
[Guide Subtitle]
[optional]

UG702 (v14.5) April 26, 2013 [optional]

Partial
Reconfiguration
User Guide

UG702 (v14.5) April 26, 2013

Partial Reconfiguration User Guide www.xilinx.com UG702 (v14.5) April 26, 2013

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-
SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY
DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF
AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX
PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR
AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.
CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO
THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-
SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE,
UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX
DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT
COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX
PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2010 – 2013 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

http://www.xilinx.com

UG702 (v14.5) April 26, 2013 www.xilinx.com Partial Reconfiguration User Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/24/12 14.1 Revisions to manual for ISE 14.1 release.

• Updated list of supported devices in Design Requirements and Guidelines
section.

• In Chapter 4, PlanAhead Support, updated PlanAhead interface and dialog
box figures to reflect 14.1 versions of interface and dialog boxes.

• Updated information about additional logic that cannot be placed in a
reconfigurable partition. Removed all references to IO blocks and MGTs in RPs.

• Added information about BRAMs and FIFOS to Known Limitations section.

07/25/12 14.2 Revisions to manual for ISE 14.2 release.

• Added Zynq™-7000 AP device support.

• Documented -g PerFrameCRC BitGen option, which inserts a CRC value after
every frame in a partial reconfiguration bitstream. See Generating BIT Files in
Chapter 3.

• Added per-frame CRC checking. See Frame-by-Frame CRC Checking in 7
Series and Zynq-7000 Devices in Chapter 6).

10/16/12 14.3 Revisions to manual for ISE 14.3 release.

• Added information about how to use the new Reset After Reconfiguration
feature to ensure all newly reconfigured logic begins in a known state. See
Reset After Reconfiguration in Chapter 7.

• Added that bitstreams are now enabled for partial reconfiguration of
Zynq-7000 AP SoC devices.

12/18/12 14.4 Revisions to manual for ISE 14.4 release.

• Added that bitstreams are now enabled for partial reconfiguration of Artix-7
devices.

• In Known Limitations in Appendix A, added information about an error that
will be reported when horizontal area group edges are placed between
interconnect tiles.

04/26/13 14.5 Revisions to manual for ISE 14.5 release.

• In Generating BIT Files in Chapter 3, removed text indicating that setting the
–g ActiveReconfig:Yes option will prevent GHIGH assertion.

• Added XADC to the list of components that must remain in static logic, and
must not be placed in an RP. The XADC cannot be reconfigured.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com UG702 (v14.5) April 26, 2013

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 5
UG702 (v14.5) April 26, 2013

Revision History . 3

Chapter 1: Introduction
Partial Reconfiguration Overview . 9
Terminology . 10
Partial Reconfiguration Design Criteria for ISE 14.5. 12

Chapter 2: Common Applications
Networked Multiport Interface . 17
Configuration by Means of PCIe Interface . 19
Dynamically Reconfigurable Packet Processor . 20
Asymmetric Key Encryption. 21
Summary . 22

Chapter 3: Software Tools Flow
Example Design Structure . 24
Example Project File Structure . 25
Synthesis . 26
Configurations . 28
Constraints . 29
Partitions and Import . 38
Implementation . 41
Generating BIT Files . 43
Report Files . 45
pr_verify . 53
Flow Differences . 56

Chapter 4: PlanAhead Support
Creating a Partial Reconfiguration Project . 57
Setting the Project as a PR Project . 59
Opening the Netlist Design . 60
Defining the Reconfigurable Instances . 61
Adding Reconfigurable Modules to the Project . 63
Running Partial Reconfiguration Design Rule Checks . 70
Creating Configurations. 71
Controlling Configurations. 74
Verifying Configurations . 79
Generating BIT Files . 81
PlanAhead Project Directory Structure. 82

Table of Contents

http://www.xilinx.com

6 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 5: Command Line Scripting
Tcl Scripts . 83
Data.tcl Format . 84
Recommended Flow. 89
Required Files and Directory Structure . 90

Chapter 6: Configuring the FPGA Device
Configuration Modes . 94
Downloading a Full Bit File . 95
Downloading a Partial Bit File. 96
System Design for Configuring an FPGA Device . 97
Partial Bit File Integrity . 98
Partial Bitstream CRC Checking . 99
Configuration Frames . 100
Configuration Time . 101
Configuration Debugging . 102

Chapter 7: Design Considerations
Design Hierarchy . 105
Global Clocking Rules . 108
Active Low Resets and Clock Enables . 109
Decoupling Functionality . 109
Reset After Reconfiguration . 110
Design Revision Checks. 112
Defining Reconfigurable Partition Boundaries . 112
Proxy Logic . 113
Black Boxes . 114
Module-Level Constraint Files . 114
Implementation Strategies . 115
Simulation and Verification . 116
Using High Speed Transceivers . 116
Interaction with Other Xilinx Tools . 116
Partial Reconfiguration Design Checklist . 118

Appendix A: Known Issues and Known Limitations
Known Issues . 121
Known Limitations . 121

Appendix B: Partial Reconfiguration Migration Guide
Differences Between the Early Access and Production Solutions 123
Migrating a Design. 125
Summary . 128

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 7
UG702 (v14.5) April 26, 2013

Appendix C: Additional Resources

http://www.xilinx.com

8 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 9
UG702 (v14.5) April 26, 2013

Chapter 1

Introduction

Partial Reconfiguration is the modification of an operating FPGA design by loading a
partial configuration file. This guide describes how to create and implement an FPGA
design that is partially reconfigurable using a modular design technique called
Partitioning. Module instances in the design are translated into partial BIT files which
define the new hardware function. Other techniques such as the differencing method
described in the Application Note: Differencing Method for Partial Reconfiguration
(XAPP290) are not covered in this guide. For supplemental material, see Appendix C,
Additional Resources.

This guide:

• Is intended for designers who want to create a Partially Reconfigurable FPGA design.

• Assumes familiarity with FPGA design software, particularly Xilinx® ISE® Design
Suite and the PlanAhead™ toolset.

• Has been written specifically for ISE Design Suite Release 14.5. This release supports
Partial Reconfiguration for Virtex®-4, Virtex-5, Virtex-6, Artix™-7, Kintex™-7, Virtex-
7, and Zynq™-7000 AP SoC devices only.

• Describes Partial Reconfiguration as implemented in the ISE/PlanAhead toolset.
Partial Reconfiguration is not currently supported in the Vivado Design Suite.

Partial Reconfiguration Overview
FPGA technology provides the flexibility of on-site programming and re-programming
without going through re-fabrication with a modified design. Partial Reconfiguration (PR)
takes this flexibility one step further, allowing the modification of an operating FPGA
design by loading a partial configuration file, usually a partial BIT file. After a full BIT file
configures the FPGA, partial BIT files can be downloaded to modify reconfigurable regions
in the FPGA without compromising the integrity of the applications running on those
parts of the device that are not being reconfigured.

Figure 1-1 illustrates the premise behind Partial Reconfiguration.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp290.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp290.pdf

10 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 1: Introduction

As shown, the function implemented in Reconfig Block A is modified by downloading one
of several partial BIT files, A1.bit, A2.bit, A3.bit, or A4.bit. The logic in the FPGA
design is divided into two different types, reconfigurable logic and static logic. The gray
area of the FPGA block represents static logic and the block portion labeled Reconfig Block
“A” represents reconfigurable logic. The static logic remains functioning and is completely
unaffected by the loading of a partial BIT file. The reconfigurable logic is replaced by the
contents of the partial BIT file.

There are many reasons why the ability to time multiplex hardware dynamically on a
single FPGA device is advantageous.

These include:

• Reducing the size of the FPGA device required to implement a given function, with
consequent reductions in cost and power consumption

• Providing flexibility in the choices of algorithms or protocols available to an
application

• Enabling new techniques in design security

• Improving FPGA fault tolerance

• Accelerating configurable computing

In addition to reducing size, weight, power and cost, Partial Reconfiguration enables new
types of FPGA designs that are impossible to implement without it.

Terminology
The following terminology is specific to the Partial Reconfiguration feature and is used
throughout this document.

Bottom-Up Synthesis
Bottom-Up Synthesis is synthesis of the design by modules, whether in one project or
multiple projects. Bottom-Up Synthesis requires that a separate netlist is written for each
Partition, and no optimizations are done across these boundaries, ensuring that each
portion of the design is synthesized independently. Top-level logic must be synthesized
with black boxes for Partitions.

X-Ref Target - Figure 1-1

Figure 1-1: Basic Premise of Partial Reconfiguration

FPGA

Reconfig
Block “A”

A4.bit
A3.bit

A2.bit
A1.bit

X12001

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 11
UG702 (v14.5) April 26, 2013

Terminology

Configuration
A Configuration is a complete design that has one Reconfigurable Module for each
Reconfigurable Partition. There may be many Configurations in a Partial Reconfiguration
FPGA project. Each Configuration generates one full BIT file as well as one partial BIT file
for each Reconfigurable Module.

Configuration Frame
Configuration frames are the smallest addressable segments of the FPGA configuration
memory space. Reconfigurable frames are built from discrete numbers of these lowest-
level elements.

Frame
Frames (in all references other than “configuration frames” in this guide) represent the
smallest reconfigurable region within an FPGA device. Bitstream sizes of reconfigurable
frames vary depending on the types of logic contained within the frame.

Internal Configuration Access Port (ICAP)
The Internal Configuration Access Port (ICAP) is essentially an internal version of the
SelectMAP interface. For more information, see the family-specific Configuration User
Guides.

Partial Reconfiguration (PR)
Partial Reconfiguration (PR) is modifying a subset of logic in an operating FPGA design by
downloading a partial configuration file.

Partition
A Partition is a logical section of the design, defined by the user at a hierarchical boundary,
to be considered for design reuse. A Partition is either implemented as new or preserved
from a previous implementation. A Partition that is preserved maintains not only identical
functionality but also identical implementation.

Partition Pin
Partition Pins are the logical and physical connection between static logic and
reconfigurable logic. Partition Pins are automatically created for all Reconfigurable
Partition ports.

Proxy Logic
Proxy Logic is a single LUT1 element automatically inserted by the software for each
Partition Pin except for dedicated routes. Proxy Logic is required to be a fixed, known
point as an interface between static and reconfigurable logic.

http://www.xilinx.com

12 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 1: Introduction

Reconfigurable Logic
Reconfigurable Logic is any logical element that is part of a Reconfigurable Module. These
logical elements are modified when a partial BIT file is loaded. Many types of logical
components may be reconfigured such as LUTs, flip-flops, BRAM, and DSP blocks.

Reconfigurable Module (RM)
A Reconfigurable Module (RM) is the netlist or HDL description that is implemented
when instantiated by an instance that is a Reconfigurable Partition. There may be multiple
Reconfigurable Modules for one Reconfigurable Partition.

Reconfigurable Partition (RP)
Reconfigurable Partition (RP) is an attribute set on an instantiation that defines the
instance as reconfigurable. Software tools such as NGDBuild, MAP, and PAR detect the
Reconfigurable Partition attribute on the instance and process it correctly.

The term Reconfigurable Partition is often used interchangeably with instance if the instance
is a Reconfigurable Partition.

Static Logic
Static Logic is any logical element that is not part of a Reconfigurable Partition. The logical
element is never partially reconfigured and is always active when Reconfigurable
Partitions are being reconfigured. Static Logic is also known as Top-level Logic.

Partial Reconfiguration Design Criteria for ISE 14.5
Partial Reconfiguration (PR) is an expert flow within the ISE® Design Suite. While many
significant advances have been made within this software, prospective customers must
understand the following requirements and expectations before embarking on a PR
project.

Each of the topics below is covered in greater detail in later sections of this user guide.

Design Requirements and Guidelines
• Partial Reconfiguration requires the use of ISE 12.1 or newer.

• Device support: Virtex-4, Virtex-5, Virtex-6, Artix-7, Kintex-7, Virtex-7, and Zynq-7000

• All variants of Virtex-4, Virtex-5, and Virtex-6 devices are supported.

• All 7 series (Artix-7, Kintex-7, and Virtex-7) devices are supported, except for
Virtex®-7 FPGAs that use stacked silicon interconnect (SSI) technology.

• All Zynq-7000 AP devices are supported, and bitstream generation has been
enabled for these devices.

• Bitstream generation for Artix-7 devices is now enabled. Please re-implement
Artix-7 designs with ISE 14.5 before generating bitstreams for these devices.

• PR is supported via the PlanAhead™ software or command line only; there is no
Project Navigator support.

• Floorplanning is required to define reconfigurable regions, per element type.

• For greatest efficiency, align to frame/clock region boundaries when possible.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 13
UG702 (v14.5) April 26, 2013

Partial Reconfiguration Design Criteria for ISE 14.5

• Bottom-up synthesis (to create multiple netlist files) and management of
reconfigurable module netlist files is the responsibility of the user.

• Synthesis done outside of PlanAhead - any synthesis tool may be used.

• Decoupling logic is highly recommended to disconnect the reconfigurable region
from the static portion of the design during the act of Partial Reconfiguration.

• If the reconfigurable element is an output of the FPGA, the decoupling should be
performed off-chip.

• A local reset must be issued to reconfigured logic to ensure a known good starting
state if the RESET_AFTER_RECONFIG feature is not enabled. See Reset After
Reconfiguration in Chapter 7.

• Standard timing constraints are supported, and additional timing budgeting
capabilities are available if needed.

• A unique set of Design Rule Checks (DRCs) has been established to guide users on a
successful path to design completion.

• A PR design must consider the initiation of Partial Reconfiguration as well as the
delivery of partial BIT files, either within the FPGA or as part of the system design.

• Not all implementation options are available to the PR flow. The -global_opt
option to the MAP command and its child options and SmartGuide™ cannot be used
with Partitions or PR, since these techniques perform optimization across the entire
design.

• The -power switch is allowed for both MAP and PAR, but not all options can be
used.

The high and xe values for MAP initiate the Intelligent Clock Gating feature, which
requires flattening of the design, and is not permitted for Partial Reconfiguration.

• A reconfigurable partition must contain a super set of all pins to be used by the
varying reconfigurable modules implemented for the partition. It is expected that this
will lead to unused inputs or outputs for some module variants, and is designed into
the flexibility of the PR solution. The unused inputs will be left dangling inside of the
module and will cause the implementation tools to issue messages that you may
ignore. In the case of a black box RM (no logic) all partition pin outputs will be driven
by a constant Logic 1. In the case of a logic RM where there are unused partition pins,
these outputs will be tied to constants, but the value may be a Logic 0 or a Logic 1. If
your design requires a specific value, these ports should be tied off to the required
values in the RM.

Because the reconfigurable partitions may have pins that are used in one variant and
not another, the BoundaryOpt attribute, applied to a partition in a PXML file, cannot
be used in the PR flow.

http://www.xilinx.com

14 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 1: Introduction

Design Performance
• Performance metrics will vary from design to design, and negative effects will be

minimized by following the Hierarchical Design techniques documented in
Hierarchical Design Methodology Guide, (UG748), and Repeatable Results with Design
Preservation, (WP362). However, the additional restrictions that are required for silicon
isolation are expected to have an impact on most designs.

In general:

• Expect 10% degradation in Clock Frequency.

• Expect to not exceed 80% slices in Packing Density.

• Longer Design Runtimes are expected in most cases, as these additional requirements
are factored into the overall solution. MAP will display the greatest impact, but
NGDBuild and PAR could also show the effects of processing a PR design.

• Routing challenges may occur if the reconfigurable region is too small or is
constructed of non-rectangular shapes.

Design Considerations
• Some component types can be reconfigured and some cannot.

• Clocks and Clock Modifying Logic must reside in the static region.

- Includes BUFG, BUFR, MMCM, PLL, DCM, and similar

• The following components must reside in the static region:

- I/O and I/O related components

- Serial transceivers (MGTs) and related components

- Individual architecture feature components (such as BSCAN, STARTUP,
XADC, etc.) must remain in the static region of the design

• Global clocking resources to Reconfigurable Partitions are limited, depending on the
device and on the clock regions occupied by these Reconfigurable Partitions. See
Global Clocking Rules in Chapter 7 for more information.

• IP restrictions may occur due to components used to implement the IP. Examples
include:

• ChipScope ICON (BUFG)

• EDK blocks with global buffers

• MIG controller (MMCM)

• Reconfigurable Modules must be locally reset to ensure a predictable starting
condition after reconfiguration. You can do this manually, or via dedicated GSR
events by selecting the RESET_AFTER_RECONFIG feature. For more information,
see Reset After Reconfiguration in Chapter 7.

• Clock and other inputs to reconfigurable modules should be decoupled to prevent
spurious writes to memories during reconfiguration. For more information, see
Decoupling Functionality in Chapter 7.

• No bidirectional interfaces are permitted between static and reconfigurable regions,
except in the case where there is a dedicated route. For example, a bidirectional I/O
buffer (such as IOBUF) in the reconfigurable region routed to a top level I/O pad in
the static logic can cross between the reconfigurable region and static logic via a
bidirectional interface.

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp362.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp362.pdf
http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 15
UG702 (v14.5) April 26, 2013

Partial Reconfiguration Design Criteria for ISE 14.5

• Dedicated encryption support is available natively for 7 series and Virtex-6 devices
and via an IP core for Virtex-5.

• Users are free to build their own software encryption engine to modify partial BIT
files, and a hardware decryption engine within the FPGA fabric to handle
encryption needs.

• 7 series devices can utilize a per-frame CRC checking mechanism, enabled via BitGen,
to ensure each frame is valid before loading. Pre-7 series Virtex devices do not have
this dedicated per-frame CRC functionality, but validation of the integrity of partial
BIT files can be checked using an IP core inserted as part of a BIT file delivery
mechanism.

• While a specific IP solution is available for Virtex-5 and Virtex-6 FPGAs (see
PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration,
(XAPP887), users are again welcome to develop their own solution for CRC
checking within their design.

Partial Reconfiguration is a powerful capability within Xilinx FPGAs, and understanding
the capabilities of the silicon and software is instrumental to success with this technology.
While trade-offs must be recognized and considered during the development process, the
overall result will be a more flexible implementation of your FPGA design.

Partial Reconfiguration is fully supported by the Xilinx Support, Design Services and
Authorized Training Providers. These expert resources are available to help meet any
design needs.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com

16 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 1: Introduction

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 17
UG702 (v14.5) April 26, 2013

Chapter 2

Common Applications

The basic premise of Partial Reconfiguration is that the FPGA hardware resources can be
time-multiplexed similar to the ability of a microprocessor to switch tasks. Because the
FPGA device is switching tasks in hardware, it has the benefit of both flexibility of a
software implementation and the performance of a hardware implementation. A number
of different scenarios are presented here to illustrate the power of this technology.

Networked Multiport Interface
Partial Reconfiguration optimizes traditional FPGA applications by reducing size, weight,
power, and cost. Time-independent functions can be identified, isolated, and implemented
as Reconfigurable Modules and swapped in and out of a single device as needed. A typical
example is a network switch. The ports of the switch might support multiple interface
protocols; however, it is not possible for the system to predict which protocol will be used
before the FPGA device is configured. To ensure that the FPGA device does not have to be
reconfigured and thus disable all ports, every possible interface protocol is implemented
for every port, as illustrated in Figure 2-1.
X-Ref Target - Figure 2-1

Figure 2-1: Network Switch Without Partial Reconfiguration

OC48

10 GigE tx/rx

tx/rx

tx/rx

OC48

Fibre

10 GigE tx/rx

tx/rx

tx/rx

OC48

Fibre

10 GigE tx/rx

tx/rx

tx/rx

OC48

Fibre

FPGA

Switch
Fabric

Port 1

Port 2

Port 3

Port 4

X12002

10 GigE tx/rx

tx/rx

tx/rx Fibre

http://www.xilinx.com

18 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 2: Common Applications

This is an inefficient design because only one of the standards for each port is in use. Partial
Reconfiguration enables a more efficient design by making each of the port interfaces a
Reconfigurable Module as shown in Figure 2-2. This also eliminates the MUX elements
required to connect multiple protocol engines to one port.

A wide variety of designs can benefit from this basic premise. Software Defined Radio
(SDR), for example, is one of many applications that has mutually exclusive functionality,
and which sees a dramatic improvement in flexibility and resource usage when this
functionality is multiplexed.

There are additional advantages with a partially reconfigurable design other than
efficiency. In the Figure 2-2 example, a new protocol can be supported at any time without
affecting the static logic, the switch fabric in this example. When a new standard is loaded
for any port, the other existing ports are not affected in any way. Additional standards can
be created and added to the configuration memory library without requiring a complete
redesign. This allows greater flexibility and reliability with less down time for the switch
fabric and the ports. A debug module could be created so that if a port was experiencing
errors, an unused port could be loaded with analysis/correction logic to handle the
problem real-time.

In the Figure 2-2 example, a unique partial BIT file must be generated for each unique
physical location that could be targeted by each protocol. Partial BIT files are associated
with an explicit region on the device. In this example, sixteen unique partial BIT files to
accommodate four protocols for four locations. A possible future enhancement of Partial
Reconfiguration could allow BIT files to be relocatable to different physical locations.

X-Ref Target - Figure 2-2

Figure 2-2: Network Switch With Partial Reconfiguration

Config Memory Storage

tx/rxFibre

tx/rxOC48

tx/rx10 GigE 10 GigE tx/rx

tx/rxOC48

tx/rxFibre

tx/rxOC48

Switch
Fabric

FPGA Port 1

Port 2

Port 3

Port 4

X12003

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 19
UG702 (v14.5) April 26, 2013

Configuration by Means of PCIe Interface

Configuration by Means of PCIe Interface
Partial Reconfiguration can create a new configuration port utilizing an interface standard
more compatible with the system architecture. For example, the FPGA device could be a
peripheral on a PCIe bus and the system host could configure the FPGA through the PCIe
connection. After power-on reset the FPGA device must be configured with a full BIT file.
However, the full BIT file might only contain the PCIe interface and connection to the
Internal Configuration Access Port (ICAP).

