
LogiCORE IP Viterbi
Decoder v8.0

Product Guide

PG027 January 18, 2012

Viterbi Decoder v8.0 www.xilinx.com 1
PG027 January 18, 2012

Chapter 1: Overview
Standards Compliance . 4
Feature Summary . 4
Licensing . 5
Performance Characteristics . 5
Resource Utilization. 8

Chapter 2: Core Interfaces
Port Descriptions. 9
AXI4-Stream Protocol . 10

Chapter 3: Customizing and Generating the Core
CORE Generator Parameters . 17
Parameter Values in the XCO File . 23
Output Generation . 24

Chapter 4: Designing with the Core
Functional Description . 25
Design Guidelines . 33
Viterbi Decoder Non-features Summary . 35

Chapter 5: Detailed Example Design
Demonstration Test Bench . 36

Appendix A: Migrating
Parameter Changes in the XCO File. 38

Appendix B: Debugging

Appendix C: Additional Resources
Xilinx Resources . 43
Solution Centers . 43
References . 43
Technical Support. 43
Ordering Information . 44
Revision History . 44
Notice of Disclaimer . 44

Table of Contents

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 2
PG027 January 18, 2012

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 3
PG027 January 18, 2012 Product Specification

Introduction
The Viterbi Decoder is used in many Forward Error
Correction (FEC) applications and in systems where
data are transmitted and subject to errors before
reception. The Viterbi Decoder is compatible with
many common standards, such as DVB, 3GPP2, 3GPP
LTE, IEEE 802.16, Hiperlan, and Intelsat IESS-308/309.

Features
• High-speed, compact Viterbi Decoder

• Fully synchronous design using a single clock

• Parameterizable constraint length from 7 to 9

• Parameterizable convolution codes

• Parameterizable traceback length

• Decoder rates from 1/2 to 1/7

• Very low latency option

• Minimal block RAM requirements; two block
RAMs for a constraint length 7 decoder

• Serial architecture for small area

• Soft decision with parameterizable soft width

• Multichannel decoding

• Dual rate decoder

• Trellis mode

• Erasure for external puncturing

• BER monitor

• Normalization

• Best state option

• For use with Xilinx CORE Generator™ software
and Xilinx System Generator for DSP v13.4

• Compatible encoder core available in the Xilinx
CORE Generator™ software

LogiCORE IP Viterbi Decoder v8.0

LogiCORE™ IP Facts Table

Core Specifics

Supported
Device
Family(1)

Zynq™-7000, Artix™-7, Virtex® -7, Kintex™-7,
Virtex-6, Spartan® -6

Supported User
Interfaces AXI4-Stream

Provided with Core

Design Files Netlist

Example
Design Not Provided

Test Bench VHDL

Constraints File Not Provided

Simulation
Model

Verilog
VHDL

Supported S/W
Driver N/A

Tested Design Tools

Design Entry
Tools

CORE Generator tool 13.4
System Generator for DSP 13.4

Simulation(2)
Mentor Graphics ModelSim

Cadence Incisive Enterprise Simulator (IES)
Synopsys VCS and VCS MX

ISim

Synthesis Tools N/A

Support

Provided by Xilinx @ www.xilinx.com/support

1. For a complete listing of supported devices, see the release notes
for this core.

2. For the supported versions of the tools, see the ISE Design Suite
13: Release Notes Guide.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf

Viterbi Decoder v8.0 www.xilinx.com 4
PG027 January 18, 2012 Product Specification

Chapter 1

Overview

This core implements a Viterbi Decoder for decoding convolutionally encoded data. For
detailed information on the design see Chapter 4, Designing with the Core.

Standards Compliance
The Viterbi Decoder core adheres to the AMBA® AXI4-Stream standard [Ref 5].

Feature Summary
In modern communication systems, there is a requirement to transmit data and recover it,
without error, in the presence of noise. This prevents having to retransmit the data, if there
are errors, which would reduce the data rate in the system. One technique used is
convolutional coding. A convolutional encoder [Ref 2] and Viterbi Decoder [Ref 3] are
used together to provide the error correction. The convolutional encoder adds redundancy
to the original data, and in the presence of noise the Viterbi Decoder uses maximum
likelihood decoding to recover the data.

The convolutional encoder encodes the input data. A typical code rate for an encoder is
1/2, which signifies that for each input bit there are two output bits from the encoder.
Similarly, for a code rate 1/3, each input bit has three output bits. Generator polynomials
are used to encode each output bit from the convolutional encoder, thereby providing error
protection for the input data. The encoder implementation consists of XOR gates and shift
registers.

The Viterbi Decoder is configured to the same parameters as the encoder - code rate,
constraint length, and the generator polynomials. The format of the input data to the
Viterbi Decoder can be either hard or soft coding. A hard code is a binary value, whereas a
soft code has a number of levels to reflect the strength, and hence confidence level, of the
input data. This allows the Viterbi Decoder to know how strong ‘1’ or ‘0’ can be, which
results in a better error protection. The output of the Viterbi Decoder is the original data
that was input into the encoder.

The summary features for the Viterbi Decoder are as follows:

• Parameterizable decoder rates, constraint length, convolution codes and traceback
lengths

• Choice of either parallel architecture for high data throughput, or serial for smaller
area footprint

• Very low latency option

• Soft decision with parameterizable soft width

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 5
PG027 January 18, 2012 Product Specification

Chapter 1: Overview

• Other architectural options such as multichannel decoding, dual rate decoder or trellis
mode

• Erasure for external puncturing

Licensing
The Viterbi Decoder core is provided under the SignOnce IP Site License and can be
generated using the Xilinx® CORE Generator™ v13.4. The CORE Generator software is
shipped with ISE® Design Suite software v13.4.

To access the full functionality of the core, including simulation and FPGA bitstream
generation, a full license must be obtained from Xilinx. For more information, visit the
Viterbi Decoder product page.

Performance Characteristics
It is important to set a maximum period constraint on the core clock input. The data in
Tables 1-1 show clock speeds that can be achieved when this is done. It might be possible
to improve slightly on these values by trying different options for the place and route
software. If necessary, performance can be increased by selecting a part with a faster speed
grade.

Table 1-1: Viterbi Decoder Characterization Data(1)

Parallel Serial
Multichannel
3 Channels

Xilinx Part xc7vx330t xc7vx330t xc7vx330t

LUT/FF Pairs 2903 1771 2559

LUTs[4] 2525 1532 2312

FFs 1116 1915 3258

Block RAMs (36k)[5] 2 2 2

DSP Blocks 0 0 0

Max Clock Freq[2][3] 286/403 311/482 342/458

Mb/s 286/403 25/40 114/152 per channel

Notes:
1. Results shown for Viterbi Decoder with Constraint Length 7, Output Rate 1/2, Traceback 96, Soft

Width 3, and best state on Virtex® -7 FPGA.
2. Area and maximum clock frequencies are provided as a guide. They can vary with new releases of the

Xilinx implementation tools.
3. Maximum clock frequencies are shown in MHz for –1/-3 parts for Virtex-7 FPGAs. Clock frequency

does not take jitter into account and should be de-rated by an amount appropriate to the clock source
jitter specification.

4. LUT count includes route-thrus and can vary when the core is packed with other logic.
5. This is the total number of 36k block RAMs used when map was run. In reality, two 18k block RAM

primitives can usually be packed together, giving an absolute minimum total block RAM usage of
block RAMs (36k) + (block RAMs (18k) /2) (rounded up).

www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/products/intellectual-property/Viterbi_Decoder.htm
http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 6
PG027 January 18, 2012 Product Specification

Chapter 1: Overview

Latency
The latency of the core depends on the traceback length and the constraint length. If the
reduced latency option is selected, then the latency of the core is approximately halved and
the latency is only 2 times the traceback length. The latencies given in the following
sections are a count of the number of symbol inputs between s_axis_data_tdata and
the decoded data result on the output m_axis_data_tdata. The actual latency depends
on the parameters selected for the core and the true value of the latency for a given set of
parameters can be found through simulation. The tvalid signal indicates when there is
valid data on the output of the core.

Without Reduced Latency

For a parallel core, the latency is of the order

For a serial core, the latency is of the order shown. Note that the latency is in terms of valid
inputs in the serial case.

With Reduced Latency

Reduced latency is only available for the parallel core. The latency is given by

Multichannel Latency

The multichannel core always uses the standard latency option. The latency in the
multichannel case is given by

This corresponds to the reduced latency single-channel case above with channel count set
to 1.

