[8]
fcli].lower
fcli].lower
fcl[i].lower
fc[i].lower
fc[i].lower
fcl[i].lower
fcli].lower
fcli].lower
fcl[i].lower
fc[i].lower
fc[i].lower
fcl[i].lower
fcli].lower
fcli].lower
fcl[i].lower
fc[i].lower
fcl[i] .upper
fcli] .upper
fcli] .upper
fcl[i] .upper
fc[i] .upper
fc[i] .upper
fc[i] .upper
fcli] .upper
fcli] .upper
fcl[i] .upper
fc[i] .upper
fcl[i] .upper
fc[i] .upper
fcli] .upper
fcli] .upper
fcl[i] .upper
fcl[i] .upper

.global_sat_var = 65535;

// Block Stats Lower Thresholds

fcl[i].lower
fcl[i].lower
fcl[i].lower
fcl[i].lower
fcli].lower
fcli].lower
fcl[i].lower
fcl[i].lower
fcl[i].lower
fcl[i].lower
fcl[i].lower
fcl[i].lower

.block_y _mean = 0;
.block_u_mean = 0;
.block_v_mean = 0;
.block_1f mean = 0;
.block_hf mean = 0
.block_edge_mean = 0;
.block_mot_mean = 0;
.block_sat_mean = 0
.block_vy var = 0;
.block_u_var = 0;
.block_v_var = 0;
.block_1f wvar = 0;

32 or 64)

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

64

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

fcl[i].lower.block_hf _var = 0;

fc[i].lower.block edge_var = 0;
fc[i].lower.block_mot_var = 0;

fc[i].lower.block_sat_var = 0;

fc[i].lower.block_col_sell = 0;
fc[i].lower.block col_sel2 = 0;
fc[i].lower.block _col_sel3 = 0;
fcl[i].lower.block _col_seld = 0;
fcl[i].lower.block _col_sel5 = 0;
fc[i].lower.block_col_sel6 = 0;
fc[i].lower.block_col_sel7 = 0;
fcl[i].lower.block_col_sel8 = 0;

// Block Stats Upper Thresholds

fc[i] .upper.block vy mean = 255;
fc[i] .upper.block u_mean = 255;
fc[i] .upper.block _v_mean = 255;
fcl[i] .upper.block 1f mean = 255;
fcl[i] .upper.block _hf _mean = 255;
fc[i] .upper.block edge_mean = 255;
fc[i] .upper.block _mot_mean = 255;
fc[i] .upper.block _sat_mean = 255;
fc[i] .upper.block vy _var = 65535;
fcl[i] .upper.block _u_var = 65535;
fcl[i] .upper.block _v_var = 65535;
fc[i] .upper.block 1f_var = 65535;
fc[i] .upper.block _hf_var = 65535;
fc[i] .upper.block edge_var = 65535;
fc[i] .upper.block _mot_var = 65535;
fcl[i] .upper.block_sat_var = 65535;
fcl[i] .upper.block_sat_var = 65535;
fcl[i] .upper.block col_sell = 4095;
fc[i] .upper.block col_sel2 = 4095;
fc[i] .upper.block col_sel3 = 4095;
fc[i] .upper.block col_seld = 4095;
fcl[i] .upper.block_col_sel5 = 4095;
fcl[i] .upper.block _col_sel6 = 4095;
fc[i] .upper.block col_sel7 = 4095;
fc[i] .upper.block_col_sel8 = 4095;
fs[1] = fcll];
fs[2] = fc[2];
fs[3] = fcl3];
fs[4] = fcl4];
The structure objseg_inputs defines the values of the input image characterization
statistics. For a description of the input structure, see Image Characterization Statistics
Input Structure.
The structure objseg_outputs defines the values of the output object segmentation
metadata. For a description of the output structure, see Object Segmentation Metadata
Output Structure.
Note: The objseg_input and objseg_output variables are not initialized, as the initialization
depends on the actual test to be simulated. The next chapters describe the initialization of the
objseg_input and objseg_output structures.
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 65

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

After the inputs are defined, the model can be simulated by calling the function:

int xilinx ip_v_objseg v2_0_bitacc_simulate (
struct xilinx_ip_v_objseg_v2_0_generics* generics,

struct xilinx ip_v_objseg v2_0_inputs*
struct xilinx_ ip_v_objseg v2_0_outputs*

inputs,
outputs) .

Results are provided in the outputs structure. After the outputs are evaluated and saved,
dynamically allocated memory for input and output video structures must be released by
calling the function:

void xilinx_ip_v_objseg v2_0_destroy(
struct xilinx ip_v_objseg _v2_0_inputs *input,
struct xilinx_ ip_v_objseg_v2_0_outputs *output)

Successful execution of all provided functions, except for the destroy function, return a
value of 0. Otherwise, a non-zero error code indicates that problems occurred during

function calls.