Bitstream compression can be used to reduce the size and therefore configuration time of
this initial device load, helping the FPGA configuration meet PCIe enumeration
specifications.

The system host could then configure the majority of the FPGA functionality with a partial
BIT file downloaded through the PCIe port as shown in Figure 2-3.

The PCIe standard requires the peripheral (the FPGA device in this case) to acknowledge
any requests even if it cannot service the request. Reconfiguring the entire FPGA device
would violate this requirement. Because the PCIe interface is part of the static logic, it is
always active during the Partial Reconfiguration process thus ensuring that the FPGA
device can respond to PCIe commands even during reconfiguration. This use case is
extensively documented in Fast Configuration of PCI Express Technology through Partial
Reconfiguration (XAPP883). A reference design that targets the ML605 evaluation board is
included with the Application Note.

X-Ref Target - Figure 2-3

Figure 2-3: Configuration by Means of PCIe Interface

Full
Bit File

ICAP

PCIe

Static

Partial
Bit File

X12021

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp883_Fast_Config_PCIe.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp883_Fast_Config_PCIe.pdf

20 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 2: Common Applications

Dynamically Reconfigurable Packet Processor
A packet processor can use Partial Reconfiguration to change its processing functions
quickly, based on the packet types received. In Figure 2-4 a packet has a header that
contains the partial BIT file, or a special packet contains the partial BIT file. After the partial
BIT file is processed, it is used to reconfigure a coprocessor in the FPGA device. This is an
example of the FPGA device reconfiguring itself based on the data packet received instead
of relying on a predefined library of partial BIT files.
X-Ref Target - Figure 2-4

Figure 2-4: Dynamically Reconfigurable Packet Processor

FPGA

Packet Processor

ICAP

Data

Partially
Reconfigurable
Co-processor

1 2

2 1

PBF: Partial
Bit FIle

Data PBF H Data HPBF

X12005

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 21
UG702 (v14.5) April 26, 2013

Asymmetric Key Encryption

Asymmetric Key Encryption
There are some new applications that are not possible without Partial Reconfiguration. A
very secure method for protecting the FPGA configuration file can be architected when
Partial Reconfiguration and asymmetric cryptography are combined. (See Public-key
cryptography for asymmetric cryptography details.)

In Figure 2-5, all of the functions in the blue box can be implemented within the physical
package of the FPGA. The cleartext information and the private key never leave a
well-protected container.

In a real implementation of this design, the initial BIT file is an unencrypted design that
does not contain any proprietary information. The initial design only contains the
algorithm to generate the public-private key pair and the interface connections between
the host, FPGA and ICAP.

After the initial BIT file is loaded, the FPGA device generates the public-private key pair.
The public key is sent to the host which uses it to encrypt a partial BIT file. The encrypted
partial BIT file is downloaded to the FPGA device where it is decrypted and sent to the
ICAP to partially reconfigure the FPGA device as shown in Figure 2-6, page 22.

X-Ref Target - Figure 2-5

Figure 2-5: Asymmetric Key Encryption

X12022

cleartext

cleartext

ciphertext

Public Key

Private Key

Key Co-generation

f

f

http://www.xilinx.com
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography

22 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 2: Common Applications

The partial BIT file could be the vast majority of the FPGA design with the logic in the
static design consuming a very small percentage of the overall FPGA resources.

This scheme has several advantages:

• The public-private key pair can be regenerated at any time. If a new configuration is
downloaded from the host it can be encrypted with a different public key. If the FPGA
device is configured with the same partial BIT file, such as after a power-on reset, a
different public key pair is used even though it is the same BIT file.

• The private key is stored in SRAM. If the FPGA device ever loses power the private
key no longer exists.

• Even if the system is stolen and the FPGA device remains powered, it is extremely
difficult to find the private key because it is stored in the general purpose FPGA
fabric. It is not stored in a special register. The designer could manually locate each
register bit that stores the private key in physically remote and unrelated regions. An
example of encryption capability is shown in the PRC/EPRC: Data Integrity and
Security Controller for Partial Reconfiguration (XAPP887). Sample designs for Virtex®-5
and Virtex-6 are supplied with this Application Note.

Summary
In addition to reducing size, weight, power and cost, Partial Reconfiguration enables new
types of FPGA designs that would otherwise be impossible to implement.

X-Ref Target - Figure 2-6

Figure 2-6: Loading an Encrypted Partial Bit File

X12023

FPGA

Generate Key Pair
Host

Bit File
Library

Config 1
Encrypt

Algorithm

Public

Config 2

Config 3

Public

External
Interface

Decrypt
Algorithm

ICAP

Private

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf

Partial Reconfiguration User Guide www.xilinx.com 23
UG702 (v14.5) April 26, 2013

Chapter 3

Software Tools Flow

This chapter explains the underlying software tools flow, how to build a system that
supports a partially reconfigurable FPGA and structure a partially reconfigurable design,
and the application of constraints.

Implementing a partially reconfigurable FPGA design is similar to implementing multiple
non-PR designs that share common logic. Partitions are used to ensure that the common
logic between the multiple designs is identical. Figure 3-1 illustrates this concept.

X-Ref Target - Figure 3-1

Figure 3-1: Overview of the Partial Reconfiguration Software Flow

Top
Static

Top SM RMA RMB RMN

Static
Module

Reconfig
Module

Reconfig
Module

Reconfig
Module

HDL Sources

Implement

Design 1

Design 2

Design N

Synthesize

Netlists
(EDIF or NGC)

Implement

Implement

Copy Static

Copy Static

Full_1.bit

Full_2.bit

Full_N.bit

Static
Constraints

Static
Constraints

Static
Constraints

Module
Constraints

Module
Constraints

Module
Constraints

RMN.bit

RMB.bit

RMA.bit

http://www.xilinx.com

24 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

The top gray box represents the synthesis of HDL source to netlists for each module. The
appropriate netlists are implemented in each design to generate the full and partial BIT
files for that configuration. The static logic from the first implementation is shared among
all subsequent design implementations.

Example Design Structure
Throughout this guide, the Color2 sample design is used to illustrate design flow and
techniques. This design displays on a DVI support monitor color bars of primary color red,
blue, and non-primary green as well as the different shades of mixing the primary colors.
The partial Reconfigurable Modules are the red, blue and green modules. The variants of
each of the modules are fast and slow for each red, blue and green. The speed of the color
represents how fast the LEDs are blinking on the demo board – this design targets the
Virtex®-6 ML-605 Evaluation Platform.

Design files for the referenced design can be downloaded from:

http://www.xilinx.com/tools/partial-reconfiguration

Figure 3-2 is a diagram of the hierarchical netlist. Top, IIC_init, DVI_IF, and VGA are
modules in the static region of the design, meaning this logic maintains normal operation
while the other modules can be reconfigured. red, blue, and green are the instantiations of
Reconfigurable Module for the Red, Blue, and Green functionality. The modules that are
interchanged are the fast and slow variants for each color module.

The following is a code snippet of the design source hierarchy and Reconfigurable Module
variants for the overall PR Project named Color2:

Design source hierarchy and Reconfigurable Module variants for overall
PR project named Color2:

 Top.v top module which is static
 red. instantiation of a Reconfigurable Module
 red_fast.v. Reconfigurable Module
 red_slow.v. ""
 blue instantiation of a Reconfigurable Module
 blue_fast.v Reconfigurable Module

X-Ref Target - Figure 3-2

Figure 3-2: Color2 Design Hierarchy

http://www.xilinx.com/tools/partial-reconfiguration
http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 25
UG702 (v14.5) April 26, 2013

Example Project File Structure

 blue_slow.v ""
 green. instantiation of a Reconfigurable Module
 green_fast.v. Reconfigurable Module
 green_slow.v. ""
 DVI_IF.v static module
 IIC_init.v ""
 VGA.v. ""

Red, Green, and Blue are partially reconfigurable instances. All other logic in the design
is static.

The instances Red, Green, and Blue do not contain any logic, they are simply
instantiation statements; the module definitions such as red_fast and blue_slow
contain the logic to be implemented.

Example Project File Structure
A partially reconfigurable FPGA design project is more complex than an average FPGA
design project. A clearly defined file and directory structure eases the task of project
management.

There are multiple Reconfigurable Modules for each Reconfigurable Partition in the
overall project. The modules are synthesized in a bottom-up fashion, resulting in many
netlists associated with each Reconfigurable Partition. The implementation is then done
top-down, which defines a specific set of netlists, called a Configuration.

To eliminate confusion between sources, constraints, synthesis results, and
implementation results, separate directories are recommended for each step in the design
implementation. A commonly used (though not required) directory structure for a PR
design is shown in the following file snippet.

project_name name of the overall project
 Docs. user or design documents
 Implementation. . . . Xilinx software implementation results
 modules. static or Reconfig Module netlists
 configurations . . . Configuration implementation results
 Source. source files
 modules. HDL source files for static and Reconfig Modules
 UCF. constraint files
 Synth synthesis results
 modules. netlists for each static and Reconfig Module
 Tools Tcl scripts or any other user scripts

Given the Color2 design described in the file, a directory structure that is flow-based
could be as shown in the following file snippet:

Color2. name of the overall project
 Docs
 readme.txt
 Source HDL source files
 Static. collection of all HDL for static logic
 Top top level static module
 DVI_IF. lower level static module
 IIC_init. ""
 VGA ""
 red_fast. Reconfigurable Module for Red
 red_slow. ""

http://www.xilinx.com

26 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

 blue_fast Reconfigurable Module for Blue
 blue_slow ""
 green_fast. Reconfigurable Module for Green
 green_slow. ""
 UCF constraint files
 Synth. synthesized netlists
 static. top, DVI_IF, IIC_init and VGA
 red_fast
 red_slow
 blue_fast
 blue_slow
 green_fast
 green_slow
 Implementation implementation results from scripted runs
 FastConfig. contains implementation results and BIT files
 SlowConfig. ""
 FSFConfig ""
 BlankConfig contains black boxes for the three colors
 PlanAhead. implementation results from PlanAhead runs
 FFF contains implementation results and BIT files
 SSS ""
 FSF ""
 BB. contains black boxes for the three colors
 Tools. Tcl scripts or any other user scripts

Synthesis
Each Reconfigurable Module is synthesized independently from the others in a bottom-up
fashion. This can be done through the use of independent projects, either through a
graphical interface or on the command line. For each module, be sure to disable I/O
insertion, as the ports of these modules (in most cases) do not connect to package pins, but
to the static logic above it.

The static modules can be synthesized together to generate one netlist or individually to
generate multiple static netlists. The NGDBuild utility merges the static and reconfigurable
modules, and the Reconfigurable Partition definitions denote the interfaces between the
static and reconfigurable logic. Different options can be used for any of the static or
reconfigurable module synthesis.

The minimum generated netlists for the example design, Color2, are shown in the
following code snippet:

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 27
UG702 (v14.5) April 26, 2013

Synthesis

Caution! The netlist names are related to the module name, not the HDL file name. The
module/netlist name for each Red must be identical to allow the instantiation of the module in the
static logic to call any of the Reconfigurable Modules. In addition, the ports of each
Reconfigurable Module must be identical so the assembly of the design can succeed.

Each instantiation of a reconfigurable module must have a unique module name. In this
sample design, Red can be instantiated only once. This allows the implementation tools to
determine which Reconfigurable Modules are associated with which Reconfigurable
Partition.

In practice, the netlist name of each Reconfigurable Module is identical, requiring that each
netlist be in its own directory:

Netlists generated for the PR project named Color2:

 Netlist for Top which contains DVI_IF, IIC_init and VGA modules

 Netlists for the reconfigurable instance Red:

 Netlist for red_fast
 Netlist for red_slow

 Netlists for the reconfigurable instance Blue:

 Netlist for blue_fast
 Netlist for blue_slow

 Netlists for the reconfigurable instance Green:

 Netlist for green_fast
 Netlist for green_slow

Netlist directory for the PR project named Color2:

Static/Top.ngc (contains logic for all static logic including
 DVI_IF, IIC_init and VGA)

 Netlists for the reconfigurable instance Red:

 red_fast/red.ngc
 red_slow/red.ngc

 Netlists for the reconfigurable instance Blue:

 blue_fast/blue.ngc
 blue_slow/blue.ngc

 Netlists for the reconfigurable instance Green:

 green_fast/green.ngc
 green_slow/green.ngc

http://www.xilinx.com

28 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Configurations
The Partial Reconfiguration software implements a full design containing static logic and
one Reconfigurable Module for each Reconfigurable Partition. Each implementation is
done in context. This gives the tools a complete set of information for resource usage,
global signals, design constraints, and other requirements. To implement all
Reconfigurable Modules, you must choose a subset of all possible Reconfigurable Module
combinations and implement them as unique designs. Each unique implementation is
called a Configuration.

Each Reconfigurable Partition can be optionally set as a black box, leaving a “blanking”
bitstream as a Reconfigurable Module ("blanking" bitstreams effectively "erase" all
reconfigurable logic and routing while the static logic and routes in that region continue to
operate). Therefore, in the Color2 design the full set of Reconfigurable Modules, and
therefore partial BIT files, that can be implemented are:

Red { red_fast, red_slow, black box }
Blue { blue_fast, blue_slow, black box }
Green { green_fast, green_slow, black box }

With three choices for each Reconfigurable Partition, and three RPs in this design, there are
27 unique combinations that can define a Configuration. However, it is not necessary to
create a Configuration for each combination. It is sufficient to implement only the
Configurations that contain each module once, since the partial BIT file for a module is
independent of the other Reconfigurable Modules.

In the Color2 design, one minimal set is as shown in the following snippet:

Minimum number of FPGA designs (Configurations) required to implement
the PR project Color2:

First Configuration Second Configuration Third Configuration
------------------- -------------------- -------------------
 Top Top Top
 Red Red Red
 red_fast red_slow black box
 Blue Blue Blue
 blue_fast blue_slow black box
 Green Green Green
 green_fast green_slow black box
 DVI_IF DVI_IF DVI_IF
 IIC_init IIC_init IIC_init
 VGA VGA VGA

There are three different modules each for Red, Green, and Blue. Accordingly, a
minimum of just three Configurations is necessary to implement all Reconfigurable
Modules. If desired, further Configurations can be created to achieve unique full BIT files.

For example, a Fourth Configuration containing modules red_fast, blue_slow, and
green_fast can be created. All three Reconfigurable Modules are re-used in this
Configuration. The implementation results and partial BIT files for these modules are
identical between the multiple Configurations.

Once a partial bitstream is created, it can be loaded in the FPGA device in any combination
of full or partial bitstreams created within that PR project; however, to validate that a
particular combination works as expected, it might be necessary to create a Configuration
for that combination of modules. Full design-level simulation and verification flows for
Partial Reconfiguration designs are no different than for standard designs.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 29
UG702 (v14.5) April 26, 2013

Constraints

Constraints
Constraints for the static logic are usually stored in the UCF file and are shared among all
Configurations. By using the ngdbuild -uc option, one common UCF file can be shared
among all Configurations to ensure that all static constraints are identical.

There may be module specific constraints that cannot be included in the static logic
constraints. For example, if a timing constraint is set on a path that only exists in
red_fast then the constraint can only be applied to the First Configuration above. This
can be accomplished by using the PlanAhead™ software to manage the constraint files, or
by embedding the constraint within the specific module netlist. The ngdbuild -uc
switch can be used multiple times per command line invocation, so more than one UCF
can be specified per run.

Area Group Constraints
An AREA_GROUP is a grouping constraint that associates logical design elements with a
particular label or group. AREA_GROUP constraints and Partition definitions are necessary
to delineate the static (non-reconfigurable) logic from the reconfigurable logic, preventing
logic in the static design from merging with logic in the RMs, and vice versa. The
AREA_GROUP constraints must be defined for each Reconfigurable Partition. The following
example shows an AREA_GROUP constraint called pblock_reconfig_red for a
Reconfigurable Partition named reconfig_red:

INST “reconfig_red” AREA_GROUP = “pblock_reconfig_red”;

At least one and possibly more AREA_GROUP RANGE constraints must be defined for each
reconfigurable region to set the shape and placement of the PR region. The primary range
constraint is usually a Slice range that defines which Slices are part of the PR region. The
Slice contains the basic LUT and FF logical elements. If the RMs also contain block RAM or
other types of logical components, then additional range constraints must be created for
them.

There are a few requirements when setting AREA_GROUP RANGE constraints, and
PlanAhead will help manage many of these aspects:

• AREA_GROUP RANGE constraints are required for each Reconfigurable Partition, as
they define the size and shape of those regions.

• All device resources (such as Slices, block RAM, and DSP blocks) that are part of any
Reconfigurable Module that are placed in that Reconfigurable Partition must each
have corresponding AREA_GROUP RANGE constraints. Even single-site resources must
have an associated RANGE constraint.

• Do NOT create AREA_GROUP RANGE constraints for elements that should not be (or
are not allowed to be) reconfigured. For example, do not create AREA_GROUP RANGE
constraints for DCM, PLL, or BUFG elements.

• If a single Reconfigurable Partition is defined by multiple AREA_GROUP RANGE
constraints, they must be contiguous.

• The AREA_GROUP RANGE constraints of a given Reconfigurable Partition must not
overlap the AREA_GROUP RANGE constraints of any other Reconfigurable Partition.
Moreover, no two Reconfigurable Partitions may occupy the same reconfigurable
frame.

http://www.xilinx.com

30 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

• PR Slice regions should be defined from the lower left corner (minX, minY) to the
upper right corner (maxX, maxY). For example:

INST “reconfig_red” AREA_GROUP = “pblock_reconfig_red”;
AREA_GROUP “pblock_reconfig_red” RANGE = SLICE_X20Y76:SLICE_X25Y79;

INST “reconfig_blue” AREA_GROUP = “pblock_reconfig_blue”;
AREA_GROUP “pblock_reconfig_blue” RANGE = SLICE_X28Y64:SLICE_X33Y67;

INST “reconfig_green” AREA_GROUP = “pblock_reconfig_green”;
AREA_GROUP “pblock_reconfig_green” RANGE = SLICE_X20Y50:SLICE_X25Y53;

• Some logic types can be in a Reconfigurable Partition and some cannot. Slices, Block
RAM, and DSP48 logic can be in an RP. Global clocking logic, including clock
modifying logic like the DCM, PLL, or PMCD, I/O and related components, and
MGTs and MGT-related components must be in a static module. For more information
on Reconfigurable Partition regulations, see Chapter 7, Design Considerations.

• The Slice range must be on a CLB boundary (not split a CLB). Following this rule
ensures that any AREA_GROUP RANGE constraint fully encapsulates CLBs for
Virtex-5 devices:

• AREA_GROUP Slice range horizontal coordinates (minX) is always EVEN.

• AREA_GROUP Slice range horizontal coordinates (maxX) is always ODD.

This rule ensures that a Reconfigurable Partition's RANGE falls on CLB boundaries in
a Virtex-5 device. It does not ensure that any reconfigurable frame rules are followed.
Be sure to follow the frame rules described in Chapter 7, Design Considerations

• The AREA_GROUP RANGE for block RAM has coordinates (minX, minY) and (maxX,
maxY) which can be either odd or even. The AREA_GROUP block RAM range can be
determined by looking in PlanAhead or the FPGA Editor.

An AREA_GROUP RANGE example is illustrated in Figure 3-3.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 31
UG702 (v14.5) April 26, 2013

Constraints

The following code snippet is an AREA_GROUP RANGE constraint example with Slices and
BRAM:

AREA_GROUP “AG_PRregionA” RANGE = SLICE_X2Y0:SLICE_X43Y157;
AREA_GROUP “AG_PRregionA” RANGE = RAMB16_X0Y0:RAMB16_X3Y18;

The PlanAhead software estimates the size of each RM and displays the resources used,
which is useful in determining if an AREA_GROUP RANGE is necessary for Block RAM or
I/O.

X-Ref Target - Figure 3-3

Figure 3-3: Slice Range and BRAM Range for a PR Region

X12026

BRAM
X0
Y0

BRAM
X3
Y18

SLICE
X42

Y157

SLICE
X42

Y156

SLICE
X2
Y1

SLICE
X3
Y1

SLICE
X2
Y0

SLICE
X3
Y0

A
G

_P
R

re
gi

on
A

http://www.xilinx.com

32 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

However, the tools cannot make recommendations as to the shape or placement of the
Reconfigurable Partition. The AREA_GROUP RANGE must be large enough to accommodate
the largest RM for each resource type (that is, the RM using the most Slices might not be the
RM using the most BRAM), and it must be shaped and placed in a way that allows the
design to meet timing.

Partition Pins
PR designs contain special components named Partition Pins at the port boundary
between static logic and reconfigurable logic. Partition Pins are necessary to guarantee that
the circuit connections between the static logic and the different RMs for each RP are
identical. The Partition Pin is also a convenient component for creating timing constraints
on nets that pass to, from, or through the RP boundary.

Partition Pins are inserted automatically by the implementation software. No special
instantiations or other considerations are required of the designer, with the exception of
controlled routes, which is described in Chapter 7, Design Considerations.

Note: Partition Pins can be input or output connections to a reconfigurable region. Partition Pins
cannot be bidirectional.

Partition Pin timing constraints take one of several forms depending on path structure as
illustrated in Figure 3-4, page 33. The yellow RM bounding box represents the logical
boundary, not necessarily a physical range or floorplan.

Path A) Static net input to a Partition Pin
Path B) Reconfigurable net output of a Partition Pin
Path C) Reconfigurable net input to a Partition Pin
Path D) Static net output of a Partition Pin
Paths X, Y and Z) Register-to-register paths that contain a Partition
Pin in the path

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 33
UG702 (v14.5) April 26, 2013

Constraints

Before creating timing constraints, the nets must be grouped by input to or output from the
RM with a PIN-TPSYNC constraint.