Trellis Mode Latency

The latency of the Trellis Mode Decoder is as the equations above, but reduced by the
output_rate as the branch metric costing unit is not present in the core.

Latency 4*traceback_length constraint_length output_rate+ +≅

Latency 4*traceback_length constraint_length+≅

Latency 2*traceback_length constraint_length output_rate+ +≅

Latency 4*traceback_length*channel_count constraint_length*channel_count() output_rate+ +≅

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 7
PG027 January 18, 2012 Product Specification

Chapter 1: Overview

BER Performance
BER performance curves were generated using a hardware-in-the-loop test framework,
consisting of the Xilinx Convolution Encoder v8.0, an AWGN channel model, the Viterbi
Decoder and logic to implement BPSK modulation, soft data mapping and data
comparison and collection. Figure 1-1 shows the basic system dataflow.

Figure 1-2 shows the BER performance of the core for constraint lengths 7 and 9 with soft
width 4 and rate 1/2.

X-Ref Target - Figure 1-1

Figure 1-1: BER Performance Test System Data Flow Diagram

X-Ref Target - Figure 1-2

Figure 1-2: BER Performance for Rate 1/2 System

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 8
PG027 January 18, 2012 Product Specification

Chapter 1: Overview

Resource Utilization
The area of the core increases with the constraint length and the soft width of the input
data. Some example configurations are shown in Performance Characteristics, page 5. The
slice counts can be reduced slightly by selecting the option to map primary I/O registers
into IOBs during placement. This option should certainly be selected if the core I/Os are to
be connected directly onto a PCB via the FPGA package pins. This gives lower output
clock-to-out times and predictable setup and hold times.

Block RAM Utilization
The block RAM requirements of the core depend on the constraint length and the traceback
length. If the reduced latency option is selected, an extra block of RAM is required for the
traceback addressing. Multichannel cores also require extra traceback as each channel
requires its own traceback; thus the internal traceback length of the multichannel core is
(channel count * traceback length). See Table 1-2 for block RAM usage.

Table 1-2: Block RAM Requirements for the Viterbi Decoder with Standard Latency

Constraint Length Block RAM

7 2

8 4

9 8

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 9
PG027 January 18, 2012

Chapter 2

Core Interfaces

This chapter provides detailed descriptions for each interface.

Port Descriptions
A representative symbol of the Viterbi Decoder, with the signal names, is shown in
Figure 2-1 and Figure 2-2 and described in Table 2-1. Some of the pins are optional. These
should be selected only if they are genuinely required, as their inclusion might result in an
increase in the core size. Timing diagrams for the signals are shown in Figures 2-3 to 2-6.
X-Ref Target - Figure 2-1

Figure 2-1: Core AXI Channels

X-Ref Target - Figure 2-2

Figure 2-2: Core Schematic Symbol

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 10
PG027 January 18, 2012

Chapter 2: Core Interfaces

AXI4-Stream Protocol
The use of AXI4-Stream interfaces brings standardization and enhances interoperability of
Xilinx® IP LogiCORE™ solutions. Other than general control signals such as aclk,
aclken and aresetn, and event outputs, all inputs and outputs to the core are conveyed
using AXI4-Stream channels. A channel consists of tvalid and tdata always, plus
several optional ports and fields. In the Viterbi Decoder, the additional ports used are
tuser and tready. Together, tvalid and tready perform a handshake to transfer a
value, where the payload is tdata. The payload is indeterminate when tvalid is
deasserted.

The Viterbi Decoder operates on the values contained in the S_AXIS_DATA channel
tdata fields and outputs the results in the tdata fields of the M_AXIS_DATA channel.
For further details on AXI4-Stream Interfaces see [Ref 4] and [Ref 5].

Basic Handshake
Figure 2-3 shows the transfer of data in an AXI4-Stream channel. tvalid is driven by the
source (master) side of the channel and tready is driven by the receiver (slave). tvalid

Table 2-1: Signal Descriptions

Signal Direction Description

aclk Input Rising edge clock

aclken Input Active High clock enable (optional)

aresetn Input Active Low synchronous clear (overrides aclken)

s_axis_data_tdata Input Input data

s_axis_data_tvalid Input tvalid for S_AXIS_DATA channel. See AXI4-Stream Protocol.

s_axis_data_tready Output
tready for S_AXIS_DATA. Indicates that the core is ready to
accept data.

m_axis_data_tdata Output tdata for the output data channel, decoded output data.

m_axis_data_tvalid Output tvalid for M_AXIS_DATA channel.

m_axis_data_tready Input
tready for M_AXIS_DATA channel. Do not enable optional
tready pins or tie port high if downstream slave is always able
to accept data from M_AXIS_DATA.

s_axis_dstat_tdata Input
Input status data; for the Viterbi Decoder this is the BER
count.

s_axis_dstat_tvalid Input tvalid for S_AXIS_DSTAT channel. See AXI4-Stream Protocol.

s_axis_dstat_tready Output
tready for S_AXIS_DSTAT. Indicates that the core is ready to
accept data. Always high, except after a reset if there is not a
tready on the output.

m_axis_dstat_tdata Output
tdata for the output DSTAT channel. Outputs the number of
errors on the channel.

m_axis_dstat_tvalid Output tvalid for M_AXIS_DSTAT channel.

m_axis_dstat_tready Input
tready for M_AXIS_DSTAT channel. Do not enable or tie high
if downstream slave is always able to accept data from
M_AXIS_DSTAT.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 11
PG027 January 18, 2012

Chapter 2: Core Interfaces

indicates that the value in the payload fields (tdata and tuser) is valid. tready
indicates that the slave is ready to receive data. When both tvalid and tready are true in
a cycle, a transfer occurs. The master and slave set tvalid and tready respectively for
the next transfer appropriately.

The full flow control of AXI4-Stream aids system design because the flow of data is
self-regulating. Data loss is prevented by the presence of back pressure (tready), so that
data is only propagated when the downstream datapath is ready to process it.

For the main output channel, M_AXIS_DATA, if the output is prevented from off-loading
data because m_axis_data_tready is low then data accumulates in the core. When the
core’s internal buffers are full the core stops further operations. When the internal buffers
fill, the tready (s_axis_data_tready) is deasserted to prevent further input. This is
the normal action of back pressure.

For the status output channel, M_AXIS_DSTAT, if m_axis_dstat_tready is held low,
the core does not overwrite the internal BER value until the current value within the core
has been read because there is no internal buffering on the DSTAT channel. The core holds
m_axis_dstat_tdata static after m_axis_dstat_tvalid goes high until tready is
asserted, see Figure 2-4.

aclken
The clock enable input (aclken) is an optional pin. When aclken is deasserted (low), all
the other synchronous inputs are ignored, except aresetn, and the core remains in its
current state. This pin should be used only if it is genuinely required because it has a high
fanout within the core and can result in lower performance. aclken is a true clock enable
and causes the entire core to freeze state when it is low.

X-Ref Target - Figure 2-3

Figure 2-3: Data Transfer in an AXI4-Stream Channel

X-Ref Target - Figure 2-4

Figure 2-4: DSTAT Handshaking

aclk

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tdata D0 D1 D2 D3 D4

aclk

s_axis_dstat_tdata

s_axis_dstat_tvalid

s_axis_dstat_tready

D0

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 12
PG027 January 18, 2012

Chapter 2: Core Interfaces

An example of aclken operation is shown in Figure 2-5. In this case, the core ignores
symbol D4 as input to the block, and the current m_axis_data_tdata value remains
unchanged.

aresetn
The synchronous reset (aresetn) input can be used to re-initialize the core at any time,
regardless of the state of aclken. aresetn needs to be asserted low for at least two clock
cycles to initialize the circuit. The core becomes ready for normal operation two cycles after
aresetn goes high, if aclken is asserted. Note that the block RAM is not cleared with the
aresetn signal and there is a block of previously decoded data output from the traceback
prior to correct decoding resuming. The tvalid signal on m_axis_data is only asserted
when valid data is available on m_axis_data_tdata. The timing for the aresetn input
is shown in Figure 2-6.

