
LogiCORE IP RGB to
YCrCb Color-Space
Converter v4.0
Product Guide

PG013 October 19, 2011

RGB to YCrCb Color-Space Converter www.xilinx.com 2
PG013 October 19, 2011

Chapter 1: Overview
Licensing . 5
Performance . 5
Resource Utilization. 6

Chapter 2: Core Interfaces and Register Space
Core Symbol and Port Descriptions. 8

Chapter 3: Customizing and Generating the Core
Graphical User Interface (GUI) . 12
Control Signals and Timing . 15
Parameter Values in the XCO File . 15
Output Generation . 16

Chapter 4: Designing with the Core
The RGB Color Space . 17
R'G'B' Color Space . 17
YUV Color Space. 18
YCrCb (or YCbCr) Color Space . 18
Conversion Equations . 18
Error Analysis. 22
Clocking . 25
Resets. 25

Chapter 5: Constraining the Core
Required ConstraintsRequired Constraints . 26
Device, Package, and Speed Grade Selections. 26
Clock Frequencies. 26
Clock Management . 26
Clock Placement . 26
Banking. 26
Transceiver Placement . 26
I/O Standard and Placement . 26

Chapter 6: Detailed Example Design
Demonstration Test Bench . 27

Table of Contents

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 3
PG013 October 19, 2011

Appendix A: Verification, Compliance, and Interoperability
Simulation . 29
 . 29

Appendix A: Debugging
Evaluation Core Timeout . 30

Appendix B: C Model Reference
Features. 31
Overview . 31
Unpacking and Model Contents . 32
Installation . 33
Using the C Model . 33
C Model Example Code . 37

Appendix C: Additional Resources
Xilinx Resources . 40
Solution Centers . 40
References . 40
Technical Support. 40
Ordering Information . 41
Revision History . 41
Notice of Disclaimer . 41

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 4
PG013 October 19, 2011 Product Specification

Introduction
The Xilinx LogiCORE™ IP RGB to YCrCb Color-Space
Converter is a simplified 3x3 matrix multiplier
converting three input color samples to three output
samples in a single clock cycle. The optimized structure
uses only four XtremeDSP™ slices by taking advantage
of the dependencies between coefficients in the
conversion matrix of most RGB to YCrCb or RGB to
YUV standards.

Features
• Built-in support for:

• SD (ITU 601)

• HD (ITU 709) PAL

• HD (ITU 709) NTSC

• YUV

• Support for user-defined conversion matrices

• Efficient use of DSP blocks

• 8-, 10-, and 12-bit input and output precision

1. For a complete listing of supported devices, see the release notes
for this core.

2. HDL test bench and C Model available on the Product Page on
Xilinx.com at http://www.xilinx.com/products/ipcenter/
RGB_to_YCrCb.htm

3. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

LogiCORE IP RGB to YCrCb
Color-Space Converter v4.0

Product Guide

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family (1) Spartan-6, Virtex-6, Virtex-7, Kintex-7

Supported User
Interfaces

Constant Interface

Resources See Table 1-1 through Table 1-4.

Provided with Core

Documentation Product Guide

Design Files Netlist

Example Design Not Provided

Test Bench VHDL (2)

Constraints File Not Provided

Simulation
Model

VHDL or Verilog Structural, C Model (2)

Tested Design Tools

Design Entry
Tools

CORE Generator™ tool, Platform Studio
(XPS)

Simulation (3) Mentor Graphics ModelSim, Xilinx® ISim 13.3

Synthesis Tools Xilinx Synthesis Technology (XST) 13.3

Support

Provided by Xilinx @ www.xilinx.com/support

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com
http://www.xilinx.com/support
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

RGB to YCrCb Color-Space Converter www.xilinx.com 5
PG013 October 19, 2011 Product Specification

Chapter 1

Overview

A color space is a mathematical representation of a set of colors. The three most popular
color models are:

• RGB or R'G'B', gamma corrected RGB, used in computer graphics

• YIQ, YUV and YCrCb used in video systems

• CMYK used in color printing

These color spaces are directly related to the intuitive notions of hue, saturation and
brightness.

All color spaces can be derived from the RGB information supplied by devices such as
cameras and scanners. Different color spaces have historically evolved for different
applications. In each case, a color space was chosen for application-specific reasons.

The convergence of computers, the Internet and a wide variety of video devices, all using
different color representations, is forcing the digital designer today to convert between
them. The objective is to have all inputs converted to a common color space before
algorithms and processes are executed. Converters are useful for a number of markets,
including image and video processing.

Licensing
The RGB to YCrCb core is provided at no cost with the ISE tools. You are not required to
license the core before instantiating it in your design.

Performance

Maximum Frequencies
The following are typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options, additional logic in the Field
Programmable Gate Array (FPGA) device, using a different version of Xilinx tools, and
other factors.

• Virtex®-7 FPGA: 250 MHz

• Kintex™-7 FPGA: 250 MHz

• Virtex-6 FPGA: 250 MHz

• Spartan®-6 FPGA: 150 MHz

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 6
PG013 October 19, 2011 Product Specification

Chapter 1: Overview

Latency
The processing latency of the core is shown in the following equation:

Latency = 9 + 1(if has clipping) + 1(if has clamping)

This code evaluates to 11 clock cycles for typical cases (unless in “custom” mode the
clipping and/or clamping circuits are not used).

Throughput
The Color Space Converter core outputs one YCbCr 4:4:4 sample per clock cycle.

Resource Utilization
For an accurate measure of the usage of device resources (for example, block RAMs,
flip-flops, and LUTs) for a particular instance, click View Resource Utilization in CORE
Generator software after generating the core.

The RGB to YCrCb core does not use any block RAMs or dedicated I/O or clock resources.

Table 1-1 through Table 1-4 present the resource usage of the RGB to YCrCb core for
different families with default parameterization for all permitted input/output width
combinations.

Table 1-1: Kintex-7 XC7K70T -1 (ADVANCED 1.02 2011-09-27) FBG484

Input Width Output Width LUTs FFs LUT6-FF Pairs DSP48E1
Clock Frequency

(MHz)

8 8 137 232 206 4 377

8 10 157 254 236 4 370

8 12 149 240 220 4 370

10 8 165 248 212 4 361

10 10 172 270 249 4 370

10 12 173 256 226 4 353

12 8 161 264 243 4 361

12 10 186 286 262 4 361

12 12 177 272 248 4 361

Table 1-2: Virtex-6 XC6VLX75T -1 (PRODUCTION 1.15 2011-09-27) FF484

Input Width Output Width LUTs FFs LUT6-FF Pairs DSP48E1
Clock Frequency

(MHz)

8 8 137 232 210 4 353

8 10 161 254 232 4 346

8 12 152 240 219 4 353

10 8 149 248 222 4 346

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 7
PG013 October 19, 2011 Product Specification

Chapter 1: Overview

10 10 168 270 251 4 346

10 12 168 256 227 4 346

12 8 166 264 239 4 353

12 10 180 286 267 4 353

12 12 172 272 255 4 353

Table 1-2: Virtex-6 XC6VLX75T -1 (PRODUCTION 1.15 2011-09-27) FF484 (Cont’d)

Input Width Output Width LUTs FFs LUT6-FF Pairs DSP48E1
Clock Frequency

(MHz)

Table 1-3: Virtex-7 XC7V585T -1 (ADVANCED 1.02 2011-09-27) FFG1157

Input Width Output Width LUTs FFs LUT6-FF Pairs DSP48E1
Clock Frequency

(MHz)