Image Characterization Statistics Input Structure

The Object Segmentation reference model inputs a set of image characterization statistics
for each frame that is processed. The input statistics are provided by
image_char_stats_struct, which is defined in image_char_stats_utils.h.

struct image_char_stats_struct

{
int
int
int
int*

struct global_stats_struct**
struct block_stats_struct***

int**
int**
int**
int**

Y

struct global_stats_struct

{
uint8
uint8
uint8
uint8
uint8
uint8
uint8
uint8
uintlé
uintle
uintlé
uintlé
uintle
uintle
uintlé
uintle

Y

struct block_stats_struct

frames;

num_blocks_wide;
num_blocks_high;

frame_index;

v_histogram;
u_histogram;
v_histogram;
hue_histogram;

y_mean;
u_mean;
v_mean;
m_mean;
e_mean;
1lp_mean;
hp_mean;
sat_mean;
y_var;
u_var;
v_var;
m_var;
e_var;
lp_var;
hp_var;
sat_var;

//
//
//
//
/7
/7
//
//
//
//
//
/7
//
//
//
//

// Number of frames

// Number of blocks wide

// Number of blocks high

// Frame Index for each frame

global; // Global stats
block; // Block stats
// Y Histogram
// U Histogram
// V Histogram
// Hue Histogram
Y mean
U mean
V mean

Motion mean

Edge mean

Low Frequency mean
High Frequency mean
Saturation mean

Y variance

U variance

V variance

Motion variance

Edge variance

Low Frequency variance
High Frequency variance
Saturation variance

LogiCORE IP Object Segmentation v2.0
PG018 October 19, 2011

www.Xxilinx.com

66

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

uint8 y_mean; // Y mean

uint8 u_mean; // U mean

uint8 v_mean; // V mean

uint8 m_mean; // Motion mean

uint8 e_mean; // Edge mean

uint8 1lp_mean; // Low Freguency mean
uint8 hp_mean; // High Frequency mean
uint8 sat_mean; // Saturation mean

uintlé vy_var; // Y variance

uintlé wu_var; // U variance

uintlé v_var; // V variance

uintlé m_var; // Motion variance

uintlé e_var; // Edge variance

uintlé 1p_var; // Low Frequency variance
uintlé hp_var; // High Frequency variance
uintlé sat_var; // Saturation variance

uintlé color_sel[8]; // Color Select (x8)
Y

The image_char_stats_struct holds the results of multiple processed frames. The
number of frames in the structure is specified in the frames element of the structure. The
num_blocks_wide and num_blocks_high elements denote the width and height of the
2-D grid of block statistics that are stored for each frame of statistics. The frame_index is
an array with one value per frame; it holds the index values of each frame. The global
elementisan array of global_stats_structs with one structure per frame. It holds the
global statistics as defined in global_stats_struct. The block element is a 3-D grid of
block_stats_structs. The first dimension is based on the number of frames, the
second dimension is based on num_blocks_high, and the third dimension is based on
num_blocks_wide. Each point of the grid is an instance of block_stats_struct,
which holds the block statistics for each block of each frame. The y_histogram,
u_histogram, v_histogramand hue_histogram are 2-D arrays. The first dimension
is based on the frames and the second dimension is an array of 256 elements. They each
hold a corresponding 256 bin histogram for each frame.

Working With Image_char_stats_struct Containers

The image_char_stats_utils.h file defines functions to simplify the use of image
characterization statistics structures.

int alloc_ic_stats_buff (struct image_char_stats_struct* ic_stats);
void free_ic_stats_buff (struct image_char_stats_struct* ic_stats);
int write_ic_stats(FILE *output_fid, struct image_char_stats_struct
*stats) ;

int read_ic_stats(FILE *input_fid, struct image_char_stats_struct*
stats) ;

The alloc_ic_stats_buff function can be used to dynamically create an
image_char_stats_struct. The frame, num_blocks_wide and
num_blocks_high, elements of the structure must be specified before calling this
routine. The free_ic_stats_buff function can be used to destroy
image_char_stats_struct.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 67

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

The write_ic_stats function writes image_char_stats_struct to a text file. The

read_ic_stats function reads image_char_stats_struct from a text file. Each

frame of statistics in the text file is stored in this order:

1. Structure header
2. Global statistics
3. Histograms (Y, U, V and Hue)

4. Block statistics (each column of each row)

The data structure matches the format of the output of the Image Characterization core.

