
LogiCORE IP
Defective Pixel
Correction v4.0
Product Guide

PG005 October 19, 2011

LogiCORE IP Defective Pixel Correction www.xilinx.com 2
PG005 October 19, 2011

Chapter 1: Overview
Standards Compliance . 5
Feature Summary . 5
Licensing . 6
Installing Your License File . 7
Performance . 7
Resource Utilization. 7

Chapter 2: Core Interfaces and Register Space
Port Descriptions. 10
Register Space . 14

Chapter 3: Customizing and Generating the Core
Graphical User Interface (GUI) . 17
Parameter Values in the XCO File . 18
Output Generation . 18

Chapter 4: Designing with the Core
General Design Guidelines . 21
Clocking . 22
Resets. 22
Protocol Description . 22

Chapter 5: Constraining the Core
Required Constraints. 23
Device, Package, and Speed Grade Selections. 23
Clock Frequencies. 23
Clock Management . 23
Clock Placement . 23
Banking. 23
Transceiver Placement . 23
I/O Standard and Placement . 23

Chapter 6: Detailed Example Design
Directory and File Contents . 24
Demonstration Test Bench . 24
Simulation . 25
Messages and Warnings . 25

Table of Contents

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 3
PG005 October 19, 2011

Appendix A: Verification, Compliance, and Interoperability
Simulation . 26
Hardware Testing . 26

Appendix B: Migrating
Parameter Changes in the XCO File. 27
Port Changes . 27
Functionality Changes . 27
Special Considerations when Migrating to AXI . 27

Appendix C: Debugging

Appendix D: Application Software Development
Programmer's Guide . 29

Appendix E: C Model Reference
Features. 32
 . Overview 32
Additional Core Resources . 32
Technical Support. 33
Feedback. 33
Software Requirements . 33
Unpacking and Model Contents . 34
Installation . 35
Defective Pixel Correction v4.0 Bit Accurate C Model . 35
C Model Example Code . 40
Compiling the Example with the Defective Pixel Correction C Model 41
Running the Example, Evaluating Results . 41

Appendix F: Additional Resources
Xilinx Resources . 43
Solution Centers . 43
References . 43
Technical Support. 43
Ordering Information . 44
Revision History . 44
Notice of Disclaimer . 44

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 4
PG003 October 19, 2011 Product Specification

Introduction
The Xilinx LogiCORE™ IP Defective Pixel Correction
performs real-time detection and correction of defective
pixels in a camera image sensor array.

Features
• Programmable thresholds

• Selectable processor interface

• EDK AXI4-Lite pCore

• General Purpose Processor

• Up to 4k x 4k resolutions supported

• 8-, 10-, and, 12-bit input and output precision

• Temporal filtering without using an external frame
buffer

• For use with Xilinx CORE Generator™ software
v13.1 or later

LogiCORE IP Defective Pixel
Correction Product Guide

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family(1)

Virtex®-7, Kintex®-7, Virtex®-6, Spartan®-6

Supported User
Interfaces

General Processor Interface, EDK AXI4-Lite
pCore

Resources(2) Frequency

Configuration LUTs FFs DSP
Slices

Block
RAMs

(3)
Max. Freq.

Data Width=8 1883 1589 1 3(18) /
4(36) 293

Data Width=10 2052 1779 1 2(18) /
5(36) 317

Data Width=12 2209 1969 1 2(18) /
6(36) 324

Provided with Core

Documentation Product Specification

Design Files Netlists, AXI4-Lite pCore files, C drivers

Example
Design

Not Provided

Test Bench VHDL (4)

Constraints File Not Provided

Simulation
Models

VHDL, Verilog Structural Models and C Model (4)

Tested Design Tools

Design Entry
Tools

CORE Generator™ tool, Platform Studio (XPS)

Simulation(5) Mentor Graphics ModelSim, Xilinx® ISim 13.3

Synthesis Tools Xilinx Synthesis Technology (XST) 13.3

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release notes
for this core.

2. Resources listed here are for Virtex-6 devices, selecting the
EDK pCore interface. For more complete device performance
numbers, see Resource Utilization.

3. Indicating the number of RAMB18 and RAMB36 primitives
used.

4. HDL test bench and C Model available on the product page
on Xilinx.com at
http://www.xilinx.com/products/intellectual-property/
EF-DI-DEF-PIX-CORR.htm

5. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/irn.pdf
http://www.xilinx.com/products/intellectual-property/EF-DI-DEF-PIX-CORR.htm

LogiCORE IP Defective Pixel Correction www.xilinx.com 5
PG005 October 19, 2011 Product Specification

Chapter 1

Overview

An image sensor may have a certain number of defective pixels that may be the result of
manufacturing faults, failures during normal operation, or variations in pixel voltage
levels based on temperature or exposure. A wide class of pixel defects may be
characterized as: dead (always low), hot (always high), or stuck (to a certain value). These
anomalies can further be characterized as static (always present) or dynamic (as a function
of exposure or temperature).

The Xilinx Defective Pixel Correction solution distinguishes between large stationary
areas, which are likely to be non-changing parts of the image, and singular outliers, which
are likely to be defective pixels. The Xilinx Defective Pixel Correction solution compares a
pixel in the raw, Bayer sub-sampled domain to its neighboring, same color pixel values and
keeps track of pixels that are sufficiently different from their neighbors. If the values of
tracked outlier pixels stay in a predefined range for a predefined number of frames, then
the tracked pixels are considered defective, and are replaced with values interpolated from
neighboring pixels.

Spatial filtering first identifies potential defective pixels, and at the same time eliminates
pixels that blend into their local neighborhoods, and therefore do not need to be
substituted even if they are defective. Spatial filtering reduces the number of pixels, along
with the amount of information, that needs to be stored for temporal filtering, therefore
facilitating spatio-temporal filtering in embedded systems with limited or no access to
external memory.

Standards Compliance
The Defective Pixel Correction core is compliant with the AXI4-Lite interconnect standard
as defined in the AXI Reference Guide (UG761).

Feature Summary
The Defective Pixel Correction core performs real-time detection and correction of
defective pixels in a camera image sensor array. The core is capable of removing defective
pixels in real time, without the need to buffer, on a maximum resolution of 4096 columns
by 4096 rows 8, 10, or 12 bits per pixel and supports the bandwidth necessary for
High-definition (1080p60) resolutions.

You can generate the core as an EDK pCore (AXI4-Lite interconnect) or as a generic
General Purpose Processor interface where all the user register connections are exposed as
ports to the core. These two interfaces are described in Chapter 2, Core Interfaces and
Register Space.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 6
PG005 October 19, 2011 Product Specification

Chapter 1: Overview

Licensing
The Defective Pixel Correction core provides the following three licensing options:

• Simulation Only

• Full System Hardware Evaluation

• Full

After installing the required Xilinx ISE software and IP Service Packs, choose a license
option.

Simulation Only
The Simulation Only Evaluation license key is provided with the Xilinx CORE Generator
tool. This key lets you assess core functionality with either the example design provided
with the Defective Pixel Correction core, or alongside your own design and demonstrates
the various interfaces to the core in simulation. (Functional simulation is supported by a
dynamically generated HDL structural model.)

No action is required to obtain the Simulation Only Evaluation license key; it is provided
by default with the Xilinx CORE Generator software.

Full System Hardware Evaluation
The Full System Hardware Evaluation license is available at no cost and lets you fully
integrate the core into an FPGA design, place-and-route the design, evaluate timing, and
perform functional simulation of the Defective Pixel Correction core using the example
design and demonstration test bench provided with the core.

In addition, the license key lets you generate a bitstream from the placed and routed
design, which can then be downloaded to a supported device and tested in hardware. The
core can be tested in the target device for a limited time before timing out (resetting to
default values and the output video becoming black), at which time it can be reactivated by
reconfiguring the device.

The timeout period for this core is set to approximately 8 hours for a 74.25 MHz clock.
Using a faster or slower clock will change the timeout period proportionally. For example,
using a 150 MHz clock will result in a timeout period of approximately 4 hours.

To obtain a Full System Hardware Evaluation license, do the following:

1. Navigate to the product page for this core.

2. Click Evaluate.
3. Follow the instructions to install the required Xilinx ISE software and IP Service Packs.

Full
The Full license key is available when you purchase the core and provides full access to all
core functionality both in simulation and in hardware, including:

• Functional simulation support
• Full implementation support including place and route and bitstream generation
• Full functionality in the programmed device with no time outs

To obtain a Full license key, you must purchase a license for the core. Click on the "Order"
link on the Xilinx.com IP core product page for information on purchasing a license for this

http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_ef-di-def-pix-corr.htm
http://www.xilinx.com/products/ipcenter/EF-DI-GAMMA.htm
http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 7
PG005 October 19, 2011 Product Specification

Chapter 1: Overview

core. After doing so, click the "How do I generate a license key to activate this core?" link on
the Xilinx.com IP core product page for further instructions.