8 8 146 232 203 4 375

8 10 163 254 226 4 375

8 12 157 240 210 4 375

10 8 149 248 228 4 355

10 10 174 270 247 4 365

10 12 160 256 239 4 365

12 8 165 264 240 4 355

12 10 190 286 257 4 365

12 12 181 272 246 4 365

Table 1-4: Spartan-6 XC6SLX4 -2 (PRODUCTION 1.20 2011-09-27) CPG196

Input Width Output Width LUTs FFs LUT6-FF Pairs DSP48E1
Clock Frequency

(MHz)

8 8 124 232 193 4 195

8 10 147 254 214 4 195

8 12 135 240 199 4 195

10 8 134 248 211 4 195

10 10 161 270 228 4 195

10 12 147 256 216 4 195

12 8 142 264 223 4 195

12 10 170 286 239 4 195

12 12 155 272 227 4 195

http://www.xilinx.com

Example Core v1.1 www.xilinx.com 8
PG000 (v1.0) August 4, 2011

Chapter 2

Core Interfaces and Register Space

Core Symbol and Port Descriptions
The RGB to YCrCb core uses a set of signals that is common to all of the Xilinx Video cores
called the Xilinx Streaming Video Interface (XSVI). This core has no ports other than the
Xilinx Streaming Video Interface, clk, ce, and sclr signals. The core symbol with the clk, ce,
sclr, and XSVI signals is shown in Figure 2-1 and described in Table 2-1.

Xilinx Streaming Video Interface
The Xilinx Streaming Video Interface (XSVI) is a set of signals common to all of the Xilinx
video cores used to stream video data between IP cores. XSVI can also be defined as an
Embedded Development Kit (EDK) bus type. This allows the EDK tool to automatically
create input and output connections to EDK pCores that include this interface definition,
and provide an easy way to cascade connections of Xilinx Video IP cores.

Note: The RGB to YCrCb core is not currently available with a pCore interface. Consequently, the
core cannot be directly added to an EDK project and the tool cannot directly recognize the XSVI bus
type. To use this core in an EDK project, you must import the core (see Importing Color Space
Conversion Cores into EDK as pCore with XSVI Bus) and define the signals as an XSVI bus type. The
tool allows easy connection of the signals to other video IP cores with XSVI bus type.

The RGB to YCrCb IP Core uses the following subset of the XSVI signals:

• video_data

• vblank

• hblank

• active_video

Other XSVI signals on the XSVI bus, such as video_clk, vsync, hsync, field_id, and
active_chr do not affect the function of this core.

Note: These signals are neither propagated, nor driven on the XSVI output of this core.

Importing Color Space Conversion Cores into EDK as pCore with XSVI Bus

1. Parameterize and generate the core.

2. Create a wrapper file, using the provided instantiation template, either the .veo or .vho
file.

3. Open EDK and follow the Create and Import Peripheral Wizard. This tool is
documented in the UG111: Embedded System Tools Reference Manual.

4. Modify the .mpd file created by the Create and Import Peripheral Wizard. This file is in
the Data directory created by the Create and Import Peripheral Wizard.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_edk_edk12-1_xpsandsdk.htm

Example Core v1.1 www.xilinx.com 9
PG000 (v1.0) August 4, 2011

Chapter 2: Core Interfaces and Register Space

You must define the XSVI bus type and appropriately tag the signals as shown in the
following example. IWIDTH and OWIDTH are the values you selected when you
generated the IP in Core Generator. (i.e. 8,10, or 12)

Input Side:

BUS_INTERFACE BUS = XSVI_CSC_IN, BUS_STD = XSVI, BUS_TYPE =
TARGET

PORT active_video_in = active_video, DIR = IN, BUS = XSVI_CSC_IN

PORT hblank_in = hblank, DIR = IN, BUS = XSVI_CSC_IN

PORT vblank_in = vblank, DIR = IN, BUS = XSVI_CSC_IN

PORT video_data_in = video_data, VEC = [0:((IWIDTH*3)-1)], DIR
= IN, BUS = XSVI_CSC_IN

Output Side:

BUS_INTERFACE BUS = XSVI_CSC_OUT, BUS_TYPE = INITIATOR, BUS_STD =
XSVI

PORT active_video_out = active_video, DIR = OUT, BUS = XSVI_CSC_OUT

PORT hblank_out = hblank, DIR = OUT, BUS = XSVI_CSC_OUT

PORT vblank_out = vblank, DIR = OUT, BUS = XSVI_CSC_OUT

PORT video_data_out = video_data, VEC = [0:((OWIDTH*3)-1)], DIR =
OUT, BUS = XSVI_CSC_OUT

For more information on the MPD format, see UG642: Platform Specification Format
Reference Manual

The RGB to YCrCb IP core is fully synchronous to the core clock, clk. Consequently, the
input XSVI bus is expected to be synchronous to the input clock, clk. Similarly, to avoid
clock resampling issues, the output XSVI bus for this IP is synchronous to the core clock,
clk. The video_clk signals of the input and output XSVI buses are not used.

The RGB to YCrCb core symbol is shown in Figure 2-1. Descriptions of each port are
shown in Table 2-1.

X-Ref Target - Figure 2-1

Figure 2-1: Core Symbol

video_data_in

hblank_in

vblank_in

active_video_in

clk

ce

sclr

video_data_out

hblank_out

vblank_out

active_video_out

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_edk_edk12-1_xpsandsdk.htm
http://www.xilinx.com/support/documentation/dt_edk_edk12-1_xpsandsdk.htm

Example Core v1.1 www.xilinx.com 10
PG000 (v1.0) August 4, 2011

Chapter 2: Core Interfaces and Register Space

• video_data_in: This bus contains the three individual color inputs in the following
order. Color values are expected in IWIDTH bits wide unsigned integer
representation.

• hblank_in: The hblank_in signal conveys information about the blank/non-blank
regions of video scan lines. This signal is not actively used in the core, but passed
through the core with a delay matching the latency of the converted data.

• vblank_in: The vblank_in signal conveys information about the blank/non-blank
regions of video frames. This signal is passed through the core with a delay matching
the latency of the corrected data.

• active_video_in: The active_video_in signal is high when valid data is presented
at the input. This signal is not actively used in the core, but passed through the core
with a delay matching the latency of the converted data.

• clk - clock: Master clock in the design, synchronous with, or identical to the video
clock.

• ce - clock enable: Pulling CE low suspends all operations within the core. Outputs are
held, no input signals are sampled, except for reset (SCLR takes precedence over CE).

• sclr - synchronous clear: Pulling SCLR high results in resetting all output ports to
zero. Internal registers within the XtremeDSP slice and D-flip-flops are cleared.
However, the core uses SRL16/SRL32 based delay lines for hblank, vblank and
active_video generation, which are not cleared by SCLR. This may result in
non-zero outputs after SCLR is deasserted, until the contents of SRL16/SRL32s are
flushed. Unwanted results can be avoided if SCLR is held active until SRL16/SRL32s
are flushed. SCLR should be held active for the duration of the processing latency of
the core. The latency is defined in the Control Signals and Timing section.

• video_data_out: This bus contains the three individual luminance and chrominance
outputs in the following order from MSB to LSB [Cb: Cr: Y]. Luminance and

Table 2-1: Port Descriptions for the RGB to YCrCb Core

Port Name Port Width Direction Description

video_data_in 3*IWIDTH IN Data input bus

hblank_in 1 IN Horizontal blanking input

vblank_in 1 IN Vertical blanking input

active_video_in 1 IN Active video signal input

video_data_out 3*OWIDTH OUT Data output bus

hblank_out 1 OUT Horizontal blanking output

vblank_out 1 OUT Vertical blanking output

active_video_out 1 OUT Active video signal output

clk 1 IN Rising-edge clock

ce 1 IN Clock enable (active high)

sclr 1 IN Synchronous clear – reset (active high)

Bits 3IWIDTH-1:2IWIDTH 2IWIDTH-1:IWIDTH IWIDTH-1:0

Video Data Signals Red Blue Green

http://www.xilinx.com

Example Core v1.1 www.xilinx.com 11
PG000 (v1.0) August 4, 2011

Chapter 2: Core Interfaces and Register Space

Chrominance values are expected in OWIDTH bits wide unsigned integer
representation.