See PGO015 - LogiCORE IP Image Characterization v2.0 Product Guide for more information.

Object Segmentation Metadata Output Structure

struct obj_seg metadata_struct

{

int
int*
int*
int**
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*
int*

The Object Segmentation reference model outputs a set of object metadata for each frame

that is processed. The object metadata are provided by obj_seg_metadata_struct,

which is defined in obj_seg_metadata_utils.h.

frames;
frame_index;
total_num_objects;
fs_num_objects;

y_mean;

u_mean;

v_mean;

1f_mean;

hf_mean;

edge_mean;

mot_mean;
sat_mean;

y_var;

u_var;

v_var;

1f wvar;

hf_var;
edge_var;

mot_var;
sat_var;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Number

of frames

Frame Index for each frame
Total Number of Objects in the Frame

Number
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

struct object_metadata_struct*** fg;

Y

struct object_metadata_struct

{

uintle
uintle
uintlé
uintlé
uintle
uintle
uintle
uintle
int

int

object_number;
FS_number;

xstart;

xstop;

ystart;

ystop;

xcentroid;
ycentroid;
object_density;
object_identifier;

//
/7
/7
/7
/7
/7
//
/7
//
//

of Objects for FS1-4 in the Frame

Y Mean for the Frame

U Mean for the Frame

V Mean for the Frame

Low Frequency Mean for the Frame
High Frequency Mean for the Frame
Edge Content Mean for the Frame
Motion Mean for the Frame

Saturation Mean for the Frame

Y Variance for the Frame

U Variance for the Frame

V Variance for the Frame

Low Frequency Variance for the Frame
High Frequency Variance for the Frame
Edge Content Variance for the Frame
Motion Variance for the Frame
Saturation Variance for the Frame

// FS1-4 Object Data (32 objects each FS)

Object Number
Feature Select Number

KX KK X X

Start coordinate of the bounding box
Stop coordinate of the bounding box

Start coordinate of the bounding box
Stop coordinate of the bounding box

Centroid of the object

Centroid of the bounding box

Number of object blocks inside the bounding box

Unique object identifier

LogiCORE IP Object Segmentation v2.0
PG018 October 19, 2011

www.Xxilinx.com

68

http://www.xilinx.com

& XILINX. Appendix D: C Model Reference

Obj_seg_meta_data_struct can hold the results of multiple processed frames. The
number of frames in the structure is specified in the frames element of the structure. The
frame_index is an array with one value per frame; it holds the index values of each
frame. The total_num_objects element is an array with one value per frame. Each
value holds the total number of objects found in all of the feature selects (fs1-4) for the
corresponding frame. The element £s_num_objects is a 2-D array in which the first
dimension is based on the number of frames and the second dimension is based on the
number of Feature Selects. They hold the number of objects found for each Feature Select
for each frame. The "*_mean" and "*_var" elements are arrays of global statistics; each array
contains one value per frame. The fs element is a 3-D array of object data. The first
dimension is based on the number of frames, the second dimension is based on the number
of Feature Selects (fs1-fs4), and the third dimension is based on the maximum number of
objects (32) for a feature select. The leaf element is a pointer to
object_metadata_struct.

Object_metadata_struct holds the metadata associated with an object that was found
by the Object Segmentation core, and consists of:

¢ The object number (1 - 32)

e The number of the Feature Select associated with it

® The coordinates of the objects bounding box

* The number of blocks inside the box that belongs to the object

* A unique object identifier

Working With Obj_seg_metadata_struct Containers

The obj_seg_metadata_utils.h file defines functions to simplify the use of Object
Segmentation Metadata structures.

int alloc_obj_seg metadata_buff (struct obj_seg metadata_struct* obj_seg meta);
void free_obj_seg metadata_buff (struct obj_seg_metadata_struct* obj_seg_meta);

int write_obj_seg metadata (FILE *output_fid, struct obj_seg_metadata_struct meta) ;
int read_obj_seg metadata (FILE *output_fid, struct obj_seg metadata_struct* meta);

The alloc_obj_seg_metadata_buff function can be used to dynamically create
obj_seg_metadata_struct. The frame element of the structure must be specified
before calling this routine. The free_ic_stats_buff function can be used to destroy
obj_seg_metadata_struct.