The pin name syntax is <Partition_name>.<port_name>. The following code snippet
is an example:

PIN “RP_A.1” TPSYNC = group_RP_A_input;
PIN “RP_A.2” TPSYNC = group_RP_A_output;

Using the TPSYNC constraint on Partition Pins is more comprehensive than just using a
PERIOD constraint to cover these paths. By using a TPSYNC, initial budgeting can be done
to minimize the delay from the static region to the Partition Pin. This provides more of the
timing budget to the RMs, and ultimately makes it easier for the implementation tools to
meet the RMs timing requirements.

X-Ref Target - Figure 3-4

Figure 3-4: Timing Paths to and from a Reconfigurable Partition

X12027

Top (static)
RP_A

RP_B

RM_A1

RM_B1

X

A B

C D

6

1

2

7

8 9

Y

Z

http://www.xilinx.com

34 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

The PIN-TPSYNC grouping constraint supports standard UCF wildcard conventions. For
example, if there was a data bus input to RP_A it could be added to the input group in the
previous example with this constraint:

PIN “RP_A.data*” TPSYNC = group_RP_A_input;

To create timing constraints for all static nets going to Partition Pin RP_A.1 and all
reconfigurable nets going from Partition Pin RP_A.1 (paths A & B above), use this
convention:

TIMESPEC TS_from_static_to_PP_input = TO “group_RP_A_input” 4.5 ns;
TIMESPEC TS_from_PP_input_to_RM = FROM “group_RP_A_input” 4.5 ns;

To create timing constraints for all reconfigurable nets going to Partition Pin RP_A.2 and
all static nets going from Partition Pin RP_A.2 (paths C & D above) use this convention:

TIMESPEC TS_from_RM_to_PP_output = TO “group_RP_A_output” 4.5 ns;
TIMESPEC TS_from_PP_output_to_static = FROM “group_RP_A_output” 4.5 ns;

Because these constraints might cover asynchronous paths, Xilinx® recommends that all
paths to and from Reconfigurable Partitions be synchronous.

During an initial implementation, only one of the RMs is considered for timing purposes.
The tool-generated timing budget might not provide enough timing margin for all of the
other RMs to meet timing when they are implemented later. The TPSYNC option allows
you to constrain the static portion of the design separately from each RM. This helps
ensure that an adequate timing budget is allocated to the static region and to each RM.

For more information on a TPSYNC limitation, see Appendix A, Known Issues and Known
Limitations.

A standard period timing constraint is used for register-to-register paths that contain
Partition Pins. Nets X, Y & Z above would be constrained by the following:

NET clk TNM_NET = clk_group;
TIMESPEC TS_clk_period = PERIOD clk_group 10 ns;

This constraint ensures that the register-to-register path, including Partition Pin delay,
meets the timing constraint. It does not specify what portion of the net delay is allocated to
static and reconfigurable parts of the net. Therefore, the PERIOD constraint should be used
in combination with FROM, TO, and FROM:TO constraints to accurately budget the entire
path.

Connecting input pads directly into a Partition, or outputs from a Partition directly to an
output pad, could result in suboptimal timing performance. The Partition Pins are made of
combinatorial logic and add path delay. The Partition Pins also prevent IOB packing which
could lead to timing failures for the inputs and outputs if that packing were required.

Xilinx® strongly recommends that all signals, except global clocks, passing through the
Reconfigurable Partition boundary are registered to simplify timing constraints and to
increase the likelihood that timing constraints are met. However, if pads are connected
directly to a synchronous component in a Reconfigurable Partition, then OFFSET
constraints can be used to correctly constrain the path.

If an input pad drives a synchronous component inside of a Partition, an OFFSET IN
constraint can be applied to constrain the input. This correctly takes the Partition Pin delay
into account. A global OFFSET IN that could apply:

OFFSET = IN 3 ns VALID 8 ns BEFORE “clk”;

If a synchronous component drives the output of a Partition and the Partition output
drives an output pad, an OFFSET OUT constraint can be applied to constrain that output.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 35
UG702 (v14.5) April 26, 2013

Constraints

This correctly takes the Partition Pin delay into account. A global OFFSET OUT that could
apply:

OFFSET = OUT 5 ns AFTER “clk”;

Optionally, a Partition Pin can be physically locked to a site within the area_group range
of the RP. This is not required, as they are placed automatically by the PR software, but can
be done to gain an additional level of control in the implementation results. This
methodology should be used as a last resort, and only after automatic placement, with
timing constraints, has been explored. The following UCF command physically locks the
Partition Pin to a site:

PIN “RP_A.1” LOC = SLICE_X4Y4;

Timing Constraints for the ICAP
If the Internal Configuration Access Port (ICAP) is used as the configuration port for
partially reconfiguring the FPGA, timing constraints can be very useful to understand the
potential performance of this interface.

7 Series and Virtex-6 ICAP Timing Constraints

In 7 series and Virtex-6 FPGAs, the ICAP is modeled as a synchronous component in
TRACE. This means that PERIOD, FROM:TO, and all group based constraints will correctly
cover paths to and from the ICAP site. No additional constraints are required, as long as
the ICAP component is added to the applicable time groups.

Virtex-5 and Virtex-4 ICAP Timing Constraints

For Virtex-5 and Virtex-4 FPGAs, it is important to understand that the paths to the ICAP
and from the ICAP are not covered by PERIOD constraints. The ICAP inputs and outputs
are not considered synchronous by TRACE. This is also true for the BUSY, CE, and WRITE
signals. This means that the inputs to and the outputs from the ICAP must be constrained
using the exception constraint: NET MAXDELAY.

Using NET MAXDELAY constraints, the syntax looks like this:

NET “to_icap<*>” MAXDELAY = 15 ns;
NET “from_icap<*>” MAXDELAY = 15 ns;
NET “busy_from_icap” MAXDELAY = 15 ns;
NET “write_to_icap” MAXDELAY = 15 ns;
NET “ce_to_icap” MAXDELAY = 15 ns;

In this example, the to_icap and from_icap networks are buses of any width. The
asterisk represents the entire bus (that is, 0, 1, 2, …). The NET MAXDELAY constraint
constrains only the net delay. It does not take the setup time or clock-to-out time into
consideration.

The ICAP component cannot be added to time groups because it is not considered a
synchronous element. Therefore, the ICAP cannot be made a synchronous component by
use of a TPSYNC constraint. The ICAP component is a special type of component and must
given special consideration for timing when it is used in a design.

http://www.xilinx.com

36 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Extracting Partition Pin information
Partition Pins are added by the implementation tools and do not exist in the logical source
design. Partition Pins are named in a predictable fashion but to be absolutely sure that the
correct names are used, the design must be run through implementation. The Partition Pin
placement can then be extracted from an implemented design using the pr2ucf utility.
Run the utility on the placed and routed NCD file within the Configuration directory:

pr2ucf design_routed.ncd –o partition_pins.ucf

The PIN location constraints can be back-annotated to the design UCF file by copying
them from the partition_pins.ucf file to the design.ucf file, though this is not
necessary to maintain placement from one Configuration to the next.

Even though Partition Pins are physically located within the reconfigurable regions, they
are logically part of the static logic, and any constraints placed upon them must reside in
the top-level UCF. Partition Pins can be viewed within FPGA Editor to see their placement
in relation to other logic in the design.

Constraints Editor
The Constraints Editor can be used to create the Partition Pin groups and timing
constraints after an initial implementation has been run on at least one Configuration.

When prompted for design files, select any NGD file in an up-to-date Configuration;
however, the UCF must be a new file (created before the Constraints Editor is opened), not
the name of the UCF file that has already been imported into the PlanAhead software or
one that currently exists with a Configuration.

Within the Constraints Editor, there is a Group Constraints category in the Constraint
Type window. Select By Combinatorial Pins to create TPSYNC constraints based on Partition
Pins. In the dialog that opens, the Design element type field can be set to Partition Pins to
find the instances easily within the design. Use groups created here to define timing
specifications. Figure 3-5 shows the Group Constraints by Combinatorial Pins dialog box.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 37
UG702 (v14.5) April 26, 2013

Constraints

The new constraints generated by the Constraints Editor must be imported into the
PlanAhead software to be applied to the design. Select File > Add Sources, then select Add
or Create Constraints, then select the UCF file from which you will import the constraints
updated by the Constraints Editor.

RM Constraints in PlanAhead
PlanAhead provides an effective way to manage a Partial Reconfiguration design.
Constraining a PR design can be complex and managing those constraints through
PlanAhead requires some planning.

There are three main methods for getting RM constraints into a PlanAhead PR design:

• Top UCF Method – In this method, the constraints exist prior to the PlanAhead
project in one or more top-level UCF files. These constraints include full hierarchical
paths to the RM logic and will apply to all RMs that contain the specified instances.
The constraints relating to RM logic will be pulled out of the top UCF, and will be
added to a PlanAhead-generated partition UCF. This method is not recommended for
constraining RM logic.

• RM UCF Method – In this method, the constraints exist prior to the PlanAhead
project in an RM-level UCF. The hierarchy for these constraints is specific to the RM
hierarchy (not full hierarchical paths from Top).
If multiple RMs require the same constraint, the constraint will need to be duplicated
in each RM UCF. This is the recommend way to add RM specific constraints.

X-Ref Target - Figure 3-5

Figure 3-5: Grouping Partition Pins in Constraints Editor

http://www.xilinx.com

38 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

• GUI Method – In this method, the constraints are created after the PlanAhead
software project has been created with the PlanAhead GUI or a Tcl command. RM-
specific constraints will only apply to the RM active at the time the constraints were
created, and will be added to PlanAhead Generated RM UCF (they will not show up
in the top-level target UCF). Instead, it is recommend to manually add these
constraints to each user defined RM UCF, and then update the RM using the Update
Reconfigurable Module command.

PlanAhead UCF Recommendations

There are rules regarding UCF constraints that should be followed when using the
PlanAhead flow. Note that these rules will likely change as the constraint management
system is modified in future releases of PlanAhead. However, for the 13.4 ISE® software,
these rules should be followed:

• Use the Copy into Project option when specifying UCFs for a PlanAhead project.
PlanAhead does some manipulation of RM constraints that are read into the tools.
Following this rule will ensure that any changes done by PlanAhead only affect a local
copy of the UCF.

• Put all RM constraints into RM-specific UCF files. Putting RM constraints into the top-
level UCF or using the GUI to create RM UCFs can lead to undesirable behavior.

PlanAhead UCF Known Issues

• If the top-level UCF contains RM specific constraints, they will not be loaded properly
until the RMs have been defined for appropriate RPs. If this occurs, the Netlist Design
must be closed and reopened after the RM netlists have been added. This is a known
issue that will be fixed in a future release, but can be avoided by following the
recommendations above.

• The Netlist Design view should be opened for before launching a run. This will ensure
that all constraints are properly applied to RM logic before the run files are written.

• If you make changes to constraints in the PlanAhead GUI, save the project, and then
close and reopen the Netlist Design view before launching a run.

Partitions and Import
Partitions guarantee that shared modules such as static logic are identical among all
Configurations. A Partition is an attribute set on an instance (or top level module) which
directs the Xilinx software to implement the logic in a particular way. The Partition itself
has attributes such as RECONFIGURABLE and STATE that further direct the Xilinx software
regarding how the Partition logic should be implemented.

The RECONFIGURABLE attribute determines whether the instance or module is
implemented in a way that ultimately results in a partial BIT file. Because a reconfigurable
module has many physical requirements that are not necessary for a non-reconfigurable
module, the RECONFIGURABLE attribute must be set prior to running the implementation
tool flow. This has a significant impact on the final implementation of the module.

The STATE attribute determines whether the module is implemented or imported
(preserved) from a previously implemented design.

If the Partition is imported, then its implementation, including placement and routing, is
identical to the design from which it was imported. For example, the first Configuration
implements the static logic, and the user exports (promotes) this result. All subsequent
implementations import the static Partition from the promoted Configuration. If the static

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 39
UG702 (v14.5) April 26, 2013

Partitions and Import

logic is modified and re-exported, then the subsequent Configurations must be updated by
importing the new static logic and re-implementing those Configurations.

Implementation tools use prior results to import Partition information. PlanAhead
manages promoted Configuration data automatically, and command line users can
manage this easily themselves. Simply copy the Configuration to a safe location to prevent
these files from being overwritten when iterations on that Configuration are done. When
importing from this Configuration, set the ImportLocation in the xpartition.pxml
file to this directory. The important files in this directory include the xpartition.pxml
and all of the *_prev_* files. In a PlanAhead project, these files are named
<design>_prev_built.ngd, <design>_prev_mapped.ncd,
<design>_prev_mapped.ngm, and <design>_routed_prev_routed.ncd. PlanAhead
also keeps the report files for each step, to help document the Configuration that has been
saved.

The Role of PXML Files
The Partition information is stored in the xpartition.pxml file located in the
implementation directory. Each Configuration has its own PXML file stored in its design
directory.

The xpartition.pxml file:

• Is a text file using XML format

• Is generated automatically by the PlanAhead software or the provided gen_xp.tcl
script. For more information on gen_xp.tcl see Chapter 5, Command Line
Scripting.

• Can be user-created or modified

• Is treated by the implementation tools (such as MAP and PAR) as an input

• Can be considered a source for revision control needs

Xilinx software such as NGDBuild, MAP, and PAR looks automatically for and uses the
xpartition.pxml file in the implementation directory. The XML file with the Partition
information must be named xpartition.pxmland must reside in the implementation
directory. Otherwise, the Reconfigurable Partitions are not recognized.

When the xpartition.pxml file is modified, portions of the flow must be rerun. If the
STATE attribute is changed, then MAP or PAR can be re-run. If you re-run both MAP and
PAR, placement and routing takes the STATE from the xpartition.pxml file. If you re-
run just PAR, placement keeps the STATE from the previous run and the routing takes the
STATE from the current xpartition.pxml. If the ImportLocation or
Reconfigurable attributes are changed, NGDBuild, MAP, and PAR must all be re-run.

Note: The BoundaryOpt attribute, which is attached to a partition in a PXML file, cannot be used
in a Partial Reconfiguration flow.

The following subsections show first, second, and third Configuration PXML files.

http://www.xilinx.com

40 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

First Configuration PXML File
The First Configuration PXML file (simplified) is as shown in the following file snippet:

First Configuration's xpartition.pxml file:

 <Project FileVersion=”1.2” Name=”FFF” ProjectVersion=”2.0”>

 <Partition Name=”/top” State=”implement”
 ImportLocation=”NONE” >

 <Partition Name=”/top/red” State=”implement”
 ImportLocation=”NONE” Reconfigurable=”true”
 ReconfigModuleName=”red_fast”>

 <Partition Name=”/top/blue” State=”implement”
 ImportLocation=”NONE" Reconfigurable="true"
 ReconfigModuleName="blue_fast">

 <Partition Name="/top/green" State="implement"
 ImportLocation="NONE" Reconfigurable="true"
 ReconfigModuleName="green_fast">

 </Partition>
 </Partition>
 </Project>

Second Configuration PXML File
The second Configuration that imports the static logic is shown in the following
(simplified) file snippet:

Second Configuration's xpartition.pxml file:

 <Project FileVersion=”1.2” Name=”SSS” ProjectVersion=”2.0”>

 <Partition Name=”/top” State=”import”
 ImportLocation=”../XFFF" >

 <Partition Name="/top/red"
 State="implement" ImportLocation="NONE" Reconfigurable="true"
 ReconfigModuleName="red_slow" >

 <Partition Name="/top/blue"
 State="implement" ImportLocation="NONE" Reconfigurable="true"
 ReconfigModuleName="blue_slow" >

 <Partition Name="/top/green"
 State="implement" ImportLocation="NONE" Reconfigurable="true"
 ReconfigModuleName="green_slow" >

 </Partition>
 </Partition>
 </Project>

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 41
UG702 (v14.5) April 26, 2013

Implementation

Third Configuration PXML File
The third Configuration which imports both static and all three Reconfigurable Modules is
shown in the following (simplified) file snippet:

Third Configuration's xpartition.pxml file:

 <Project FileVersion="1.2“ Name=”FSF" ProjectVersion="2.0">

 <Partition Name="/top" State="import"
 ImportLocation="../XFFF" >

 <Partition Name="/top/red" State="import"
 ImportLocation="../XFFF" Reconfigurable="true"
 ReconfigModuleName="red_fast" >

 <Partition Name="/top/blue" State="import"
 ImportLocation="../XSSS" Reconfigurable="true"
 ReconfigModuleName="blue_slow" >

 <Partition Name="/top/green" State="import"
 ImportLocation="../XFFF" Reconfigurable="true"
 ReconfigModuleName="green_fast" >

 </Partition>
 </Partition>
 </Project>

The static logic, along with the Red and Green modules, is imported from the first
configuration. The Blue module is imported from the second Configuration.

Implementation
To implement the FPGA design, run NGDBuild, MAP, and PAR in a similar fashion to a
non-PR design. Most of the PR-specific information is contained in the
xpartition.pxmlfile and the UCF file. There are no PR-specific command line switches.
The following example shows the commands to implement a PR design:

ngdbuild -sd ../red_fast -sd ../blue_fast –sd ../green_fast -uc
../UCF/design.ucf ../Static/top.edf FFF.ngd
map -w -o FFF_map.ncd FFF.ngd FFF.pcf
par -w FFF_map.ncd FFF.ncd FFF.pcf

Not all Implementation options are available for Partial Reconfiguration. Options not
available are:

• The -global_opt option to the MAP command and its child options

• The high and xe values for the -power option to the MAP command

• The BoundaryOpt attribute, which is applied to a partition in a PXML file

• SmartGuide™

http://www.xilinx.com

42 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Debugging Placement and Routing Problems
When a Partial Reconfiguration design is placed and routed (see Figure 3-6):

• Static routes can route through Reconfigurable Partitions.

• Routes within Reconfigurable Modules cannot route outside the Area Group
associated with that Reconfigurable Partition.

• Imported routes will have precedence over implemented routes.

What does this mean for debugging placement and routing problems?

• RP area groups will need to be larger than the same Area Group would be for a flat
design.

• The placer considers these routing restrictions, so placement failures may be caused
by unavailability of routing resources.

If your design fails to place, test with non-reconfigurable partitions by modifying your
xpartition.pxml file to remove the reconfigurable=”true” statement. Before the
modification, the file will look like this:

X-Ref Target - Figure 3-6

Figure 3-6: Routing Restriction in Partial Reconfiguration

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 43
UG702 (v14.5) April 26, 2013

Generating BIT Files

After the modification, the file will look like this:

Since non-reconfigurable partitions don't have the same routing restrictions, if the RP
places and routes successfully with this change, the area groups will need to be made
larger for the Reconfigurable Partitions to place and route.

NGDBuild, MAP, and PAR will need to be rerun after this change.

Generating BIT Files
Run the BitGen command on the NCD file to generate both the full and partial BIT files. No
special options are required to generate partial BIT files, but options specific to Partial
Reconfiguration capabilities are listed later in this section.

bitgen -w FFF.ncd

If the design contains Reconfigurable Partitions, partial BIT files are generated
automatically for each of them. The full BIT file includes the partial modules used in the
Configuration.

For example, the first Configuration in the example design generates the files:

fff.bit

(static logic and modules red_fast, blue_fast, and green_fast)

fff_reconfig_red_red_fast_partial.bit

(only logic in the range defined for the red Reconfigurable Partition)

fff_reconfig_blue_blue_fast_partial.bit

(only logic in the range defined for the blue Reconfigurable Partition)

fff_reconfig_green_green_fast_partial.bit

(only logic in the range defined for the green Reconfigurable Partition)

http://www.xilinx.com

44 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

The following BitGen options should be set for Partial Reconfiguration designs where
applicable.

• –g ActiveReconfig:Yes

The -g ActiveReconfig option is typically used in PR to prevent shutting down the
FPGA (prevents GSR assertion).

• -g Binary:Yes

This will generate a binary configuration with configuration data only (same as BIT
file minus header information). Because the BIT file has header information of varying
length (does not always fall on a Word boundary), a BIN file is often a preferred format
to use for custom configuration interfaces.

• -g ConfigFallback:Disable

Use this option to prevent triggering a full device configuration after a configuration
error (CRC error) on a partial bitstream. Use this option for Virtex-5 and newer
architectures.

• –g CRC:enable

This is the default, and disabling the CRC is not recommended.

• -g Persist:Yes

Prohibits the use of the dual-purpose configuration pins as user I/O, which is required
if Slave SelectMAP or Slave Serial modes are to be used for Partial Reconfiguration.
This option should be used in conjunction with the CONFIG_MODE constraint to select
the proper set of configuration pins to be reserved for post-configuration use. Consult
the Constraints Guide (UG625) for the complete set of values for CONFIG_MODE
(examples: S_SELECTMAP, S_SERIAL).

• -g PerFrameCRC:Yes

Inserts a CRC value after every frame in a partial reconfiguration bitstream. These
values are checked within the configuration engine before the frame is shifted into
memory, thus ensuring no corruption in the active FPGA even if a bitstream error
occurs. The INIT_B pin will pull high if an error is detected. Default is No.

Note: The -g PerFrameCRC feature cannot be used with Compression. Compression for a full
device bitstream can still be used by selecting -g Compress during one BitGen run, then
rerunning without Compression but with -g PerFrameCRC to obtain partial bitstreams with the
CRC feature.

Do not use the BitGen -r option with the Partition-based Partial Reconfiguration flow. The
-r switch supports the difference-based flow, where minor edits are made to a routed
design and this option compares the changes in order to build a partial BIT file.

For more information on these and other BitGen Options, see the chapter titled “BitGen” in
the Command Line Tools User Guide, (UG628).

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=cgd.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf
http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 45
UG702 (v14.5) April 26, 2013

Report Files

Report Files
The report files for NGDBuild, MAP, PAR, TRACE, and BitGen contain specific
information for Reconfigurable Partitions. The report files are:

• NGDBuild Report

• MAP Report

• PAR Report

• TRACE Report

• Bitgen Report

The following sample reports are in a simplified format.

NGDBuild Report
The NGDBuild report indicates which Partitions, including the top-level static Partition,
were implemented and which were preserved. In this example, the top-level static
Partition was preserved, and the three Reconfigurable Partitions were implemented.