S_AXIS_DATA Channel

s_axis_data_tdata

Data to be processed is passed into the core on this port. To ease interoperability with
byte-oriented buses, tdata is padded with zeros because the Viterbi Decoder bus width
can vary, depending on the type of Viterbi and the output rate. The padding bits are
ignored by the core and do not result in additional resource use. The structure is shown in
Figure 2-7 for an input rate 2 decoder. The tdata carries the data to be decoded. The
encoded bits on each of the data_in inputs can be hard coded (bus width 1) or soft coded
(bus width 3 to 5). The width of the input for a non-trellis decoder is always 8 times the
output rate. If the Dual Decoder is selected, the number of data_in inputs is equal to the
maximum output rate.

The input format for the trellis decoder is shown in Figure 2-8. The width of the trellis
mode inputs can range from 4 to 6 corresponding to a data width of 3 to 5. The trellis mode

X-Ref Target - Figure 2-5

Figure 2-5: Clock Enable Timing

aclk

aclken

s_axis_data_tvalid

s_axis_data_tdata

m_axis_data_tdata

D0 D1 D2 D3 D4 D5 D6

X-Ref Target - Figure 2-6

Figure 2-6: Synchronous Reset Timing

aclk

aclken

aresetn

sclr_i

s_axis_data_tready

1

1. sclr_i is the internal synchronous clear.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 13
PG027 January 18, 2012

Chapter 2: Core Interfaces

inputs are the outputs from an external costing of the data. There are always four inputs to
the decoder, and the decoder always functions as a rate 1/2 decoder when trellis mode is
selected. The width for the trellis decoder is always 40 bits with the sector input residing in
the top byte.The SECTOR bus has width 4. The SECTOR input is delayed by the decoder
delay and output to the SECTOR bus in m_axis_data_tdata. See Trellis Mode Decoder,
page 29. The following buses are available on s_axis_data_tdata for all decoders
except the Trellis Mode Decoder:

The following buses are available on s_axis_data_tdata for the Trellis Mode Decoder:

s_axis_data_tuser

This port is only present if if the core is punctured, or is a Dual Decoder or the block valid
signal is used with the core.

DATA_IN0 input data which can be 1 bit for hard decoding or 3 to 5 bits wide for soft coding

DATA_IN1 input data which can be 1 bit for hard decoding or 3 to 5 bits wide for soft coding

DATA_IN2 input data which can be 1 bit for hard decoding or 3 to 5 bits wide for soft coding

.... up to the output rate

TCM00, TCM01... TCM11 Input trellis data with width of 4 to 6 bits

SECTOR Input sector of width 4 bits

X-Ref Target - Figure 2-7

Figure 2-7: Input tdata for Standard Output Rate 2 Decoder with Soft Input

X-Ref Target - Figure 2-8

Figure 2-8: Input tdata for Trellis Mode Decoder

ERASE This erase input bus is only required where data on the channel has been
punctured. The inputs are used to indicate the presence of a null-symbol on the
corresponding data_in buses. ERASE(0) corresponds to DATA_IN0,
ERASE(1) corresponds to DATA_IN1, ... If an erase pin is high, the data on the
corresponding data_in bus is treated as a null-symbol internally to the
decoder. The width of the erase bus is equal to the output rate of the decoder
with a maximum value of 7.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 14
PG027 January 18, 2012

Chapter 2: Core Interfaces

The width of s_axis_data_tuser is always a multiple of 8 bits and is determined by the
presence or absence of the three signals above.

M_AXIS_DATA Channel

m_axis_data_tdata

This output bus is composed of multiple fields:

The width of the m_axis_data_tdata is 8 bits if the core is not a trellis decoder and 16
bits otherwise. See Figure 2-10.

SEL Optional, controlled by the Dual Decoder option. This is used to select the
correct set of convolutional codes for the decoding of the input data symbols
in the Dual Decoder case. When SEL is low, the input data is decoded using the
first set of convolutional codes. When it is high, the second set of convolutional
codes is applied. See Figure 4-6.

BLOCK_IN Optional, controlled by the BLOCK VALID option. Marker signal used to tie
output to input. The BLOCK_IN pin is delayed by the latency of the decoder
and output as BLOCK_OUT on the M_AXIS_DATA_TUSER bus. The
BLOCK_OUT pin shows the decoded data corresponding to the original
BLOCK_IN set of data points.

X-Ref Target - Figure 2-9

Figure 2-9: Input TUSER

DATA Decoded output data always 1 bit.

SECTOR This output is present if the decoder is a Trellis Mode Decoder and is always 4
bits. The output SECTOR is a delayed version of the input SECTOR bus. Both
buses have a fixed width of 4 bits. The delay equals the delay through the Trellis
Mode Decoder.

X-Ref Target - Figure 2-10

Figure 2-10: tdata Output

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 15
PG027 January 18, 2012

Chapter 2: Core Interfaces

m_axis_data_tuser

This port is only present if the core is a Dual Decoder or has a normalization signal or block
valid is present.

The width of m_axis_data_tuser is always a multiple of 8 bits and is determined by the
presence or absence of the three signals above.

S_AXIS_DSTAT Channel

s_axis_dstat_tdata

The width of s_axis_dstat_tdata is always 16 bits.

M_AXIS_DSTAT Channel

m_axis_dstat_tdata

SEL This signal is a delayed version of the SEL signal. The delay equals the
delay through the Dual decoder.

BLOCK_OUT This signal is a delayed version of the BLOCK_IN signal. The
BLOCK_OUT signal shows the decoded data corresponding to the
original BLOCK_IN set of data points. The delay equals the delay
through the decoder.

NORM The NORM output indicates when normalization has occurred within
the core. It gives an immediate indication of the rate of errors in the
channel. See Normalization, page 32 for additional details.

X-Ref Target - Figure 2-11

Figure 2-11: TUSER Output

BER_RANGE This is the number of symbols over which errors are counted in the BER
block, see BER, page 32.

BER The Bit Error Rate (BER) bus output (fixed width 16) gives a measurement of the
channel bit error rate by counting the difference between the re-encoded DATA_OUT
and the delayed DATA_IN to the decoder. For a full description of BER, see BER,
page 32. Trellis mode does not support a BER output.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 16
PG027 January 18, 2012

Chapter 2: Core Interfaces

X-Ref Target - Figure 2-12

Figure 2-12: DSTAT Output

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 17
PG027 January 18, 2012

Chapter 3

Customizing and Generating the Core

This chapter includes information on using Xilinx tools to customize and generate the core.

CORE Generator Parameters
Figure 3-1 shows the main CORE Generator™ Viterbi Decoder screen. To generate a core,
click Generate.

Screen 1 (Viterbi Type)
Figure 3-1 shows the Viterbi Decoder Screen 1. The parameter descriptions for this screen
follow.

X-Ref Target - Figure 3-1

Figure 3-1: Viterbi Decoder Screen 1 (Viterbi Type)

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 18
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

Component Name

The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed of the following characters: a to z,
0 to 9, and “_”.

Viterbi Type

There are four different types of Viterbi Decoders which can be selected:

• Standard: This type is the basic Viterbi Decoder.

• Multichannel: This type allows many interlaced channels of data to be decoded using
a single Viterbi Decoder. The number of channels to be decoded can be any value
between 2 and 32. See Multichannel Decoder, page 28.

• Trellis Mode: This type is a Trellis Mode Decoder using the costed data and SECTOR
inputs. See Trellis Mode Decoder, page 29.

• Dual Decoder: The type is the Dual Decoder that can be operated in dual mode with
two sets of convolutional codes. The SEL pin is present on the slave and master
TUSER buses when the decoder operates in this mode. See Dual Rate Decoder,
page 30.

Decoder Options

• Constraint Length: This is the length of the constraint register in the encoder plus 1.
This value can be any integer in the range 7 to 9 inclusive.

• Traceback Length: This is the length of the survivor or training sequence in the
traceback through the Viterbi trellis. Optimal length for the traceback is considered to
be at least 6 times the constraint length for non-punctured data. For the multichannel
Viterbi, the traceback length is the length of the traceback for each channel in the
decoder. For the reduced latency option, the traceback length must always be divisible
by 6. For punctured data, the length should be at least 12 times the constraint length.
Increasing traceback length might increase RAM requirements. See Block RAM
Utilization, page 8 for more details. Increasing traceback length also increases the
latency of the core. See Latency, page 6 for additional details.

• Use Reduced Latency: This option reduces the latency on the core by approximately
half. The reduced latency option has a slight speed penalty and is not available with
the multichannel Viterbi. See Latency, page 6 section for additional details.

Architecture

• Parallel: Large but fast Viterbi Decoder.

• Serial: Small but serial processing of the input data (see Serial Decoder).