Installing Your License File
The Simulation Only Evaluation license key is provided with the ISE CORE Generator
system and does not require installation of an additional license file. For the Full System
Hardware Evaluation license and the Full license, an email will be sent to you containing
instructions for installing your license file. Additional details about IP license key
installation can be found in the ISE Design Suite Installation, Licensing and Release Notes
document.

Performance
The following sections detail the performance characteristics of the Defective Pixel
Correction core.

Maximum Frequencies
The following are typical clock frequencies for the target devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options, additional logic in the FPGA device,
using a different version of Xilinx tools and other factors.

• Virtex®-7 FPGA: 264 MHz

• Kintex™-7 FPGA: 282 MHz

• Virtex-6 FPGA: 324 MHz

• Spartan®-6 FPGA: 196 MHz

Throughput
The Defective Pixel Correction core produces as much data as it consumes. If timing
constraints are met, the throughput is equal to the rate at which video data is written into
the core. In numeric terms, 1080P/60 RGB represents an average data rate of 124.4
Mpixels/sec or a burst data rate of 148.5 Mpixels/sec.

Resource Utilization
For an accurate measure of the usage of device resources (for example, block RAMs,
flip-flops, and LUTs) for a particular instance, click View Resource Utilization in CORE
Generator after generating the core.

Information provided in Table 1-1 - Table 1-4 is a guideline to the resource utilization of the
Defective Pixel Correction core for Spartan-6, Virtex-6, Virtex-7, and Kintex-7 FPGA
families. This core does not use any XtremeDSP slices, block RAM, dedicated I/O, or clock
resources. The design was tested using Xilinx ISE® v13.3 tools with default tool options,
using timing constraints.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 8
PG005 October 19, 2011 Product Specification

Chapter 1: Overview

1. Device: XC6SLX150-2 FGG900
2. Speed File: PRODUCTION 1.20c 2011-09-21

1. Device: XC6VLX75T-1 FF484
2. Speed File: PRODUCTION 1.15 2011-09-21

1. Device: XC7V585T-1 FFG1157
2. Speed File: ADVANCED 1.02i 2011-09-21

Table 1-1: Resource Utilization and Target Speed for Spartan-6

Data Width Max Cols/Rows
LUT6-FF

pairs
LUTs FFs RAMB 16/8 DSP48A1 Fmax(MHz)

8 1023 2063 1668 1601 4/1 1 196

2200 2223 1832 1693 11/0 1 196

10 1023 2222 1876 1801 5/1 1 196

2200 2362 2012 1893 13/0 1 203

12 1023 2439 2024 2001 6/0 1 210

2200 2722 2114 2093 15/0 1 189

Table 1-2: Resource Utilization and Target Speed for Virtex-6

Data Width Max Cols/Rows
LUT6-FF

pairs
LUTs FFs RAM 36/18 DSP48E1 Fmax(MHz)

8 1023 1984 1695 1505 2/1 1 324

2200 2206 1883 1589 4/3 1 293

10 1023 2144 1826 1695 2/2 1 349

2200 2310 2052 1779 5/2 1 317

12 1023 2483 2005 1885 2/2 1 305

2200 2557 2209 1969 6/2 1 324

Table 1-3: Resource Utilization and Target Speed for Virtex-7

Data Width Max Cols/Rows
LUT6-FF

pairs
LUTs FFs RAM 36/18 DSP48E1 Fmax(MHz)

8 1023 2042 1648 1505 2/1 1 291

2200 2214 1787 1589 4/3 1 264

10 1023 2208 1807 1695 2/2 1 264

2200 2451 1982 1779 5/2 1 239

12 1023 2398 1995 1885 2/2 1 309

2200 2539 2199 1969 6/2 1 291

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 9
PG005 October 19, 2011 Product Specification

Chapter 1: Overview

1. Device: XC7K70T-1 FBG484
2. Speed File: ADVANCED 1.02b 2011-09-21

Table 1-4: Resource Utilization and Target Speed for Kintex-7

Data Width Max Cols/Rows
LUT6-FF

pairs
LUTs FFs RAM 36/18 DSP48E1 Fmax(MHz)

8 1023 1760 1657 1505 2/1 1 295

2200 2132 1802 1589 4/3 1 268

10 1023 2167 1803 1695 2/2 1 310

2200 2516 1942 1779 5/2 1 262

12 1023 2412 2016 1885 2/2 1 282

2200 2620 2161 1969 6/2 1 282

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 10
PG005 October 19, 2011

Chapter 2

Core Interfaces and Register Space

Port Descriptions

Processor Interfaces
The Defective Pixel Correction core supports the following two processor interface
options:

• General Purpose Processor Interface

• EDK pCore Interface

The processor interfaces provide the system designer with the ability to dynamically
control the parameters within the core.

General Purpose Processor Interface

The General Purpose Processor Interface exposes the thresholds and control signals as
ports. The Core Symbol for the General Purpose Processor Interface is shown in Figure 2-1.
These ports are described in Table 2-1. The ports common to all interfaces are described in
Table 2-4.

X-Ref Target - Figure 2-1

Figure 2-1: Core Symbol for the General Purpose Processor Interface

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 11
PG005 October 19, 2011

Chapter 2: Core Interfaces and Register Space

The General Purpose Processor Interface exposes the thresholds and control registers as
ports. This option is very useful for users designing a system with a user-defined bus
interface (decoding logic and register banks) to an arbitrary processor.

The threshold ports have the double-buffer control mechanism described in the previous
section to prevent tearing or committing partially updated port values. However, the first
set of registers (shadow register bank) has to be supplied by the user-defined bus interface.
Values from this register bank (external to the Defective Pixel Correction core) are copied
over to the internal registers at the rising edge of vblank_in when bit 1 of the control is
set to 1.

See also the General Purpose Processor Interface section of Port Descriptions.

EDK pCore Interface

The EDK pCore Interface generates AXI4-Lite interface ports in addition to the common
ports described in Table 2-4. The AXI4-Lite signals are automatically connected when the
generated pCore is inserted into an EDK project. The AXI4-Lite signals are listed in
Table 2-3. For more information on the AXI4-Lite signals, see AXI Reference Guide. The
Core Symbol for the EDK pCore Interface is shown in Figure 2-2..

Table 2-1: Additional Ports for the General Purpose Processor Interface

Port Name Port Width Direction Description

control 2 IN • Bit 0: Software enable
• Bit 1: Host processor write done semaphore

• 0 indicates host processor actively updating
registers

• 1 indicates register update completed by host
processor

thresh_temporal_v
ar

DATA_WIDTH IN Allowed inter-frame variance of defective pixels

thresh_spatial_var 16 IN Allowed spatial variance beyond which a pixel is
characterized as an outlier

thresh_pixel_age 16 IN Number of frames an outlier pixel has to keep its value
within the range specified

status 8 OUT Status register

• Bit 0: FIFO empty
• Bit 1: FIFO full
• Bit 2-6: Reserved
• Bit 7: Timing lock output; '1' indicates that the

timing module of the core has locked on the input
timing signals and is generating stable output
timing signals

num_candidates STATUS_WIDTH OUT Total number of potential defective pixel candidates
stored in FIFO (in previous frame)

num_defective STATUS_WIDTH OUT Total number of pixels being actively interpolated (in
previous frame)

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 12
PG005 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Table 2-2: AXI4-Lite Interface Pinout

Pin Name Direction Width Description

AXI Global System Signals (1)

S_AXI_ACLK I 1 AXI Clock

S_AXI_ARESETN I 1 AXI Reset, active Low

IP2INTC_Irpt O 1 Interrupt request output

AXI Write Address Channel Signals (1)

S_AXI_AWADDR I
[(C_S_AXI_ADDR_WI

DTH-1):0]
AXI4-Lite Write Address Bus. The write address bus
gives the address of the write transaction.

S_AXI_AWVALID I 1

AXI4-Lite Write Address Channel Write Address Valid.
This signal indicates that valid write address is
available.

• 1 = Write address is valid.
• 0 = Write address is not valid.