• hblank_out and vblank_out: The corresponding input signals are delayed so
blanking outputs are in phase with the video data output, maintaining the integrity of
the video stream. The blanking outputs are connected to the corresponding inputs via
delay-lines matching the propagation delay of the video processing pipe. Unwanted
blanking inputs should be tied high, and corresponding outputs left unconnected,
which will result in the trimming of any unused logic within the core.

• active_video_out: The active_video_out signal is high when valid data is present
at the output. The active_video_out signal is connected to active_video_in
via delay-lines matching the propagation delay of the video processing pipe. The
active_video signal does not affect the processing behavior of the core. Asserting
or deasserting it will not stall processing or the video stream, nor will it force video
outputs to zero.

Bits 3OWIDTH-1:2OWIDTH 2OWIDTH-1:OWIDTH OWIDTH-1:0

Video Data Signals Cb Cr Y

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 12
PG013 October 19, 2011

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface (GUI)
The main screen of the Graphical User Interface (GUI) of CORE Generator allows quick
implementation of standard RGB to YCrCb or RGB to YUV converters without having to
manually enter values from Tables 1-1 though 1-4. The Color-Space Converter core also
supports proprietary (non-standard) converter implementations. This is done by selecting
“custom” from the Standard Selection drop-down menu, as long as the custom conversion
matrix can be transformed to the form of Equation 4-5.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 13
PG013 October 19, 2011

Chapter 3: Customizing and Generating the Core

The main screen is shown in Figure 3-1. Descriptions of the options provided in the GUI
screens are included in this section.

The first page of the GUI displays the following options:

• Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters a to z, 0 to 9 and “_”.

• Converter Type

• Standard Selection: Select the standard to be implemented. The offered standards
are:

- YCrCb ITU 601 (SD)

- YCrCb ITU 709 (HD) 1125/60 (PAL)

- YCrCb ITU 709 (HD) 1250/50 (NTSC)

- YUV

- custom

Selecting “custom” enables the controls on page 2 of the GUI, so conversion
settings can be customized. Otherwise, page 2 only displays the parameters to be
used to implement the selected standard.

X-Ref Target - Figure 3-1

Figure 3-1: Color-Space Converter Main Screen

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 14
PG013 October 19, 2011

Chapter 3: Customizing and Generating the Core

• Output Range Selection: This selection governs the range of outputs Y, Cr and Cb
by affecting the conversion coefficients as well as the clipping and clamping
values. The core supports the following typical output ranges:

- 16 to 235, typical for studio equipment

- 16 to 240, typical for broadcast or television

- 0 to 255, typical for computer graphics

Output clipping and clamping values are the same for luminance and
chrominance channels. To set an asymmetric value, such as 16 to 235 for Cr and Cb
and 16 to 240 for Y, select “custom” for the standard, then manually modify the
clipping and clamping values on page 3.

The previously-mentioned ranges are characteristic for 8-bit outputs. If 10- or
12-bit outputs are used, the ranges are extended proportionally. For example, 16 to
240 mode for 10-bit outputs will result in output values ranging from 64 to 960.

• Precision Settings

• Input Width (IWIDTH): Specifies the width of inputs R, G and B.

• Output Width (OWIDTH): Specifies the width of outputs Y, Cr and Cb.

• Coefficient Bits: Sets the number of bits used to represent CA, CB, CC and CD.
As displayed in Figure 3-1, the width of coefficients affects the width of multiplier
results, which may affect the size of fabric-based adders further down the
processing pipe. Reducing the coefficient size may save some slices by trading off
precision with logic resources.

• Multiplier Input Bits: Allows the user to control to the width of operands
(MWIDTH) for the CC and CD multipliers (Figure 3-1). Similar to the coefficient
width setting, this advanced control allows trading off precision and logic
resource counts.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 15
PG013 October 19, 2011

Chapter 3: Customizing and Generating the Core

The Conversion Matrix, Offset Compensation, Clipping and Clamping screen (Figure 3-2)
displays and enables editing of conversion coefficients, similar to Equation 4-2,
Equation 4-10 and Equation 4-11. Contents are editable only when “custom” is selected as
the standard on page 1.

• Conversion Matrix: Enter floating-point conversion constants, ranging from 0 to 1,
into the four fields representing CA, CB, CC and CD.

• Offset Compensation: Enter the offset compensation constants (YOFFSET and
COFFSET in Equation 4-9). These constants are scaled to the output representation. If
OY and OC are in the 0.0 – 1.0 range, and the output is represented as 10-bit unsigned
integers, then luminance and chrominance offsets should be entered as integers in the
0-1023 range.

• Outputs Clipped/Outputs Clamped: These check boxes control whether clipping/
clamping logic will be instantiated in the generated netlist. The clipping/clamping
logic ensures no arithmetic wrap-arounds happen at the expense of extra slice-based
logic resources.

• Minimum and Maximum Values: Similar to offset values, the edit-boxes take
unsigned integer values in the range permitted by the current output representation.

X-Ref Target - Figure 3-2

Figure 3-2: Conversion Matrix, Offset Compensation, Clipping and Clamping Screen

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 16
PG013 October 19, 2011

Chapter 3: Customizing and Generating the Core

Control Signals and Timing

The propagation delay of the RGB to YCrCb core is dependent on parameterization but
independent of actual signal (video_data,hblank, vblank, active_video) values.
Deasserting CE suspends processing, which may be useful to temporarily cease processing
of a video stream in order to match the delay of other processing components.

See Core Symbol and Port Descriptions for an explanation about other ports affecting the
timing behavior of the core.

Parameter Values in the XCO File
Table 3-1 defines valid entries for the XCO parameters. Xilinx strongly suggests that XCO
parameters are not manually edited in the XCO file; instead, use the CORE Generator
software GUI to configure the core and perform range and parameter value checking. The
XCO parameters are helpful in defining the interface to other Xilinx tools.

X-Ref Target - Figure 3-3

Figure 3-3: Timing Example

Table 3-1: XCO Parameters

XCO Parameter Default Values

component_name v_rgb2ycrcb_v4_0

iwidth 8

owidth 8

mwidth 18

cwidth 17

ca 0.299

cb 0.114

cc 0.713

c_d 0.564

cmin 16

cmax 240

ymin 16

ymax 240

coffset 128

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 17
PG013 October 19, 2011

Chapter 3: Customizing and Generating the Core

Output Generation
CORE Generator will output the core as a netlist that can be inserted into a processor
interface wrapper or instantiated directly in an HDL design. The output is placed in the
<project director>.

File Details
The CORE Generator output consists of some or all the following files.

yoffset 16

has_clamp true

has_clip true

input_range 16_to_240_for TV

standard_sel SD_ITU_601

Table 3-1: XCO Parameters

XCO Parameter Default Values

Name Description

<component_name>_readme.txt Readme file for the core.

<component_name>.ngc The netlist for the core.

<component_name>.veo
The HDL template for instantiating the core.