Partition Implementation Status

 Preserved Partitions:

 Partition "/top"

 Implemented Partitions:

 Partition "/top/reconfig_red" (Reconfigurable Module "red_fast"):
Attribute STATE set to IMPLEMENT.

 Partition "/top/reconfig_blue" (Reconfigurable Module "blue_fast"):
Attribute STATE set to IMPLEMENT.

 Partition "/top/reconfig_green" (Reconfigurable Module "green_fast"):
Attribute STATE set to IMPLEMENT.

MAP Report
Similar to the NGDBuild report, the MAP report (.mrp) shows that all Partitions were
implemented except the top level static Partition.

Section 9 - Area Group and Partition Summary
--

Partition Implementation Status

 Preserved Partitions:

 Partition "/top"

 Implemented Partitions:

 Partition "/top/reconfig_red" (Reconfigurable Module "red_fast"):

http://www.xilinx.com

46 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Attribute STATE set to IMPLEMENT.

 Partition "/top/reconfig_blue" (Reconfigurable Module "blue_fast"):
Attribute STATE set to IMPLEMENT.

 Partition "/top/reconfig_green" (Reconfigurable Module
"green_fast"):
Attribute STATE set to IMPLEMENT.

The Partition Resource Summary reports the number of resources used by each partition in
the design. It also reports which area group is associated with each Reconfigurable
Partition.

In the following example, the AREA GROUP pblock_reconfig_red is associated with
Reconfigurable Partition /top/reconfig_red.

Partition Resource Summary:

Resources are reported for each Partition followed in parenthesis by resources
for the Partition plus all of its descendants.

Partition "/top":
 State=implement
 Slice Logic Utilization:
 Number of Slice Registers: 113 (188)
 Number of Slice LUTs: 148 (274)
 Number used as logic: 146 (272)
 Number used as Memory: 2 (2)
 Slice Logic Distribution:
 Number of occupied Slices: 60 (105)
 Number of LUT Flip Flop pairs used: 157 (288)
 Number with an unused Flip Flop: 44 out of 157 28%
 Number with an unused LUT: 7 out of 157 4%
 Number of fully used LUT-FF pairs: 106 out of 157 67%
 IO Utilization:
 Number of bonded IOBs: 26 (26)
 Number of MMCM_ADV: 1 (1)
 Number of OLOGICE1: 17 (17)
 Number of STARTUP: 1 (1)

Partition "/top/reconfig_blue" (Reconfigurable Module "Blue_Fast") (Area Group "AG_reconfig_blue"):
 State=implement
 Slice Logic Utilization:
 Number of Slice Registers: 25 (25)
 Number of Slice LUTs: 42 (42)
 Number used as logic: 42 (42)
 Slice Logic Distribution:
 Number of occupied Slices: 15 (15)
 Number of LUT Flip Flop pairs used: 44 (44)
 Number with an unused Flip Flop: 19 out of 44 43%
 Number with an unused LUT: 1 out of 44 2%
 Number of fully used LUT-FF pairs: 24 out of 44 54%

The section of the following MAP report provides percent utilization with respect to the
resources contained in the physical area group ranges defined in the UCF file. In this
example, the AG_reconfig_blue area group has one range associated with it, for slices
(LUTs and FFs). The AG_RP_green area group has ranges for block RAM and slices.

Area Group Information

Area Group "AG_reconfig_blue"
 No COMPRESSION specified for Area Group "AG_reconfig_blue"

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 47
UG702 (v14.5) April 26, 2013

Report Files

 RANGE: SLICE_X74Y0:SLICE_X83Y79
 Slice Logic Utilization:
 Number of Slice Registers: 25 out of 6,400 1%
 Number of Slice LUTs: 42 out of 3,200 1%
 Number used as logic: 42
 Slice Logic Distribution:
 Number of occupied Slices: 15 out of 800 1%
 Number of LUT Flip Flop pairs used: 44
 Number with an unused Flip Flop: 19 out of 44 43%
 Number with an unused LUT: 1 out of 44 2%
 Number of fully used LUT-FF pairs: 24 out of 44 54%

PAR Report
Similar to the NGDBuild report and the MAP report, the following PAR report also shows
which Partitions were implemented.

Partition Implementation Status

 Preserved Partitions:

 Partition "/top"

 Implemented Partitions:

 Partition "/top/reconfig_red" (Reconfigurable Module "red_fast"):
Attribute STATE set to IMPLEMENT.

 Partition "/top/reconfig_blue" (Reconfigurable Module "blue_fast"):
Attribute STATE set to IMPLEMENT.

 Partition "/top/reconfig_green" (Reconfigurable Module "green_fast"):
Attribute STATE set to IMPLEMENT.

TRACE Report
The TRACE tool is used to perform static timing analysis on FPGA designs. This tool is
used for both timing verification and reporting. For more information on TRACE usage,
see the TRACE section of the Command Line Tools User Guide (UG628).

The Partial Reconfiguration design flow always works with a full design. This allows
timing analysis to leverage constraints applied to the static region for analysis of an RM
(that is, a PERIOD constraint applied to a clock in the static region performs analysis on the
applicable paths in an RM, for the current combination). The static logic is always
analyzed.

TRACE can generate several output files. The following three are of particular interest for
examining how well a design meets user-defined constraints:

• TWR - an ASCII Timing Report

• TWX - an XML Timing Report

• TSI - an ASCII Constraint Interaction Report

TWR and TWX timing reports are created with each Configuration run through
implementation. If additional reports are needed with different options, then TRACE can
be run from the command line, or the options can be changed for that implementation in
the PlanAhead software and the implementation can be re-run.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf

48 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Running static timing analysis on a design that contains Reconfigurable Partitions is the
same as running static timing analysis on a regular design. However, there is a difference
in methodology. For a Partial Reconfiguration design, timing analysis needs to be run for
each Configuration of the design.

Following is an example of the TRACE command line. For more information on the
switches used in this example, see the TRACE section of the
Command Line Tools User Guide, (UG628).

trce –v 10 –u 10 –tsi top.tsi –o top.twr –xml top.twx top top.pcf

The timing report can be used to examine the paths to, from, and through Partition Pins. To
find this logic, search for the keyword PROXY. A LUT name concatenated with the name
_PROXY identifies that the LUT is used as proxy logic, and this also means that the
Partition Pin exists on this proxy logic.

In the following example, a TPSYNC constraint was applied to the red.addr bus with
these constraints:

PIN “red.addr(*)” TPSYNC = “group_RP_red_input”;
TIMESPEC TS_from_static_to_PP_input = TO “group_RP_red_input” 4.5 ns;

The source of this path is in the static region. The destination is the LUT that has been
inserted as proxy logic. The destination name for this specific path is red.addr(11). This
indicates that the Partition name is red and that the port name is addr(11).

This analysis shows that the clock-to-out time of the register and the net delay are taken
into consideration up to the partition pin. The delay through the partition pin is not
considered in this path analysis.

Timing constraint: TS_from_static_to_PP_input = MAXDELAY TO TIMEGRP
“group_RP_red_input” 4.5 ns;

 12 paths analyzed, 12 endpoints analyzed, 0 failing endpoints
 0 timing errors detected. (0 setup errors, 0 hold errors)
 Maximum delay is 1.111ns.

Slack: 3.389ns (requirement - data path)
 Source: count_34 (FF)
 Destination: red/addr(11)_PROXY (LUT) (red.addr(11))
 Requirement: 4.500ns
 Data Path Delay: 1.111ns (Levels of Logic = 0)
 Source Clock: gclk rising at 0.000ns

 Maximum Data Path: count_34 to RP_red/addr(11)_PROXY
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 -- ----------------------
 SLICE_X47Y39.CQ Tcko 0.326 count[34]
 count_34
 SLICE_X45Y37.A1 net (fanout=2) 0.785 count[34]
 -- ----------------------
 Total 1.111ns (0.326ns logic, 0.785ns route)
 (29.3% logic, 70.7% route)

Figure 3-7, page 49 shows the path from static FF to the Partitioned Pin.

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf
http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 49
UG702 (v14.5) April 26, 2013

Report Files

For the following example, a TPSYNC constraint was applied to the red.d_out bus with
these constraints:

PIN "red.d_out(*)" TPSYNC = "Bram_output_PPs";
TIMESPEC TS_from_PP_output_to_static = FROM "Bram_output_PPs" 5.0 ns;

The source of this path is the proxy logic on the output of a Reconfigurable Partition. The
destination is a PAD in the static region. The source name for this specific path is
red.d_out(5), indicating the Partition name is red and the port name is d_out(5).

The following analysis shows that the propagation time through the proxy logic is taken
into consideration, along with the net delay to the output buffer, followed by the
propagation delay through the output buffer to the PAD.

Timing constraint: TS_from_PP_output_to_static = MAXDELAY FROM TIMEGRP
"Bram_output_PPs" 5.0 ns;

 8 paths analyzed, 8 endpoints analyzed, 0 failing endpoints
 0 timing errors detected. (0 setup errors, 0 hold errors)
 Maximum delay is 4.770ns.
--
Slack: 0.230ns (requirement - data path)
 Source: red/d_out(5)_PROXY (LUT) (red.d_out(5))
 Destination: out_bram[5] (PAD)
 Requirement: 5.000ns
 Data Path Delay: 4.770ns (Levels of Logic = 2)

 Maximum Data Path: U1_RP_Bram/d_out(5)_PROXY to out_bram[5]
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 (Partition Pin)
 -- -------------------
 SLICE_X33Y38.B Tilo 0.080 red/d_out(5)_PROXY
 red/d_out(5)_PROXY
 (red.d_out(5))
 G15.O net (fanout=1) 2.514 out_bram_5_OBUF
 G15.PAD Tioop 2.176 out_bram[5]
 out_bram_5_OBUF
 out_bram[5]
 -- ---------------------
 Total 4.770ns (2.256ns logic, 2.514ns rte)
 (47.3% logic, 52.7% route)

X-Ref Target - Figure 3-7

Figure 3-7: Path from static FF to Partition Pin
X12028

Path Analyzed

count_34

Partition pin
red. addr(11)

red
(partition)

LUT
FF

addr(11)_PROXY

http://www.xilinx.com

50 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Figure 3-8 illustrates the analyzed path from partition pin to static PAD.

In the following example, a PERIOD constraint was applied to the
static_VGA_vgaclk2_i clock signal, and a related PERIOD constraint was applied to
the VGA_CLK clock signal (both of which are in the static region of the design).

The source and destination of this path are Flip-Flops (FFs) in the static region; however,
the path between the source and the destination passes through proxy logic, into a
Reconfigurable Partition, back through more proxy logic leaving the Reconfigurable
Partition, and finally to a FF in the static region. The name of the first Partition Pin for this
specific path is red.VGA_in7, indicating that the Partition name is red and the port name
is VGA_in7. The name in the second Partition Pin for this specific path is red.VGA_out7,
indicating that the Partition name is red and the port name is VGA_out7.

The analysis in the following file snippet shows the entire path being taken into
consideration, including the propagation delay in the Partition Pins. There is a violation on
this path, and this violation could be resolved by adding registers inside the Partition. A
fully combinatorial path through a Reconfigurable Partition is strongly discouraged, not
only due to the two additional LUT delays incurred, but also due to the lack of logic
decoupling as described in Decoupling Functionality in Chapter 7.

X-Ref Target - Figure 3-8

Figure 3-8: Path from Partition Pin to static PAD

X12029

Path Analyzed

Partition pin
red.d_out(5)

red
(partition)

LUT

d_out(5)_PROXY out_bram[5]
(PAD)

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 51
UG702 (v14.5) April 26, 2013

Report Files

Figure 3-9, page 52 illustrates the path from FF to FF through partition pins.

Timing constraint: TS_static_VGA_vgaclk2_i = PERIOD TIMEGRP
“static_VGA_vgaclk2_i” TS_static_VGA_pixel_clock_i PHASE 3.167 ns HIGH 50%;

 126 paths analyzed, 36 endpoints analyzed, 10 failing endpoints
 10 timing errors detected. (10 setup errors, 0 hold errors, 0 component switching limit
errors)
 Minimum period is 15.401ns.
--
Slack: -0.451ns (req-(data path-clock path skew + uncer'ty))
 Source: static_VGA/VGA_R_1[0] (FF)
 Destination: static_DVI_IF/ODDR_DVI_DATA11 (FF)
 Requirement: 3.167ns
 Data Path Delay: 3.387ns (Levels of Logic = 2)
 Clock Path Skew: 0.084ns (1.427 - 1.343)
 Source Clock: static_VGA/pixel_clock rising at 0.000ns
 Destination Clock: VGA_CLK rising at 3.167ns
 Clock Uncertainty: 0.315ns

 Clock Uncertainty: 0.315ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.070ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.458ns
 Phase Error (PE): 0.050ns

 Maximum Data Path: static_VGA/VGA_R_1[0] to static_DVI_IF/ODDR_DVI_DATA11
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 (Partition Pin)
 -- -------------------
 SLICE_X25Y75.DQ Tcko 0.326 VGA_R_bus_out[1]
 static_VGA/VGA_R_1[0]
 SLICE_X25Y76.C6 net (fanout=8) 0.248 VGA_R_bus_out[1]
 SLICE_X25Y76.C Tilo 0.080 red/VGA_out7_PROXY
 red/VGA_in7_PROXY
 (red.VGA_in7)
 SLICE_X25Y76.D5 net (fanout=1) 0.164 red/VGA_out7
 SLICE_X25Y76.D Tilo 0.080 red/VGA_out7_PROXY
 red/VGA_out7_PROXY
 (red.VGA_out7)
 OLOGIC_X2Y39.D1 net (fanout=1) 2.192 VGA_R[7]
 OLOGIC_X2Y39.CLK Todck 0.297 DVI_LCD_DATA11_c
 static_DVI_IF/ODDR_DVI_DATA11
 -- ----------------------
 Total 3.387ns (0.783ns logic, 2.604ns rte)
 (23.1% logic, 76.9% rte)

http://www.xilinx.com

52 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Bitgen Report
The bitgen executable creates a report file for the full BIT file in addition to each partial
BIT file. The full BIT file report lists all of the Reconfigurable Modules included in the full
BIT file and indicates that it is not a partial BIT file with the ActiveReconfig = No
setting.

...
Partition “/top/reconfig_red” (Reconfigurable Module “red_fast”)
Partition “/top/reconfig_blue” (Reconfigurable Module “blue_fast”)
Partition “/top/reconfig_green” (Reconfigurable Module “green_fast”)
...
Summary of Bitgen Options:
+----------------------+----------------------+
| ActiveReconfig | No* |
+----------------------+----------------------+
| Partial | (Not Specified)* |
+----------------------+----------------------+
...
* Default setting.

The report for the partial BIT file indicates that it is a partial BIT file and which Partition
and Reconfigurable Module to which it is associated.

...
Summary of Bitgen Options:
+----------------------+----------------------+
| ActiveReconfig | Yes |
+----------------------+----------------------+
| Partial | reconfig_red |
+----------------------+----------------------+
...
Creating bit stream for Partition “/top/reconfig_red”
 (Reconfigurable Module “red_fast”)
Creating bit map...
Saving bit stream in “fff_reconfig_red_red_fast_partial.bit”.

X-Ref Target - Figure 3-9

Figure 3-9: Path from FF to FF through Partition Pins

X12030

Path Analyzed

static_VGA/
VGA_R_1[0]

static_DVI_IF/
ODDR_DVI_DATA11

Partition pin
red. VGA_out7

Partition pin
red. VGA_in7

red
(partition)

LUT

FF FF

LUT

VGA_in7_PROXY VGA_out7_PROXY

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 53
UG702 (v14.5) April 26, 2013

pr_verify

pr_verify
For Partial Reconfigurable designs to work in hardware, static logic's placement and
routing must be consistent between all configurations. In addition, proxy logic must be
placed in the same locations and clock spine routing must match. The pr_verify utility is
used to compare routed NCD files from two or more configurations created for a Partial
Reconfiguration design to validate that all imported resources match. These resources
include:

• Global Clock Spines – Each global clock must have clock spines routed within the
same clock regions in all configurations.

• Regional Clock Spines – For architectures except for Virtex-5, each regional clock must
have clock spines routed within the same clock regions in all configurations.

• Proxy logic – Proxy logic, although logically part of the static design, must be placed
at the same locations within the Area Groups allocated for the Reconfigurable
Partitions.

• Partition Interfaces – Each RP must have the same ports in and out of the RM in each
configuration.

pr_verify Usage
pr_verify can be run either in PlanAhead or on the command line. For information on
running it within PlanAhead, see Verifying Configurations in Chapter 4.

Command Line Syntax

pr_verify [-verbose] <design1[.ncd]> <design2[.ncd]> [<design[.ncd]>]
[-o <outfile>]

-verbose – Report all messages

-o <outfile> – Specify the output file name, including extension. If this option is
not used, the default file pr_verify.log is created.

<design*[.ncd]> – Enter a list of at least two NCD files to be compared.

For the example design appearing in this user guide, the pr_verify command line
would be as follows.

pr_verify -verbose ./FastConfig/FastConfig.ncd
./SlowConfig/SlowConfig.ncd ./FSFConfig/FSFConfig.ncd
./BlankConfig/BlankConfig.ncd

http://www.xilinx.com

54 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

pr_verify Log File

The sample command line above would output this pr_verify Log File:

Command Line: /Xilinx/14.5/ISE_DS/ISE/bin/lin/unwrapped/pr_verify
./BlankConfig/BlankConfig.ncd ./FastConfig/FastConfig.ncd
./FSFConfig/FSFConfig.ncd ./SlowConfig/SlowConfig.ncd

Loading ./BlankConfig/BlankConfig.ncd: Mon Feb 14 14:53:16 2011
Loading ./FastConfig/FastConfig.ncd: Mon Feb 14 14:35:32 2011
Loading ./FSFConfig/FSFConfig.ncd: Mon Feb 14 14:47:54 2011
Loading ./SlowConfig/SlowConfig.ncd: Mon Feb 14 16 14:40:58 2011

--
Analyzing Designs:
 ./BlankConfig/BlankConfig.ncd
 ./FastConfig/FastConfig.ncd

 Number of matched proxy logic bels = 54
 Number of matched external nets = 33
 Number of matched global clock nets = 4
 Number of matched Reconfigurable Partitions = 0

SUCCESS!

--
Analyzing Designs:
 ./FastConfig/FastConfig.ncd
 ./FSFConfig/FSFConfig.ncd

 Number of matched proxy logic bels = 54
 Number of matched external nets = 33
 Number of matched global clock nets = 4
 Number of matched Reconfigurable Partitions = 2

SUCCESS!

--
Analyzing Designs:
 ./FSFConfig/FSFConfig.ncd
 ./BlankConfig/BlankConfig.ncd

 Number of matched proxy logic bels = 54
 Number of matched external nets = 33
 Number of matched global clock nets = 4
 Number of matched Reconfigurable Partitions = 0

SUCCESS!

--
Analyzing Designs:
 ./FSFConfig/FSFConfig.ncd
 ./SlowConfig/SlowConfig.ncd

 Number of matched proxy logic bels = 54
 Number of matched external nets = 33
 Number of matched global clock nets = 4
 Number of matched Reconfigurable Partitions = 1

SUCCESS!

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 55
UG702 (v14.5) April 26, 2013

pr_verify

--
Analyzing Designs:
 ./SlowConfig/SlowConfig.ncd
 ./BlankConfig/BlankConfig.ncd

 Number of matched proxy logic bels = 54
 Number of matched external nets = 33
 Number of matched global clock nets = 4
 Number of matched Reconfigurable Partitions = 0

SUCCESS!

--
Analyzing Designs:
 ./SlowConfig/SlowConfig.ncd
 ./FastConfig/FastConfig.ncd

 Number of matched proxy logic bels = 54
 Number of matched external nets = 33
 Number of matched global clock nets = 4
 Number of matched Reconfigurable Partitions = 0

SUCCESS!

/Xilinx/14.5/ISE_DS/ISE/bin/lin/unwrapped/pr_verify
./BlankConfig/BlankConfig.ncd ./FastConfig/FastConfig.ncd
./FSFConfig/FSFConfig.ncd ./SlowConfig/SlowConfig.ncd => PASS

As shown in the Log File, the NCD files are compared two at a time so that specific
information on the configurations and resources that are inconsistent can be discovered.
The last line contains the overall PASS/FAIL for the run.

The Log File shows the following resource comparisons:

• Number of matched proxy logic bels

This reflects the number of LUT1s used as proxy logic that are the same in both
existence and location for these two configurations. This number should be the same
for all analyses.

• Number of matched external nets

This reflects the number of ports (input or output) on the RMs for these two
configurations. This number should be the same for all analyses.

• Number of matched global clock nets

This reflects the number of Global Clock nets in the design that were consistently
routed between these two configurations. This number should be the same for all
analyses.

• Number of matched Reconfigurable Partitions

This reflects the number of RMs that were used in both these configurations and have
consistent implementation. This will not necessarily be the same for all analyses. For
example, BlankConfig and FastConfig only have static in common, so the
analysis for those configurations shows 0 matched reconfigurable partitions. However,
FSFConfig and FastConfig have static, Red_Fast and Green_Fast in common,
so they have two matched reconfigurable partitions.

http://www.xilinx.com

56 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 3: Software Tools Flow

Flow Differences
The flow for Partial Reconfiguration is very similar to the standard flow through the
implementation tools, but to create a safe result for the silicon, restrictions must be
imposed on placement and routing. These limitations impact the performance, packing
density, and implementation flexibility of a design.

Due to these flow differences, designs which implement successfully in the standard or
partition flows might not always implement or achieve the same timing or density metrics
in the Partial Reconfiguration flow. The amount of degradation varies from design to
design.

Table 3-1: Flow Differences

Flow Placement Routing

Standard No limitations beyond device
restrictions.

No limitations beyond device
restrictions.

Partitions Imported logic is placed first.
Implemented logic is placed
second.

No Area Group requirements.

Imported logic is routed first.

Implemented logic is routed
second.