S_AXI_AWREADY O 1

AXI4-Lite Write Address Channel Write Address
Ready. Indicates core is ready to accept the write
address.

• 1 = Ready to accept address.
• 0 = Not ready to accept address.

AXI Write Data Channel Signals (1)

S_AXI_WDATA I [(C_S_AXI_DATA_WI
DTH-1):0]

AXI4-Lite Write Data Bus.

S_AXI_WSTRB I [C_S_AXI_DATA_WID
TH/8-1:0]

AXI4-Lite Write Strobes. This signal indicates which
byte lanes to update in memory.

S_AXI_WVALID I 1

AXI4-Lite Write Data Channel Write Data Valid. This
signal indicates that valid write data and strobes are
available.

• 1 = Write data/strobes are valid.
• 0 = Write data/strobes are not valid.

S_AXI_WREADY O 1

AXI4-Lite Write Data Channel Write Data Ready.
Indicates core is ready to accept the write data.

• 1 = Ready to accept data.
• 0 = Not ready to accept data.

AXI Write Response Channel Signals (1)

S_AXI_BRESP (2) O [1:0]

AXI4-Lite Write Response Channel. Indicates results of
the write transfer.

• 00b = OKAY - Normal access has been successful.
• 01b = EXOKAY -Not supported.
• 10b = SLVERR - Error.
• 11b = DECERR - Not supported.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 13
PG005 October 19, 2011

Chapter 2: Core Interfaces and Register Space

1. The function and timing of these signals are defined in the AMBA AXI Protocol Version: 2.0
Specification.

2. For signals S_AXI_RRESP[1:0] and S_AXI_BRESP[1:0], the core does not generate the Decode Error
('11') response. Other responses like '00' (OKAY) and '10' (SLVERR) are generated by the core based
upon certain conditions.

S_AXI_BVALID O 1

AXI4-Lite Write Response Channel Response Valid.
Indicates response is valid.

• 1 = Response is valid.
• 0 = Response is not valid.

S_AXI_BREADY I 1

AXI4-Lite Write Response Channel Ready. Indicates
Master is ready to receive response.

• 1 = Ready to receive response.
• 0 = Not ready to receive response.

AXI Read Address Channel Signals (1)

S_AXI_ARADDR I
[(C_S_AXI_ADDR_WI

DTH-1):0]
AXI4-Lite Read Address Bus. The read address bus
gives the address of a read transaction.

S_AXI_ARVALID I 1
AXI4-Lite Read Address Channel Read Address Valid.

• 1 = Read address is valid.
• 0 = Read address is not valid.

S_AXI_ARREADY O 1

AXI4-Lite Read Address Channel Read Address Ready.
Indicates core is ready to accept the read address.

• 1 = Ready to accept address.
• 0 = Not ready to accept address.

AXI Read Data Channel Signals (1)

S_AXI_RDATA O [(C_S_AXI_DATA_WI
DTH-1):0]

AXI4-Lite Read Data Bus.

S_AXI_RRESP (2) O [1:0]

AXI4-Lite Read Response Channel Response. Indicates
results of the read transfer.

• 00b = OKAY - Normal access has been successful.
• 01b = EXOKAY -Not supported.
• 10b = SLVERR - Error.
• 11b = DECERR - Not supported.

S_AXI_RVALID O 1

AXI4-Lite Read Data Channel Read Data Valid. This
signal indicates that the required read data is available
and the read transfer can complete.

• 1 = Read data is valid.
• 0 = Read data is not valid.

S_AXI_RREADY I 1

AXI4-Lite Read Data Channel Read Data Ready.
Indicates master is ready to accept the read data.

• 1 = Ready to accept data.
• 0 = Not ready to accept data.

Table 2-2: AXI4-Lite Interface Pinout

Pin Name Direction Width Description

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 14
PG005 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Register Space
Many imaging applications have an embedded processor which can dynamically control
the parameters within the core. The user can select an EDK pCore interface, which creates
a pCore that can be added to an EDK project as a hardware peripheral. The pCore interface
provides a memory-mapped interface for the programmable registers within the core,
which are defined in Table 2-3.

X-Ref Target - Figure 2-2

Figure 2-2: Core Symbol for the EDK pCore Interface

Table 2-3: EDK pCore Interface Register Descriptions

Address Offset
(hex)

Register Name
Access

Type
Default Value (hex) Description

BASEADDR + 0x000 dpc_reg00_control R/W 0x00000001 Bit 0 Software enable
• 0 – Not enabled
• 1 – Enabled

Bit 1 Host processor write done
semaphore
• 0 – Host processor actively

updating registers
• 1 – Register update

completed by host
processor

BASEADDR + 0x004 dpc_reg01_reset R/W 0x00000000 Bit 0 Software reset
• 0 – Not reset
• 1 – Reset

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 15
PG005 October 19, 2011

Chapter 2: Core Interfaces and Register Space

All of the registers are readable, enabling you to verify writes or read back current values.

The core has a feature that allows it to be enabled or disabled. This halts the operation of
the core by blocking the propagation of all video signals. This function is controlled by
setting the Software Enable, bit 0 of dpc_reg00_control register, to 0; the default value
of Software Enable is 1 (enabled).

The core can be effectively reset in-system by asserting dpc_reg01_reset (bit 0), which
resets the timing and returns the thresholds to their default values. The core control signals
and output are forced to 0 until the software reset bit is deasserted.

All registers other than the dpc_reg00_control, dpc_reg01_reset, and
dpc_reg02_status registers are double-buffered in hardware, to ensure no image
tearing happens if the threshold values are modified in the active area of a frame. This
double-buffering provides a more flexible and easier-to-use core because it decouples the
register updates from the blanking period, allowing software a much larger window with
which to update the parameter values. The updated values for the threshold registers are
latched into the shadow registers immediately after writing them, while the actual
thresholds used are stored in the working registers.

Any reads of registers during operation will return the values stored in the shadow
registers. The rising edge of vblank_in triggers the values from the shadow registers to
be copied to the working registers, when bit 1 of dpc_reg00_control is set to 1. This
semaphore bit helps to prevent partially updated shadow registers from being copied over
to the working registers.

See the clk - clock: Master clock in the design, synchronous with, or identical to the video
clock. section of Port Descriptions.

BASEADDR + 0x008 dpc_reg02_status R 0x00000001 Bit 0 FIFO Empty

Bit 1 FIFO Full

Bit 2-6 Reserved

Bit 7 Timing lock output
'1' indicates that the timing
module of the core has locked
on the input timing signals
and is generating stable
output timing signals

BASEADDR + 0x00C dpc_reg03_thresh_temporal_var R/W 2**(DATA_WIDTH-7) Allowed inter-frame variance of
defective pixels

BASEADDR + 0x010 dpc_reg04_thresh_spatial_var R/W 0x0000199A Allowed spatial variance beyond
which a pixel is characterized as an
outlier

BASEADDR + 0x014 dpc_reg05_thresh_pixel_age R/W 0x000004B0 Number of frames an outlier pixel has
to keep its value within the range
specified

BASEADDR + 0x018 dpc_reg06_num_candidates R 0x00000000 Total number of potential defective
pixel candidates stored in FIFO (in
previous frame)

BASEADDR +
0x01C

dpc_reg07_num_defective R 0x00000000 Total number of pixels being
actively interpolated (in
previous frame)

Table 2-3: EDK pCore Interface Register Descriptions (Cont’d)

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 16
PG005 October 19, 2011

Chapter 2: Core Interfaces and Register Space

Common I/O Signals
The EDK pCore interface and the General Purpose Processor interface share a number of
the same Input/Output (I/O) signals. The following set of signals is common to both
interface options and to all video iPipe cores. Table 2-4 contains general port information,
followed by a more detailed description of each port.

• clk - clock: Master clock in the design, synchronous with, or identical to the video
clock.

• ce - clock enable: Pulling CE low suspends all operations within the core. Outputs are
held, and no input signals are sampled, except for reset (SCLR takes precedence over
CE).

• sclr - synchronous clear: Pulling SCLR high results in resetting all output pins to zero
or their default values.

• video_data_in: This bus contains the video input in DATA_WIDTH bits wide unsigned
integer representation. The input is assumed to be from a Bayer sub-sampled image.

• hblank_in. The hblank_in signal conveys information about the blank/non-blank
regions of video scan lines.

• vblank_in: The vblank_in signal conveys information about the blank/non-blank
regions of video frames, and is used by the Defective Pixel Correction core to detect
end of a frame, when user registers can be copied to active registers to avoid visual
tearing of the image.