<component_name>.vho

<component_name>.v The structural simulation model for the core.
It is used for functionally simulating the core.<component_name>.vhd

<component_name>.xco

Log file from CORE Generator software
describing which options were used to

generate the core. An XCO file can also be
used as an input to the CORE Generator

software.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 17
PG013 October 19, 2011

Chapter 4

Designing with the Core

The RGB Color Space
The red, green and blue (RGB) color space is widely used throughout computer graphics.
Red, green and blue are three primary additive colors: individual components are added
together to form a desired color, and are represented by a three dimensional, Cartesian
coordinate system, as shown in Figure 4-1.

Table 4-1 presents the RGB values for 100% saturated color bars, a common video test
signal.

The RGB color space is the most prevalent choice for computer graphics because color
displays use red, green and blue to create the desired color. Also, a system that is designed
using the RGB color space can take advantage of a large number of existing software
algorithms.

However, RGB is not very efficient when dealing with real-world images. All three
components need equal bandwidth to generate arbitrary colors within the RGB color cube.
Also, processing an image in the RGB color space is usually not the most efficient method.
For example, to modify the intensity or color of a given pixel, all three RGB values must be
read, modified and written back to the frame buffer. If the system had access to the image
stored in the intensity and color format, the process would be faster.

R'G'B' Color Space
While the RGB color space is ideal to represent computer graphics, 8-bit linear-light coding
performs poorly for images to be viewed. It is necessary to have 12 or 14 bits per
component to achieve excellent quality. The best perceptual use of a limited number of bits
is made by using nonlinear coding that mimics the nonlinear response of human vision. In
video, JPEG, MPEG, computing, digital photography, and many other domains, a
nonlinear transfer function is applied to the RGB signals to give nonlinearly coded
gamma-corrected components, denoted with symbols R'G'B'. Excellent image quality can
be obtained with 10-bit nonlinear coding with a transfer function similar to that of Rec. 709
or RGB.

Table 4-1: 100% RGB Color Bars

Normal
Range

White Yellow Cyan Green Magenta Red Blue Black

R 0 to 255 255 255 0 0 255 255 0 0

G 0 to 255 255 255 255 255 0 0 0 0

B 0 to 255 255 0 255 0 255 0 255 0

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 18
PG013 October 19, 2011

Chapter 4: Designing with the Core

YUV Color Space
The YUV color space is used by the analog PAL, NTSC and SECAM color video/TV
standards. In the past, black and white systems used only the luminance (Y) information.
Chrominance information (U and V) was added in such a way that a black and white
receiver can still display a normal black and white picture.

YCrCb (or YCbCr) Color Space
The YCrCb or YCbCr color space was developed as part of the ITU-R BT.601 during the
development of a world-wide digital component video standard. YCbCr is a scaled, offset
version of the YUV color space. Y has a nominal range of 16-235; Cb and Cr have a nominal
range of 16-240. There are several YCbCr sampling formats, such as 4:4:4, 4:2:2 and 4:2:0.

Conversion Equations

Derivation of Conversion Equations
To generate the luminance (Y, or gray value) component, biometric experiments were
employed to measure how the human eye perceives the intensities of the red, green and
blue colors. Based on these experiments, optimal values for coefficients CA and CB were
determined, such that:

Equation 4-1

Actual values for CA and CB differ slightly in different standards.

Conversion from the RGB color space to luminance and chrominance (differential color
components) could be described with Equation 4-2.

Equation 4-2

X-Ref Target - Figure 4-1

Figure 4-1: RGB and YCrCb Color Representations
DS657_01_032408

Y CA∗R 1 CA– CB–()∗G CB∗B+ +=

Y
R Y–

B Y–

CA 1 CA– CB– CB
1 CA– CA CB 1–+ CB–

CA– CA CB 1–+ 1 CB–

R
G
B

=

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 19
PG013 October 19, 2011

Chapter 4: Designing with the Core

Coefficients CA and CB are chosen between 0 and 1, which guarantees that the range of Y
is constrained between the maximum and minimum RGB values permitted, RGBmax and
RGBmin respectively.

The minimum and maximum values of R-Y are:

minR-Y= RGBmin – (CA*RGBmin + (1- CA- CB)*RGBmax + CB*RGBmax) = (CA-1) * (RGBmax
-RGBmin)

maxR-Y= RGBmax – (CA*RGBmax + (1- CA- CB)*RGBmin + CB*RGBmin) = (1-CA) * (RGBmax
-RGBmin)

Thus, the range of R-Y is:

Equation 4-3

Similarly, the minimum and maximum values of B-Y are:

minB-Y=RGBmin-(CA*RGBmax+(1-CA-CB)RGBmax+CB*RGBmin)=(CB-1)(RGBmax-RGBmin)

maxB-Y=RGBmax-(CA*RGBmin+(1-CA-CB)RGBmin+CB*RGBmax)=(1-CB)(RGBmax-RGBmin)

Thus, the range of B-Y is:

Equation 4-4

In most practical implementations, the range of the luminance and chrominance
components should be equal. There are two ways to accomplish this: chrominance
components (B-Y and R-Y) can be normalized (compressed and offset compensated), or
values above and below the luminance range can be clipped.

Both clipping and dynamic range compression result in loss of information; however, the
introduced artifacts are different. To leverage differences in the input (RGB) range,
different standards choose different trade-offs between clipping and normalization.

The RGB to YCrCb color space conversion core facilitates both range compression and
optional clipping and clamping. Range, offset, clipping and clamping levels are
parameterizable. The core supports conversions that fit the following general form:

Equation 4-5

CC and CD allow dynamic range compression for R-Y and B-Y, and constants OY and OC
facilitate offset compensation for the resulting Y, CB and CR components.

Based on Equation 4-3 and Equation 4-4, to constrain the resulting chrominance
components (CB and CR) into the [0,1] range, the chrominance offset (OC) and the
chrominance range compression constants (CC, CD) should be selected as follows
(OC=0.5):

Equation 4-6

Equation 4-7

2 CA 1–() RGBmax RGBmin–()

2 CB 1–() RGBmax RGBmin–()

Y
CR

CB

CA 1 CA– CB– CB
CC 1 CA–() CC CA CB 1–+() CC CB–()
CD CA–() CD CA CB 1–+() CD 1 CB–()

R
G
B

OY

OC

OC

+=

CC 1
2 1 CA–() RGBmax RGBmin–()
--=

CD 1
2 1 CB–() RGBmax RGBmin–()
---=

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 20
PG013 October 19, 2011

Chapter 4: Designing with the Core

When RGB values are also in the [0,1] range, using the following equations avoids
arithmetic under- and overflows (OC=0.5).

Equation 4-8

ITU 601 (SD) and 709 - 1125/60 (NTSC) Standard Conversion
Coefficients

Standard ITU 709 (HD) 1250/50 (PAL)

CC 1
2 1 CA–()
------------------------- CD 1

2 1 CB–()
-------------------------= =

Table 4-2: Parameterization Values for the SD (ITU 601) and NTSC HD (ITU 709) Standards

Coefficient/
Parameter

Range

16-240 16-235 0-255

CA 0.299 0.2568

CB 0.114 0.0979

CC 0.713 0.7295 0.5910

CD 0.564 0.5772

YOFFSET 2OWIDTH-4

COFFSET 2OWIDTH-1

YMAX 240*2OWIDTH-8 235*2 OWIDTH-8

CMAX 240*2 OWIDTH-8 235*2 OWIDTH-8

YMIN 16*2 OWIDTH-8 0 2 OWIDTH-1

CMIN 16*2 OWIDTH-8 0 2 OWIDTH-1

Table 4-3: Parameterization Values for the PAL HD (ITU 709) Standard

Coefficient/
Parameter

Range

16-240 16-235 0-255

CA 0.2126 0.1819

CB 0.0722 0.0618

CC 0.6350 0.6495 0.6495

CD 0.5389 0.5512

YOFFSET 2OWIDTH-4

COFFSET 2OWIDTH-1

YMAX 240*2 OWIDTH-8 235*2 OWIDTH-8 2 OWIDTH-1

CMAX 240*2 OWIDTH-8 235*2 OWIDTH-8 2 OWIDTH-1

YMIN 16*2 OWIDTH-8 0

CMIN 16*2 OWIDTH-8 0

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 21
PG013 October 19, 2011

Chapter 4: Designing with the Core

YUV Standard

Hardware Implementation
The RGB to YCrCb color space transformation equations (Equation 4-5) can be expressed
as:

Equation 4-9

Equation 4-10

Equation 4-11

Table 4-4: Parameterization Values for the YUV Standard

Coefficient/
Parameter

Value

16-240 16-235 0-255

CA 0.299

CB 0.114

CC 0.877283

CD 0.492111

YOFFSET 2 OWIDTH-4

COFFSET 2 OWIDTH-1

YMAX 240*2 OWIDTH-8 235*2 OWIDTH-8 2 OWIDTH-1

CMAX 240*2 OWIDTH-8 235*2 OWIDTH-8 2 OWIDTH-1

YMIN 16*2 OWIDTH-8 0

CMIN 16*2 OWIDTH-8 0

Y CA∗ R G–() G CB∗ B G–() YOFFSET+ + +=

Cr CC∗ R Y–() COFFSET+=

Cb CD∗ B Y–() COFFSET+=

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 22
PG013 October 19, 2011

Chapter 4: Designing with the Core

These equations can be directly mapped to the architecture shown in Figure 4-2. The blue
boxes in Figure 4-2 represent logic blocks, which are always implemented using
XtremeDSP slices.

Error Analysis
The following analysis, based on DSP fundamentals [Ref 3], presents mean-square-error
(MSE) calculations for RGB to YCrCb, assuming IWIDTH bit RGB input data, OWIDTH bit
wide YCrCb output data, and CWIDTH bits for coefficient precision. [Ref 6] arrives to
similar results for fixed coefficient values and input and output representations.

Taking rounding/quantization into account, the structure illustrated on Figure 4-2
implements the following equations:

Equation 4-12

Equation 4-13

Equation 4-14

Equation 4-15

where []k denotes rounding to k bits. The architecture contains three possible operators
that might introduce noise. Quantization noise is inserted when data is rounded.

1. Data is rounded to MWIDTH-2 bits after calculating Yraw,

2. Data is rounded to OWIDTH bits at the output.

3. If CCOEF and DCOEF are chosen such that Cb and Cr may over- or underflow,
clipping noise gets inserted to the signal flow.

Before analyzing the effects of these noise sources, first look at the input Signal to
Quantization Noise Ratio (SQNR). Assuming uniformly distributed quantization error,

X-Ref Target - Figure 4-2

Figure 4-2: Application Schematic

YOFFSET

CMAX

CMAX CMIN

Clipping Clamping

Cr

G

R

B COFFSET

YMAX

CMIN

YMIN

CCOEF

AC

BC
DCOEF COFFSET

Y

Cb
MWIDTH

DS657_02_032408

Rounding

-

-

M
W

ID
T

H
-2

MWIDTH-1

YRAW ACOEF R G–()⋅ BCOEF B G–()⋅+[]MWIDTH 2– G+=

Y YRAW[]OWIDTH YOFFSET+=

Cb CCOE B YRAW–()⋅[]OWIDTH COFFSET+=

Cr DCOEF R YRAW–()⋅[]OWIDTH COFFSET+=

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 23
PG013 October 19, 2011

Chapter 4: Designing with the Core

Equation 4-16

Substituting LSB =2-INBITS, where INBITS is the input (RGB) precision, SQNRRGB becomes
a function of the input dynamic range. In the next three calculations, when calculating
SQNRRGB for the typical dynamic ranges, INBITS = 8 for all three cases.

When RGB values are in the (0, 255) range:

Equation 4-17

when RGB values are in the (16, 240) range:

Equation 4-18

and when RGB values are in the (16, 235) range:

Equation 4-19

The first rounding noise source can be practically eliminated by the careful choice of
MWIDTH. Approximating SQNR by 6.02 MWIDTH [dB], intuitively the rounding noise
can be reduced by increasing MWIDTH. However, MWIDTH affects the resource usage
and carry chain length in the design (thereby affecting maximum speed). Choosing
MWIDTH >18 would significantly increase the dedicated multiplier count of the design.

Therefore, optimal MWIDTH values, in the IWIDTH+4 to 18 range, do not significantly
increase resource counts but assure that quantization noise inserted is negligible (at least
20 dB less than the input noise).

Output Quantization Noise
Coefficients CC and CD in Equation 4-1 allow standard designers to trade off output
quantization and clipping noise. Actual noise inserted depends on the probability statistics
of the Cb and Cr variables, but in general if CC and CD are larger than the maximum
values calculated in Equation 4-4 and Equation 4-5, output values may clip, introducing
clipping noise. However, the lower CC and CD values are chosen, the worse Cb and Cr
values will use the available dynamic range, thus introducing more quantization noise.
Therefore, the designer's task is to equalize output quantization and clipping noise
insertion by carefully choosing CC and CD values knowing the statistics of Cb and Cr
values. For instance, when probabilities of extreme chrominance values are very small, it
can be beneficial to increase CC and CD values, as the extra noise inserted by occasional
clipping is less than the gain in average signal power (and thus SQNR).

SQNRRGB 10
Px
PN
--------log 10

X
2

xd
RGBMIN
RGBMAX

1
Δ
--- e

2
xdΔ 2⁄–

Δ 2⁄
--log= =

SQNRRGB 10

1
255
--------- x

2
xd

0
255

x
2

xd
1– 2⁄

1 2⁄
-----------------------------------log 10

1
3 255⋅
---------------- 255

3[]

1
12

----------------------------------log 54.15dB= = =

SQNRRGB 10

1
224
--------- x

2
xd

16
240

x
2

xd
1– 2⁄

1 2⁄
-----------------------------------log 53.92dB= =

SQNRRGB 10

1
219
--------- x

2
xd

16
235

x
2

xd
1–() 2⁄

1 2⁄
-----------------------------------log 53.74dB= =

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 24
PG013 October 19, 2011

Chapter 4: Designing with the Core

Though a quantitative noise analysis of the signal flow graph based on Figure 4-2 is
possible by replacing quantizers with appropriate AWGN sources, the complexity of the
derivation of a final noise formula which addresses clipping noise as well is beyond the
scope of this document. Instead, Table 4-5 illustrates noise figures for some typical (see
Table 4-2) parameter combinations.

Output Clipping Noise
If coefficients CC and CD in Equation 4-3 are larger than the maximum values calculated in
Equation 4-4 and Equation 4-5, Cr and Cb output values may get larger (overflow) than the
maximum or smaller (underflow) than minimum value the output representation can
carry. If overflow occurs and the design does not have clipping logic (HAS_CLIPPING=0),
binary values wrap around and insert substantial noise to the output. If
HAS_CLIPPING=1, output values saturate, introducing less noise (Figure 4-3).

Similarly, clamping logic is included in the design if HAS_CLAMPING=1. Use of clipping
and clamping increases slice count of the design by approximately 6*OWIDTH slices.

If a targeted standard limits output of values to a predefined range other than those of
binary representation, such as ITU-R BT.601-5 [Ref 3], use of clipping and clamping logic
facilitates constraining output values. These values are constrained to the predefined
range by setting YMAX and YMIN values (constraining luminance), as well as CMAX and
CMIN values (constraining chrominance) according to the standard specifications.