Partial
Reconfiguration

Only reconfigurable logic can
be placed in RP Area Groups
unless explicitly forced with a
LOC constraint.

Routing restrictions considered
during placement phase.

Routing resources that extend
outside the RP Area Groups are
not available for reconfigurable
logic.

Imported logic is routed first.

Implemented logic is routed
second.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 57
UG702 (v14.5) April 26, 2013

Chapter 4

PlanAhead Support

This chapter describes the design steps involved when using the PlanAhead software for
Partial Reconfiguration designs. This flow description starts post-synthesis and assumes
that the design has been coded in RTL and synthesized according to the instructions in
Chapter 3, Software Tools Flow.

This user guide assumes basic knowledge of the PlanAhead software. If you are unfamiliar
with PlanAhead, see the PlanAhead User Guide (UG632), and the PlanAhead Quick Front to
Back Tutorial (UG673).

Creating a Partial Reconfiguration Project
To create a Partial Reconfiguration project:

1. Launch the New Project Wizard and, after specifying a project name and location,
select Specify synthesized (EDIF or NGC) netlist. PR projects cannot start at the RTL
level in the PlanAhead software. Select the Enable Partial Reconfiguration option to
define this as a Partial Reconfiguration project. Figure 4-1 shows the New Project
Wizard.

X-Ref Target - Figure 4-1

Figure 4-1: New Project Wizard

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=PlanAhead_Tutorial_Quick_Front-to-Back_Overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=PlanAhead_Tutorial_Quick_Front-to-Back_Overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=PlanAhead_UserGuide.pdf

58 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

2. Add all netlist sources associated with the static logic. Individual files or entire
directories can be added, but all sources should only contain static logic. Sources for
the reconfigurable modules will be added later. In this example, all the static logic is
included in top.ngc, and this is identified as the top level source. Figure 4-2 shows
the New Project > Add Netlist Sources dialog box.

3. Add the top-level constraints files, which should include I/O and Timing constraints.
More than one UCF can be used. The PlanAhead software concatenates all top-level
UCF files along with module-level UCF files before launching implementation runs.
Figure 4-3 displays the New Project > Add Constraints dialog box.

X-Ref Target - Figure 4-2

Figure 4-2: Add Netlists for Static Logic Only

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 59
UG702 (v14.5) April 26, 2013

Setting the Project as a PR Project

The PlanAhead software reads the target device from the netlist.

4. Confirm that it is correct (or adjust it if necessary), then click Next to accept the device.

5. Click the rest of the way through the wizard to generate the project.

Setting the Project as a PR Project
If you haven’t already defined the project as a PR project when the project was created, a
project setting is used to define the project as a PR project and to enable the PR-related
commands. This option is visible only if a valid Partial Reconfiguration license is available,
and the XILINX variable does not point to an installation area of an older release of ISE®
tools.

To set the project as a PR Project:

• Select Tools > Project Settings. Then select the Partial reconfiguration project checkbox
under the General tab.

Note: If the project has already been set as a PR Project, this will not be a checkbox. Once a
project has been set as a PR Project, this setting can no longer be modified.

Once a project is set as a PR project, it must not be used for flat ISE implementation. The
interface and options are intended to work with the PR software features and may impose
unnecessary restrictions on flat designs.

Selecting the option modifies the PlanAhead interface specifically for a PR design.
Additional commands are available in the Netlist view popup menu to set instances as
Reconfigurable Partitions and to add additional Reconfigurable Modules for an instance.

X-Ref Target - Figure 4-3

Figure 4-3: Add Constraints Dialog Box

http://www.xilinx.com

60 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

Opening the Netlist Design
PlanAhead opens to the Project Manager pane. To begin working with your design, you
must first load the netlist into memory. Click the Open Synthesized Design option in the
Flow Manager.

After the netlist is loaded in, a warning displays, as shown in Figure 4-5, that explains there
are Undefined Modules, as expected. This message indicates that the netlists that have
been imported do not describe the entire design. Verify that the modules listed are the
modules that are to be reconfigured.

X-Ref Target - Figure 4-4

Figure 4-4: PlanAhead Partial Reconfiguration Project (Netlist Analysis View)

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 61
UG702 (v14.5) April 26, 2013

Defining the Reconfigurable Instances

In the example design shown in Figure 4-4, the three black box instances
reconfig_blue, reconfig_green, and reconfig_red have black box icons in the
netlist pane because there are currently no netlists associated with them.

For a complete list of icons for the netlist pane, see the PlanAhead User Guide (UG632).

The Reconfigurable Module netlists that are linked to them are the Fast and Slow
variations of blue, green and red, respectively.

Defining the Reconfigurable Instances
You can define a Reconfigurable Partition by selecting a lower-level instance and using the
Set Partition dialog menu command.

1. Select the Set Partition option as shown in Figure 4-6.

2. Since partitions can be Reconfigurable or standard, choose is a reconfigurable Partition
in the Set Partition Wizard and click Next.

3. The Reconfigurable Partition can have netlists for a Reconfigurable Module loaded or
can optionally be defined as a black box module. In this case we will add the netlist for

X-Ref Target - Figure 4-5

Figure 4-5: This Warning is Expected

X-Ref Target - Figure 4-6

Figure 4-6: Setting a Partition as Reconfigurable

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=PlanAhead_UserGuide.pdf

62 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

the fast variant of the blue module. Enter a unique name for the Reconfigurable
Module that corresponds to the module variant to be selected as shown in Figure 4-7.

If the first option (netlist exists) is selected, the wizard prompts for the netlist for this
module. Because all variants of one RP must have the same netlist name, the directory
structure must be used to differentiate instances.

4. In the Set Partition dialog box, shown in Figure 4-8, provide the path to the NGC file.

If additional netlists that exist in other directories must be specified, enter those search
paths here. Also, constraint files that contain physical constraints for this particular
Reconfigurable Module may be specified in the next dialog box.

The Reconfigurable Module appears underneath the Reconfigurable Partition in the
Netlist pane.

X-Ref Target - Figure 4-7

Figure 4-7: Naming the Reconfigurable Module

X-Ref Target - Figure 4-8

Figure 4-8: Defined Reconfigurable Partition with Single Reconfigurable Module

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 63
UG702 (v14.5) April 26, 2013

Adding Reconfigurable Modules to the Project

A design can have multiple Reconfigurable Partitions. You must run the Set Partition
command for each RP in a design. In this example design, modules with the fast variants
are loaded for each RP: red, green, and blue.

Adding Reconfigurable Modules to the Project
You can add additional Reconfigurable Modules for each Reconfigurable Partition using
the Add Reconfigurable Module command as shown in Figure 4-9.

Use this command to add all Reconfigurable Modules to all Reconfigurable Partitions in
the design. In the example design, slow variants of red, green, and blue are added.

X-Ref Target - Figure 4-9

Figure 4-9: Adding a Reconfigurable Module to a Reconfigurable Partition

http://www.xilinx.com

64 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

Adding Black Box Modules
You can also define Black box modules.

1. Use the same Add Reconfigurable Module command, but select the black box option.
No netlist is associated with this module, shown in Figure 4-10.

The RMs are added to the Reconfigurable Modules folder under the RP in the netlist view.
A check mark indicates the active Reconfigurable Module for a Reconfigurable Partition.

Figure 4-11 shows that blue_fast is the active RM for the RP reconfig_blue. The
figure also shows the icon for reconfig_blue as a white square with a gold diamond,
indicating this module is a Reconfigurable Partition. A grey square with a gold diamond
would indicate that the current module is a Reconfigurable Partition that is currently a
black box.

X-Ref Target - Figure 4-10

Figure 4-10: Adding a Black Box as a Reconfigurable Module

X-Ref Target - Figure 4-11

Figure 4-11: Reconfigurable Partition with All Reconfigurable Modules Added

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 65
UG702 (v14.5) April 26, 2013

Adding Reconfigurable Modules to the Project

2. Using the Set as Active Reconfigurable Module command from the popup menu, you
can change the active module for a RP at any time.

This loads the netlist for the selected module into the active workspace, shown in
Figure 4-12.

Managing Design Sources
If there are changes to the source files, the new netlists or constraints must be brought into
PlanAhead. These files are all managed in the Sources pane of the Netlist Design, shown in
Figure 4-13.

X-Ref Target - Figure 4-12

Figure 4-12: Changing the Active Reconfigurable Module

http://www.xilinx.com

66 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

Select the netlist to be updated, right-click, and select Update File to bring in a new netlist.
PlanAhead will ask you to reload the source (if it is part of the static Partition or an active
Reconfigurable Module) to bring this new netlist into memory.

This process assumes that the interface between static and reconfigurable logic has not
changed. If the port lists have changed in any way, it is recommended that you create a
new project with the new netlists.

Defining a PR Region
Once all the Reconfigurable Module variants of all Reconfigurable Partitions have been
defined in the PlanAhead software, the next step is to define the physical layout of the
design. From the main PlanAhead toolbar, select the Floorplanning mode to open the
Physical Constraints tab and floorplan views of the FGPA, shown in Figure 4-14

X-Ref Target - Figure 4-13

Figure 4-13: Sources Pane

X-Ref Target - Figure 4-14

Figure 4-14: Floorplanning Mode From PlanAhead Toolbar

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 67
UG702 (v14.5) April 26, 2013

Adding Reconfigurable Modules to the Project

Pblock rectangles must be created to define the reconfigurable regions of the device. The
Set Pblock Size command () is used to draw a rectangle area in the Device view.

Note: Do not use the Place Pblocks command (Tools > Floorplanning > Place Pblocks) to
place the Pblocks automatically in the device. This command will produce a placement that is not
suitable for implementation.

1. Select the Pblock to be defined in the Physical Constraints pane to enable this
command as shown in Figure 4-15.

2. Right click and select Set Pblock Size, then click and drag in the Device view to create
the Pblock size.

Note: Set Pblock Size can also be selected by right-clicking on the reconfigurable module
instance in the Netlist view.

The Clock Region boundaries in the device view can be used as a guide when shaping
the reconfigurable region. For more recommendations for floorplanning
reconfigurable regions, see Constraints in Chapter 3 and Defining Reconfigurable
Partition Boundaries in Chapter 7. When a Pblock is defined, the PlanAhead software
prompts you to select the resources to be constrained in that region as shown in
Figure 4-16, page 68.

Note: In the PlanAhead software, submodule Area Groups within an RP are not permitted.

X-Ref Target - Figure 4-15

Figure 4-15: Drawing a Pblock for a Reconfigurable Partition

http://www.xilinx.com

68 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

This selection produces a series of AREA_GROUP RANGE constraints for the
Reconfigurable Partition.

3. Uncheck the selections for elements that do not exist in any variant of the
Reconfigurable Modules.

Because partial BIT files are created based upon the constraints selected here, any
extraneous elements make the BIT files unnecessarily large.

The General tab of the Pblock Properties pane, shown in Figure 4-17, shows the
resources available for inclusion and can be enabled or disabled based on the design.

4. Define the Range defined for each type of logic that exists in any of the corresponding
RMs.

Each reconfigurable region must have Ranges for the logic types contained within the
modules to be placed there.

X-Ref Target - Figure 4-16

Figure 4-16: Defining Ranges with a Pblock

X-Ref Target - Figure 4-17

Figure 4-17: Applicable Targets for Range Constraints in a Reconfigurable
Partition

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 69
UG702 (v14.5) April 26, 2013

Adding Reconfigurable Modules to the Project

Applying Reset After Reconfiguration
Any Reconfigurable Partition can have global signals used to initialize all logic after
reconfiguration. See Reset After Reconfiguration in Chapter 7 for details.

Once the Pblock region has been defined, follow these steps to enable the Reset After
Reconfiguration feature.

1. Select the Pblock for the Reconfigurable Partition.

2. In the Pblock Properties pane, select the Attributes tab.

3. Click on the green plus sign () along the left edge.

4. In the Add Pre-defined Attributes dialog box, select RESET_AFTER_RECONFIG, then
OK.

5. In the Pblock Properties pane, select Apply, then save the project.

X-Ref Target - Figure 4-18

Figure 4-18: Adding the RESET_AFTER_RECONFIG Attribute

X-Ref Target - Figure 4-19

Figure 4-19: RESET_AFTER_RECONFIG as a Pblock Property

http://www.xilinx.com

70 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

You will see your target .ucf has been updated with the RESET_AFTER_RECONFIG
property for that Reconfigurable Partition.

Running Partial Reconfiguration Design Rule Checks
A set of developed Design Rule Checks catch violations of the rules for a PR design.

1. From Tools > Report DRC enable or disable the DRCs in any category.

2. Run these checks periodically to ensure that the design work does not violate any basic
premises of Partial Reconfiguration.

Figure 4-20 shows a list DRCs for Partial Reconfiguration.

The DRC Results view displays all warnings and errors. Selecting a violation displays the
details in the Violation Properties view as shown in Figure 4-21.

X-Ref Target - Figure 4-20

Figure 4-20: Report DRC Dialog Box for Partial Reconfiguration

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 71
UG702 (v14.5) April 26, 2013

Creating Configurations

Objects that violate certain PR DRCs can be located by selecting the links in the Violation
Properties view.

Creating Configurations
Once all modules and Pblock ranges have been defined, you can define and implement
Configurations.

The first Configuration has been automatically generated for you. Click on the Design
Runs tab at the bottom of the PlanAhead GUI to select config_1. The Partitions tab at the
bottom of the Implementation Run Properties dialog box shows the Reconfigurable
Modules that have been chosen for this Configuration (see Figure 4-22). The first RM for
each Reconfigurable Partition has been selected, but these can be modified if needed. The
name of the Configuration, found in the General tab, can also be modified - in this design
the name has been changed from config_1 to config_FFF.

Implementation run properties can be modified by selecting them in the Options tab. See
Figure 4-23.

X-Ref Target - Figure 4-21

Figure 4-21: Results of a DRC check

X-Ref Target - Figure 4-22

Figure 4-22: Defining the Reconfigurable Modules in a Configuration

http://www.xilinx.com

72 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

The Configurations View (Window > Configurations) shows the Configuration and the RMs
that it contains as well as their status, as shown in Figure 4-24.

Multiple Configurations can be created by selecting the Create Implementation Runs option
under Implementation or Run Implementation in the Flow Manager, or the Create New Runs
button in the Design Runs pane (see Figure 4-25 and Figure 4-26).

X-Ref Target - Figure 4-23

Figure 4-23: Setting the Properties of an Implementation

X-Ref Target - Figure 4-24

Figure 4-24: Details of Each Configuration are Reported

X-Ref Target - Figure 4-25

Figure 4-25: Create Implementation Runs Option

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 73
UG702 (v14.5) April 26, 2013

Creating Configurations

Any combination of Reconfigurable Modules and black boxes can be used to create a
Configuration. Configurations can be created at any time while working with a Partial
Reconfiguration design. Use the Partition Action button to select the Reconfigurable
Modules required for each Configuration.

Note: Do not launch these runs at this point.

Figure 4-27 shows the Create New Runs dialog box.

In this example design, four unique Configurations are created as shown in Figure 4-28.

X-Ref Target - Figure 4-26

Figure 4-26: Create New Runs Button

X-Ref Target - Figure 4-27

Figure 4-27: Creating Multiple Runs

http://www.xilinx.com

74 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

Controlling Configurations
Traditional PlanAhead software analysis capabilities, such as timing analysis and design
exploration with the schematic, can be used to explore the various Configurations.

1. Use the Load Configuration command in the popup menu in the Configurations pane
to load the netlist for analysis as shown in Figure 4-29.

This makes the RMs for that Configuration active in the Netlist window.

Once implementation and constraint settings have been settled upon, Configurations
can be implemented.

X-Ref Target - Figure 4-28

Figure 4-28: Initial Configurations

X-Ref Target - Figure 4-29

Figure 4-29: Loading an Existing Configuration

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 75
UG702 (v14.5) April 26, 2013

Controlling Configurations

2. Right-click the Configurations in the Design Runs tab and choose the Launch Runs
command.

You can also launch the Active design run by clicking the Implement button in the Flow
Manager. Figure 4-30 shows a running Configuration.

3. Once a Configuration has been successfully implemented, it can be promoted to allow
future implementations and Configurations to import the results. Use Promote
Partitions in the dialog box, shown in Figure 4-31, page 75, to promote the
Configuration.

You can also use the popup menu in the Configurations view, shown in Figure 4-32, or
use the Promote Partitions button in the Flow Navigator to promote implemented
configurations at any time.

X-Ref Target - Figure 4-30

Figure 4-30: Implementing a Configuration

X-Ref Target - Figure 4-31

Figure 4-31: Implementation Completed Dialog Box

http://www.xilinx.com

76 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

There are interdependencies between Configurations:

• Static Logic as well as each Reconfigurable Module must be identical for each
Configuration that uses it.

• Every Configuration must use the same Static Logic implementation, and some
Configurations might share the same RMs.

• When a Configuration is Promoted, those implementations are set as the “golden”
result for all modules in that Configuration.

• Other Configurations could be affected by promoting or resetting a Configuration.
The PlanAhead software displays an alert, shown in Figure 4-33, page 77, if this
occurs.

X-Ref Target - Figure 4-32

Figure 4-32: Promoting a Configuration

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 77
UG702 (v14.5) April 26, 2013

Controlling Configurations

Once a run is promoted, the status of RMs in other Configurations is updated where
appropriate.

Figure 4-34 and Figure 4-35, page 77 show that because Configuration FFF has been
promoted, the status of the Static Logic in Configuration SSS is set to Import.

X-Ref Target - Figure 4-33

Figure 4-33: Resetting Out-of-Date Configurations

X-Ref Target - Figure 4-34

Figure 4-34: Before Promotion of Configuration FFF

X-Ref Target - Figure 4-35

Figure 4-35: After Promotion of Configuration FFF

http://www.xilinx.com

78 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

Multiple Configurations can be promoted at once. The modules are imported from
Configurations in the order they were promoted.

In Configuration FSF, shown in Figure 4-36, Static, reconfig_blue, and
reconfig_red are imported from FFF and RM reconfig_green is imported from SSS,
since it was not implemented in the FFF Configuration.

Configurations cannot be promoted if the Static Logic and all the RMs have been imported
from other Configurations. In this example, there is no need to promote the FSF
Configuration, since it is built entirely from pieces from FFF and SSS.

Because RMs can be implemented or imported, experimentation can be done on any
individual RM. This flexibility can help find the optimal Configurations to promote. This is
done through the Specify Partitions dialog box shown in Figure 4-37.

X-Ref Target - Figure 4-36

Figure 4-36: Multiple Configurations Promoted

X-Ref Target - Figure 4-37

Figure 4-37: Selecting the Action (Implement vs. Import)

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 79
UG702 (v14.5) April 26, 2013

Verifying Configurations

The following is a summary of the Status fields shown in Figure 4-36, page 78 for Static and
Reconfigurable logic:

• Implement (or Not Started for the Configuration)

Module has been defined but has not been implemented. When implementation is run,
place and route are done from scratch with the netlist, options, and constraints
provided for that module.

• Import

Module has been defined, and results will be copied from another Configuration.
When implementation is run, place and route copies the results from a Promoted
location for this module, preserving the exact results.

• Implemented (or PAR Complete! for the Configuration)

Module has successfully completed place and route in the selected Configuration.

• Imported

Module has successfully been copied and pasted from a Promoted run.

• Promoted

Module has been elevated to “golden” status, and duplicate modules in other
Configurations marked for Import are imported from this master result.

The results for these implementation runs are found in the PlanAhead project directory at:
<project_name>.runs\<configuration_name>

Promoted runs reside in another folder in the PlanAhead project directory at:
<project_name>.promote\<configuration_name>

In this design example, directories XFFF, XSSS, and XBB can be created for FFF, SSS, FSF,
and BB. Promotion of FSF is not required (or allowed) because all of the modules that are
used were implemented from other Configurations.

Verifying Configurations
PR_verify is a tool that must be called on any combination of implemented
Configurations to validate the implementation of the Configurations of the design.

1. From the Configurations pane using the popup menu launch pr_verify, shown in
Figure 4-38. This is an important step in a Partial Reconfiguration design to ensure that
all design rules have been met.

http://www.xilinx.com

80 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

2. The dialog box, shown in Figure 4-39, prompts for two or more Configurations, and
you define the output file.

All Configurations must be verified to ensure success in hardware.

The log file also appears in the workspace. If there are no errors found during pr_verify,
the next step is to create BIT files.

X-Ref Target - Figure 4-38

Figure 4-38: Verifying Configurations

X-Ref Target - Figure 4-39

Figure 4-39: Selecting Configurations to Verify

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 81
UG702 (v14.5) April 26, 2013

Generating BIT Files

Generating BIT Files
Once Configurations have been implemented satisfactorily and pr_verify has validated
all Configurations, BIT files can be generated.

In the popup menu in the Design Runs view select Generate Bitstream, shown in
Figure 4-40.

This action generates a full Configuration BIT file as well as partial BIT files for each RM in
a selected Configuration.

Note: If you must run the Data2MEM program on your design to update block RAM contents (for
example, in an EDK processor system), you can run Data2Mem as part of bitstream generation by
specifying that the BitGen command will run with the -bd switch. For details, see Interaction with
EDK in Chapter 7.

Note: Encrypted partial BIT files (by means of bitgen -g encrypt) are supported for 7 series
and Virtex®-6 devices. Users must supply the same NKY file for each configuration to ensure
consistency of the encryption key values. Encrypted partial BIT files are not supported for Virtex-4
and Virtex-5 devices.

In this example design, for the FFF Configuration, the BIT files generated are:

• fff.bit

• fff_reconfig_blue_blue_fast_partial.bit

• fff_reconfig_red_red_fast_partial.bit

• fff_reconfig_green_green_fast_partial.bit

You can select multiple Configurations at once to create all the full and partial BIT files for
an entire project.

The full and partial BIT files are placed in the same Configuration-specific results
directories. For more information, see Controlling Configurations.