Thewrite_ obj_seg_metadata function writes obj_seg metadata_struct toatext
file. The read_obj_seg_metadata function reads obj_seg_metadata_struct from
a text file. Each frame of metadata in the text file is stored in this order:

1. Structure header

FS1 object 1 - FS1 Object 32
FS2 object 1 - FS2 Object 32
FS3 object 1 - FS3 Object 32
FS4 object 1 - FS4 Object 32

Al S N

The data structure matches the format of the output of the Object Segmentation core. C
Model Example Code

An example C file, run_bitacc_cmodel. ¢, is provided and has these characteristics:

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 69
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

¢ Contains an example of how to write an application that makes a function call to the
Object Segmentation C model core function.

e Contains an example of how to populate the video structures at the input and output,
including allocation of memory to these structures.

¢ Reads the Image Characterization statistics from an input file.

* Writes the Object Segmentation metadata to an output file.

After following the compilation instructions in this chapter, you should run the example
executable. If invoked with insufficient parameters, this help message is generated:

Usage: run_bitacc_cmodel in_file config file out_file

in_file : Path/name of the input file.
config_file : Path/name of the configuration file.
out_file : Path/name of the output IC Stats file.

Config Files

The Object Segmentation model must be initialized using configuration files.

Object Segmentation Config File

During successful execution, the specified config file is parsed by the
run_bitacc_cmodel example. This is the top-level config file that is specified in the
command line arguments. In this file, you must specify:

* Number of frames to process

e Number of feature combinations and feature selects

e Number of horizontal and vertical blocks

¢ Feature combination config file for each feature combination

e Feature select config file the feature selects

The following example config file provides more information on the formatting of this file.

num_frames 2 # Number of Frames
num_feature_combinations 8 # Number of Feature Combinations 1-8
num_feature_selects 4 # Number of Feature Selects 1-4
num_h_blocks 64 # Number of Horizontal Blocks in IC input
num_v_blocks 64 # Number of Vertical Blocks in IC input
fcl fcl.cfg # Feature Combination config file for FC1
fc2 fcl.cfg # Feature Combination config file for FC2
fc3 fcl.cfg # Feature Combination config file for FC3
fcd fcl.cfg # Feature Combination config file for FC4
fc5 fcl.cfg # Feature Combination config file for FC5
fc6 fcl.cfg # Feature Combination config file for FC6
fc7 fcl.cfg # Feature Combination config file for FC7
fc8 fcl.cfg # Feature Combination config file for FC8
fs fsl.cfg # Feature Select config file for FS1-FS4

Feature Combination Config File

The feature combination config file contains the data necessary to properly configure one
feature combination in the object segmentation model. A separate feature combination
config file should be loaded for each feature combination that is used. The config file
specifies a set of lower and upper thresholds that are used when testing the global and
block statistics in the image characterization input.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 70

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

The following example config file provides more information on the formatting of this file.

Block Stats

v_mean 100 255
y_var 0 65535
u_mean 0 255
u_var 0 65535
v_mean 0 255
v_var 0 65535
LP_y_mean 0 255
LP_y_var 0 65535
HP_y_mean 0 255
HP_y_var 0 65535
edge_y_mean 0 255
edge_y_var 0 65535
motion_y._mean 0 255
motion_y._ var 0 65535
img_sat_mean 0 255
img_sat_var 0 65535
color_selectl 0 255
color_select?2 0 255
color_select3 0 255
color_selectd 0 255
color_selecthb 0 255
color_select6 0 255
color_select? 0 255
color_select8 0 255
Global Stats

global_y_mean 3
global_vy_var 0
global_u_mean 5
global_u_var 0
global_v_mean 0
global_v_var 0
global_LP_y mean 0
global_ LP_y_ var 0
global_HP_y mean 0
global_HP_y_var 0
global_edge_y_ mean 0
global_edge_y_var 0
global_motion_y._mean 0
global_motion_y_var 0
global_img_sat_mean 0
global_img_sat_var 0

250
65535
225
65535
255
65535
255
65535
255
65535
255
65535
255
65535
255
65535

HoE o R R R 3 S 3 4 3= 3 3= 3 3 3 3 3 $ 3

HoE o o 3 o 3 3 3 3 3 3 3

Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Y Mean

Y Variance

U Mean

U Variance

V Mean

V Variance

Low Frequency Mean

Low Frequency Variance
High Frequency Mean
High Frequency Variance
Edge Content Mean

Edge Content Variance
Motion Mean

Motion Variance
Saturation Mean
Saturation Variance
Color Select 1
Color Select
Color Select
Color Select
Color Select
Color Select
Color Select
Color Select

0 oUW

Y Mean

Y Variance
U Mean

U Variance
V Mean

V Variance

Low Frequency Mean

Low Frequency Variance
High Frequency Mean
High Frequency Variance
Edge Content Mean

Edge Content Variance
Motion Mean

Motion Variance
Saturation Mean
Saturation Variance

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

71

http://www.xilinx.com

& XILINX. Appendix D: C Model Reference

Feature Select Config File

The feature select config file initializes all of the feature selects that are used. Each feature
select is a Boolean equation that uses the feature combinations as terms in the equation. It
is implemented as a 1-bit x 256-entry look-up table that uses the feature combinations as
addresses into the table. FC1 is mapped to the LSB, FC2 is mapped to the LSB+1, and FC8
is mapped to the MSB.