• active_video_in: The active_video_in signal is high when valid data is presented
at the input.

• video_data_out: This bus contains video output represented as DATA_WIDTH bits
wide unsigned integers. The output is in the format of Bayer sub-sampled data.

• hblank_out, vblank_out, and active_video_out: The corresponding input signals are
delayed so blanking outputs are in phase with the video data output, maintaining the
integrity of the video stream.

Table 2-4: Port Descriptions

Port Name Port Width Direction Description

clk 1 IN Rising-edge clock

ce 1 IN Clock enable (active high)

sclr 1 IN Synchronous clear – reset (active high)

video_data_in DATA_WIDTH IN Data input bus

hblank_in 1 IN Horizontal blanking input

vblank_in 1 IN Vertical blanking input

active_video_in 1 IN Active video signal input

video_data_out DATA_WIDTH OUT Data output bus

hblank_out 1 OUT Horizontal blanking output

vblank_out 1 OUT Vertical blanking output

active_video_out 1 OUT Active video signal output

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 17
PG005 October 19, 2011

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

Graphical User Interface (GUI)
The Defective Pixel Correction core is easily configured to meet the user’s specific needs
through the CORE Generator graphical user interface (GUI). This section provides a quick
reference to the parameters that can be configured at generation time. Figure 3-1 shows the
main Defective Pixel Correction screen.

The GUI displays a representation of the IP symbol on the left side, and the parameter
assignments on the right side, which are described as follows:

• Component Name: The component name is used as the base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9 and “_”.

• Data Width (DATA_WIDTH): Specifies the bit width of the input channel. The
allowed values are 8, 10, and 12.

X-Ref Target - Figure 3-1

Figure 3-1: Defective Pixel Correction Main Screen

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 18
PG005 October 19, 2011

Chapter 3: Customizing and Generating the Core

• Maximum Number of Columns: Specifies the maximum number of columns that can
be processed by the core. Permitted values are from 32 to 4096. Specifying this value is
necessary to establish the internal widths of counters and control-logic components as
well as the depth of line buffers. Feeding the configured Image Edge Enhancement
instance timing signals that violate the MAX_COLS constraint leads to data and
output timing signal corruption.

• Maximum Number of Rows: Specifies the maximum number of rows that can be
processed by the core. Permitted values are from 32 to 4096. Specifying this value is
necessary to establish the internal widths of counters and control-logic components.
Feeding the configured Defective Pixel Correction instance timing signals that violate
the MAX_ROWS constraint leads to data and output timing signal corruption.

• Maximum Number of Defective Pixels: Controls depth of RAM for storing defective
pixels.

• Interface Selection: As described in the previous sections, this option allows for the
configuration of two different interfaces for the core.

• EDK pCore Interface: CORE Generator software generates a pCore that can be
easily imported into and customized in an EDK project as a hardware peripheral,
and thresholds can be programmed via registers. Double-buffering is used to
eliminate tearing of output images. See the EDK pCore Interface.

• General Purpose Processor Interface: CORE Generator software will generate a
set of ports to be used to program the core. See the General Purpose Processor
Interface.

Parameter Values in the XCO File

Output Generation
The output files generated from the Xilinx CORE Generator software for the Defective
Pixel Correction core depend upon whether the interface selection is set to EDK pCore or
General Purpose Processor. The output files are placed in CORE Generator's project
directory.

EDK pCore Files
When the interface selections is set to EDK pCore, CORE Generator then outputs the core
as a pCore that can be easily incorporated into an EDK project. The pCore output consists

Table 3-1: Parameter Values in the XCO File

XCO Parameter Default Valid Values

component_name pixel_correction Valid string based name

data_width 8 8, 10, 12

interface_selection EDK_Pcore EDK_Pcore,
General_Purpose_Processor

maxcols 1023 32 - 4095

maxdps 1024 512, 1024, 2048, 4096, 8192

maxrows 1023 32 - 4095

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 19
PG005 October 19, 2011

Chapter 3: Customizing and Generating the Core

of a hardware pCore and a software driver. The pCore has the following directory
structure:

Project Directory

Component Name

drivers

dpc_v4_00_a

build

data

example

src

pcores

axi_dpc_v_4_00_a

data

hdl

vhdl

File Details

<project_directory>

This is the top-level directory. It contains xco and other assorted files.

• <project directory>/<component_name>/pcores/axi_dpc_v4_00_a/data

This directory contains files that EDK uses to define the interface to the pCore.

• < project directory>/<component_name>/pcores/axi_ dpc_v4_00_a/hdl/vhdl

This directory contains the Hardware Description Language (HDL) files that
implement the pCore.

• < project directory>/<component_name>/drivers/dpc_v4_00_a/data

This directory contains files that Software Development Kit (SDK) uses to define the
operation of the pCore's software driver.

Name Description

<component_name>.xco

Log file from CORE Generator software describing
which options were used to generate the core. An XCO
files can also be used as an input to the CORE Generator
software.

<component_name>_flist.txt
A text file listing all of the output files produced when
the customized core was generated in the CORE
Generator software.

<component_name>_readme.txt
A text file listing all of the output files produced and
their purposes when the customized core was generated
in the CORE Generator software.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 20
PG005 October 19, 2011

Chapter 3: Customizing and Generating the Core

• < project directory>/<component_name>/drivers/dpc_v4_00_a/src

This directory contains the source code of the pCore's software dirver.

General Purpose Processor Files
When the interface selection is set to General Purpose Processor, CORE Generator then
outputs the core as a netlist that can be inserted into a processor interface wrapper or
instantiated directly in an HDL design. The output is placed in the <project directory>.

File Details

The CORE Generator software output consists of some or all the following files.

Name Description

dpc.c
Provides the Application Program Interface (API) access to all features of

the Defective Pixel Correction device driver.

dpc.h
Provides the API access to all features of the Defective Pixel Correction

device driver.

Name Description

<component_name>_readme.txt Readme file for the core.

<component_name>.ngc
The netlist for the core.

<component_name>.veo

<component_name>.vho
The HDL template for instantiating the core.

<component_name>.v

<component_name>.vhd The structural simulation model for the core. It is used for functionally simulating
the core.

<component_name>.xco Log file from CORE Generator software describing which options were used to
generate the core. An XCO file can also be used as an input to the CORE Generator

software.

<component_name>_flist.txt A text file listing all of the output files produced when the customized core was
generated in the CORE Generator software.

<component_name>.asy IP symbol file.

<component_name>.gise ISE® software subproject files for use when including the core in ISE software
designs.<component_name>.xise

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 21
PG005 October 19, 2011

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines

Selection of Threshold Values
The Xilinx Defective Pixel Correction solution provides three controls to influence the
identification and monitoring of defective pixels.

Threshold value THRESH_SPATIAL_VAR defines how different a pixel needs to be from
the surrounding pixels to be classified as an outlier. A practical value of 2DATA_WIDTH-5
identifies pixels that visually stand out from their surroundings. A higher threshold value
for THRESH_SPATIAL_VAR results in a lower number of outlier candidates and slower
convergence time for identifying all outliers, but at the same time returns fewer false
positives. If heuristics for the total number of outliers (M) are known, a feedback
mechanism can be implemented that tunes THRESH_SPATIAL_VAR so that the number of
outlier pixels identified, num_candidates, approximates M.

Threshold value THRESH_TEMPORAL_VAR, defines the range a pixel value needs to stay
in to be classified as stuck. The lower the value, the lower the chance that slowly varying
pixels get characterized as stuck. However, if the sensor image is loaded with noise, or
blooming may modify the readout values of dead pixels, THRESH_TEMPORAL_VAR
may need to be increased to identify all stuck pixels. As a practical value for
THRESH_TEMPORAL_VAR, the square root of the maximum pixel value is suggested.

Threshold value, THRESH_PIXEL_AGE, defines the number of frames presumed outliers
have to hold their values within THRESH_TEMPORAL_VAR range before an outlier pixel
is considered defective, and replacement (interpolation) of the pixels begin. The higher the
value of THRESH_PIXEL_AGE, the less flickering due to incorrect defective pixel
correction the algorithm produces, but also the longer it takes for the algorithm to
converge and start replacing defective pixels. Values in the range of several thousands
allow virtually no flickering while identifying outliers within minutes.