X-Ref Target - Figure 4-40

Figure 4-40: Creating BIT Files

http://www.xilinx.com

82 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 4: PlanAhead Support

PlanAhead Project Directory Structure
To manage the files, Configurations and implementations, the PlanAhead software
manages and stores all design data in a simple and structured fashion as shown in
Figure 4-41.

This structure is very similar to the PlanAhead software /project directory, with some
extensions. The netlists and constraints for the project are imported into the
<project>.srcs directory. There they are organized in the same way as shown in the
GUI - the static logic under the sources_1 directory and all the RM sources under their
appropriately-named directories. The implementation runs, including BIT files, are found
in the /PlanAhead.runs directory under the appropriate floorplan and Configuration.
Promoted configurations are placed in the /PlanAhead.promote directory and prefixed
with the letter X.

X-Ref Target - Figure 4-41

Figure 4-41: PlanAhead PR Directory Structure

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 83
UG702 (v14.5) April 26, 2013

Chapter 5

Command Line Scripting

This chapter gives instructions and recommendations on how to automate the flow
through the toolset, without the use of a GUI.

Xilinx® provides a set of example Tcl scripts to define and implement a Partition-based
Partial Reconfiguration Design. These scripts work for a general flow and provide a
template that can be modified for custom flows.

A Tcl shell must be available to run these scripts. Many Linux distributions have Tcl
installed in the /usr/bin directory, which is found by default. If a Tcl shell is not installed,
you can download one for free from http://www.activestate.com/activetcl. The scripts in
this guide have been tested with Tcl version 8.4.

Tcl Scripts
• xpartition.tcl

Defines and implements a Partition-based Partial Reconfiguration Design. It calls three
other Tcl scripts to perform these functions. Xilinx® recommends that this script be
used to run the complete flow.

• gen_xp.tcl

Creates and/or modifies the necessary Partition files for each project. It is called by
the xpartition.tcl script.

• implement.tcl

Implements a Partition-based PR Configuration. It is called from the
xpartition.tcl script.

• export.tcl

Exports the necessary files to import a Partition into future runs. It is called from
the xpartition.tcl script.

The xpartition.tcl file takes a data.tcl file as an argument. The data.tcl file
contains Partition definitions, Configurations, and options for implementation. This file
allows for modification of the design and its options without changing the Tcl scripts.

Following is a sample command line calling the Tcl scripts. This is launched from the root
folder of a PR project as described in Chapter 3, Software Tools Flow.

xtclsh .\Tools\xpartition.tcl .\Tools\data.tcl

http://www.xilinx.com
http://www.activestate.com/activetcl

84 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 5: Command Line Scripting

Data.tcl Format
The data.tcl file is divided into five main sections. The data.tcl uses # to mark
comments outside of list or array declarations. Members of lists and arrays must be deleted
or commented outside of the list or array, to have them be ignored.

In the Color2 sample design there are several versions of the data file provided. They can
be used interchangeably in the xtclsh command shown above. These data files are
provided as reference and can be modified to meet your needs.

• data.tcl - Runs synthesis and implementation and should be used when starting
the scripted flow from scratch.

• data_synth.tcl - Runs synthesis only and is useful when running synthesis from
the command line and implementation using the PlanAhead software.

• data_impl.tcl - Runs implementation only and is useful when synthesis has
already been run but small changes are needed for implementation, like adjusting a
timing or physical constraint.

Section 1: Set Project Options
Section 1: Set Project Options lets you set variables, including environment variables, part,
constraints file, Partitions, and Reconfigurable Modules.

1:environment variables for all configurations

Define any environment variables that are required for implementation here using the
format below. These variables are used for all Configurations.

set ::env(VARIABLE) value

1:environment variables for all configurations
set ::env(XIL_TIMING_ALLOW_IMPOSSIBLE) 1

2:part definition
set PART xc5vlx50t-3-ff1136

3:constraints file
set UCF ../../Source/UCF/top_ml505.ucf

4:Partition names
These names must match the actual instance names in the design
set TOP_PART /top
set RED_PART ${TOP_PART}/reconfig_red
set GREEN_PART ${TOP_PART}/reconfig_green
set BLUE_PART ${TOP_PART}/reconfig_blue

5:RM names
set RED_FAST Red_Fast
set RED_SLOW Red_Slow
set RED_BB Red_Blank
set GREEN_FAST Green_Fast
set GREEN_SLOW Green_Slow
set GREEN_BB Green_Blank
set BLUE_FAST Blue_Fast
set BLUE_SLOW Blue_Slow
set BLUE_BB Blue_Blank
set STATIC Static

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 85
UG702 (v14.5) April 26, 2013

Data.tcl Format

2:part definition

Define the part that is targeted for implementation.

3:constraints file

Specify the constraints file. This is used for all Configurations.

4:Partition names

These names must match the actual instance names in the design. All Partitions in the
design must be defined here, regardless of whether they are reconfigurable. The names
must match the instance name in the HDL.

5:RM names

Declare all Reconfigurable Modules. They are used to run bottom-up synthesis and to
define the Configurations. Static is not required to be declared.

Section 2: Specify Modules for Synthesis and Define Partition Attributes
Section 2: Specify Modules for Synthesis and Define Partition Attributes defines modules
to be synthesized and declares Partitions as reconfigurable.

6:RM list

Each RM in the list is synthesized with bottom-up synthesis.

You must create a directory for each of the RMs in the list

Specify the RMs that must be run through bottom-up synthesis. Synthesis is run in the
order specified. The required directory structure is discussed in a later section.

6:RM list
Each RM in the list is synthesized with bottom-up synthesis.
You must create a directory for each of the RMs in the list
set RMs [list $RED_FAST $RED_SLOW $GREEN_FAST $GREEN_SLOW $BLUE_FAST $BLUE_SLOW $STATIC]

7:Partition Attributes List
##
Create the per-partition attributes list. This list must be called
"PartitionAttrsList". The format is:
set PartitionAttrsList <partitionlist>
where
<partitionlist> ::= { <partitionattrs> ... }
<partitionattrs> ::= { <partitionName> <attrslist> }
<attrslist> ::= <namevalpair> ...
<namevalpair> ::= { <attrName> <attrValue> }
##

set PartitionAttrsList {
 {/top {Reconfigurable false}}
 {/top/reconfig_red {Reconfigurable true}}
 {/top/reconfig_green {Reconfigurable true}}
 {/top/reconfig_blue {Reconfigurable true}}
}

http://www.xilinx.com

86 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 5: Command Line Scripting

7:Partition Attributes List

This allows you to specify whether Partitions are reconfigurable. The three RPs have
Reconfigurable set to true, while top has no setting, as the default is False.

Section 3: Define Configurations
Section 3: Define Configurations defines the details of each Configuration and the order in
which they must be implemented.

8:Configuration Information
##
Create the per-configuration variables. The format is:
set CONFIG1DATA <ConfigList>
set CONFIG2DATA <ConfigList>
...
set ALL_CFGS [list $CONFIG1DATA $CONFIG2DATA ...]
where
<ConfigList> ::= { <ConfigNamePair> <Settings> }
<ConfigNamePair> ::= { 'ConfigName' <Name> }
<Settings> ::= { 'Settings' <SettingsList> }
<SettingsList> ::= <PartSettingsList> ...
<PartSettingsList> ::= <partitionName> <namevalpair> ...
##

Configuration FastConfig settings.
Everything is implemented; there is no import location

set CONFIG_FastConfig {
 {ConfigName FastConfig}
 {Settings
 {/top{State implement}}
 {/top/reconfig_red {State implement}{NetlistDir Red_Fast}{ModName Red_Fast}}
 {/top/reconfig_green {State implement}{NetlistDir Green_Fast}{ModName Green_Fast}}
 {/top/reconfig_blue {State implement}{NetlistDir Blue_Fast}{ModName Blue_Fast}}
 }
}

Configuration SlowConfig settings.
Static is imported from the FastConfig

set CONFIG_SlowConfig {
 {ConfigName SlowConfig}
 {Settings
 {/top{State import} {ImportLocation ../XFastConfig}}
 {/top/reconfig_red {State implement}{NetlistDir Red_Slow}{ModName Red_Slow}}
 {/top/reconfig_green {State implement}{NetlistDir Green_Slow}{ModName Green_Slow} }
 {/top/reconfig_blue {State implement}{NetlistDir Blue_Slow}{ModName Blue_Slow}}
 }
}

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 87
UG702 (v14.5) April 26, 2013

Data.tcl Format

8. Configuration information

This section defines each Configuration, including:

• What RMs it contains

• Whether they are imported or implemented

• Where they are imported from

The format is:

set CONFIG_<config_name> {
 {ConfigName <config_name>}
 {Settings
{<partition_name>} {State <"implement"|"import">} > {ImportLocation
<directory to import from> } {NetlistDir <directory where RM netlist is
located>} {ModName <name of netlist file>}
 }
}

The ImportLocation is required only if the State for that partition is set to import. The
NetlistDir differs from the ModName only if Synthesis is run outside of the Tcl scripts.

Configuration FSFConfig settings.
All 4 partitions are imported.

set CONFIG_FSFConfig {
 {ConfigName FSFConfig}
 {Settings
 {/top{State import} {ImportLocation ../XFastConfig} }
 {/top/reconfig_red {State import}{ImportLocation ../XFastConfig}{NetlistDir Red_Fast}
{ModName Red_Fast}}
 {/top/reconfig_green {State import}{ImportLocation ../XFastConfig}{NetlistDir
Green_Fast} {ModName Green_Fast}}
 {/top/reconfig_blue {State import}{ImportLocation ../XSlowConfig}{NetlistDir
Blue_Slow} {ModName Blue_Slow}}
 }
}

Configuration BlankConfig settings.

set CONFIG_BlankConfig {
 {ConfigName BlankConfig}
 {Settings
 {/top{State import} {ImportLocation ../XFastConfig} }
 {/top/reconfig_red {State implement}{NetlistDir Red_Blank}{ModName Red_Blank}}
 {/top/reconfig_green {State implement}{NetlistDir Green_Blank}{ModName Green_Blank}}
 {/top/reconfig_blue {State implement}{NetlistDir Blue_Blank}{ModName Blue_Blank}}
 }
}

9:List of configurations in order of implementation
finally, build the list of all the configuration data.
This list will drive the implementation of all configurations,
in the order they are listed
set ALL_CFGS [list $CONFIG_FastConfig $CONFIG_SlowConfig $CONFIG_FSFConfig
$CONFIG_BlankConfig]
#set ALL_CFGS [list $CONFIG_BlankConfig]

http://www.xilinx.com

88 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 5: Command Line Scripting

For the first Configuration, all Partitions are implemented because there is no promoted
image from which to import. All Configurations are exported to X<config_name> after
the implementation is complete, and this can be used for the import location for other
Configurations.

9:All configurations with implementation order

This list drives the implementation of all configurations,
in the order they are listed

The order of this list is of great importance. Partitions cannot be imported until after the
first implementation.

Section 4: Implementation Options
Section 4: Implementation Options lets you set variables that change the implementation
options.

The variables are:

• SYNTH_TOOL xst/synplify_pro

Sets which synthesis tool to use when running bottom up synthesis. Appropriate
synthesis projects must exist in the Synth directory.

• RUN_RM_SYNTH YES/NO

Sets whether or not to run bottom-up synthesis on all modules in RM list. This should
be set to YES for the first implementation, then changed to NO until HDL changes
occur. The default is YES.

• NGDBUILD_TOP <path_to_top_level_netlist>

If the static logic has already been synthesized, you can use this variable to point to the
path rather than running synthesis with the RMs. This variable must be set if
RUN_RM_SYNTH is set to NO or if Static is not in your RM list.

• NGDBUILD_SEARCH <search_directories_for_NGDBUILD>

Sets the macro search path for NGDBuild to point to directories where core netlists are
located. This can reference more than one directory, separated by spaces and enclosed
in curly braces {}. UNIX-type forward slashes (/) must be used on both Windows and
Linux due to Tcl conventions.

10:Implementation options
set the optional implementation data flags.
The format of the optional data is:
SYNTH_TOOL="xst" or "synplify_pro"
RUN_RM_SYNTH=NO if the design has no modules to be synthesized bottom-up
NGDBUILD_TOP=<top_path> is path to pre-existing top module for Ngdbuild
NGDBUILD_SEARCH=<search_path ...> a string containing search path directories
RUN_NGDBUILD=NO if you do not want to run NGDBuild
NGDBUILD_OPTS=<ngdbuild_command_line_options> optional cmd line options for Ngdbuild
RUN_MAP=NO if you do not want to run Map
MAP_OPTS=<map_command_line_options> optional command line options for Map
RUN_PAR=NO if you do not want to run PAR
PAR_OPTS=<par_command_line_options> optional command line options for Par
RUN_BITGEN=NO if you do not want to generate bitstreams
array set IMPLEMENTATION_DATA { \
 RUN_RM_SYNTH NO \
 }

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 89
UG702 (v14.5) April 26, 2013

Recommended Flow

• RUN_NGDBUILD YES/NO

Controls whether or not NGDBuild is run on all implementations.

• RUN_MAP YES/NO

Controls whether or not MAP is run on all implementations.

• RUN_PAR YES/NO

Controls whether or not PAR is run on all implementations.

• RUN_BITGEN YES/NO

Controls whether or not BitGen is run on all implementations.

Each implementation process may also have customized command line options. In the
current software, customized options are set for all Configurations. To customize the
command line tools, use the following three variables. The default for all three variables is
to use the default implementation options. For more information on available command
line options, see the Command Line Tools User Guide (UG628).

• NGDBUILD_OPTS <ngdbuild_options>

Optional NGDBuild command line options.

• MAP_OPTS <map_options>

Optional MAP command line options.

• PAR_OPTS <par_options>

Optional PAR command line options.

These options apply to implementation of all Configurations. To specify different
command line options for a specific Configuration, use the –f option to select a command
file in each directory. For example:

MAP_OPTS=<-f ./map.opt>

Looks for a map.opt file in the directory for each implementation and uses the options in
it. For more information on the –f option, see the Command Line Tools User Guide (UG628).

Recommended Flow
Currently these scripts do not run pr_verify, although this is being investigated for a
future release. You must still run pr_verify prior to configuring the device with the
generated bitstreams.

The recommended method to incorporate this step into the flow is:

1. Run the complete flow, including bitgen, using the Tcl scripts.

2. Run the pr_verify command line prior to configuring the device. If the log reports
PASS, you are safe to use the generated bitstreams.

For more information on running pr_verify, see Verifying Configurations in Chapter 4.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf

90 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 5: Command Line Scripting

Required Files and Directory Structure
The Tcl scripts require a unique directory structure. All of the source files exist in the
Source directory, the configurations get implemented in the Implementation directory,
Static and each RM get synthesized in the Synth directory, and all of the scripts to run the
flow exist in the Tools directory. Figure 5-1 shows an example directory structure.

If any of these directories are missing, regardless of whether their contents have been
generated, the scripts may fail to process.

As the scripts run, they move into the Configuration directories to run implementation.
Report files are required for debugging.

Synthesis RM Directories
If the option RUN_RM_SYNTH is set to YES, the directory for each RM in the list must
contain the synthesis input files (.xst and .prj).

- The XST file contains the command line options for the synthesis run. For
information on XST command line options, see the XST User Guide for Virtex-6,
Spartan-6, and 7 Series Devices (UG687).

X-Ref Target - Figure 5-1

Figure 5-1: Required Directory Structure for Sample Scripts

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=xst_v6s6.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=xst_v6s6.pdf
http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 91
UG702 (v14.5) April 26, 2013

Required Files and Directory Structure

The following code is an example XST file.

run
-ifn red.prj
-ifmt mixed
-ofn red
-ofmt NGC
-p xc5vlx50t-3-ff1136
-top red
-opt_mode Speed
-opt_level 1
-power NO
-iuc NO
-keep_hierarchy NO
-netlist_hierarchy as_optimized
-rtlview Yes
-glob_opt AllClockNets
-read_cores YES
-write_timing_constraints NO
-hierarchy_separator /
-bus_delimiter <>
-case maintain
-slice_utilization_ratio 100
-bram_utilization_ratio 100
-dsp_utilization_ratio 100
-reduce_control_sets off
-verilog2001 YES
-fsm_extract YES
-fsm_encoding Auto
-safe_implementation No
-fsm_style lut

The XST file specifies the appropriate PRJ file as the input file. The PRJ file contains all the
HDL files for an RM as well as the language and library to into which to compile the
source. For example:

verilog work "../../Source/red_fast/led_fast.v"
verilog work "../../Source/red_fast/red_fast.v"

Examples of both the .xst and .prj files can also be seen in the
XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687), or generated from the
ISE® Design Suite.

In the example, the required directories are Red_Fast, Red_Slow, Red_Blank,
Green_Fast, Green_Slow, Green_Blank, Blue_Fast, Blue_Slow, Blue_Blank
and Static. If the NGDBUILD_TOP variable is used and $STATIC is removed from the
RM list, the /Static directory is not required.

If the option RUN_RM_SYNTH is set to NO, the directory for each RM must contain the netlist
for each module.

Configuration Directories
These directories do not require any specific content, but must be created for
implementation to run. In the example above, they are the CfgFast, CfgSlow, CfgFSF,
and CfgBlank directories.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=xst_v6s6.pdf

92 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 5: Command Line Scripting

Export Directories
Export directories are created by the script to hold Configurations which have completed
implementation. The names are based on the Configuration name (X<config_name>)
and in the example are XCfgFast, XCfgSlow, XCfgFSF, and XCfgBlank. The files in
these directories are overwritten each time the scripts are run. To save runs for analysis or
comparison, save copies in a new location.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 93
UG702 (v14.5) April 26, 2013

Chapter 6

Configuring the FPGA Device

This chapter describes the system design considerations when configuring the FPGA
device with a partial BIT file, as well as architectural features in the FPGA that facilitate
Partial Reconfiguration.

Because most aspects of Partial Reconfiguration are no different than standard full
configuration, this section concentrates on the details that are unique to PR.

Any of the following configuration ports can be used to load the partial bitstream:
SelectMAP, Serial, JTAG, or ICAP (Internal Configuration Access Port). For Zynq™-7000
AP SoC devices, deliver partial bitstreams via the JTAG, ICAP or PCAP (Processor
Configuration Access Port) ports.

To use SelectMAP or Serial modes for loading a partial BIT file, these pins must be reserved
for use after the initial device configuration. This is achieved by using the UCF constraint
CONFIG_MODE (only needed to select a width of 16 or 32) and the bitgen -g persist
option.

Partial bitstreams contain all the configuration commands and data necessary for Partial
Reconfiguration. The task of loading a partial bitstream into an FPGA does not require
knowledge of the physical location of the RM because configuration frame addressing
information is included in the partial bitstream. A partial bitstream cannot be sent to the
wrong part of the FPGA device.

A Partial Reconfiguration controller retrieves the partial bitstream from nonvolatile
memory, then delivers it to a configuration port. The Partial Reconfiguration control logic
can either reside in an external device (for example a processor) or in the fabric of the
FPGA device to be reconfigured. A user-designed internal PR controller loads partial
bitstreams through the ICAP interface. As with any other logic in the static design, the
internal Partial Reconfiguration control circuitry operates without interruption
throughout the Partial Reconfiguration process.

Internal configuration can consist of either a custom state machine, or an embedded
processor such as MicroBlaze™ processor or PowerPC® 405 processor (PPC405). For a
Zynq-7000 AP SoC, the Processor Subsystem (PS) can be used to manage Partial
Reconfiguration events. Note that for Zynq-7000 devices, the Programmable Logic (PL)
can be partially reconfigured, but the Processing System cannot.

As an aid in debugging Partial Reconfiguration designs and PR control logic, the Xilinx®
iMPACT™ tool can be used to load full and partial bitstreams into an FPGA device by
means of the JTAG port.

http://www.xilinx.com

94 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 6: Configuring the FPGA Device

For more information on loading a bitstream into the configuration ports, see the
”Configuration Interfaces” chapter in:

• Virtex-4 FPGA Configuration User Guide (UG071)

• Virtex-5 FPGA Configuration User Guide (UG191)

• Virtex-6 FPGA Configuration User Guide (UG360)

• 7 Series FPGAs Configuration User Guide (UG470)

• Zynq-7000 AP SoC Technical Reference Manual (UG585)

Configuration Modes
Partial Reconfiguration is supported using the following configuration modes:

• ICAP

A good choice for user configuration solutions. Requires the instantiation of an ICAP
controller as well as logic to drive the ICAP interface.

• PCAP

The recommended configuration mechanism for all Zynq-7000 designs.

• JTAG

A good interface for quick testing or debug. Can be driven using iMPACT or
ChipScope Analyzer using a Xilinx configuration cable that supports JTAG.

• Slave SelectMAP or Slave Serial

Good choice to perform full configuration and Partial Reconfiguration over the same
interface.

Master modes are not directly supported due to IPROG housecleaning that will clear the
configuration memory.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug071.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug191.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug360.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug470_7Series_Config.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug585-Zynq-7000-TRM.pdf

Partial Reconfiguration User Guide www.xilinx.com 95
UG702 (v14.5) April 26, 2013

Downloading a Full Bit File

Downloading a Full Bit File
The FPGA device in a digital system is configured after power on reset by downloading a
full BIT file either directly from a PROM or from a general purpose memory space by a
microprocessor. A full BIT file contains all the information necessary to reset the FPGA
device, configure it with a complete design and verify that the BIT file is not corrupt.
Figure 6-1 illustrates this process.

After the initial configuration is completed and verified, the FPGA device enters user
mode, and the downloaded design begins functioning. If a corrupt BIT file is detected, the
DONE signal is never asserted, the FPGA device never enters user mode, and the corrupt
design never starts functioning.

X-Ref Target - Figure 6-1

Figure 6-1: Configuring With a Full Bit File

X12031

Partial Configuration Bit File

Config. Data HeaderCheck Sum

Configuration Mode User Mode

FPGA

Start
Vcc Rise

Vcc
Stable

Power-on
Reset

Download Full
Bit File

DONE
Asserted

http://www.xilinx.com

96 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 6: Configuring the FPGA Device

Downloading a Partial Bit File
A partially reconfigured FPGA device is in user mode while the partial BIT file is loaded.
This allows the portion of the FPGA logic not being reconfigured to continue functioning
while the reconfigurable portion is modified. Figure 6-2 illustrates this process.