The feature selects are initialized by loading 256 values that each consist of 4-bits. FS1
corresponds to bit 0, FS2 corresponds to bit 1, FS3 corresponds to bit 2 and FS4 corresponds
to bit 3.

The feature select config file consists of 256 entries that are used to initialize the 4-bit x 256
entry feature select look-up table. The first value in the file corresponds to address 0x0
(00000000) in the table. Each subsequent value corresponds to the next address location in
the table, incrementing all the way up to the top address of OxFF (11111111). The following
C code illustrates a simple way to calculate the data for a feature select config file.

// Initialize the 4 Feature Selection Banks
for(1i=0;1<256;1i++) {
fcl = 1 & 0x01;

fc2 = (1 >> 1) & 0x01;

fc3 = (1 >> 2) & 0x01;

fcd = (1 >> 3) & 0x01;

fch = (1 >> 4) & 0x01;

fc6 = (1 >> 5) & 0x01;

fc7 = (1 >> 6) & 0x01;

fc8 = (1 >> 7) & 0x01;
fsl[i] = fcl;

£s2[1i] = (fc2 && £fc5) || £fc7;
£s3[i] = £c3 || fc4 || fc6;
fsd[i] = fcl && fc7 && fc8;

fs[i] = fs4[i]<<3 | £s3[i]<<2 | £s2[il<<l | £sl[i];

Initializing the Image Characterization Input Data Structure

In the example code wrapper, data is assigned to image_char_stats_struct by
reading from a file containing image characterization data. The
image_char_stats_utils.h file provided with the bit accurate C model contains
functions to facilitate this file I/O. The run_bitacc_cmodel example code uses this
function to read from the delivered image characterization data file.

Image Characterization Data Files

The image_char_stats_utils.h file declares functions that help access image
characterization files. The following functions operate on arguments of type
image_char_stats_struct, which is defined in image_char_stats_utils.h.

int alloc_ic_stats_buff (struct image_char_stats_struct* ic_stats);
void free_ic_stats_buff (struct image_char_stats_struct* ic_stats);

int write_ic_stats(FILE *output_fid, struct image_char_stats_struct* stats);
int read_ic_stats(FILE *input_fid, struct image_char_stats_struct* stats);

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 72
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Appendix D: C Model Reference

Usethealloc_ic_stats_buffand free_ic_stats_buff commandstodynamically
manage the memory associated with an image characterization data buffer. Use the
write_ic_stats and read_ic_stats functions for file I/O operations.

Initializing the Object Segmentation Metadata Output Data Structure

In the example code wrapper, the object segmentation model writes the results to
obj_seg_metadata_struct. These results are then written to a file. The
obj_seg_metadata_utils.h file provided with the bit accurate C model contains
functions to facilitate this file I/O.

Object Segmentation Metadata Files

The obj_seg_metadata_utils.h file declares functions that help access object
segmentation metadata files. The following functions operate on arguments of type
obj_seg_metadata_struct, which is defined in obj_seg metadata_utils.h.

int alloc_obj_seg metadata_buff (struct obj_seg_metadata_struct* obj_seg_meta);

void free_obj_seg metadata_buff (struct obj_seg_metadata_struct* obj_seg_meta);

int write_obj_seg metadata (FILE *output_fid,

struct obj_seg metadata_struct meta);
int read_obj_seg metadata (FILE *output_fid,

struct obj_seg_metadata_struct* meta) ;

Use the alloc_obj_seg metadata_buff and free_obj_seg_metadata_buff
commands to dynamically manage the memory associated with an object segmentation

metadata buffer. Use the write_obj_seg_metadata and read_obj_seg metadata
functions for file I/O operations.