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 19
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

Screen 2 (Architecture and Data Format)
See Figure 3-2. The parameter descriptions for this screen follow.

Best State

The best state option starts the traceback of the core from the optimal state.

• Use Best State: The best state selection gives improved BER performance for highly
punctured data.

• Best State Width: The best state selects the best state from the costs for each state.
Most of the lower bits in the cost are redundant in the cost comparison, and the best
state area requirements can be reduced by selecting a smaller width than the full ACS
width. If the width is set to 6, then the full cost is used in the best state selection for a
soft width of 3. If the width is set to 3, then the lower three bits are ignored in the best
state calculations.

Puncturing Options

• None: This indicates there is no external puncturing on the core.

• External (Erased Symbols): This indicates the presence of the erased bus ERASE on
the TUSER input and allows the core to be de-punctured externally prior to decoding.
ERASE(0) high indicates that the sample on DATA_IN0 is a null symbol; ERASE(1)
high indicates that the data on DATA_IN1 is a null symbol;... The size of the erase bus
is equal to the output rate of the decoder, or the maximum output rate if the Dual
Decoder is selected.

X-Ref Target - Figure 3-2

Figure 3-2: Viterbi Decoder Screen 2 (Best State, Puncturing and Data Format)

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 20
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

Coding

There are two types of coding available: Soft Coding and Hard Coding.

• Soft Coding: Uses the Euclidean metric to cost the incoming data against the branches
of the Viterbi trellis.

• Hard Coding: Uses the Hamming difference between the input data bits and the
branches of the Viterbi trellis. Hard coding is only available for the standard parallel
core.

Soft Width

The input width of soft-coded data is in the range 3 to 5. Larger widths require more logic.
If the core is implemented in serial mode, larger soft widths also increase the serial
processing time. See Table 4-3 for the minimum number of clock cycles required for a rate
1/2 decoder in the serial case.

Data Format

There are two data formats available for Soft Coding: Signed Magnitude and Offset Binary
Table 4-1 shows the required format for the data for the case of soft width 3 for each of the
data types. Soft width 4 and 5 follow a similar format.

Screen 3 (Output Rate and Convolution Code)
See Figure 3-3. The parameter descriptions for this screen follow.

X-Ref Target - Figure 3-3

Figure 3-3: Viterbi Decoder Screen 3 (Output Rate and Convolution Codes)

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 21
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

Convolution Code0 Radix

The convolutional codes can be input and viewed in binary, octal, or decimal.

Output Rate0

Output Rate is the symbol output rate at the Encoder. Output Rate0 can be any value from
2 to 7. Output Rate0 is the output rate used if the decoder is non-dual. If the decoder is
dual, then Output Rate0 is the first output rate and the rate used by the decoder when the
SEL input is low.

Convolution0 Codes

These codes are the convolutional codes used in the encoder. The codes can be entered
(and viewed) in binary, octal, and decimal. If the decoder is dual, then Convolution0 Codes
are the codes applied in the decoder when the SEL input is low.

If the Dual Decoder type is selected, then a second output rate and convolution code
selection screen is shown:

Output Rate1

Output Rate1 can be any value from 2 to 7. This is the second output rate used if the
decoder is dual. The incoming data is decoded at this rate when the SEL input is high.
Output Rate1 is not used for the non-Dual Decoder and the screen is only available if Dual
Decoder is selected.

Convolution Code1 Radix

The convolutional codes can be input and viewed in binary, octal, or decimal.

Convolution1 Codes

The convolutional codes are used in the decoder when the decoder is dual and the SEL
input is high. The codes are entered in binary, octal, or decimal.

Screen 4/5 (Puncturing and BER Options)
See Figure 3-4. The parameter descriptions for this screen follow.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 22
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

BER Options

• Use BER Symbol Count: Check this box if a Bit Error Rate (BER) monitor is required.
The core compares the delayed incoming data with an encoded version of the
outgoing decoded data to obtain an estimate of the BER on the channel. See BER,
page 32 for additional details. The Number of BER symbols over which the estimate is
given is dynamically variable and is input on the s_axis_dstat_tdata bus and
can range from 3 to (216-1).

Optional Pins

Check the boxes of the optional pins that are required: NORM, BLOCK VALID, TREADY
and ACLKEN. Select only pins that are genuinely required, because each selected pin
results in more FPGA resources being used and can result in a reduced maximum
operating frequency.

NORM

Check this box if a normalization output is required. For additional details, see
Normalization, page 32.

Block Valid

Check this box if BLOCK_IN and BLOCK_OUT signals are required. These signals track
the movement of a block of data through the decoder. BLOCK_OUT corresponds to
BLOCK_IN delayed by the decoder latency.

X-Ref Target - Figure 3-4

Figure 3-4: Viterbi Decoder Screen 5 (BER and Optional Pins)

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 23
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

Parameter Ranges
Valid ranges for the parameters are shown in Table 3-1.

Parameter Values in the XCO File

Table 3-1: Parameter Ranges

Parameter Min Max Notes

Channels 1 32

Traceback Length 12 128 [1]

Constraint Length 7 9 -

Best State Width 3 8 -

Soft Width 3 5 -

Output Rates 2 7 [2]

Convolution Code Bit width = constraint length -

Notes:
1. Traceback length must be divisible by 6 for the reduced latency case and ranges from 12 to 126.
2. For the trellis mode, the output rate is always 2.

Table 3-2: Parameter Values in the XCO File

GUI Name Default Value Valid Range XCO parameter

Component Name Viterbi_v8_0 component_name

ACLKEN false False/true aclken

Architecture Parallel Parallel/Serial architecture

BER Symbol Count true False/true ber_symbol_count

Best State true False/true best_state

Best State Width 3 3 to 8 best_state_width

Block Valid false False/true block_valid

Channels 1 1 to 32 channels

Coding
Soft_Coding

Soft_Coding
Hard_Coding

coding

Constraint Length 7 7 to 9 constraint_length

Convolution0 Code0
1111001

Number of bits
must equal

constraint length

convolution0_code0

Convolution0 Code1 1011011 convolution0_code1

Convolution0 Code2 0 convolution0_code2

Convolution0 Code3 0 convolution0_code3

Convolution0 Code4 0 convolution0_code4

Convolution0 Code5 0 convolution0_code5

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 24
PG027 January 18, 2012

Chapter 3: Customizing and Generating the Core

Output Generation
Several files are produced when a core is generated, and customized instantiation
templates for Verilog and VHDL design flows are provided in the.veo and .vho files,
respectively. For detailed instructions, see the CORE Generator software documentation

Convolution0 Code6 0 convolution0_code6

Convolution1 Code0 1111001 convolution1_code0

Convolution1 Code1 1011011 convolution1_code1

Convolution1 Code2 0 convolution1_code2

Convolution1 Code3 0 convolution1_code3

Convolution1 Code4 0 convolution1_code4

Convolution1 Code5 0 convolution1_code5

Convolution1 Code6 0 convolution1_code6

Convolution Code0
Radix Binary

Binary
Octal

Decimal

convolution_code_0_radix

Convolution Code1
Radix Binary

Binary
Octal

Decimal

convolution_code_1_radix

Data Format
Signed_Magnitude

Signed_Magnitude
Offset_Binary

data_format

NORM False False/true Norm

Output Rate0 2 2 to 7 output_rate0

Output Rate1 2 2 to 7 output_rate1

Puncturing
None

None
External

puncturing

Reduced Latency False False/true reduced_latency

Soft Width 3 3 to 5 soft_width

Traceback Length 42 12 to 128 traceback_length

TREADY True False/true tready

Viterbi Type

Standard

Standard
Multi_Channel
Trellis_Mode

Dual_Decoder

viterbi_type

Table 3-2: Parameter Values in the XCO File (Cont’d)

GUI Name Default Value Valid Range XCO parameter

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise13-4.htm

Viterbi Decoder v8.0 www.xilinx.com 25
PG027 January 18, 2012

Chapter 4

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easier.

Functional Description
This core implements a Viterbi Decoder for decoding convolutionally encoded data. For
details of the encoding process, see [Ref 1]. This is available in Xilinx® CORE Generator™
software. The decoder core consists of two basic architectures: a fully parallel
implementation which gives fast data throughput at the expense of silicon area and a serial
implementation which occupies a small area but requires a fixed number of clock cycles
per decoded result.

Viterbi decoding decodes the data originally input to the convolutional encoder by finding
an optimal path through all the possible states of the encoder. For a constraint length 7,
there are 64 states and for a constraint length 9 there are 256. The basic decoder core
consists of three main blocks as shown in Figure 4-1.