The partial BIT file has no header, nor is there a startup sequence that brings the FPGA
device into user mode. The BIT file contains (essentially) only frame address and
configuration data, plus a final checksum value. When all the information in a partial BIT
file is sent to the FPGA device by means of dedicated modes or through the ICAP, no
external DONE signal is raised to indicate completion (with default settings).

If Reset After Reconfiguration is not selected, you must monitor the data being sent to
know when configuration has completed. The end of a partial BIT file has a DESYNCH word
(0000000D) that informs the configuration engine that the BIT file has been completely
delivered. This word is given after a series of padding NO OP commands, ensuring that
once the DESYNCH has been reached, all the configuration data has already been sent to the
target frames throughout the device. As soon as the complete partial BIT file has been sent
to the configuration port, it is safe to release the reconfiguration region for active use. If
Reset After Reconfiguration is selected, the DONE pin will pull low when reconfiguration
begins, and pull high again when reconfiguration successfully completes, although the
partial bitstream can still be monitored internally as well.

X-Ref Target - Figure 6-2

Figure 6-2: Configuring With a Partial Bit File

X12032

Partial Configuration Bit File

Config. Data

Configuration Mode User Mode

FPGA

Start
Vcc Rise

Initial Configuration Done
Asserted

Download
Partial Bit File

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 97
UG702 (v14.5) April 26, 2013

System Design for Configuring an FPGA Device

System Design for Configuring an FPGA Device
A partial BIT file can be downloaded to the FPGA device in the same manner as a full BIT
file. An external microprocessor determines which partial BIT file should be downloaded,
where it exists in an external memory space, and directs the partial BIT file to a standard
FPGA configuration port such as JTAG, SelectMAP or serial interface. The FPGA device
processes the partial BIT file correctly without any special instruction that it is receiving a
partial BIT file.

It is common to assert the INIT or PROG signals on the FPGA configuration interface
before downloading a full BIT file. This must not be done before downloading a partial BIT
file, as that would indicate the delivery of a full BIT file, not a partial one.

Any indication to the working design that a partial BIT file will be sent (such as holding
enable signals and disabling clocks) must be done in the design, and not by means of
dedicated FPGA configuration pins. Figure 6-3 shows the process of configuring through a
microprocessor.

In addition to the standard configuration interfaces, Partial Reconfiguration supports
configuration by means of the Internal Configuration Access Port (ICAP). The ICAP
protocol is identical to SelectMAP and is described in the Configuration User Guide for the
FPGA device. The ICAP library primitive can be instantiated in the HDL description of the
FPGA design, thus enabling analysis and control of the partial BIT file before it is sent to
the configuration port. The partial BIT file can be downloaded to the FPGA device through
general purpose I/O or gigabit transceivers and then routed to the ICAP in the FPGA
fabric.

The ICAP must be used, with an 8-bit bus only, for Partial Reconfiguration for encrypted
7 series and Virtex®-6 partial BIT files. Reconfiguration through external configuration
ports is not permitted when encryption is used.

X-Ref Target - Figure 6-3

Figure 6-3: Configuring by Means of a Microprocessor

X12033

Self-reconfiguring
FPGA

ICAP uP

uP

RP A

JTAG
port

RP A

FPGA

full
configuration

RM A1
config.

RM A2
config.

RM A3
config.

Off-chip memory or System ACE

http://www.xilinx.com

98 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 6: Configuring the FPGA Device

Partial Bit File Integrity
Error detection and recovery of partial BIT files have unique requirements compared to
loading a full BIT file. If an error is detected in a full BIT file when it is being loaded into an
FPGA device, the FPGA device never enters user mode. The error is detected after the
corrupt design has been loaded into configuration memory, and specific signals are
asserted to indicate an error condition. Because the FPGA device never enters user mode,
the corrupt design never becomes active. The designer determines the system behavior for
recovering from a configuration error such as downloading a different BIT file if the error
condition is detected.

Downloading partial BIT files cannot use this methodology for error detection and
recovery. The FPGA device is by definition already in user mode when the partial BIT file
is loaded. Because the configuration circuitry supports error detection only after a BIT file
has been loaded, a corrupt partial BIT file can become active, potentially damaging the
FPGA device if left operating for an extended period of time.

If a CRC error is detected during a partial reconfiguration, it will assert the INIT_B pin of
the FPGA (INIT_B goes low to indicate a CRC error). It is important to note that if a system
monitors INIT_B for CRC errors during the initial configuration, a CRC error during a
partial reconfiguration may trigger the same response. To detect the presence of a CRC
error from within the FPGA, the CRC status can be monitored through the ICAP block. The
Status Register (STAT) indicates that the partial BIT file has a CRC error by asserting the
CRC_ERROR flag (bit 0).

There are two types of partial BIT file errors to consider: data errors and address errors (the
partial BIT file is essentially address and data information).

If the error is in the data portion then recovery is relatively simple. Load a new partial BIT
file (or even a “blank” partial BIT file) and the corruption is resolved.

If the error occurs in the address portion of the partial BIT file, recovery is more invasive.
The corruption could have modified the static portion of the FPGA design. In this case, the
only method for safe recovery is to download a new full BIT file to ensure the state of the
static logic, which requires the entire FPGA device to be reset.

Many systems do not need a complex recovery mechanism because resetting the entire
FPGA device is not critical, or the partial BIT file is stored locally. In that case, the chance of
BIT file corruption is not appreciable. Systems where the BIT files have a risk of becoming
corrupted, such as sending the partial BIT file over a radio link, should contain design
circuitry to mitigate the problem. One possibility is to process the partial BIT file locally in
the FPGA fabric immediately before it is loaded into the ICAP to partially reconfigure the
device.

The static logic of the FPGA design could contain a circuit that analyzes the partial BIT file
before it is sent to the ICAP. If an error is detected, the Partial Reconfiguration is stopped
and retried, or a known good partial BIT file is loaded instead. Figure 6-4 illustrates this
process.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 99
UG702 (v14.5) April 26, 2013

Partial Bitstream CRC Checking

The partial BIT file contains CRC information that can be used to check integrity, or you
may generate custom CRC information and send it with the partial BIT file. This scheme is
similar to the Asymmetric Key Encryption application described in Chapter 2, Common
Applications.

Partial Bitstream CRC Checking
A partial bitstream is loaded into an active design, and the default built-in CRC check does
not occur until the end of the bitstream. The method you can use to perform CRC checking
before the partial bitstream is fully loaded into the device depends on the FPGA or AP SoC
device you are using.

Frame-by-Frame CRC Checking in 7 Series and Zynq-7000 Devices
In the 14.2 Release, a new capability was introduced for 7 series FPGAs and Zynq-7000 AP
devices. The configuration engine has the ability to perform a frame-by-frame CRC check
and will not load a frame into the configuration memory if that CRC check fails. A failure
is reported on the INIT_B pin (it is pulled low) and gives you the opportunity to take the
next step: retry the partial bit file, fall back to a golden partial bit file, etc. The partially
loaded reconfiguration region will not have valid programming in it, but the CRC check
ensures the remainder of the device stays operational while the system recovers from the
error.

Note: This feature only applies to those devices with bitstream generation enabled.

To enable this feature for 7 series and Zynq-7000 devices, simply use the bitgen -g
PerFrameCRC option. The default is No, and Yes inserts the extra CRC checks. The size of
an uncompressed bit file will increase 4-5% with this option enabled. No specific design
considerations are necessary to simply select this option, but your partial reconfiguration
controller solution should be designed to choose the course of action should the INIT_B
pin indicate a failure has occurred.

Partial Bitstream CRC checking in Pre-7 Series FPGAs
For devices prior to 7 series FPGAs, it is recommended that you implement a CRC checker
that can check the bitstream data prior to loading it into the FPGA. A complete solution to
this problem requires both a software and a hardware solution. The software solution will
calculate CRC values on blocks or frames of data and insert the CRC value into the

X-Ref Target - Figure 6-4

Figure 6-4: Partial Bit File Error Detection

Buffer

FPGA

CRC
Verify

ICAP

Corruption

Host
Bit Files

X12034

http://www.xilinx.com

100 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 6: Configuring the FPGA Device

bitstream. The hardware solution will recalculate a CRC value and compare it to the
software value embedded in the bitstream.

This solution should be necessary only for scenarios where there is a potential risk to the
integrity of the stored BIT files. These situations would include remote uploads of partial
BIT files to systems in the field or space applications subject to radiation upsets.

A high level schematic of such a solution would look like Figure 6-5. This is essentially
what is happening when the dedicated 7 series solution is selected.

The top half this figure shows a high-level description of the software solution. This could
be implemented using a script, as described in this Application Note: PRC/EPRC: Data
Integrity and Security (XAPP887).

Controller for Partial Reconfiguration are not covered in this guide.

The lower half of the figure shows a high-level description of the hardware solution
required. Xilinx is working on a Reference Design/IP Core for a future software release
that will work with the BitGen software solution.

If a CRC error is detected using a solution similar to this, it is the user’s responsibility to
figure out how to resend data and correct the situation. Since the data corruption will be
determined prior to the corrupt data being loaded, it is not necessary to reconfigure the
static logic.

Configuration Frames
All user-programmable features inside Virtex and 7 series FPGA devices are controlled by
volatile memory cells that must be configured at power-up. These memory cells are
collectively known as configuration memory. They define the LUT equations, signal
routing, IOB voltage standards, and all other aspects of the design.

Virtex and 7 series FPGA architectures have configuration memory arranged in frames that
are tiled about the device. These frames are the smallest addressable segments of the

X-Ref Target - Figure 6-5

Figure 6-5: CRC Checking for a Partial Reconfiguration Design

Software Solution

Hardware Solution

Original Partial
Bit File

Bit File split
into Sections

CRC generated
for each Section

Partial Bit File
reassembled w/CRC

BRAM ICAP

Pass?

NO

YES

ERROR

DONE

CRC calculated from
BRAM, check vs. Packet

Config Data
stored w/o CRC

Packets enter
FPGA

Shift Data
to ICAP

X12035

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf

Partial Reconfiguration User Guide www.xilinx.com 101
UG702 (v14.5) April 26, 2013

Configuration Time

device configuration memory space, and all operations must therefore act upon whole
configuration frames. The numbers of configuration frames per device are shown in the
FPGA device family-specific Configuration User Guides (table 7-1 for Virtex-4, table 6-1 for
Virtex-5, and table 6-23 for Virtex-6). This information is not yet available for 7 series
devices.

Reconfigurable Frames are built upon these configuration frames, and these are the
minimum building blocks for performing Partial Reconfiguration.

• Base regions in 7 series FPGAs are 50 CLBs high by 1 CLB wide.

• Base regions in Virtex-6 FPGAs are 40 CLBs high by 1 CLB wide.

• Base regions in Virtex-5 FPGAs are 20 CLBs high by 1 CLB wide.

• Base regions in Virtex-4 FPGAs are 16 CLBs high by 1 CLB wide.

Similar base regions exist for different element types, such as block RAM, IOB, and DSP48.
Base region heights correspond to clock regions or IO banks. Use the PlanAhead™
software floorplanning capabilities to examine the sizes of these base regions.

The “Frames” referenced in the PlanAhead documentation and “Reconfigurable Frames”
in the paragraph above are not the same as the “configuration frames” described in the
Configuration User Guides. Frames, as shown in the PR Statistics tab, refer to the minimum
reconfigurable building blocks and cannot be broken any smaller. Even if an area group
that is smaller than a single reconfigurable frame is selected, the entire frame is
reconfigured.

After a Pblock has been drawn, corresponding to a Reconfigurable Partition, details for
that Partition are shown in the Pblock Properties window. The Statistics tab shows the
number of frames (regions) covered by that Pblock and the estimated bitstream size for the
Reconfigurable Partition. As the size of the Pblock changes, the information shown here
changes accordingly.

Configuration Time
The speed of configuration is directly related to the size of the partial BIT file and the
bandwidth of the configuration port. The different configuration ports in Virtex, Kintex™-
7, and Artix™-7 architectures have the maximum bandwidths shown in Table 6-1.

The Bitstream size as reported in the PlanAhead PR Statistics tab for a Reconfigurable
Partition is an accurate estimate of the size of the partial BIT file to be created. Because this
number is given in bytes, you must multiply it by 8 to find the bitstream size in bits.

Example: A small partial BIT file for a Virtex-5 device contains a region spanning 200
Slices, drawn in such a way that it covers 5 Reconfigurable Frames (100 CLBs; 5 CLBs wide
by 20 CLBs high). Before the rawbits (.rbt) file is generated, the configuration time can be
estimated by using the bitstream size provided by the PlanAhead software, which is listed

Table 6-1: Maximum Bandwidths for Configuration Ports in Virtex Architectures

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth

ICAP 100 MHz 32 bit 3.2 Gbps

SelectMAP 100 MHz 32 bit 3.2 Gbps

Serial Mode 100 MHz 1 bit 100 Mbps

JTAG 66 MHz 1 bit 66 Mbps

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug071.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug191.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug360.pdf
http://www.xilinx.com

102 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 6: Configuring the FPGA Device

as 29,520 bytes, or 236,160 bits. Using SelectMAP mode or the ICAP, this partial BIT file
could be loaded in about:

236,160 bits / 3,200,000,000 bps = 0.0000738 seconds

or about 73.8 microseconds. The configuration time scales fairly linearly as the partial BIT
file size grows with the number of frames, with small variances depending on the location
and contents of the frames. There is also a small amount of overhead after the last frame is
loaded.

The exact bitstream length is available in the created.rbt file by using the -b option with
BitGen. Use this number along with the bandwidth to calculate the total configuration
time. In the example above, the header of the bitstream that is created is shown in the
following file snippet of an.rbt header. The actual configuration time is about 75.6
microseconds.

Configuration Debugging
The ICAP interface can be use used to monitor the configuration process, even if other
configuration means are used (JTAG or Slave SelectMAP). In fact, the status of the
configuration is automatically pushed out to the “O” port of the ICAP without having to
issue a read.

The “O” port of the ICAP block is a 32-bit bus, but only the lowest byte is used. The
mapping of the lower byte is as follows:

Xilinx ASCII Bitstream
Created by Bitstream P.28xd
Design name: FFF_routed.ncd;UserID=0xFFFFFFFF
Architecture: virtex5
Part: 5vlx50tff1136
Date: Mon Jul 16 14:00:59 2012
Bits: 242016
11111111111111111111111111111111
...

Table 6-2: ICAP “O” Port Bits

Bit Number Status Bit Meaning

O[7] CFGERR_B Configuration error (active Low)

0 = A configuration error has occurred.

1 = No configuration error.

O[6] DALIGN Sync word received (active High)

0 = No sync word received.

1 = Sync word received by interface logic.

O[5] RIP Readback in progress (active High)

0 = No readback in progress.

1 = A readback is in progress.

O[4] IN_ABORT_B ABORT in progress (active Low)

0 = Abort is in progress.

1 = No abort in progress.

O[3:0] 1 Reserved

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 103
UG702 (v14.5) April 26, 2013

Configuration Debugging

The most significant nibble of this byte reports the status. These Status bits indicate
whether the Sync word been received and whether a configuration error has occurred. The
following table displays the values for these conditions.

Figure 6-6 shows a completed full configuration, followed by a Partial Reconfiguration
with a CRC error, and finally a successful Partial Reconfiguration. Using the table above,
and the description below, you can see how the “O” port of the ICAP can be used to
monitor the configuration process. If a CRC error occurs, these signals can be used by a
configuration state machine to recover from the error. These signals can also be used by
ChipScope to capture a configuration failure for debug purposes. With this information
ChipScope can also be used to capture the various points of a Partial Reconfiguration.

The markers in the ChipScope display indicate the following:
• 1st_done

This marker indicates the completion of the initial full bitstream configuration. The
DONE pin (done_pad in this waveform) goes High.

Table 6-3: ICAP Sync Bits

O[7:0] Sync Word? CFGERR?

9F No Sync No CFGERR

DF Sync No CFGERR

5F Sync CFGERR

1F No Sync CFGERR

X-Ref Target - Figure 6-6

Figure 6-6: ChipScope Display for Partial Reconfiguration

http://www.xilinx.com

104 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 6: Configuring the FPGA Device

• cfgerr

This marker indicates a CRC error is detected while loading partial bitstream. The
status can be observed through O[31:0] (icap_o_top[31:0] in the waveform).
• Icap_o_top[31:0] starts at 0x9F
• After seen SYNC word, Icap_o_top[31:0] change to 0xDF
• After detect CRC error, Icap_o_top[31:0] change to 0x5F for one cycle, and

then switches to 0x1F
• INIT_B pin is pulled low (init_pad in the waveform)

• RCRC

This marker indicates when the partial bitstream is loaded again. The RCRC command
resets the cfgerr status, and removes the pull-down on the INIT_B pin (init_pad
in this waveform).

• Icap_o_top[31:0] change from 0x1F to 0x5F when the SYNC word is seen

• Icap_o_top[31:0] change from ‘0x5F’ to ‘0xDF’ when RCRC command is
received

• pr_done

This marker indicates a successful Partial Reconfiguration.

• Icap_o_top[31:0] change from 0xDF to 0x9F when the DESYNC command is
received and no configuration error is detected.

It is important to note that a Partial Reconfiguration does not perform a CRC check until
the entire partial BIT file has been loaded, so corrupted data will have already been loaded
into the FPGA. If the corruption occurred on an address bit, the static logic could
potentially be corrupted, and that status is indicated at the INIT_B configuration register
bit. In a system requiring high reliability, it is important to do a CRC check on the partial
bitstream prior to sending it to the configuration interface. Information on performing a
CRC check on partial bitstreams prior to loading is given in the Partial Bitstream CRC
Checking section of this chapter.

If a CRC error occurs, by default the configuration interface will try to issue a full
reconfiguration of the device. This is usually not the desired behavior. To prevent this from
happening, follow the recommendations given in Generating BIT Files in Chapter 3.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 105
UG702 (v14.5) April 26, 2013

Chapter 7

Design Considerations

This chapter explains design requirements that are unique to Partial Reconfiguration, and
covers specific PR features within the Xilinx® FPGA design software tools.

To take advantage of the Partial Reconfiguration capability of Xilinx FPGA devices, you
must analyze the design specification thoroughly, and consider the requirements,
characteristics, and limitations associated with PR designs. This simplifies both the design
and debug processes, and avoids potential future risks of malfunction in the design.

Design Hierarchy
Good hierarchical design practices resolve many complexities and difficulties when
implementing a Partially Reconfigurable FPGA design. A clear design instance hierarchy
simplifies physical and timing constraints. Registering signals at the boundary between
static and reconfigurable logic eases timing closure. Grouping logic that is packed together
in the same hierarchical level is necessary.

These are all well known design practices that are often not followed in general FPGA
designs. Following these design rules is not strictly required in a partially reconfigurable
design, but the potential negative effects of not following them are more pronounced. The
benefits of Partial Reconfiguration are great, but the extra complexity in design could be
more challenging to debug, especially in hardware.

For additional information about design hierarchy, see:

• Repeatable Results with Design Preservation (WP362), and

• Hierarchical Design Methodology Guide (UG748).

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp362.pdf

106 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

Design Elements Inside Reconfigurable Modules
Not all logic is permitted to be actively reconfigured. Global logic and clocking resources
must be placed in the static region to not only remain operational during reconfiguration,
but to benefit from the initialization sequence that occurs at the end of a full device
configuration.

Logic that can be placed in an RP includes:

• All logic components that are mapped to a CLB slice in the FPGA. This includes LUTs
(look-up tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM (BRAM) and FIFO:

• RAMB16, RAMB32_S64_ECC, RAMB18, RAMB36, RAMB18SDP, RAMB36SDP,
RAMB18E1, RAMB36E1, BRAM_SDP_MACRO, BRAM_SINGLE_MACRO,
BRAM_TDP_MACRO

• FIFO16, FIFO18, FIFO18_36, FIFO36, FIFO36_72, FIFO18E1, FIFO36E1,
FIFO_DUALCLOCK_MACRO, FIFO_SYNC_MACRO

Note: The IN_FIFO and OUT_FIFO design elements (7 series only) cannot be placed in an RP.
These design elements must remain in static logic.

• DSP blocks: DSP48, DSP48E, DSP48E1

• PCIe (PCI Express) - Entered using PCIe IP

All other logic must remain in static logic, and must not be placed in an RP, including:

• Clocks and Clock Modifying Logic - Includes BUFG, BUFR, MMCM, PLL, DCM, and
similar components

• I/O and I/O related components

• Serial transceivers (MGTs) and related components

• Individual architecture feature components (such as BSCAN, STARTUP, XADC, etc.)

Dynamic Reconfiguration Using the DRP
Logic that must remain in the static region, and therefore is not available for Partial
Reconfiguration, can still be reconfigured dynamically through the DRP (Dynamic
Reconfiguration Port). The DRP can be used to configure logic blocks such as MMCMs,
PLLs, and serial transceivers (MGTs).

Information about the DRP and dynamic reconfiguration can be found in these
documents:

• Virtex-4 FPGAs Configuration User Guide (UG071)

• Virtex-5 FPGAs Configuration User Guide (UG191)

• Virtex-6 FPGAs Configuration User Guide (UG360)

• 7 Series FPGAs Configuration User Guide (UG470)

Information about using the DRP to configure specific logic blocks can be found in these
documents:

• 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

• Virtex-6 FPGA GTX Transceivers User Guide (UG366)

• MMCM and PLL Dynamic Reconfiguration (7 Series) (XAPP888)

• MMCM Dynamic Reconfiguration (Virtex-6) (XAPP878)

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug476_7Series_Transceivers.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug366.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug470_7Series_Config.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug360.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug191.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug071.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp888_7Series_DynamicRecon.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp878.pdf

Partial Reconfiguration User Guide www.xilinx.com 107
UG702 (v14.5) April 26, 2013

Design Hierarchy

Packing Logic
Any logic that must be packed together must be placed in the same group, whether it is
static or reconfigurable. For example, I/O registers must remain with the I/O port.
Partition boundaries are barriers to optimization. Choose the hierarchical boundaries
wisely, since the insertion of proxy logic may result in suboptimal results or routes that are
impossible to achieve.