Table 4-5: Input and Output SNR Measurement Results [dB] for ITU-REC 601 (SD)

SNR IWIDTH = OWIDTH = 8 Bits IWIDTH = OWIDTH = 10 Bits Input Range

SNRRGB (input) 54.1 66.2 [0..255] (8bit)

Or

[0..1023] (10 bit)

SNRY 51.9 64.0

SNRCr 47.0 58.9

SNRCb 47.0 58.9

SNRRGB (input) 54.0 65.9 [16..240] (8bit)

Or

[64..960] (10 bit)

SNRY 51.8 63.9

SNRCr 46.9 58.8

SNRCb 46.9 58.8

SNRRGB (input) 53.8 65.8 [16..235] (8bit)

Or

[64..920] (10 bit)

SNRY 51.5 63.6

SNRCr 46.9 58.8

SNRCb 46.9 58.8

X-Ref Target - Figure 4-3

Figure 4-3: Wrap-Around and Saturation

255

0

16

240

DS657_08_032408

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 25
PG013 October 19, 2011

Chapter 4: Designing with the Core

Clocking
The Color Space Converter core has one clock ("clk") that is used to clock the entire core.

Resets
The Color Space Converter core has one reset ("sclr") that is used for the entire core. The
reset is active high.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 26
PG013 October 19, 2011

Chapter 5

Constraining the Core

Required ConstraintsRequired Constraints
The clk pin should be constrained at the maximum pixel clock rate desired for the video
stream.

Device, Package, and Speed Grade Selections
There are no device, package, or speed grade requirements for this core. This core has not
been characterized for use in low power devices.

Clock Frequencies
The clk pin should be run at the required pixel clock frequency for the RGB to YCrCb core.
See Maximum Frequency in Performance in Chapter 1.

Clock Management
There is only one clock for this core.

Clock Placement
There are no specific clock placement requirements for this core.

Banking
There are no specific banking rules for this core.

Transceiver Placement
There are no transceivers used in this core.

I/O Standard and Placement
There are no specific I/O standard or placement requirements.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 27
PG013 October 19, 2011

Chapter 6

Detailed Example Design

Demonstration Test Bench

Overview
This chapter describes how to use the files that come with the demo testbench package for
RGB to YCrCb Color-Space Converter v4.0.

This demo testbench is provided as a simple introductory package that enables core users
to observe the core generated by Coregen operating in a waveform simulator. The user is
encouraged to observe core-specific aspects in the waveform, make simple modifications
to the test conditions, and observe the changes in the waveform.

Software Tools and System Requirements
• Xilinx ISE 13.3 or higher (Includes XST, ISIM, and Coregen).

• ModelSim v6.6d

• ISE Simulator 13.3

Design File Hierarchy
The directory structure underneath this top-level folder is described below:

• Expected

• Contains the pre-generated expected/golden data used by the testbench to
compare actual output data.

• Stimuli

• Contains the pre-generated input data used by the testbench to stimulate the core
(including register programming values).

• Results

• Actual output data is written to a file in this folder.

• src

• Contains the .vhd & .xco files of the core.

The .vhd file is a netlist generated using Coregen.

You can regenerate a new netlist using the .xco file in Coregen.

• tb_src

• Contains the top-level testbench design.

This directory also contains other packages used by the testbench.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 28
PG013 October 19, 2011

Chapter 6: Detailed Example Design

• isim_wave.wcfg - Waveform configuration for ISIM

• mti_wave.do - Waveform configuration for ModelSim

• run_isim.bat - Runscript for iSim in Windows OS

• run_isim.sh - Runscript for iSim in Linux OS

• run_mti.bat - Runscript for ModelSim in Windows OS

• run_mti.sh - Runscript for ModelSim in Linux OS

Operating Instructions

• Simulation using ModelSim for Linux:
From the console, Type "source run_mti.sh".

• Simulation using ModelSim for Windows:
Double click on "run_mti.bat" file.

• Simulation using iSim for Linux:
From the console, Type "source run_isim.sh".

• Simulation using iSim for Windows:
Double click on "run_isim.bat" file.

Support

To obtain technical support for this reference design, go to www.xilinx.com/support to
locate answers to known issues in the Xilinx Answers Database or to create a WebCase.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 29
PG013 October 19, 2011

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A highly parameterizable test bench used to test the Color Space Converter core. Testing
includes the following:

• Testing various coefficients

• Testing the clipping and clamping

• Testing of various data widths

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 30
PG013 October 19, 2011

Appendix A

Debugging

Evaluation Core Timeout
The Color Space Converter hardware evaluation core times out after approximately
8 hours of operation. The output is driven to zero. This results in a black screen for RGB
systems and a dark-green screen for YUV color systems.

See Solution Centers in Appendix C for information helpful to the debugging progress.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 31
PG013 October 19, 2011

Appendix B

C Model Reference

The Xilinx LogiCORE™ IP RGB to YCrCb Color-Space Converter v4.0 core has a bit
accurate C model designed for system modeling.

Features
• Bit accurate with RGB to YCrCb Color-Space Converter v4.0 core

• Statically linked library (.lib, .o, .obj - Windows)

• Dynamically linked library (.so - Linux)

• Available for 32- and 64-bit Windows and 32- and 64-bit Linux platforms

• Supports all features of the RGB to YCrCb core that affect numerical results

• Designed for rapid integration into a larger system model

• Example C code showing how to use the function is provided

• Example application C Code wrapper file supports 8-bit BMP input and output
only

Overview
The Xilinx LogiCORE IP RGB to YCrCb Color-Space Converter v4.0 core has a bit accurate
C model for 32- and 64-bit Windows and 32- and 64-bit Linux platforms. The model has an
interface consisting of a set of C functions, which reside in a statically link library (shared
library). An example piece of C code showing how to call the model is provided.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis. However, the model is not cycle accurate, as it does not model the
core's latency or its interface signals.

The latest version of the model is available for download on the Xilinx™ LogiCORE IP
RGB to YCrCb Color-Space Converter web page at:

http://www.xilinx.com/products/intellectual-property/RGB_to_YCrCb.htm

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/RGB_to_YCrCb.htm

RGB to YCrCb Color-Space Converter www.xilinx.com 32
PG013 October 19, 2011

Appendix B: C Model Reference

Unpacking and Model Contents
Unzip the v_rgb2ycrcb_v4_0_bitacc_model.zip file, containing the bit accurate
models for the RGB to YCrCb Color-Space Converter IP Core. This creates the directory
structure and files in Table B-1.

Table B-1: Directory Structure and Files of the RGB to YCrCb Color-Space
Converter v4.0 Bit Accurate C Model

File Name Contents

README.txt Release Notes

pg013_v_rgb2ycrcb.pdf LogiCORE IP RGB to YCrCb Color-Space
Converter Product Guide

v_rgb2ycrcb_v4_0_bitacc_cmodel.h Model header file

rgb_utils.h Header file declaring the RGB image/video
container type and support functions

yuv_utils.h Header file declaring the YUV (.yuv) image
file I/O functions

bmp_utils.h Header file declaring the bitmap (.bmp)
image file I/O functions

video_utils.h Header file declaring the generalized
image/video container type, I/O and
support functions

run_bitacc_cmodel.c Example code calling the C model

kodim19_128x192.bmp 128x192 sample test image of the lighthouse
image from the True Color Kodak test
images

run_bitacc_cmodel.c Example code calling the C model

/lin64 Precompiled bit accurate ANSI C reference
model for simulation on 64-bit Linux
platforms

libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by
libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.so

/nt32 Precompiled bit accurate ANSI C reference
model for simulation on 32 bit Windows
platforms

libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.lib Precompiled library file for win32
compilation

/lin32 Precompiled bit accurate ANSI C reference
model for simulation on 32-bit Linux
platforms

libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.so Model shared object library

libstlport.so.5.1 STL library, referenced by
libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.so

http://www.xilinx.com
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

RGB to YCrCb Color-Space Converter www.xilinx.com 33
PG013 October 19, 2011

Appendix B: C Model Reference

Installation
For Linux, make sure these files are in a directory that is in your $LD_LIBRARY_PATH
environment variable:

• libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.so

• libstlport.so.5.1

Software Requirements
The RGB to YCrCb Color-Space Converter v4.0 C models were compiled and tested with
the software listed in Table B-2.