Costing
The first block is the branch-metric-unit (BMU). This module costs the incoming data. For
the fully parallel decoder, the incoming data can be hard coded with bit width 1 or soft
coded with a parameterizable bit width which can be set to any value from 3 to 5.
Hard-coded data is decoded using the Hamming method of decoding, whereas soft data is
decoded using an Euclidean metric. In hard coding, the demodulator makes a firm or hard
decision on whether a one or zero is transmitted and provides no other information to the
decoder on how reliable the decision is. For soft decoding, the demodulator provides the
decoder with some side information together with the decision. The extra information
provides the decoder with a measure of confidence for the decision. Soft-coded data gives
a significantly better BER performance compared with hard-coded data. Soft decision
offers approximately a 3 dB increase in coding gain over hard-decision decoding. Hard
coding is available only for the Standard parallel or Multichannel Viterbi. Erasure (external
puncturing) is not available with hard coding.

X-Ref Target - Figure 4-1

Figure 4-1: Viterbi Decoder Block Diagram

BMU ACS TB

Encoded
data from

noisy
channel

Branch Metric Unit Add Compare Select Traceback

Costs to
each state

Best path to
each state Decoded

data

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 26
PG027 January 18, 2012

Chapter 4: Designing with the Core

There are two available data formats for soft coding: soft signed magnitude and offset
binary. See Table 4-1 for the data formats for the case of soft width 3.

Decoding
The second block in the decoder is the add-compare-select (ACS) unit. This block selects
the optimal path to each state in the Viterbi trellis. Figure 4-2 shows one stage in the Viterbi
trellis for a constraint length 3 decoder. The ACS block uses the convolutional codes to
extract the correct cost from the BMU for each branch in the trellis.

The BER performance of the Viterbi algorithm varies greatly with different convolutional
code sets; some of the standard convolutional codes are shown in Table 4-2.

The ACS module decodes for each state in the trellis. Thus, for a constraint length 7
decoder which has 64 states, there are 64 sub-blocks in the ACS block.

Table 4-1: Data Format for Soft Width 3

Signed Magnitude Offset-Binary
Strongest 1 111 111

110 110

101 101
Weakest 1 100 100

Weakest 0 000 011

001 010
010 001

Strongest 0 011 000

X-Ref Target - Figure 4-2

Figure 4-2: State Transitions for Constraint Length 3

Table 4-2: Standard Convolution Codes

Constraint Length
Output Rate = 2 Output Rate = 3

binary octal binary octal

7
1111001
1011011

171
133

1001111
1010111
1101101

117
127
155

9
101110001
111101011

 561
753

101101111
110110011
111001001

557
663
711

State
00

01

10

11

0/00

0/11

1/11
1/00

0/10

1/01

0/01

1/10

0 1

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 27
PG027 January 18, 2012

Chapter 4: Designing with the Core

If the core is implemented in serial mode, the amount of silicon required for each sub-block
is very small. A decoder of constraint length 7 can be implemented on a small Spartan®
device. See Performance Characteristics, page 5 for further characterization of the decoder.

Traceback
The final block in the decoder is the traceback block. The actual decoding of symbols into
the original data is accomplished by tracing the maximum likelihood path backwards
through the trellis. Up to a limit, a longer sequence of tracing results in a more accurate
path through the trellis. After a number of symbols equal to at least six times the constraint
length, the decoded data is output.Thus the Viterbi always requires at least twice the
traceback length of data to be input subsequently to a given input for that input to be
successfully decoded. The traceback starts from zero or best state; the best state is
estimated from the ACS costs. The traceback length is the number of trellis states processed
before the decoder makes a decision on a bit. The decoded data is output only after a
traceback length number of bits has been traced through. In other words, the traceback
length determines the length of the training sequence for the Viterbi Decoder.

The length of the traceback is parameterizable and can be set to any value between 12 and
128. For the reduced latency option, the traceback length can only be a multiple of 6
between 12 and 126. The recommended value for non-punctured decoding is at least 6
times the constraint length. For data that has been punctured, that is, symbols removed
prior to transmission over the channel, a larger value traceback length is required; usually,
it is at least 12 times the constraint length to obtain optimal BER performance.

A best state option is available to select the starting location for the traceback from the state
with minimal cost. There is also a reduced latency option which reduces the latency on the
core by approximately half. The latency is of the order of two times the traceback length for
reduced latency; see Latency, page 6. The reduced latency option has a slight speed penalty
and is not available with the multichannel or serial core. The traceback block is
implemented in block RAM, and the larger the value of the traceback length, the greater
the block RAM requirements. See Performance Characteristics, page 5 for additional
details.

Serial Decoder
Data can be processed a bit at a time if the serial option is selected. This results in a smaller
design but also a significant increase in latency. The number of clock cycles needed to
process each set of input symbols depends on the output rate and the soft width of the
data. See Table 4-3 for the minimum number of clock cycles required for each set of input
symbols.

number of clock cycles = soft_width + output_rate + 6

The enabling of the data through the core is controlled by the tvalid and tready signals
on the s_axis_data_tdata. See Figure 4-3 for an example of the AXI handshaking on
the serial core.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 28
PG027 January 18, 2012

Chapter 4: Designing with the Core

Multichannel Decoder
The multichannel decoder decodes many interlaced channels using a single Viterbi
Decoder. The input to the multichannel decoder is interlaced encoded data on the slave
DATA channel. For a channel count of 3, channel 1 data is input followed by channel 2 and
then channel 3 in a repeating sequence. The output is interlaced decoded data on the
master DATA channel. See Figure 4-4. The multichannel decoder can decode from 2 to 32
channels. The larger the number of channels, the greater the block RAM requirements, as
each channel requires its own traceback.

The BER from the multichannel decoder, if selected, gives the average number of errors
present over all the input channels.

The multichannel decoder can decode at high speeds, but the true output rate of the
decoder is equal to the speed divided by the number of channels. See Performance
Characteristics, page 5 for characterization results on the multichannel decoder.

Table 4-3: Minimum Required Clock Cycles Per Input Symbol Set for a Rate 1/2
Serial Decoder

Soft Width Minimum Clock Cycles

3 11

4 12

5 13

X-Ref Target - Figure 4-3

Figure 4-3: Handshaking Example on the Serial Core

aclk

s_axis_data_tdata

s_axis_data_tvalid

s_axis_data_tready

m_axis_data_tdata

m_axis_data_tvalid

m_axis_data_tready

D0 D1 D2

No of cyles dependent on soft width and rate

X-Ref Target - Figure 4-4

Figure 4-4: Multichannel Decoder with Channel Count 3

CLK

DATA_IN0

DATA_IN1

f

g

h

DATA_OUT

i

j

Interlaced input data

Channel 1 input data

D0_1

D1_1

D0_2

D1_2

D0_3

D1_3

D0_1

D1_1

D0_2

D1_2

D0_3

D1_3

D0_1

D1_1

D0_2

D1_2

D0_3

D1_3

Decoder latency between symbols in and decoded symbols out

Channel 1 output data

D_1 D_3 D_1 D_2 D_3D_2 D_1 D_2

D0_1

D1_1

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 29
PG027 January 18, 2012

Chapter 4: Designing with the Core

Trellis Mode Decoder
For systems that are both power-limited and bandwidth-limited, Trellis Coded
Modulation (TCM), or Pragmatic Trellis Coded Modulation (PTCM) as it can be known, is
used. The modulation schemes are generally 8-PSK and 16-PSK. The LogiCORE™ IP
Viterbi Decoder as used in a trellis decoder system is shown by the grayed out box in the
trellis mode system diagram shown in Figure 4-5. In trellis mode, the BMU in the Viterbi is
not used, but the costing is done externally using a Branch Metrics cost table. The ACS and
traceback sections are used as normal. The output from the cost table is four TCM buses
and a 4-bit Sector Bus. The address for the Branch Metrics cost table is provided by the I
and Q outputs after symbol recovery from the PSK demodulator.

Pragmatic Trellis Coded Modulation (PTCM) has the following setup:

• A standard rate 1/2 Viterbi Decoder is used.

• The data is costed externally to the decoder, bypasses the BMU, and sent to the ACS.

Some points to note:

• Each TCM bus can be 4 to 6 bits wide depending upon the TCM bus width
selected on the Viterbi Decoder.