Control Signals and Timing
The propagation delay of the Defective Pixel Correction core is two full scan lines and 18
video clock cycles. The output timing signals (vblank_out, hblank_out, and
active_video_out) are delayed appropriately so that the output video data is framed
correctly by the timing signals. Deasserting CE suspends processing, which may be useful
for data-throttling, to temporarily cease processing of a video stream to match the delay of
other processing components.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 22
PG005 October 19, 2011

Chapter 4: Designing with the Core

The control signals vblank_out, hblank_out, and active_video_out are created
using a timing detector and generator within the core. The internal timing module
assumes the following:

• One horizontal blanking period per row

• One vertical blanking period per frame

• Blanking signals are active high

• A minimum active frame size of eight rows and eight columns

• A minimum horizontal blanking period of two columns

• A minimum vertical blanking period of two rows

During the detection of the timing control signals, the core cannot guarantee the correct
video data output. Therefore, the data output, video_data_out, of the first frame of data
is set to zero even though active_video_out is high.

Clocking
The Defective Pixel Correction core has one clock "clk" that is used to clock the entire core.
This includes the AXI4-Lite interface and the core logic.

Resets
The Defective Pixel Correction core has one reset "sclr" that is used for the entire core. The
reset is active-High.

Protocol Description
The EDK pCore version of the Defective Pixel Correction core has an AXI4-Lite compliant
processor interface

X-Ref Target - Figure 4-1

Figure 4-1: Timing Example

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 23
PG005 October 19, 2011

Chapter 5

Constraining the Core

Required Constraints
The clk pin should be constrained at the pixel clock rate desired for your video stream.

Device, Package, and Speed Grade Selections
There are no device, package or speed grade requirements for the Defective Pixel
Correction core. This core has not been characterized for use in low power devices.

Clock Frequencies
The pixel clock frequency will be the required frequency for the Defective Pixel Correction
core. See Maximum Frequency in Performance in Chapter 1.

Clock Management
There is only one clock for the Defective Pixel Correction core.

Clock Placement
There are no specific clock placement requirements for the Defective Pixel Correction core.

Banking
There are no specific banking rules for the Defective Pixel Correction core.

Transceiver Placement
There are no Transceiver Placement requirements for the Defective Pixel Correction core.

I/O Standard and Placement
There are no specific I/O standards and placement requirements for the Defective Pixel
Correction core.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 24
PG005 October 19, 2011

Chapter 6

Detailed Example Design

Directory and File Contents
The directory structure underneath this top-level folder is described below:

• Expected

• Contains the pre-generated expected/golden data used by the testbench to
compare actual output data.

• Stimuli

• Contains the pre-generated input data used by the testbench to stimulate the core
(including register programming values).

• Results

• Actual output data is written to a file in this folder.

• src

• Contains the .vhd & .xco files of the core.

The .vhd file is a netlist generated using Coregen.

You can regenerate a new netlist using the .xco file in Coregen.

• tb_src

• Contains the top-level testbench design.

This directory also contains other packages used by the testbench.

• isim_wave.wcfg - Waveform configuration for ISIM

• mti_wave.do - Waveform configuration for ModelSim

• run_isim.bat - Runscript for iSim in Windows OS

• run_isim.sh - Runscript for iSim in Linux OS

• run_mti.bat - Runscript for ModelSim in Windows OS

• run_mti.sh - Runscript for ModelSim in Linux OS

Demonstration Test Bench
This demonstration test bench is provided as a simple introductory package that enables
core users to observe the core generated by the CORE Generator tool operating in a
waveform simulator. The user is encouraged to observe core-specific aspects in the
waveform, make simple modifications to the test conditions, and observe the changes in
the waveform.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 25
PG005 October 19, 2011

Chapter 6: Detailed Example Design

Simulation
• Simulation using ModelSim for Linux:

From the console, Type "source run_mti.sh".

• Simulation using ModelSim for Windows:
Double click on "run_mti.bat" file.

• Simulation using iSim for Linux:
From the console, Type "source run_isim.sh".

Messages and Warnings
The following warnings will appear in the console when you run one of the shell scripts:

** Warning: [9] tb_src/tb_v_spc_v4_0VHT.vhd(134): (vcom-1013) Initial
value of "c_thresh_temporal_var" depends on value of signal
"default_thresh_temporal_var".
** Warning: [9] tb_src/tb_v_spc_v4_0VHT.vhd(141): (vcom-1013) Initial
value of "c_thresh_spatial_var" depends on value of signal
"default_thresh_spatial_var".
** Warning: [9] tb_src/tb_v_spc_v4_0VHT.vhd(149): (vcom-1013) Initial
value of "c_thresh_pixel_age" depends on value of signal
"default_thresh_pixel_age".
** Warning: [9] tb_src/tb_v_spc_v4_0VHT.vhd(258): (vcom-1013) Initial
value of "thresh_temporal_var" depends on value of signal
"default_thresh_temporal_var".
** Warning: [9] tb_src/tb_v_spc_v4_0VHT.vhd(263): (vcom-1013) Initial
value of "thresh_spatial_var" depends on value of signal
"default_thresh_spatial_var".
** Warning: [9] tb_src/tb_v_spc_v4_0VHT.vhd(267): (vcom-1013) Initial
value of "thresh_pixel_age" depends on value of signal
"default_thresh_pixel_age".

All of the signals do have initial values so no unknowns will be propagated through the
simulation. In the Modelsim console window, you will see warnings similar to the
following:

** Warning: There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand,
there result will be 'X'(es).

The above warning is common when doing a structural simulation as the resets have not
yet completely propagated. Once the resets are done, the simulation will settle and valid
results will appear.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 26
PG005 October 19, 2011

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A highly parameterizable test bench was used to test the Defective Pixel Correction core.
Testing included the following:

• Register accesses

• Processing of multiple frames of data

• Testing of various frame sizes

• Varying parameter settings

Hardware Testing
The Defective Pixel Correction core has been tested in a variety of hardware platforms at
Xilinx to represent a variety of parameterizations, including the following:

• A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4-Lite interconnect and various other peripherals. The software for the test system
included pre-generated input and output data along with live video stream. The
MicroBlaze processor was responsible for:

• Initializing the appropriate input and output buffers

• Initializing the Color Filer Array Interpolation core.

• Launching the test.

• Comparing the output of the core against the expected results.

• Reporting the Pass/Fail status of the test and any errors that were found.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 27
PG005 October 19, 2011

Appendix B

Migrating

Parameter Changes in the XCO File
There are no parameter changes in the XCO file.

Port Changes
Other than an AXI4-Lite interface in place of the PLB, there are no port changes.

Functionality Changes
There are no functionality changes to the core.

Special Considerations when Migrating to AXI
The Defective Pixel Correction core v4.0 changed from the PLB EDK pCore processor
interface to the EDK pCore AXI4-Lite interface. As a result, all of the PLB-related
connections have been replaced with an AXI4-Lite interface. This processor interface
change does not change the functionality of the core other than an AXI4-Lite has to be used
in place of the PLB.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 28
PG005 October 19, 2011

Appendix C

Debugging

Consider the following:

• Are the input and output timing signals active_video, vblank, hblank connected?

• Is the video clock (clk) and reset (sclr) signals connected?

• Is bit 0 of the control register (BASEADDR + 0x00) set to '1'?

• Is bit 7 of the status register (BASEADDR + 0x08) set to '1'?

• Did you follow the Defective Pixel Correction Programming Flow Chart (Figure 2-3)
to program the temporal, spatial and pixel age threshold registers?

See Solution Centers in Appendix F for information helpful to the debugging progress.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 29
PG005 October 19, 2011

Appendix D

Application Software Development

Programmer's Guide
A software API is provided to allow easy access to the Defective Pixel Correction pCore's
registers defined in Table 2-3. To utilize the API functions provided, the following two
header files must be included in the user C code:

#include "dpc.h"
#include "xparameters.h"

The hardware settings of your system, including the base address of your Defective Pixel
Correction core, are defined in the xparameters.h file. The dpc.h file contains the
macro function definitions for controlling the Defective Pixel Correction pCore.

For examples on API function calls and integration into a user application, the drivers
subdirectory of the pCore contains a file, example.c, in the dpc_v4_00_a/example
subfolder. This file is a sample C program that demonstrates how to use the Defective Pixel
Correction pCore API.

EDK pCore API Functions
This section describes the functions included in the C driver (dpc.c and dpc.h) generated
for the EDK pCore API.

DPC_Enable(uint32 BaseAddress);

• This macro enables a Defective Pixel Correction instance.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h).

DPC_Disable(uint32 BaseAddress);

• This macro disables a Defective Pixel Correction instance.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h).