C-Model Example 1/O Files

Input Files

e <in_filename> (for example, ic_stats_in. txt)
¢ Image Characterization statistics
e <config file> (for example, objseg_config 512.cfg)

* Object Segmentation configuration

Output Files

e <out_filename> (for example, objseg_out. txt)

* Object Segmentation metadata

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 73
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Appendix D: C Model Reference

Compiling the Object Segmentation v2.0 C Model With Example Wrapper

Linux (32-bit and 64-bit)
To compile the example code, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where you unzipped the model zip file, as shown in this example:

setenv LD LIBRARY PATH <unzipped_ c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin (for 32-bit) or from the /1in64 (for 64-bit) directory to the
root directory:

e libstlport.so.5.1
e libIp_v_objseg_v2_0_bitacc_cmodel.so
3. In the root directory, compile using the GNU C Compiler with this command:

gcc -x c++ run_bitacc_cmodel.c -o run_bitacc_cmodel -L.
-1lIp v_objseg v2_0_bitacc_cmodel -W1,-rpath,.

4. This results in the creation of the executable run_bitacc_cmodel, which can be run
using;:

./run_bitacc_cmodel ic_stats_512.txt objseg config 512.cfg
objseg out.txt

Windows (32-bit and 64-bit)

Precompiled library v_scaler_v4_0_bitacc_cmodel.lib, and top-level
demonstration code run_bitacc_cmodel . c must be compiled with an ANSI C
compliant compiler under Windows. Here, an example is provided using Microsoft Visual
Studio.

In Visual Studio create a new, empty Win32 Console Application project. As existing items,
add:

e libIp_v_objseg_v2_0_bitacc_cmodel.lib to the "Resource Files" folder of the project
e run_bitacc_cmodel.c to the "Source Files" folder of the project

* v_objseg_v2_0_bitacc_cmodel.h to "Header Files" folder of the project

e yuv_utils.h to the "Header Files" folder of the project

e rgb_utils.h to the "Header Files" folder of the project

* video_utils.h to the "Header Files" folder of the project

e image_char_stats_utils.h to the "Header Files" folder of the project

* obj_seg_metadata_utils.h to the "Header Files" folder of the project

After the project is created and populated, it must be compiled and linked (built) to create
a Win32 or Win64 executable. To perform the build step, choose Build Solution from the

Build menu. An executable matching the project name is created in the Debug or Release

subdirectories under the project location based on whether "Debug" or "Release" is selected
in the "Configuration Manager" in the Build menu.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 74
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX. Appendix D: C Model Reference

Running the Delivered Executables

Included in the zip file are precompiled executable files to use with Win32, Win64, Linux32
and Linux64 platforms.

Linux (32-bit and 64-bit)
1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where you unzipped the model zip file, as shown in this example:
setenv LD _LIBRARY PATH <unzipped_c_model_dir>:${LD_LIBRARY PATH}

2. Copy these files from the /lin or /1lin64 directory to the root directory:
e libstlport.so.5.1
e libIp_v_objseg_v2_0_bitacc_cmodel.so
* run_bitacc_cmodel

3. Execute the model:

./run_bitacc_cmodel ic_stats_512.txt objseg config 512.cfg
objseg out.txt

Windows (32-bit and 64-bit)

1. Copy run_bitacc_cmodel.exe from the /win32 or /win64 directory to the root
directory.

2. Execute the model:

./run_bitacc_cmodel ic_stats_512.txt objseg config 512.cfg
objseg out.txt

Object Segmentation Metadata Output

Image Characterization Statistics Input

The image characterization statistics input is described in the Image Characterization
Statistics Input Structure section. For additional information on the image characterization
statistics input structure, see the LogiCORE IP Image Characterization Product Guide (PG015).

Metadata Output

This section includes an example of the object segmentation metadata output. The
comments explain how to read this output. For more information on the object
segmentation metadata structure, see Object Segmentation Metadata Output Structure.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 75
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

The first 32 lines of the data are the metadata frame header. The header contains a frame
index, the number of objects in the image frame, and the image characterization global
statistics for the frame. Following the frame header are 32 object descriptions for Feature
Select 1 (FS1). Each object description contains:

The coordinate information for a box that bounds the object (X start/stop, Y
start/stop)

The centroid of the box (X, Y)
The object density (the number of blocks inside the box that belong to the object)

An object identifier (Cyclic Redundancy Check (CRC) of the other five lines of object
information)

If less than 32 objects are found for FS1, the remaining object descriptions are still present,
but the contents are set to 0. The FS1 object descriptions are followed by the FS2 object
descriptions, which are followed by the FS3 objects descriptions, which are followed by the
FS4 object descriptions. If fewer then four Feature Selects are instantiated, then only that
number of Feature Select object descriptions are output. For example, if two Feature Selects
are instantiated, then only the object descriptions for FS1 and FS2 are output.

Multiple object segmentation metadata structures can be in one output file. The next
metadata structure begins directly after the end of the previous metadata structure.