Using the C Model
The bit accurate C model is accessed through a set of functions and data structures that are
declared in the v_rgb2ycrcb_v4_0_bitacc_cmodel.h file. Before using the model, the
structures holding the inputs, generics and output of the RGB to YCrCb Color-Space
Converter instance must be defined:

struct xilinx_ip_v_rgb2ycrcb_v4_0_generics generics;
struct xilinx_ip_v_rgb2ycrcb_v4_0_inputs inputs;
struct xilinx_ip_v_rgb2ycrcb_v4_0_outputs outputs;

The declaration of these structures is in the v_rgb2ycrcb_v4_0_bitacc_cmodel.h
file. Table B-3 lists the generic parameters taken by the RGB to YCrCb Color-Space
Converter v4.0 IP core bit accurate model, as well as the default values.

/nt64 Precompiled bit accurate ANSI C reference
model for simulation on 64-bit Windows
platforms

libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.lib Precompiled library file for win64
compilation

Table B-1: Directory Structure and Files of the RGB to YCrCb Color-Space
Converter v4.0 Bit Accurate C Model

File Name Contents

Table B-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

32- and 64-bit Linux GCC 4.1.1

32- and 64-bit Windows Microsoft Visual Studio 2005

Table B-3: Core Generic Parameters and Default Values

Generic
Variable

Type
Default
Value

Range Description

IWIDTH int 8 8,10,12 Input data width

CWIDTH int 18 8-18 Coefficient bits

MWIDTH int 18 8-18 Multiplier input width

OWIDTH int 8 8,10,12 Output width

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 34
PG013 October 19, 2011

Appendix B: C Model Reference

Calling xilinx_ip_v_rgb2ycrcb_v4_0_get_default_generics(&generics)
initializes the generics structure with the default value.

The inputs structure defines the actual input image. For the description of the input
video structure, see Input and Output Video Structures.

Calling xilinx_ip_v_rgb2ycrcb_v4_0_get_default_inputs(&generics,
&inputs) initializes the input video structure before it can be assigned an image or video
sequence using the memory allocation or file I/O functions provided in the BMP, RGB or
video utility functions.

Note: The video_in variable is not initialized to point to a valid image/video container, as the
container size depends on the actual test image to be simulated. The initialization of the video_in
structure is described in Chapter 4, C Model Example Code.

After the inputs are defined, the model can be simulated by calling this function:

int xilinx_ip_v_rgb2ycrcb_v4_0_bitacc_simulate(
struct xilinx_ip_v_rgb2ycrcb_v4_0_generics* generics,
struct xilinx_ip_v_rgb2ycrcb_v4_0_inputs* inputs,
struct xilinx_ip_v_rgb2ycrcb_v4_0_outputs* outputs).

Results are included in the outputs structure, which contains only one member, type
video_struct. After the outputs are evaluated and saved, dynamically allocated
memory for input and output video structures must be released by calling this function:

void xilinx_ip_v_rgb2ycrcb_v4_0_destroy(
struct xilinx_ip_v_rgb2ycrcb_v4_0_inputs *input,
struct xilinx_ip_v_rgb2ycrcb_v4_0_outputs *output).

Successful execution of all provided functions, except for the destroy function, return
value 0. A non-zero error code indicates that problems occurred during function calls.

ACOEF double 0.299 0.0 - 1.0 A Coefficient1 0.0 < ACOEFF + BCOEFF <
1.0

BCOEF double 0.114 0.0 - 1.0 B Coefficient1 0.0 < ACOEFF + BCOEFF <
1.0

CCOEF double 0.713 0.0 - 0.9 C Coefficient1

DCOEF double 0.564 0.0 - 0.9 D Coefficient1

YOFFSET int 16 0 –2OWIDTH-1 Offset for the Luminance Channel

COFFSET int 128 0 –2OWIDTH-1 Offset for the Chrominance Channels

YMIN int 16 0 –2OWIDTH-1-1 Clamping value for the Luminance
Channel

CMIN int 16 0 –2OWIDTH-1-1 Clamping value for the Chrominance
Channels

YMAX int 240 2OWIDTH-1
–2OWIDTH-1

Clipping value for the Luminance
Channel

CMAX int 240 2OWIDTH-1
–2OWIDTH-1

Clipping value for the Chrominance
Channels

Table B-3: Core Generic Parameters and Default Values

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 35
PG013 October 19, 2011

Appendix B: C Model Reference

Input and Output Video Structures
Input images or video streams can be provided to the RGB to YCrCb Color-Space
Converter v4.0 reference model using the video_struct structure, defined in
video_utils.h:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table B-4: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure.

rows Number of rows per frame. Pertaining to the image plane with
the most rows and columns, such as the luminance channel for
YUV data. Frame dimensions are assumed constant through all
frames of the video stream. However different planes, such as y,
u and v can have different dimensions.

cols Number of columns per frame. Pertaining to the image plane
with the most rows and columns, such as the luminance channel
for YUV data. Frame dimensions are assumed constant through
all frames of the video stream. However different planes, such as
y, u and v can have different dimensions.

bits_per_component Number of bits per color channel/component.All image planes
are assumed to have the same color/component representation.
Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.
Named constants to be assigned to mode are listed in Table B-5.

data Set of five pointers to three dimensional arrays containing data
for image planes. Data is in 16-bit unsigned integer format
accessed as data[plane][frame][row][col].

Table B-5: Named Video Modes with Corresponding Planes and Representations1

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only

FORMAT_RGB 3 RGB image/video data

FORMAT_C444 3 444 YUV, or YCrCb image/video data

FORMAT_C422 3 422 format YUV video, (u, v chrominance channels
horizontally sub-sampled)

FORMAT_C420 3 420 format YUV video, (u, v sub-sampled both horizontally
and vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with Motion

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 36
PG013 October 19, 2011

Appendix B: C Model Reference

1 The Color Space Converter C model supports FORMAT_RGB mode for the input and FORMAT_C444 for
the output.

Initializing the Input Video Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with
an image or video. The yuv_utils.h, bmp_util.h and video_util.h header files
packaged with the bit accurate C models contain functions to facilitate file I/O.

Bitmap Image Files

The header bmp_utils.h declares functions that help access files in Windows Bitmap
format (http://en.wikipedia.org/wiki/BMP_file_format). However, this format limits
color depth to a maximum of 8-bits per pixel, and operates on images with three planes
(R,G,B). Consequently, the following functions operate on arguments type
rgb8_video_struct, which is defined in rgb_utils.h. Also, both functions support
only true-color, non-indexed formats with 24-bits per pixel.

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

Exchanging data between rgb8_video_struct and general video_struct type
frames/videos is facilitated by these functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);

int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

Note: All image/video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Moreover, the input structure must have the dynamically allocated container (data
or r, g, b) structures already allocated and initialized with the input frame(s). If the output container
structure is pre-allocated at the time of the function call, the utility functions verify and issue an error
if the output container size does not match the size of the expected output. If the output container
structure is not pre-allocated, the utility functions create the appropriate container to hold results.