DPC_Reset(uint32 BaseAddress);

• This macro resets a Defective Pixel Correction instance. This reset effects the core
immediately, and may cause image tearing.

• Reset affects the threshold registers, forces video_data_out to 0, and forces timing
signal outputs to their reset state until DPC_ClearReset() is called.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 30
PG005 October 19, 2011

Appendix D: Application Software Development

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h)

DPC_ClearReset(uint32 BaseAddress);

• This macro clears the reset flag of the core, which allows it to re-sync with the input
video stream and return to normal operation.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h).

Reading and writing pCore Registers
Each software register defined in Table 2-3 has a constant defined in dpc.h that is set to the
offset for that register.

Reading a value from a register uses the base address and offset for the register:

Xuint32 value = DPC_ReadReg(XPAR_DPC_0_BASEADDR,
DPC_REG03_THRESH_TEMPORAL_VAR);

This macro returns the 32-bit unsigned integer value of the register. The definition of this
macro is:

DPC_ReadReg(uint32 BaseAddress, uint32 RegOffset)

• Read the given register.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h).

• RegOffset is the register offset of the register (defined in Table 1).

To write to a register, use the DPC_WriteReg() function using the base address of the
Defective Pixel Correction pCore instance (from xparameters.h), the offset of the
desired register, and the data to write. For example:

DPC_WriteReg(XPAR_DPC_0_BASEADDR, DPC_REG03_THRESH_TEMPORAL_VAR, 1);

The definition of this macro is:

DPC_WriteReg(uint32 BaseAddress, uint32 RegOffset, uint32 Data)

• Write the given register.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h).

• RegOffset is the register offset of the register (defined in Table 1).

• Data is the 32-bit value to write to the register.

DPC_RegUpdateEnable(uint32 BaseAddress);

• Calling RegUpdateEnable causes the Defective Pixel Correction to start using the
updated threshold values on the next rising edge of VBlank_in. The user must
manually disable the register update after a sufficient amount of time to prevent
continuous updates.

• This function only works when the Defective Pixel Correction core is enabled.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h)

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 31
PG005 October 19, 2011

Appendix D: Application Software Development

DPC_RegUpdateDisable(uint32 BaseAddress);

• Disabling the Register Update prevents the Defective Pixel Correction threshold
registers from updating. It is recommended that the Register Update be disabled
while writing to the registers in the core, until the write operation is complete. While
disabled, writes to the registers are stored, but do not affect the core's behavior.

• This function only works when the Defective Pixel Correction core is enabled.

• BaseAddress is the Xilinx EDK base address of the Defective Pixel Correction core
(from xparameters.h)

Figure D-1 shows a software flow diagram for updating registers during the operation of
the core.

X-Ref Target - Figure D-1

Figure D-1: Defective Pixel Correction Programming Flow Chart

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 32
PG005 October 19, 2011

Appendix E

C Model Reference

The Xilinx® LogiCORE™ IP Defective Pixel Correction v4.0 core has a bit accurate C
model designed for system modeling.

Features
• Bit accurate with Defective Pixel Correction v4.0 core

• Statically linked library (.lib, .o, .obj)

• Available for 32- and 64-bit Windows and 32- and 64-bit Linux platforms

• Supports all features of the Defective Pixel Correction core that affect numerical
results

• Designed for rapid integration into a larger system model

• Example C code showing how to use the function is provided

Overview
The Xilinx LogiCORE IP Defective Pixel Correction v4.0 has a bit accurate C model for 32-
and 64-bit Windows and 32- and 64-bit Linux platforms. The model has an interface
consisting of a set of C functions, which reside in a statically link library (shared library).
An example piece of C code showing how to call the model is provided to demonstrate the
use of the C model.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis. However the model is not cycle accurate, as it does not model the
core's latency or its interface signals.

The latest version of the model is available for download on the Xilinx LogiCORE IP
Defective Pixel Correction web page.

Additional Core Resources
For detailed information and updates about the Defective Pixel Correction v4.0 core, see
the following documents, located on the Defective Pixel Correction product page.

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/EF-DI-DEF-PIX-CORR.htm
http://www.xilinx.com/products/ipcenter/EF-DI-DEF-PIX-CORR.htm

LogiCORE IP Defective Pixel Correction www.xilinx.com 33
PG005 October 19, 2011

Appendix E: C Model Reference

Technical Support
For technical support, go to www.xilinx.com/support. Questions are routed to a team with
expertise using the Defective Pixel Correction v4.0 core. Xilinx provides technical support
for use of this product as described in this product guide.

Xilinx cannot guarantee functionality or support of this product for designs that do not
follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Defective Pixel Correction v4.0 core
and the accompanying documentation.

Defective Pixel Correction v4.0 Bit Accurate C Model and IP Core
For comments or suggestions about the Defective Pixel Correction v4.0 core and bit
accurate C model, submit a WebCase. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about the Defective Pixel Correction v4.0 core and bit
accurate C model, submit a WebCase. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

Software Requirements
The Defective Pixel Correction v4.0 C models were compiled and tested with the following
software:

Table E-1: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

32- and 64-bit Linux GCC 4.1.1

32- and 64-bit Windows Microsoft Visual Studio 2005

http://www.xilinx.com
www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/clearexpress/websupport.htm

LogiCORE IP Defective Pixel Correction www.xilinx.com 34
PG005 October 19, 2011

Appendix E: C Model Reference

Unpacking and Model Contents
Unzip the v_spc_v4_0_bitacc_model.zip file, containing the bit accurate models for the
Defective Pixel Correction IP Core. This produces the directory structure and files shown
in Table E-2.

Table E-2: Directory Structure and Files of the Defective Pixel Correction v4.0 Bit
Accurate Model

File Name Contents

/lin Pre-compiled bit accurate ANSI C reference
model for simulation on 32-bit Linux
Platforms

libIp_v_spc_v4_0_bitacc_cmodel.lib Defective Pixel Correction v4.0 model shared
object library (Linux platforms only)

libstlport.so.5.1 STL library, referenced by the Defective Pixel
Correction and RGB to YCrCb object libraries
(Linux platforms only)

run_bitacc_cmodel Pre-compiled bit accurate executable for
simulation on 32-bit Linux Platforms

/lin64 Pre-compiled bit accurate ANSI C reference
model for simulation on 64-bit Linux
Platforms

libIp_v_spc_v4_0_bitacc_cmodel.lib Defective Pixel Correction v4.0 model shared
object library (Linux platforms only)

libstlport.so.5.1 STL library, referenced by the Defective Pixel
Correction and RGB to YCrCb object libraries
(Linux platforms only)

run_bitacc_cmodel Pre-compiled bit accurate executable for
simulation on 32-bit Linux Platforms

/nt Pre-compiled bit accurate ANSI C reference
model for simulation on 32-bit Windows
Platforms

libIp_v_spc_v4_0_bitacc_cmodel.lib Pre-compiled library file for win32
compilation

(Windows platforms only)

run_bitacc_cmodel.exe Pre-compiled bit accurate executable for
simulation on 32-bit Windows Platforms

/nt64 Pre-compiled bit accurate ANSI C reference
model for simulation on 64-bit Windows
Platforms

libIp_v_spc_v4_0_bitacc_cmodel.lib Pre-compiled library file for win32
compilation

(Windows platforms only)

run_bitacc_cmodel.exe Pre-compiled bit accurate executable for
simulation on 64-bit Windows Platforms

README.txt Release notes

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 35
PG005 October 19, 2011

Appendix E: C Model Reference

Installation
On Linux, ensure that the directory in which the files libIp_v_spc_v4_0_bitacc_cmodel.so
and libstlport.so.5.1 are located is in your $LD_LIBRARY_PATH environment variable.

Defective Pixel Correction v4.0 Bit Accurate C Model
The bit-accurate C model is accessed through a set of functions and data structures,
declared in the header file v_spc_v4_0_bitacc_cmodel.h.

Before using the model, the structures holding the inputs, generics and output of the
Defective Pixel Correction instance have to be defined:

struct xilinx_ip_v_spc_v4_0_generics spc_generics;
struct xilinx_ip_v_spc_v4_0_inputs spc_inputs;
struct xilinx_ip_v_spc_v4_0_outputs spc_outputs;

Declaration of the preceding structs can be found in v_spc_v4_0_bitacc_cmodel.h.