Metadata Frame Header

-1 # Frame Struct Valid (OxXFFFFFFFF)
1 # Frame Index
12 # Total Number of Objects (FS4 thru FS1)
16777226 # FS 4 =1, FS3 =0, FS 2 =0, FS 1 = 10
Global Statistics
-1786936427 # Low Frequency Mean = 0x95, V Mean = 0x7D,
U Mean = 0x83, Y Mean = 0x95
117446148 # Saturation Mean = 0x07, Motion Mean = 0x00,
Edge Mean = 0x16, High Frequency Mean = 0x04
3539068 # U Variance = 0x0036, Y Variance = 0x007C
7798842 # Low Frequency Variance = 0x0077, V Variance = 0x0032A
49348637 # Edge Variance = 0x02F1, High Frequency Variance = 0x001D
262144 # Saturation Variance = 0x0004, Motion Variance = 0x0000
0 # Frame Header Padding (22 lines)
0
Metadata Feature Select #1
65537 # FS #1, Object 1
17826056 # XStop = 0x110, XStart = 0x108
4718656 # YStop = 0x048, YStart = 0x040
4456716 # YCentroid = 0x044, XCentroid = 0x10C
1 # Object Density (number of blocks in the object)
18677828 # Object Identifier
65538 # FS #1, Object 2
32506344
LogiCORE IP Object Segmentation v2.0 www.xilinx.com 76

PG018 October 19, 2011

http://www.xilinx.com

& XILINX. Appendix D: C Model Reference

10485912

10224108

1

30212255

65539 # FS 1, Object 3
30933416

13107376

12321216

13

28115158

65540 # FS 1, Object 4
33554912

15728816

13631984

16

35717300

65541 # FS 1, Object 5
33554936

12058800

11796988

1

34406576

65542 # FS 1, Object 6
14155776

22020280

17039468

210

9240576

65543 # FS 1, Object 7
19398872

14680248

13369600

19

17105268

65544 # FS 1, Object 8
19923240

12583096

12321068

1

21823669

65545 # FS 1, Object 9
25690424

21495992

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 77
PGO018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

16777568

85

29425852

65546 # FS 1, Object 10
26214792

14155984

13894028

1

27066591

65536 # FS 1, Object 11
0

0
0
0
0

#FS 1 Objects 12 - 32 are repeats of Object 11
Metadata Feature Select #2

131073 # FS 2, Object 1

33554432

33554432

16777472

4096

16912641

131072 # FS 2, Object 2

0

0

0

0

0

#FS 2 Objects 3 - 32 are repeats of Object 2
Metadata Feature Select #3

196608 # FS 3, Object 1
0

0
0
0
0

#FS 3 Objects 2 - 32 are repeats of Object 1
Metadata Feature Select #4

262145 # FS 4, Object 1
33554432
33554432
16777472
LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 78

PG018 October 19, 2011

http://www.xilinx.com

& XILINX.

Appendix D: C Model Reference

4096
17043713
262144

0

0
0
0
0

FS 4, Object 2

#FS 4 Objects 3 - 32 are repeats of Object 2

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

79

http://www.xilinx.com

& XILINX.

Appendix E

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx® Support website at:

http:/ /www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http:/ /www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Note: The glossary also contains acronyms.

List of Acronyms

Table E-1: List of Acronyms

Acronym Description

AMBA Advanced Microcontroller Bus Architecture
API Application Program Interface
AXI Advanced eXtensible Interface
DSP Digital Signal Processing

EDK Embedded Development Kit

FF Flip-Flop

FPGA Field Programmable Gate Array
GPP General Purpose Processor

GUI Graphical User Interface

HDL Hardware Description Language
I/0 Input/Output

IP Intellectual Property

ISE Integrated Software Environment
LSB Least Significant Bit

LUT Lookup Table

MHz Mega Hertz

LogiCORE IP Object Segmentation v2.0

PG018 October 19, 2011

www.Xxilinx.com

80

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com

& XILINX. Appendix E: Additional Resources

Table E-1: List of Acronyms

Acronym Description

MM2S Memory Map to Stream

MSB Most Significant Bit

OsD On Screen Display

R Read

R/W Read /Write

RAM Random Access Memory

S2MM Stream to Memory Map

VHDL VHSIC Hardware Description Language (VHSIC an acronym for Very
High-Speed Integrated Circuits)

XPS Xilinx Platform Studio (part of the EDK software)