• The 4 to 6 bits are unsigned cost values that are applied to the ACS module in the
Viterbi Decoder. If the width of the generated costs is less than the (soft width+1),
then the data should be tied to the lower bits and the remaining TCM input bits
tied to zero.

• The received symbol or phase angle is converted to four branch metrics and a sector
number externally to the decoder using an external lookup table.

X-Ref Target - Figure 4-5

Figure 4-5: Viterbi Decoder in Trellis Receiver

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 30
PG027 January 18, 2012

Chapter 4: Designing with the Core

• The sector number identifies the part of the I-Q plane where the symbol was received.
The branch metrics are then processed by the Trellis Mode Decoder. The sector
number is delayed by the Viterbi latency in the Trellis Mode Decoder.

• The costed data and sector are input to the core on the s_axis_data_tdata bus.
The decoded data along with the output sector are output from the core on the
m_axis_data_tdata bus.

Dual Rate Decoder
For a given constraint length and traceback-length, the core can function as a Dual
Decoder, that is, two sets of convolutional codes and output rates can be used internally to
the decoder. The dual-decoder offers significant device area savings when two different
decoders with the same constraint length are required. For example, as a constraint length
7 decoder the core can decode as a rate 1/2 decoder and a rate 1/3 decoder. The
implementation requires only a little additional logic for the extra costing involved in the
BMU and some multiplexing in the ACS unit (see Figure 4-1). The Dual Decoder can be
implemented as either parallel or serial architecture, and erasure pins can be present on the
input. The selection of the decoder rate and codes is through the SEL pin (see Figure 4-6).
When the SEL pin is low, output rate0 and convolution0_codes are used in the decoding.
When the SEL pin is high, then the rate is 1/output_rate1, and the convolution1_codes are
used to decode the incoming data. The SEL_O pin shows the decoded data corresponding
to the original SEL set of data points.The number of input data buses is equal to the max of
the two output rates.

Erasure
If the data has been punctured prior to transmission, then de-puncturing is carried out
externally to the Viterbi Decoder (see Figures 4-7 and 4-8). The presence of null-symbols
(that is, symbols which have been deleted prior to transmission across the channel) is
indicated using the erasure input ERASE. The decoder functions exactly as a
non-punctured Viterbi Decoder, except the corresponding DATA_IN inputs are ignored
when the erased input bit is high. If ERASE(0) is high, then the input on DATA_IN0 is
viewed as a null-symbol. If ERASE(1) is high, then the input on DATA_IN1 is viewed as a
null symbol, etc. Although the normal usage of erasure is with a rate 1/2 decoder, the
erasure pins can be present for output rates greater than 2. Erasure can be used with the

X-Ref Target - Figure 4-6

Figure 4-6: SEL Input for Dual Decoder

Data encoded with convolution codes 0

Data encoded with convolution codes 1

CLK

SEL

DATA_IN0

DATA_IN1

DS247_04_051806

 DI0_0 DI0_0 DI0_1 DI0_1

 DI1_0 DI1_0 DI1_ 1 DI1_1

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 31
PG027 January 18, 2012

Chapter 4: Designing with the Core

Standard, Multichannel and Dual Decoder. Erasure cannot be present on the Trellis Mode
Decoder. See the timing diagram in Figure 4-9 for a decoder working with external rate 3/
4 erasure. Note that DATA_IN0, DATA_IN1 are the fields on the s_axis_data_tdata
bus and the ERASE(0) and ERASE(1) are on the s_axis_data_tuser bus. The output
data, DATA_OUT is on the m_axis_data_tdata bus.
X-Ref Target - Figure 4-7

Figure 4-7: Puncturing Encoded Data with 3/4 Puncture Rate with Single-Channel
Output

X-Ref Target - Figure 4-8

Figure 4-8: De-puncturing Rate 3/4 Punctured Data with Single-Channel Soft Input
and Erasure

�

X-Ref Target - Figure 4-9

Figure 4-9: Viterbi Decoder with Erasure Input Following a Rate 3/4 Pattern

CLK

ERASE(0)

ERASE(1)

DATA_IN0

DATA_IN1

f

g

DATA_OUT

DATA_IN ignored

Decoder latency between symbols in and decoded symbols out

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 32
PG027 January 18, 2012

Chapter 4: Designing with the Core

BER
The Bit Error Rate (BER) option on the decoder monitors the error rate on the transmission
channel. Decoded data from the Viterbi Decoder is re-encoded using the convolutional
encoder and compared with a delayed version of the data input to the decoder. An error is
indicated if the delayed and encoded data differ (see Figure 4-10). The count is
incremented on a symbol-by-symbol basis. For example, if both the I & Q outputs differ
from the expected I and Q for a rate 1/2 decoder, then this is only considered as one error
on the BER count. The two sets of symbols can differ if there is an error on the channel or
if the Viterbi Decoder has decoded incorrectly. The probability of the decoder incorrectly
decoding is significantly smaller than the probability of a channel bit error; therefore the
BER output gives a good estimate of the errors on the channel.

The BER symbol count which is input on the DSTAT channel determines the number of
input symbols over which the error count takes place.This value can be varied
dynamically. The output error count BER is the number of errors that has been counted
during the BER symbol count. m_axis_dstat_valid is asserted when BER symbol
count input symbols have been processed and the bit error rate value is present on
m_axis_dstat_tdata. The BER output always has a width of 16; therefore the
maximum number of errors that can be counted is (216-1). If more errors occur than this
upper limit, the maximum number of errors is output, that is, BER is set to all 1s.

Normalization
The NORM signal is an optional output that gives immediate monitoring of the errors on
the channel. As the metrics grow in the ACS unit, they must be normalized to avoid
overflow. When normalization occurs the decoder subtracts a fixed value from all metrics
and asserts the normalization signal. If the ACS unit requires normalization, then there are
uncertainties or errors on the channel. The more frequent the normalization, the higher the
rate of errors present. The actual frequency of the normalization depends on many factors,
in particular the soft width and the output rate of the decoder.

The normalization signal can be used to detect Viterbi synchronization. A high
normalization rate (exceeding a certain threshold) indicates loss of synchronization. A low
normalization rate (less than a certain threshold) indicates Viterbi synchronization has
been achieved. In general, the normalization rate is inversely proportional to the
Signal-to-Noise Ratio (SNR) at the decoder input.

Synchronization
If required the synchronization status of the core can be monitored externally to the core.
The method involves the analysis of both the normalization output from the ACS modules
within the core and the BER performance of the core. A complete description of the method
used is provided in [Ref 8].

X-Ref Target - Figure 4-10

Figure 4-10: Bit Error Rate Calculation

Delay

Encoder Decoder

Compare
Count

Differences

BER
Out

Channel Symbols

DS247_07_051906

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 33
PG027 January 18, 2012

Chapter 4: Designing with the Core

The Normalization rate by itself gives an indication of the Viterbi Decoder synchronization
status. A high normalization rate, exceeding a predetermined threshold, implies a loss of
synchronization. Similarly, the BER rate of the core, by itself, can indicate a loss of
synchronization. Thus, if the BER rate, or the normalization rate, was used in isolation, the
threshold required would vary with the noise on the channel. The BER rate, like the
normalization rate, would therefore be dependent on the signal to noise ratio Eb/No. To
monitor synchronization, both the BER rate and the normalization rate are required to
achieve a synchronization method that is independent of Eb/No.

Packet Handling
Viterbi decoding is a continuous operation, but the input to the decoder can be packet
based rather than continuous streams. For data encoded in packets, it is necessary to
terminate the encoder between the packets by the insertion of what is called zero tail bits.
For a constraint length 7 decoder, there are 6 zero bits inserted into the encoder at the end
of the packet. For a general Viterbi (constraint length -1), tail bits are required to return the
encoder back to state zero. The effect of these zero tail bits is to return the Viterbi trellis to
zero state and also the next packet starts from state zero. The Viterbi handles tail bits when
working in any of the basic modes; no additional signals or control circuitry is required.

Although zero-tail bits or zero-tail termination is the standard method for handling
packets within the Viterbi Decoder, there is a rate loss on the channel caused by constraint
length -1 information bits being added to the original message. If the original packet
contained m bits, the output code words are of length m + K -1, where K is the constraint
length. Thus, the effective rate on the channel becomes:

For large packets, the rate loss becomes insignificant. For smaller packets, the method of
tail-biting avoids the issue of the fractional rate loss by letting the last K-1 information bits
define the starting state of the encoder. Only the data is encoded, that is, exactly m encoded
bits are produced. In this case, no rate loss occurs and the encoding always starts and ends
in the same state, but not necessarily the zero state. For a full description of the Viterbi
Decoder and trellis termination and tail-biting, see [Ref 7].