The two generic parameters the Defective Pixel Correction v4.0 IP Core bit accurate model
takes are shown in Table E-3:

pg005_v_spc.pdf The Defective Pixel Correction Core Product
Guide

v_spc_v4_0_bitacc_cmodel.h Model header file

rgb_utils.h Header file declaring the RGB image / video
container type and support functions

bmp_utils.h Header file declaring the bitmap (.bmp) image
file I/O functions

video_utils.h Header file declaring the generalized image /
video container type, I/O and support
functions.

instrument.bmp 128x128 example image provided with C
model

run_bittacc_model.c Example code calling the C model

Table E-2: Directory Structure and Files of the Defective Pixel Correction v4.0 Bit
Accurate Model (Cont’d)

File Name Contents

Table E-3: Member Variables of the Generics Structure

Type Name
Default
Value

Function

int C_DATA_WIDTH 8 CORE Generator™
software “Data Width”
parameter. Allowed values
are 8,10 and 12.

int C_STATUS_WIDTH 10 log2 of the maximum
number of defective pixels
GUI parameter.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 36
PG005 October 19, 2011

Appendix E: C Model Reference

Calling

int xilinx_ip_v_spc_v4_0_get_default_generics(
struct xilinx_ip_v_spc_v4_0_generics *generics)

initializes the generics structure according to Table E-4.

The structure stats_inputs defines run time parameters and the actual input image. The
structure holds the following members:

int xilinx_ip_v_spc_v4_0_get_default_inputs(
 struct xilinx_ip_v_spc_v4_0_generics *generics,
 struct xilinx_ip_v_spc_v4_0_inputs *inputs)

initializes members of the input structure with zeroes. No memory is allocated for the
video_in structure or the integer vectors in inputs.

Note: NOTE: The video_in variable is not initialized, as the initialization depends on the actual
test image to be simulated. The next chapter describes the initialization of the video_in structure.

Note: NOTE: The thresh_spatial_var, thresh_temporal_var and thresh_pixel_age
vectors are not allocated or initialized by xilinx_ip_v_spc_v4_0_get_default_inputs().

After the inputs are defined the model can be simulated by calling the function

int xilinx_ip_v_spc_v4_0_bitacc_simulate(
struct xilinx_ip_v_spc_v4_0_generics* generics,
struct xilinx_ip_v_spc_v4_0_inputs* inputs,
struct xilinx_ip_v_spc_v4_0_outputs* outputs).

Results are provided in the outputs structure, which contains only one member, type
video_struct.

int DEFAULT_THRESH_PIXEL_AGE 1200 Initialization value applied
to the thresh_pixel_age
input of the core.

int DEFAULT_THRESH_SPATIAL_VAR 6554 Initialization value applied
to the thresh_spatial_var
input of the core.

int DEFAULT_THRESH_TEMPORAL_VAR 2 Initialization value applied
to the thresh_temporal_var
input of the core.

Table E-4: Member Variables of the Input Structure

Type Name Function

video_struct video_in Holds the input video stream (can contain multiple
frames)

int* thresh_spatial_var Pointer to integer vector containing spatial variance
threshold values per frame simulated

int* thresh_temporal_var Pointer to integer vector containing temporal
variance threshold values per frame simulated

int* thresh_pixel_age Pointer to integer vector containing pixel age
threshold values per frame simulated

Table E-3: Member Variables of the Generics Structure

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 37
PG005 October 19, 2011

Appendix E: C Model Reference

After the outputs were evaluated and/or saved, dynamically allocated memory for input
and output video structures must be released by calling function

void xilinx_ip_v_spc_v4_0_destroy(
struct xilinx_ip_v_spc_v4_0_inputs *input,
struct xilinx_ip_v_spc_v4_0_outputs *output).

Successful execution of all provided functions except for the destroy function return a
value 0, otherwise a non-zero error code indicates that problems were encountered during
function calls.

Defective Pixel Correction Input and Output Video Structure
Input images or video streams can be provided to the Defective Pixel Correction v4.0
reference model using the video_struct structure, defined in video_utils.h:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5]; };

Table E-5: Member Variables of the Video Structure

Member Variable Designation

Frames Number of video/image frames in the data structure

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for yuv data. Frame dimensions
are assumed constant through all frames of the video stream;
however, different planes, such as y,u and v may have different
dimensions.

Rows Number of rows per frame

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for yuv data. Frame dimensions
are assumed constant through all frames of the video stream;
however, different planes, such as y,u and v may have different
dimensions.

Cols Number of columns per frame

Pertaining to the image plane with the most rows and columns,
such as the luminance channel for yuv data. Frame dimensions
are assumed constant through all frames of the video stream;
however, different planes, such as y,u and v may have different
dimensions.

bits_per_component Number of bits per color channel / component.

All image planes are assumed to have the same color/
component representation. Maximum number of bits per
component is 16.

Mode Contains information about the designation of data planes.

Named constants to be assigned to mode are listed in Table E-6.

data Set of 5 pointers to 3 dimensional arrays containing data for
image planes.

data is in 16 bit unsigned integer format accessed as
data[plane][frame][row][col].

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 38
PG005 October 19, 2011

Appendix E: C Model Reference

1. The Defective Pixel Correction supports the FORMAT_RGB mode.

Initializing the Defective Pixel Correction Input Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with
an image or video stream. The bmp_util.h and video_util.h header files packaged with the
bit accurate C models contain functions to facilitate file I/O.

Bitmap Image Files

The header bmp_utils.h declares functions which help access files in Windows Bitmap
format. However, this format limits color depth to a maximum of 8 bits per pixel, and
operates on images with 3 planes (R,G,B). Therefore, functions

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

operate on arguments type rgb8_video_struct, which is defined in rgb_utils.h. Also,
both functions support only true-color, non-indexed formats with 24 bits per pixel.

Exchanging data between rgb8_video_struct and general video_struct type frames/
videos is facilitated by functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);

int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

Note: NOTE: All image / video manipulation utility functions expect both input and output structures
to be initialized -- for example, pointing to a structure which has been allocated in memory, either as
static or dynamic variables. Moreover, the input structure must have the dynamically allocated

Table E-6: Named Constants for Video Modes with Corresponding Planes and
Representations

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome – Luminance only.

FORMAT_RGB 3 RGB image / video data

FORMAT_C444 3 444 YUV, or YCrCb image / video data

FORMAT_C422 3 422 format YUV video, (u,v chrominance channels
horizontally sub-sampled)

FORMAT_C420 3 420 format YUV video, (u,v sub-sampled both
horizontally and vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion.

FORMAT_RGBA 4 RGB image / video data with alpha (transparency)
channel

FORMAT_C420_M 5 420 YUV video with Motion

FORMAT_C422_M 5 422 YUV video with Motion

FORMAT_C444_M 5 444 YUV video with Motion

FORMAT_RGBM 5 RGB video with Motion

http://www.xilinx.com
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/BMP_file_format

LogiCORE IP Defective Pixel Correction www.xilinx.com 39
PG005 October 19, 2011

Appendix E: C Model Reference

container (data[] or r[],g[],b[]) structures already allocated and initialized with the input frame(s). If the
output container structure is pre-allocated at the time of the function call, the utility functions verify
and throw an error if the output container size does not match the size of the expected output. If the
output container structure is not pre-allocated, the utility functions create the appropriate container to
hold results.

Binary Image/Video Files

The header video_utils.h declares functions which help load and save generalized video
files in raw, uncompressed format. Functions

int read_video(FILE* infile, struct video_struct* in_video);

int write_video(FILE* outfile, struct video_struct* out_video);

effectively serialize the video_struct structure. The corresponding file contains a small,
plain text header defining, "Mode", "Frames", "Rows", "Columns", and "Bits per Pixel". The
plain text header is followed by binary data, 16 bits per component in scan line continuous
format. Subsequent frames contain as many component planes as defined by the video
mode value selected. Also, the size (rows, columns) of component planes may differ within
each frame as defined by the actual video mode selected.

Working with video_struct Containers

Header file video_utils.h defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

Function video_planes_per_mode returns the number of component planes defined by
the mode variable, as described in Table E-6. Functions video_rows_per_plane and
video_cols_per_plane return the number of rows and columns in a given plane of the
selected video structure. The following example demonstrates using these functions in
conjunction to process all pixels within a video stream stored in variable in_video, with
the following construct:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode);
plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {

// User defined pixel operations on
// in_video->data[plane][frame][row][col]

 }
 }
 }
}

Destroy the Video Structure

Finally, the video structure must be destroyed to free up memory used to store the video
structure.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 40
PG005 October 19, 2011

Appendix E: C Model Reference

C Model Example Code
An example C file, run_bitacc_cmodel.c, is provided to demonstrate the steps required to
use the model. Follow the compilation instructions to run the example executable.