XST Xilinx Synthesis Technology

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References

These documents provide supplemental material useful with this user guide:
o AMBA® AXI4-Stream Protocol Specification

e UG761, AXI Reference Guide

e DS768, AXI Interconnect IP Data Sheet

e PGO15, LogiCORE IP Image Characterization Product Guide

To search for Xilinx documentation, go to http://www.xilinx.com/support

Technical Support

Xilinx provides technical support at www.xilinx.com /support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

e New Features
e Resolved Issues

e Known Issues

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 81
PGO018 October 19, 2011

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/
http://www.xilinx.com

& XILINX. Appendix E: Additional Resources

Ordering Information

The Object Segmentation v2.0 core is provided under the Xilinx End User License
Agreement and can be generated using the Xilinx® CORE Generator™ system v13.3 or
higher. The CORE Generator system is shipped with the Xilinx ISE® Design Suite
development software. Contact your local Xilinx sales representative for pricing and
availability of additional Xilinx LogiCORE IP modules and software. Information about
additional Xilinx LogiCORE IP modules is available on the Xilinx IP Center.

Revision History

The following table shows the revision history for this document.

Date Version Revision
10/19/11 1.0 Initial Xilinx release.

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS 1S”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA is
a registered trademark of ARM in the EU and other countries. All other trademarks are the property of their
respective owners.

LogiCORE IP Object Segmentation v2.0 www.Xilinx.com 82
PGO018 October 19, 2011

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com
http://www.xilinx.com/company/contact/
http://www.xilinx.com/ipcenter/

	LogiCORE IP Object Segmentation v2.0
	Table of Contents
	Overview
	Standards Compliance
	Operating System Requirements
	Feature Summary
	Applications
	Licensing
	Simulation Only
	Full System Hardware Evaluation License
	Obtaining a Full License
	Installing Your License File

	Performance
	Maximum Frequency
	Latency
	Throughput

	Resource Utilization

	Core Interfaces and Register Space
	Port Descriptions
	Core Interfaces
	AXI4 Memory Interface
	Processor Interface

	Common I/O Signals
	EDK pCore Interface
	General Purpose Processor Interface

	Register Space

	Customizing and Generating the Core
	Graphical User Interface (GUI)
	CORE Generator Software GUI
	pCore Generation in the CORE Generator Software

	EDK pCore Graphical User Interface (GUI)

	Parameter Values in the XCO File
	Output Generation
	EDK pCore Files
	File Details

	General Purpose Processor Files
	File Details

	Designing with the Core
	Architecture
	Feature Combination
	Feature Select
	Label Generation
	Label Aggregation
	Object Remapping
	Object Statistics
	Metadata Generation

	Data Structures
	Feature Combination Threshold Data Structure
	Feature Select Data Structure
	Image Characterization Data Structure
	Metadata Data Structure

	General Design Guidelines
	Object Segmentation Control and Timing
	pCore Bank Programming
	Feature Select Bank Programming
	Feature Combination Bank Programming

	GPP Bank Programming
	Feature Select Bank Programming
	Feature Combination Bank Programming

	Register Updates
	Buffer Management
	Interrupts
	Status Error
	Status Done
	MM2S Error
	S2MM Error

	Evaluation Core Timeout

	Example Case
	Use Model

	Clocking
	Resets
	Protocol Description

	Constraining the Core
	Required Constraints

	Detailed Example Design
	Directory and File Contents
	Expected
	Stimuli
	Results
	src
	tb_src

	Demonstration Test Bench
	Simulation
	Messages and Warnings

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Debugging
	Application Software Development
	pCore Driver Files
	pCore API Functions
	Functions in xos.c
	Functions in xos_sinit.c
	Functions in xos_intr.c

	C Model Reference
	Features
	Overview
	Additional Core Resources
	Technical Support
	Feedback
	Object Segmentation Bit Accurate C Model and IP Core
	Document

	User Instructions
	Unpacking and Model Contents
	Installation
	Software Requirements

	Interface
	Image Characterization Statistics Input Structure
	Working With Image_char_stats_struct Containers

	Object Segmentation Metadata Output Structure
	Working With Obj_seg_metadata_struct Containers

	Config Files
	Object Segmentation Config File
	Feature Combination Config File
	Feature Select Config File

	Initializing the Image Characterization Input Data Structure
	Image Characterization Data Files

	Initializing the Object Segmentation Metadata Output Data Structure
	Object Segmentation Metadata Files

	C-Model Example I/O Files
	Input Files
	Output Files

	Compiling the Object Segmentation v2.0 C Model With Example Wrapper
	Linux (32-bit and 64-bit)
	Windows (32-bit and 64-bit)

	Running the Delivered Executables
	Linux (32-bit and 64-bit)
	Windows (32-bit and 64-bit)

	Object Segmentation Metadata Output
	Image Characterization Statistics Input
	Metadata Output

	Additional Resources
	Xilinx Resources
	List of Acronyms
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