Binary Image/Video Files

The video_utils.h header file declares functions that help load and save generalized
video files in raw, uncompressed format.

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

These functions serialize the video_struct structure. The corresponding file contains a
small, plain text header defining, "Mode", "Frames", "Rows", "Columns", and "Bits per
Pixel". The plain text header is followed by binary data, 16-bits per component in scan line
continuous format. Subsequent frames contain as many component planes as defined by
the video mode value selected. Also, the size (rows, columns) of component planes can
differ within each frame as defined by the actual video mode selected.

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

Table B-5: Named Video Modes with Corresponding Planes and Representations1

http://www.xilinx.com
http://en.wikipedia.org/wiki/BMP_file_format

RGB to YCrCb Color-Space Converter www.xilinx.com 37
PG013 October 19, 2011

Appendix B: C Model Reference

YUV Image Files

The yuv_utils.h file declares functions that help access files in standard YUV format. It
operates on images with three planes (Y, U and V). The following functions operate on
arguments of type yuv8_video_struct, which is defined in yuv_utils.h:

int write_yuv8(FILE *outfile, struct yuv8_video_struct *yuv8_video);

int read_yuv8(FILE *infile, struct yuv8_video_struct *yuv8_video);

Exchanging data between yuv8_video_struct and general video_struct type
frames/videos is facilitated by these functions:

int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in,

struct video_struct* video_out);

int copy_video_to_yuv8(struct video_struct* video_in,

struct yuv8_video_struct* yuv8_out);

Working with Video_struct Containers

The video_utils.h header file defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

The video_planes_per_mode function returns the number of component planes
defined by the mode variable, as described in Table B-5. The video_rows_per_plane
and video_cols_per_plane functions return the number of rows and columns in a
given plane of the selected video structure. The following example demonstrates using
these functions in conjunction to process all pixels within a video stream stored in the
in_video variable:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]
 }
 }
 }
}

C Model Example Code
An example C file, run_bitacc_cmodel.c, is provided to demonstrate the steps
required to run the model. After following the compilation instructions, run the example
executable. The executable takes the path/name of the input file and the path/name of the
output file as parameters. If invoked with insufficient parameters, this help message is
issued:

Usage:run_bitacc_cmodel in_file out_file

in_file : path/name of the input file (24-bit RGB BMP file)

out_file : path/name of the output file (BIN file)

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 38
PG013 October 19, 2011

Appendix B: C Model Reference

During successful execution, two files are created. One file has a .bin extension and
contains the output image in binary format, retaining OWIDTH bits. The other file has a
.bmp extension and contains the output RGB image in bitmap format. The structure of .bin
files are described in Binary Image/Video Files.

To ease modifying and debugging the provided top-level demonstrator using the built-in
debugging environment of Visual Studio, the top-level command line parameters can be
specified through the Project Property Pages using these steps:

1. In the Solution Explorer pane, right-click the project name and select Properties in the
context menu.

2. Select Debugging on the left pane of the Property Pages dialog box.

3. Enter the paths and file names of the input and output images in the Command
Arguments field.

Compiling RGB to YCrCb v4.0 C Model with Example Wrapper

Linux (32- and 64-bit)

To compile the example code, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory
where you unzipped the model zip file using a command such as:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 or /lin32 directory to the root directory:

libstlport.so.5.1

libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler with this command:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_rgb2ycrcb_v4_0_bitacc_cmodel -Wl,-rpath,.

gcc –m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_rgb2ycrcb_v4_0_bitacc_cmodel -Wl,-rpath,.

Windows (32- and 64-bit)

The precompiled library v_rgb2ycrcb_v4_0_bitacc_cmodel.lib, and top-level
demonstration code run_bitacc_cmodel.c should be compiled with an ANSI C
compliant compiler under Windows. An example procedure is provided here using
Microsoft Visual Studio.

1. In Visual Studio, create a new, empty Console Application project.

2. As existing items, add:

a. libIp_v_rgb2ycrcb_v4_0_bitacc_cmodel.lib to the Resource Files folder
of the project

b. run_bitacc_cmodel.c to the Source Files folder of the project

c. v_rgb2ycrcb_v4_0_bitacc_cmodel.h to the Header Files folder of the
project

3. After the project is created and populated, it must be compiled and linked (built) to
create an executable. To perform the build step, select "Build Solution" from the Build
menu. An executable matching the project name has been created either in the Debug

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 39
PG013 October 19, 2011

Appendix B: C Model Reference

or Release subdirectories under the project location based on whether "Debug" or
"Release" has been selected in the "Configuration Manager" under the Build menu.

http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 40
PG013 October 19, 2011

Appendix C

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
1. Jack, Keith. 2004. Video Demystified, 4th Edition. Burlington, MA: Newnes: pp 15-19.

2. Poynton, Charles. 2003. Digital Video and HDTV. San Francisco: Morgan Kaufmann: pp
302 - 321.

3. ITU Recommendation BT.601-5, International Telecommunication Union, 1995.

4. ITU Recommendation BT.709-5, International Telecommunication Union, 2002.

5. Proakis, John G., and Dimitris G. Manolakis. Digital Signal Processing, 3rd edition.
Upper Saddle River, NJ: Prentice Hall: pp 755-756.

6. Sullivan, Gary. 2003. Approximate theoretical analysis of RGB to YCbCr to RGB
conversion error. Presented for Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T
VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), July 22-24, in Trondheim,
Norway.

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com

RGB to YCrCb Color-Space Converter www.xilinx.com 41
PG013 October 19, 2011

Appendix C: Additional Resources

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Ordering Information
The RGB to YCrCb Color-Space Converter core is provided under the Xilinx End User
License Agreement and can be generated using the Xilinx® CORE Generator™ system.
The CORE Generator system is shipped with Xilinx ISE® Design Suite software.

A simulation evaluation license for the core is shipped with the CORE Generator system.
To access the full functionality of the core, including FPGA bitstream generation, a full
license must be obtained from Xilinx. For more information, visit the product page.

Contact your local Xilinx sales representative for pricing and availability of additional
Xilinx LogiCORE IP modules and software. Information about additional Xilinx
LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP RGB to YCrCb Color-Space Converter v4.0
	Table of Contents
	Overview
	Licensing
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization

	Core Interfaces and Register Space
	Core Symbol and Port Descriptions
	Xilinx Streaming Video Interface

	Customizing and Generating the Core
	Graphical User Interface (GUI)
	Control Signals and Timing
	Parameter Values in the XCO File
	Output Generation
	File Details

	Designing with the Core
	The RGB Color Space
	R'G'B' Color Space
	YUV Color Space
	YCrCb (or YCbCr) Color Space
	Conversion Equations
	Derivation of Conversion Equations
	ITU 601 (SD) and 709 - 1125/60 (NTSC) Standard Conversion Coefficients
	Standard ITU 709 (HD) 1250/50 (PAL)
	YUV Standard
	Hardware Implementation

	Error Analysis
	Output Quantization Noise
	Output Clipping Noise

	Clocking
	Resets

	Constraining the Core
	Required ConstraintsRequired Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Detailed Example Design
	Demonstration Test Bench
	Overview
	Software Tools and System Requirements
	Design File Hierarchy

	Verification, Compliance, and Interoperability
	Simulation

	Debugging
	Evaluation Core Timeout

	C Model Reference
	Features
	Overview
	Unpacking and Model Contents
	Installation
	Software Requirements

	Using the C Model
	Input and Output Video Structures
	Initializing the Input Video Structure

	C Model Example Code
	Compiling RGB to YCrCb v4.0 C Model with Example Wrapper

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