The structure of the example C code provided is as follows. The main() function reads
command line parameters, parses them, and passes them as arguments to the
bmp_processing() function.

If invoked with insufficient parameters, the following help message is printed:

Usage: run_bitacc_cmodel input_file stim_path result_path data_width M
N
in_file : name of the input BMP file without path
stim_path : Full or partial path to the input BMP file

 Stimuli BMP and TXT files will be placed here also under a
 directory created with the same name as the input file

result_path : Full or partial path to the output golden_result files
Golden Result BMP and TXT files will be placed under
a directory created here with the same name as the input

file.
data_width : The number of bits in the output data representation.
M : the number of stuck pixels to be inserted
N : number of stimuli / golden result frames to be generated

To demonstrate the Defective Pixel Correction Core and corresponding bit-true C model, a
video sequence corrupted by defective pixels is necessary. The bmp_processing()
function first generates this stimuli.

The input bitmap image is circularly translated in a direction specified by variables dx and
dx (line 160), creating a total number of N frames, N specified as a command-line
parameter. To simulate defective pixels, on each stimuli frame M pixels are corrupted. The
location and intensity of defective pixels is randomized (line 211).

The bmp format encodes pixels using 24 bits per pixel; however, the Defective Pixel
Correction Core operates on Bayer-sub sampled, 8, 10 or 12 bit samples. Therefore, each
stimuli frame is Bayer sub-sampled, and if needed the color representation is converted to
data_width bits by bit-shifting and assigning a fixed pattern value to the LSBs (line 251).

The C model example stores all stimuli and result frames as individual bitmap files in
separate directories. Both directories share the name of the input image (in_file) without
extension. The stimuli directory location is specified by the command-line parameter
stim_path, the result directory location is specified by the command-line parameter
result_path. If the directories do not exist, function create_dirs() creates them, if they
already exists, contents are cleared before stimuli/result generation.

If the specified input bmp file was opened successfully, the stimuli directory is populated
with the input N stimuli frames saved as bmp files. For HDL testing purposes, a plain text
(.txt) file is also created, which contains the input video stream (all frames concatenated) in
a human-readable, one pixel / line format.

Core input threshold values, which can change on a frame-by-frame basis, are set up by the
demonstrator C model to remain constant for the entire length of the simulation (line 186).
The spatial and temporal thresholds are initialized to default values, 6554 and 2
respectively. The pixel age threshold, which controls the minimum number of frames
through which non-changing, outlier pixels have to hold their values in order to be
interpolated by the Defective Pixel Correction algorithm, are initialized to N/2, half the
number of frames to simulate.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 41
PG005 October 19, 2011

Appendix E: C Model Reference

After successful execution of the C model (line 290), the results directory is populated with
N resulting frames saved as bmp files. For HDL testing purposes, a plain text (.txt) file is
also created, which contains the output video stream (all frames concatenated) in a
human-readable, one pixel / line format.

Compiling the Example with the Defective Pixel Correction C
Model

Linux (32- and 64-bit)
To compile the example code, first ensure that the directory in which the files
libIp_v_spc_v4_0_bitacc_cmodel.so and libstlport.so.5.1 are located is present in your
$LD_LIBRARY_PATH environment variable. These shared libraries are referenced during
the compilation and linking process. Then cd into the directory where the header files, the
library files and run_bitacc_cmodel.c were unpacked. The libraries and header files are
referenced during the compilation and linking process.

Place the header file and C source file in a single directory. Then in that directory, compile
using the GNU C Compiler:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_spc_v4_0_bitacc_cmodel -Wl,-rpath,.

gcc –m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_v_spc_v4_0_bitacc_cmodel -Wl,-rpath,.

Windows (32- and 64-bit)
Precompiled library v_spc_v4_0_bitacc_cmodel.lib and top-level demonstration code
run_bitacc_cmodel.c should be compiled with an ANSI C compliant compiler under
Windows. Here an example is presented using Microsoft Visual Studio.

In Visual Studio create a new, empty Win32 Console Application project. As existing items,
add:

• libIpv_spc_v4_0_bitacc_cmodel.lib to the "Resource Files" folder of the project,

• run_bitacc_cmodel.c to the "Source Files" folder of the project,

• v_spc_v4_0_bitacc_cmodel.h header files to "Header Files" folder of the project
(optional),

After the project has been created and populated, it needs to be compiled and linked (built)
in order to create a win32 executable. To perform the build step, choose "Build Solution"
from the Build menu. An executable matching the project name has been created either in
the Debug or Release subdirectories under the project location based on whether "Debug"
or "Release" has been selected in the "Configuration Manager" under the Build menu.

Running the Example, Evaluating Results
For a quick look at the effects of the Defective Pixel Correction algorithm, an input image,
instrument.bmp, stimuli and results directories are provided in the C model package.
Command

./run_bitacc_cmodel instrument.bmp stimuli results 8 30 10

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 42
PG005 October 19, 2011

Appendix E: C Model Reference

runs the C model demonstrator, creates 10 stimuli and result frames in the respective
directories under stimuli/instrument and results/instrument with 30 defective pixels
inserted into the 8-bit/sample stimuli data.

Looking at result frame 0000 shows that all of the defective pixels are still present, whereas
on frame 0005, defective pixels, which are visual outliers have been removed. Some
defective pixels, which are situated close to edges, or small, high-contrast objects may not
be identified as outliers yet. Running the simulation longer, or changing the translation
vector in the demonstrator to vertical shift will result to identification and interpolation of
all defective pixels.

http://www.xilinx.com

LogiCORE IP Defective Pixel Correction www.xilinx.com 43
PG005 October 19, 2011

Appendix F

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
These documents provide supplemental material useful with this user guide.

1. AXI Reference Guide.

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

LogiCORE IP Defective Pixel Correction www.xilinx.com 44
PG005 October 19, 2011

Appendix F: Additional Resources

Ordering Information
The Defective Pixel Correction core is provided under the Xilinx Core License Agreement
and can be generated using the Xilinx® CORE Generator™ system. The CORE Generator
system is shipped with Xilinx ISE® Design Suite software.

A simulation evaluation license for the core is shipped with the CORE Generator system.
To access the full functionality of the core, including FPGA bitstream generation, a full
license must be obtained from Xilinx. For more information, visit the product page for this
core.

Contact your local Xilinx sales representative for pricing and availability of additional
Xilinx LogiCORE IP modules and software. Information about additional Xilinx
LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Date Version Revision

10/19/2011 1.0 Initial Xilinx release.

http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_ef-di-def-pix-corr.htm
http://www.xilinx.com

	LogiCORE IP Defective Pixel Correction v4.0
	Table of Contents
	Overview
	Standards Compliance
	Feature Summary
	Licensing
	Simulation Only
	Full System Hardware Evaluation
	Full

	Installing Your License File
	Performance
	Maximum Frequencies
	Throughput

	Resource Utilization

	Core Interfaces and Register Space
	Port Descriptions
	Processor Interfaces

	Register Space
	Common I/O Signals

	Customizing and Generating the Core
	Graphical User Interface (GUI)
	Parameter Values in the XCO File
	Output Generation
	EDK pCore Files
	General Purpose Processor Files

	Designing with the Core
	General Design Guidelines
	Selection of Threshold Values
	Control Signals and Timing

	Clocking
	Resets
	Protocol Description

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Detailed Example Design
	Directory and File Contents
	Demonstration Test Bench
	Simulation
	Messages and Warnings

	Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Migrating
	Parameter Changes in the XCO File
	Port Changes
	Functionality Changes
	Special Considerations when Migrating to AXI

	Debugging
	Application Software Development
	Programmer's Guide
	EDK pCore API Functions
	Reading and writing pCore Registers

	C Model Reference
	Features
	Overview
	Additional Core Resources
	Technical Support
	Feedback
	Defective Pixel Correction v4.0 Bit Accurate C Model and IP Core
	Document

	Software Requirements
	Unpacking and Model Contents
	Installation
	Defective Pixel Correction v4.0 Bit Accurate C Model
	Defective Pixel Correction Input and Output Video Structure
	Initializing the Defective Pixel Correction Input Structure

	C Model Example Code
	Compiling the Example with the Defective Pixel Correction C Model
	Linux (32- and 64-bit)
	Windows (32- and 64-bit)

	Running the Example, Evaluating Results

	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