Design Guidelines
The following section provide guidelines on the best design practices for inclusion of the
LogiCORE™ IP Viterbi Decoder core within a system.

Data Format
Use soft coding, as this gives a better BER performance. For the soft coding width, 3 or 4
bits should be sufficient. If the width is any larger, the size of the ACS is increased but does
not give a large improvement in BER performance.

The format for soft width 3 is shown in Table 4-1. To extend the soft width input, for
example, 4 bits, see the example shown:

RateNew RateX 1 K 1–
m K 1–+
------------------------–

 =

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 34
PG027 January 18, 2012

Chapter 4: Designing with the Core

For the signed magnitude, it is the lower bits that are extended. The MSB is the sign bit. For
offset binary, a lower bit is added to extend the range. In the example, this is a range from
low, 0, to high, 15.

Data Input
Remove the DC bias in the soft input data before entering the data into the Viterbi Decoder.
Use symmetric rounding when the soft data width is larger than the Viterbi input data
width. Note that the Viterbi input format is a balanced number system, while the 2’s
complement number system is unbalanced with one more negative number than positive
number, which can lead to 1/2 LSB DC offset if mapping does not take this into
consideration.

Best State
This is on by default because it tends to give a better BER performance, especially for
punctured data. The improvement is in the order of 0.25 dB. For non-punctured data, the
option is not really needed. However, there is a penalty in the area of the core if this option
is used. There is the flexibility to change the width if there are issues with noise.

Control Signals
Use the aresetn so as to put the decoder in a good start-up state. Make use of the DCM
Lock signal to control the aresetn. If there is a need to save power, and not use the core,
use the aclken to stop, or start the core operations. However, do not use aclken or
aresetn to deal with packets of data. If dealing with blocks of data, use the BlockIn/Out
signals. To qualify the output data AND the tvalid and BlockOut signals together.

TVALID
Use the tvalid signal to validate the data. This signal could be used as a clock enable to
store the output from the Viterbi Decoder, for example, in a FIFO or memory.

NORM
Use the NORM signal to get an idea of the errors in the Viterbi Decoder and how it is
dealing with the internal path metrics. If it is a noisy system, there will be normalizing of
the metrics and a NORM pulse will appear.

Keep it Registered
To simplify timing and increase system performance in an FPGA design, keep everything
registered, that is, all inputs and outputs from the user application should come from, or
connect to a flip-flop. While registering signals might not be possible for all paths, it
simplifies timing analysis.

Signed Magnitude Offset Binary

Strongest..1 1111 1111

Weakest..1 1000 1000

Weakest..0 0000 0111

Strongest..0 0111 0000

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 35
PG027 January 18, 2012

Chapter 4: Designing with the Core

Viterbi Decoder Non-features Summary
This section outlines the features that might be external to the core, depending upon the
system being implemented.

Multichannel BER
If there is a requirement for individual BER circuits, these have to be done externally to the
core.

Log Likelihood Ratio
The Log Likelihood Ratio (LLR) values that create the soft code inputs have to be
generated externally to the core. See resources on the internet for information on how to do
this.

De-puncturing
The Viterbi Decoder does not perform any kind of internal de-puncturing. Any
de-puncturing has to be performed externally.

Trellis Mode
In this mode, the external costing table has to be created. See Trellis Mode Decoder.

Factors Affecting BER Performance
When viewing the Viterbi Decoder as part of a whole communication system, there are a
few parameters that could affect BER performance. For the core, parameters such as data
format, constraint length, and traceback length, use of best state have an effect. However,
these are generally determined by the standard being implemented. After these have been
taken care of, then outside factors need to be taken into consideration, for example
modulation type, the channel model used, Eb/No value, convolutional codes and DC bias.
For factors that affect packets of data, see [Ref 7].

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 36
PG027 January 18, 2012

Chapter 5

Detailed Example Design

Demonstration Test Bench
When the core is generated using CORE Generator™, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: <component_name>/
demo_tb/tb_<component_name>.vhd in the CORE Generator output directory. The
source code is comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Viterbi Decoder core. If the CORE
Generator project options were set to generate a structural model, a VHDL or Verilog
netlist named <component_name>.vhd or <component_name>.v was generated. If
this file is not present, generate it using the netgen program, for example:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>.vhd

Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench's signals in your simulator's waveform
viewer to see the operations of the test bench.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates a clock signal

• Generates a source data table consisting of a sinusoid

• Serializes and convolution encodes the source data to create input data for the Viterbi
Decoder core

• Inserts errors into the input data to demonstrate error correction

• If external erasure is supported, erase inputs using a predefined puncture pattern

• Drives the core's input signals to demonstrate core features

• Checks that the core's output signals obey AXI4 protocol rules (data values are not
checked in order to keep the test bench simple)

• Provides signals showing the separate fields of AXI4-Stream TDATA and TUSER
signals

• Provides signals showing the source data before serialization and encoding, and the
deserialized decoded output data

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 37
PG027 January 18, 2012

Chapter 5: Detailed Example Design

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed.

2. Decode data containing no errors.

3. Decode and correct data containing some errors.

4. Try to decode and correct data containing many errors, sometimes failing to correct the
errors.

5. If BER statistics are supported, set up BER statistics over various ranges.

6. Demonstrate the use of AXI4-Stream handshaking signals tvalid and tready.

7. Demonstrate the effect of asserting aresetn.

8. If aclken is present: demonstrate the effect of toggling aclken.

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to use different source data or
different control information.

Source data is pre-generated in the create_src_table function and stored in the
SRC_DATA constant. Data from this constant is serialized by the s_data_stimuli
process, convolution encoded by the conv_data procedure and driven into the core by
the encode_data procedure, which also inserts errors and controls erasures. Data is
driven continuously throughout the operation of the test bench: new input data is required
for the Viterbi Decoder core to produce output data.

Source data before serialization is shown on the s_axis_data_tdata_src_des signal,
which is synchronized to the corresponding serialized and encoded data being driven into
the Viterbi Decoder core. Output data is deserialized by the deserialize_output
process and shown on the m_axis_data_tdata_des signal. These signals can be
viewed in a simulator to compare source data and decoded, corrected output data.

If external erasure is supported, the test bench models the effect of puncturing by a
convolution encoder, by de-puncturing and inserting null symbols in the input data. The
puncture rate is defined by the PUNC_INPUT_RATE and PUNC_OUTPUT_RATE
constants, and the puncture pattern is defined in the PUNC_CODES constant. These
constants can be modified to change the puncture rate and pattern.

BER statistics are controlled by the s_dstat_stimuli process: this selects the BER range
and drives transactions on the S_AXIS_DSTAT channel to set up BER statistics generation.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD
constant.

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 38
PG027 January 18, 2012

Appendix A

Migrating

This appendix describes migrating from older versions of the IP to the current IP release.

Parameter Changes in the XCO File
The CORE Generator™ core update functionality can be used to update an existing XCO
file from v7.0 to v8.0, but the update mechanism alone does not create a core compatible
with v7.0. Table A-1 shows the changes to XCO parameters from v7.0 to v8.0.

Table A-1: Parameter Changes in XCO FIle

Version 7.0 Version 8.0 Notes

architecture Unchanged

ber_symbol_count Ber_symbol_count Different functionality as the BER count is
now input on dynamically on the DSTAT
channel

ber_thresh Removed Synchronization not supported in v8.0

best_state Unchanged

best_state_width Unchanged

block_valid Unchanged

ce aclken Renamed from ce to aclken for AXI4
standardization

channels Unchanged

coding Unchanged

component_name Unchanged

constraint_length Unchanged Support constraint length reduced to 7 to 9

convolution0_code0 Unchanged

convolution0_code1 Unchanged

convolution0_code2 Unchanged

convolution0_code3 Unchanged

convolution0_code4 Unchanged

convolution0_code5 Unchanged

convolution0_code6 Unchanged

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 39
PG027 January 18, 2012

Appendix A: Migrating

convolution1_code0 Unchanged

convolution1_code1 Unchanged

convolution1_code2 Unchanged

convolution1_code3 Unchanged

convolution1_code4 Unchanged

convolution1_code5 Unchanged

convolution1_code6 Unchanged

convolution_code_0_radix Unchanged

convolution_code_1_radix Unchanged

data_format Unchanged

direct_traceback Removed Packet options not supported in v8.0

dynamic_thresholds Removed Synchronization not supported in v8.0

maximum_direct Removed Packet options not supported in v8.0

norm Unchanged

norm_thresh Removed Synchronization not supported in v8.0

number_of_ber_symbols Removed BER symbol count is input dynamically

output_rate0 Unchanged

output_rate1 Unchanged

puncturing Unchanged

rdy Replaced with AXI4 control signals

reduced_latency Unchanged

soft_width Unchanged

synchronization Removed Synchronization not supported in v8.0

synchronous_clear aresetn aresetn always present on core

traceback_length Unchanged

trellis_initialization Removed Packet options not supported in v8.0

viterbi_type Unchanged

Table A-1: Parameter Changes in XCO FIle (Cont’d)

Version 7.0 Version 8.0 Notes

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 40
PG027 January 18, 2012

Appendix A: Migrating

Table A-2: Port Changes

Version 7.0 Version 8.0 Notes

 DATA_IN0 s_axis_data_tdata

Now exists as a field within s_axis_data_tdata

 DATA_IN1 s_axis_data_tdata

 DATA_IN2 s_axis_data_tdata

 DATA_IN3 s_axis_data_tdata

 DATA_IN4 s_axis_data_tdata

 DATA_IN5 s_axis_data_tdata

 DATA_IN6 s_axis_data_tdata

 TCM00 s_axis_data_tdata

Now exists as a field within s_axis_data_tdata
when the core is in trellis mode

 TCM01 s_axis_data_tdata

 TCM10 s_axis_data_tdata

 TCM11 s_axis_data_tdata

 SECTOR_IN s_axis_data_tdata Occupies the top byte of the input tdata
when the core is in trellis mode

 BLOCK_IN s_axis_data_tuser Now exists as a field within s_axis_data_tuser

 PACKET_START Removed Packet processing removed in v8.0 of the
core

 TB_BLOCK Removed

 PS_STATE Removed

 TB_STATE Removed

 ber_thresh Removed Synchronization removed in v8.0 of the core

 NORM_THRESH Removed

 ERASE s_axis_data_tuser Now exists as a field within s_axis_data_tuser

 DATA_OUT m_axis_data_tdata Now exists as a field within
m_axis_data_tdata

 DATA_OUT_DIRECT Removed Packet processing removed in v8.0 of the core

 DATA_OUT_REVERSE Removed

 PACKET_START_O Removed

 TB_BLOCK_O Removed

 DIRECT_RDY Removed

 REVERSE_RDY Removed

 BER m_axis_dstat_tdata The dstat input and output channel now
handle the BER count which can be varied
dynamically

 BER_DONE m_axis_dstat_tvalid

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 41
PG027 January 18, 2012

Appendix A: Migrating

 NORM m_axis_data_tuser Now exists as a field within
m_axis_data_tuser

 SECTOR_OUT m_axis_data_tdata Occupies the top byte of the output data if
the core is in trellis mode

 BLOCK_OUT m_axis_data_tuser Now exists as a field within
m_axis_data_tuser

 OUT_OF_SYNC Removed Synchronization removed in v8.0 of the core

 OOS_FLAG Removed

 SEL s_axis_data_tuser Now exists as a field within s_axis_data_tuser

 SEL_O m_axis_data_tuser Now exists as a field within m_axis_data_tuser

 ND s_axis_data_tvalid

 RFD s_axis_data_tready

 RDY m_axis_data_tready

 CE aclken Rename only

 SCLR aresetn Rename and change on sense (now active
Low). Must now be asserted for at least 2
cycles

 CLK aclk Rename only

Table A-2: Port Changes (Cont’d)

Version 7.0 Version 8.0 Notes

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 42
PG027 January 18, 2012

Appendix B

Debugging

If a Viterbi Decoder is not functioning as expected, here are some tips to consider. Xilinx
Technical Support can also be contacted.

1. See the examples in the demonstration test bench to see if they match your
configuration.

2. If not, create a simple design based on your parameters and one of the demonstration
test bench examples.

3. Check that parameters of the encoder and the Viterbi Decoder agree for code rate and
convolutional codes. Confirm that the codes are tied up correctly, that is, that you are
not applying convolution code0 to convolution code1 or similar.

4. Check that the soft width data format is set up correctly, that is, signed or offset, and
that the data format for the data input to the decoder is correct, for example, the MSB
on the data input is the sign bit for signed magnitude.

5. Add BER and NORM ports to monitor errors.

6. Run the decoder in both functional simulation and post-PAR simulation.

7. To speed testing, consider the use of a ChipScope™ analyzer or HW Cosim to find the
errors.

If a ChipScope analyzer is used, monitor the following signals:

- Data Inputs

- ARESETN

- TVALID

- TUSER (NORM)

- DSTAT for BER count

For punctured code, ensure:

• Erase input is used

For packet data:

• TUSER (Block In)

• TUSER (Block Out)

8. Check the simulation.

If only functional simulation is working correctly, then check timing simulation. See
[Ref 6].

http://www.xilinx.com

Viterbi Decoder v8.0 www.xilinx.com 43
PG027 January 18, 2012

Appendix C

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
1. Convolutional Encoder Product Guide, PG026

2. Convolutional Encoder Product Page

3. Viterbi Decoder Product Page

4. Xilinx AXI Design Reference Guide UG761

5. AMBA 4 AXI4-Stream Protocol Version: 1.0 Specification

6. Synthesis and Simulation Design Guide (UG626)

7. Viterbi Decoder Block Decoding - Trellis Termination and Tail-Biting (XAPP551)

8. Viterbi Synchronization (DS205)

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support of product if implemented in devices that are not defined
in the documentation, if customized beyond that allowed in the product documentation,
or if changes are made to any section of the design labeled DO NOT MODIFY.

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/application_notes.htm
http://www.xilinx.com/support
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/products/intellectual-property/Convolutional_Encoder.htm
http://www.xilinx.com/products/intellectual-property/Viterbi_Decoder.htm
http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support/documentation/ipcommunicationnetwork_errorcorrect_convolutionalencoder.htm
www.xilinx.com/support/documentation/dt_ise13-3_userguides.htm
http://www.xilinx.com/ipcenter/catalog/logicore/docs/viterbi_synchronization.pdf

Viterbi Decoder v8.0 www.xilinx.com 44
PG027 January 18, 2012

Appendix C: Additional Resources

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

Ordering Information
Contact your local Xilinx sales representative for pricing and availability of additional
Xilinx LogiCORE IP modules and software. Information about additional Xilinx
LogiCORE IP modules is available on the Xilinx IP Center.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS”
and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable
(whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage
of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third
party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of
the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of
the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. All other
trademarks are the property of their respective owners.

Date Version Revision

01/18/12 1.0 Initial Xilinx release as a Product Guide.
Previous non-AXI Data Sheet/User Guide is DS247/UG745.

http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Viterbi Decoder v8.0
	Table of Contents
	Overview
	Standards Compliance
	Feature Summary
	Licensing
	Performance Characteristics
	Latency
	BER Performance

	Resource Utilization
	Block RAM Utilization

	Core Interfaces
	Port Descriptions
	AXI4-Stream Protocol
	Basic Handshake
	aclken
	aresetn
	S_AXIS_DATA Channel
	M_AXIS_DATA Channel
	S_AXIS_DSTAT Channel
	M_AXIS_DSTAT Channel

	Customizing and Generating the Core
	CORE Generator Parameters
	Screen 1 (Viterbi Type)
	Screen 2 (Architecture and Data Format)
	Screen 3 (Output Rate and Convolution Code)
	Screen 4/5 (Puncturing and BER Options)
	Parameter Ranges

	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	Functional Description
	Costing
	Decoding
	Traceback
	Serial Decoder
	Multichannel Decoder
	Trellis Mode Decoder
	Dual Rate Decoder
	Erasure
	BER
	Normalization
	Synchronization
	Packet Handling

	Design Guidelines
	Data Format
	Data Input
	Best State
	Control Signals
	TVALID
	NORM
	Keep it Registered

	Viterbi Decoder Non-features Summary
	Multichannel BER
	Log Likelihood Ratio
	De-puncturing
	Trellis Mode
	Factors Affecting BER Performance

	Detailed Example Design
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Migrating
	Parameter Changes in the XCO File

	Debugging
	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Ordering Information
	Revision History
	Notice of Disclaimer