Packing Input/Output Registers in the IOB
Whenever possible, it is recommended that input and output registers belong to the same
(top-level) partition as the associated input or output buffer. This will allow the
implementation tools to see when a register is connected to I/O logic. When a partition
boundary exists between the register and the associated buffer, the tools cannot see across
the partition boundary to correctly place the register in the I/O logic.

When this is not possible the implementation tools do have the ability to handle this
situation if the following rules are followed:

• The register must have an IOB=FORCE UCF constraint. This will allow the tools to see
through the partition boundary and see the register is connected to an I/O buffer, thus
allowing the tools to place the register in the I/O logic (ILOGIC/OLOGIC). Using the
IOB=FORCE will cause an error in the implementation tools if the register cannot be
placed in the I/O logic. This is the desired behavior for situations that require that a
register is placed in the I/O logic (for example if a register is clocked by a BUFIO, or
when an interface timing requires a fixed delay). In this case using the map -pr b
option will not place a register in the I/O logic like it could in a flat flow, or when the
buffer and register are in the same partition.

• The IOB=FORCE constraint must be set on the instance name of the register (INST
“rp_module/out1_ff” IOB=FORCE;) Do not put this constraint on the register's
output or input net.

• The output port of the RP must have the PARTITION_PIN_DIRECT_ROUTE
constraint to prevent the tools from inserting proxy logic between the buffer and the
register (which would prevent the register from being packed in the I/O logic). Also,
this forces all RMs variants associated with this RP to have the same IOB=FORCE
constraint, and disables the ability to generate a black box RM for this RP.

Design Instance Hierarchy
The simplest method is to instantiate the Reconfigurable Partitions in the top-level
module, but this is not required. Each Reconfigurable Partition must correspond to exactly
one instance. The instance has multiple modules with which it is associated.

Submodules in Reconfigurable Modules
All the logic for a Reconfigurable Module must exist in the same directory. If an RM
requires submodule netlist files, the PlanAhead™ software loads them only if they exist in
the same local folder as the root RM netlist. PlanAhead needs the full contents of each
Reconfigurable Module to both constrain and implement each Configuration.

If other netlists (IP core netlists, for example) must be merged in from other directories, the
ngcbuild utility can be used to pre-assemble an RM into a single netlist that is easily
referenced in a Partial Reconfiguration project. NGCBuild takes EDIF and/or NGC
sources, along with the full set of options that are valid for ngdbuild (including -sd and
-uc), and produces a single, constraint-annotated NGC file.

http://www.xilinx.com

108 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

Global Clocking Rules
Because the clocking information for every Reconfigurable Module for a particular
Reconfigurable Partition is not known at the time of the first implementation, the PR tools
pre-route each BUFG output driving a Partition Pin on that RP to all clock regions that the
AREA GROUP encompasses. This means that clock spines in those clock regions might not
be available for static logic to use, regardless of whether the RP has loads in that region.

The number of global clocks that can be pre-routed to any clock region, and therefore to
any Reconfigurable Partition, depends on the device family that is being used. The number
of clock spines into each clock region varies. For Virtex-4 the limit is 8; for Virtex-5 the limit
is 10; for Virtex-6 and 7 series the limit is 12. These limits must account for both static and
reconfigurable logic. For example, if 3 global clocks route to a clock region in a Virtex-7
device, any RP that covers that clock region can use the 9 global clocks available,
collectively, in addition to those three top-level clocks.

In the example shown in Figure 7-1, icap_clk is routed to clock regions X0Y1, X0Y2, and
X0Y3 prior to placement, and static logic is able to use the other clock spines in that region.

If there are a large number of global clocks driving an RP, Xilinx recommends that area
groups that encompass complete clock regions be created to ease placement and routing of
static logic. For more information on the number of clocks spines per region, see the User
Guide for your target device at http://www.xilinx.com/support/documentation.

X-Ref Target - Figure 7-1

Figure 7-1: Pre-routing Global Clock to Reconfigurable Partition

http://www.xilinx.com/support/documentation
http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 109
UG702 (v14.5) April 26, 2013

Active Low Resets and Clock Enables

Active Low Resets and Clock Enables
In current Xilinx FPGA architectures there are no local inverters on control signals (resets
or clock enables).

The following description uses a reset as the example, but the same applies for clock
enables.

If a design uses an active low reset a LUT must be used to invert the signal. In non-partition
designs that use all active low resets multiple LUTs will be inferred, but can be combined
into a single LUT and pushed into the I/O elements (LUT goes away). In non-partition
designs that use a mix of high and low, the LUT inverters can be combined into one LUT
that remains in the design, but that has minimal effect on routing and the timing of the
reset net (output of LUT can still be put on global resources). However, for a design that
uses active low resets on a partition, it is possible to get inverters inferred inside of the
partition that cannot be pulled out and combined. This makes it impossible to put the reset
on global resources, and can lead to poor reset timing and to routing issues if the design is
already congested.

The best way to avoid this is to avoid using active low control signals. However, there are
cases where this is not possible (for example, when using an IP core with an Advanced
eXtensible Interface (AXI) interface). In these cases the design should assign the
Active- low reset to a signal at the top level, and use that new signal everywhere in the
design.

As an example:

reset_n <= !reset;

Use reset_n signal for all cases, and do not use the !reset assignments on signals or
ports.

This will ensure that a LUT will be inferred only for the reset net for the whole design, and
will have a minimal effect on design performance.

Decoupling Functionality
Because the reconfigurable logic is modified while the FPGA device is operating, the static
logic connected to outputs of Reconfigurable Modules must ignore data from
Reconfigurable Modules during Partial Reconfiguration. The Reconfigurable Modules will
not output valid data until Partial Reconfiguration is complete and the reconfigured logic
is reset. A common design practice to mitigate this issue is to register all output signals (on
the static side of the interface) from the Reconfigurable Module. An enable signal can be
used to isolate the logic until it is completely reconfigured.

The static portion should include the logic required for the data and interface
management. It can implement mechanisms such as handshaking or disabling interfaces
(which might be required for bus structures to avoid invalid transactions). It is also useful
to consider the down-time performance effect of a PR module (that is, the unavailability of
any shared resources included in a PR module during or after reconfiguration).

http://www.xilinx.com

110 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

Reset After Reconfiguration
Partial Reconfiguration solutions from Xilinx up to and including version ISE 14.5 have
required a manual reset action from the user to ensure all newly reconfigured logic begins
in a known state. Partial bitstreams by default do not issue a GSR event to load the INIT
values in the bitstream, so prior values in the device may remain. If your design requires
initial values to be loaded to function properly upon configuration, this reset step is
essential. Also, because the regions are active during reconfiguration, early activity with
the new functionally may put this new logic in an unknown state. Xilinx recommends
holding inputs, including clocks, constant to minimize the chance of unknown states
appearing during reconfiguration.

For some design modules, such as Microblaze or other IP, or for design modules that
cannot add a local reset, lack of a reset or holding inputs steady could lead to unpredictable
behavior after reconfiguration. To understand which parts of your design may be
susceptible, run the Design Rule Checks within PlanAhead (Tools > Report DRC). Selecting
the Partial Reconfiguration DRCs, you may see instances of this message:

PRGR ##: Instance '<sig>' with INIT value '1'b0' does not have a reset.
Without a reset the INIT value will not be loaded during a partial
reconfiguration. To fix this issue do one of the following: 1) add a
reset to this instance that can be held during and released after a
partial reconfiguration or 2) set the pblock property
RESET_AFTER_RECONFIG=TRUE on the Partition's pblock 'pblock_app'. Using
this constraint requires that the pblock RANGEs are frame aligned.

You can implement Solution #1 through code modifications for any target architecture.
Solution #2 uses a feature introduced in ISE 14.3. This feature is available for Virtex-6,
7 series and Zynq-7000 devices only.

With the Reset After Reconfiguration feature, the reconfiguring region is held in a steady
state during partial reconfiguration using Global Write Enable (GWE), and a masked
Global Set Reset (GSR) event is issued to load in INIT values for all newly-reconfigured
logic. Static routes may still freely pass unaffected through the region, and static logic (and
all other PR regions) elsewhere in the device will continue to operate normally during
Partial Reconfiguration. Partial Reconfiguration with this feature will behave just like the
initial configuration of the FPGA, with synchronous elements being released in a known,
initialized state.

Software Considerations
In order to apply the Reset After Reconfiguration methodology, AREA_GROUP RANGE
constraints must align to reconfigurable frames. Because the GSR will affect every
synchronous element within the region, exclusive use of reconfiguration frames is
required; static logic is not permitted within these reconfigurable frames. Pblocks must
align vertically to clock regions, since that matches the base region for a reconfigurable
frame. Pblocks may be any width. If frames are not aligned, the following DRC will be
issued:

PRGR3 ##: Reconfigurable Partition '<my_rm>' has
RESET_AFTER_RECONFIG=TRUE on its pblock '<my_rp>' but the ranges are
not aligned to the reconfigurable frame boundary. In order for the
logic in the reconfigurable Partition to be reset after
reconfiguration, each range in the pblock must align to the top and
bottom of a clock region. Please modify the ranges to be aligned or set
RESET_AFTER_RECONFIG=FALSE on the pblock.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 111
UG702 (v14.5) April 26, 2013

Reset After Reconfiguration

To use the Reset After Reconfiguration feature:

1. In your design.ucf, apply the RESET_AFTER_RECONFIG property to the
AREA_GROUP for which you would like to apply this feature. Here is the syntax:

AREA_GROUP "<pblock_name>" RESET_AFTER_RECONFIG=TRUE;

For a description of how to apply this property in PlanAhead, see Applying Reset
After Reconfiguration in Chapter 4.

2. If using PlanAhead, select Tools > Report DRC to run the PR DRCs to confirm the shape
of the PR region. You should see all instances of PRGR (noted in the messages above)
have disappeared for each Reconfigurable Partition that has the
RESET_AFTER_RECONFIG property applied.

3. Implement the design configurations and run BitGen as you would for any Partial
Reconfiguration project.

Note: For 7 series devices only, add this bitgen switch: -g glutmask_b:0. This option
ensures that the global signal masking is performed correctly for LUT-based memories.

4. At the end of the .bgn (BitGen log file) for each partial bit file that utilizes this feature,
you will see the following message, which confirms the feature has been enabled:

Creating bit stream for Partition "/<top>/<my_rp>" (Reconfigurable
Module "<my_rm>")
Partition "/<top>/<my_rp>" (Reconfigurable Module "my_rm") has
RESET_AFTER_RECONFIG = TRUE

This message will not be shown in the full design .bgn file.

The Reset After Reconfiguration feature influences three parts of the ISE software (beyond
the aforementioned PlanAhead DRCs):

• Map - The property is applied in the database and frame alignment checks are done.

• BitGen - Global Signal Control events (GSR, GWE) are inserted for the frames to be
reconfigured.

• iMPACT - This feature is recognized during partial bit file delivery over JTAG.

Hardware Considerations
The GSR capabilities are embedded within the partial bitstreams, so nothing extra must be
done to include this feature during reconfiguration.

Since this process utilizes the SHUTDOWN sequence (masked to the reconfiguring region
only), the external DONE pin will be pulled low when reconfiguration starts, then will pull
high when it successfully completes. This behavior must be considered when setting up
the board. Using the STARTUP block's DONEO is not an option to prevent the DONE pin
from changing state, since this block is disabled during shutdown.

http://www.xilinx.com

112 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

Design Revision Checks
A partial bitstream contains programming information and little else, as described in
Chapter 6, Configuring the FPGA Device. While you do not need to identify the target
location of the bitstream (the die location is determined by the addressing that is part of the
BIT file), there are no checks in the hardware to ensure the partial bitstream is compatible
with the currently operating design. Loading a partial bitstream into a static design that
was not implemented with that reconfigurable module variant revision can lead to
unpredictable behavior.

Xilinx suggests that you prefix a partial bitstream with a unique identifier indicating the
particular design, revision and module variant that follows. This identifier can be
interpreted by your configuration controller to validate that the partial bitstream is
compatible with the resident design - a mismatch can be detected and the incompatible
bitstream can be rejected before being loaded into configuration memory. This
functionality must be part of your design, and would be similar to or in conjunction with
decryption and/or CRC checks, as described in PRC/EPRC: Data Integrity and Security
Controller for Partial Reconfiguration (XAPP887).

A BitGen feature provides a simple mechanism for tagging a design revision. The -g
USR_ACCESS switch allows you to enter a revision ID directly into the bitstream. This ID
is placed in the USR_ACCESS register, accessible from the FPGA fabric through a library
primitive of the same name. Partial Reconfiguration designs can read this value and
compare it to information in a partial bitstream to confirm the revisions of the design
match. More information on this switch can be found in the “BitGen” chapter in the
Command Line Tools User Guide, (UG628) and in Bitstream Identification with USR_ACCESS
(XAPP497).

Defining Reconfigurable Partition Boundaries
Partial reconfiguration is done on a frame-by-frame basis. As such, when partial BIT files
are created, they are built with a discrete number of configuration frames. When the
physical region for a Partition is defined, the PlanAhead software reports the number of
reconfigurable regions that are consumed, as well as an estimate for the corresponding
bitstream size. The estimates from PlanAhead are accurate within 2-3%.

Partition boundaries do not have to align to reconfigurable frame boundaries, but the most
efficient place and route results are achieved when this is done. Static logic is permitted to
exist in a frame that will be reconfigured, as long as:

• It is outside the area group defined by the Pblock (unless forced inside with a LOC
constraint), and

• It does not contain dynamic elements such as bock RAM, Distributed (LUT) RAM, or
SRLs.

When static logic is placed in a reconfigured frame, the exact functionality of the static
logic is rewritten, and is guaranteed not to glitch.

Irregular shaped Partitions (such as a T or L shapes) are permitted but discouraged.
Placement and routing in such regions can become challenging, because routing resources
must be entirely contained within these regions. Boundaries of Partitions can touch, but
this is not recommended, as some separation helps mitigate potential routing restriction
issues. Nested or overlapping Reconfigurable Partitions (Partitions within Partitions) are
not permitted. Design rule checks (Tools > Report DRC) validate the Partitions and
settings in a PR project.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp497_usr_access.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp497_usr_access.pdf

Partial Reconfiguration User Guide www.xilinx.com 113
UG702 (v14.5) April 26, 2013

Proxy Logic

The partial BIT files that are created are based upon the AREA_GROUP RANGE constraints
set by the user. To generate the smallest BIT files possible, and to avoid complications or
errors, only define AREA_GROUP RANGE constraints for the elements that exist in the full
set of Reconfigurable Modules for a Reconfigurable Partition. If you are using PlanAhead,
this means unchecking any unnecessary element type in the General tab of the Pblock
Properties pane (see Figure 4-17, page 68).

Finally, only one Reconfigurable Partition can exist per physical Reconfigurable Frame.

A Reconfigurable Frame is the smallest size physical region that can be reconfigured, and
aligns with clock region or IO bank boundaries. A Reconfigurable Frame cannot contain
logic from more than one Reconfigurable Partition. If it were to contain logic from more
than one Reconfigurable Partition, it would be very easy to reconfigure the region with
information from an incorrect Reconfigurable Module, thus creating contention. The
software tools are designed to avoid that potentially dangerous occurrence.

Proxy Logic
Partition Pins are defined as the interface between static and reconfigurable logic. No
special logic or tags are required to accommodate this definition. The software handles
these points automatically. In most cases, a LUT1 is inserted at this interface point to
represent this node. Since this LUT exists in the hierarchical level of the static logic, it exists
in the same logical and physical location for every Configuration. Since the physical
location itself is within the Reconfigurable Partition to which it connects, reconfiguration
accommodates connecting logic internal to the RM to this known interface point.

As noted in Constraints in Chapter 3, proxy logic can be constrained in the UCF. The
pr2ucf utility generates constraints for all the proxy logic from a Configuration that has
been implemented. Providing location constraints for proxy logic is not required. This
section also includes information for setting timing constraints to and from individual and
grouped Partition Pins.

Controlled Routes
In general all pins of a reconfigurable partition have associated proxy logic, except for
global nets (nets driven by a global buffer). However, if appropriate the constraint
PARTITION_PIN_DIRECT_ROUTE can be used to prevent the insertion of proxy logic on
individual partition pins. The use of the constraint has the following requirements:

• The driver and loads of the net must exist in every configuration of the design.

• Black box modules are not supported with this constraint.

• The route must use identical routing resources in every configuration. For general
routing resources this requires the use of Directed Routing constraints. For
information on Directed Routing constraints refer to the Constraints Guide (UG625).

The syntax for the PARTITION_PIN_DIRECT_ROUTE constraint is as follows:

PIN "<Partition_Name>.<PinName>" PARTITION_PIN_DIRECT_ROUTE = TRUE;

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=cgd.pdf

114 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

Black Boxes
The Partial Reconfiguration software allows black boxes to be implemented as
Reconfigurable Modules. This is an effective way to reduce the size of full configuration
BIT file, and therefore reduce the initial configuration time. To create a black box Partition,
create a Reconfigurable Module with no associated netlist file. The source shown in
PlanAhead is listed as Blackbox module.

Even though a black box has no user logic contained in the logical representation of the
design, the physical region is not entirely empty. As noted in the Proxy Logic section
above, a LUT1 is inserted for each Partition Pin as the interface to the Reconfigurable
Partition. Because these proxy LUTs must exist within the reconfigurable region, they
appear in the black box, along with their connections outside the region.

The BitGen compression (-g compress) feature may be enabled to reduce the size of BIT
files. This option looks for repeated configuration frame structures to reduce the amount of
configuration data that must be stored in the BIT file. This savings is seen in reduced
configuration and reconfiguration time. When the compression option is applied to a
routed PR design, all of the BIT files (full and partial) are created as compressed BIT files.
This option is especially useful when coupled with the technique of building a PR design
with black box RMs.

Module-Level Constraint Files
In order to adequately constrain the entire design, you must supply constraints for both
the static and reconfigurable portions of the design. This can be done in a number of ways.
The static logic is controlled by any constraints in the top-level netlists and the main UCFs
supplied to the PlanAhead software or the Tcl scripts. Constraints, such as I/O location
constraints, to be shared across all variants of the Reconfigurable Partitions must be
included in the top-level UCFs.

If constraints apply only to specific Reconfigurable Modules, they may be supplied in one
of three different methods:

• As part of the netlist itself

Because synthesis tools can embed constraints within the design netlist, these
constraints are read in with the rest of the contents of that file.

• In a UCF placed alongside the RM netlist

When a netlist is loaded into PlanAhead as a Reconfigurable Module, a UCF can be
supplied at the same time (see Figure 7-2). The constraints in this UCF must be scoped
to the module level – references to instances within the RM must not have the full
hierarchical path to the instance.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 115
UG702 (v14.5) April 26, 2013

Implementation Strategies

• In a UCF to be merged with the RM netlist using ngcbuild

NGCBuild can be run on the command line to merge netlists and constraints. For more
information, see Design Hierarchy, page 105.

This technique can be used for single netlists to incorporate the information from a
UCF into the netlist itself. The constraints in this UCF must also be scoped to the
module level – references to instances within the RM must NOT have the full
hierarchical path to the instance.

Implementation Strategies
There are trade-offs associated with optimizing any FPGA design. Partial Reconfiguration
is no different. Partitions are barriers to optimization, and reconfigurable frames require
specific layout constraints. These are the additional costs to building a reconfigurable
design. The additional overhead for timing and area needs vary from design to design. To
minimize the impact, follow the design considerations stated in this guide.

When building Configurations of a reconfigurable design, the first Configuration to be
chosen for implementation should be the most challenging one. Be sure that the physical
region selected has adequate resources (especially elements such as block RAM, DSP48,
and I/O) for each Reconfigurable Module in each Reconfigurable Partition, then select the
most demanding (in terms of either timing or area) RM for each RP. If all of the RMs in the
subsequent Configurations are smaller or slower, it will be easier to meet their demands.
Timing budgets should be established to meet the needs of all Reconfigurable Modules.

For a description of how to solve placement and routing problems during implementation,
see Debugging Placement and Routing Problems in Chapter 3.

X-Ref Target - Figure 7-2

Figure 7-2: UCF File Supplied With RM Netlist

http://www.xilinx.com

116 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

Simulation and Verification
Configurations of Partial Reconfiguration designs are complete designs in and of
themselves. All standard simulation, timing analysis, and verification techniques are
supported for PR designs. Partial reconfiguration itself cannot be simulated.

Using High Speed Transceivers
Xilinx high speed transceivers (GT11, GTP, GTX) have dedicated connections to many of
their pins. These dedicated connections require that the I/O connected to these pins be
handled differently than general purpose I/O. For the tools to recognize the direct
connection, the transceivers and all associated I/O logic must be contained within the
same Partition. This includes all the pads and buffers as well as all transceiver logic.

Interaction with Other Xilinx Tools
This section discusses Interaction with Other Xilinx Tools, and includes:

• Interaction with ChipScope Pro

• Interaction with System Generator for DSP and CORE Generator

Interaction with ChipScope Pro
ChipScope™ Pro analyzer inserts logic analyzer, bus analyzer, and virtual I/O low-profile
software cores directly into a design, allowing you to view any internal signal or node,
including embedded hard or soft processors. Instrumentation of designs can be done by
means of two methods, the:

• Xilinx CORE Generator™ software, or

• ChipScope Pro Core Inserter.

Both methods can be used in conjunction with Partial Reconfiguration, but limitations do
exist.

When using the Xilinx CORE Generator software, you create netlist-based cores to be
instantiated in the design. As long as the boundaries of the Reconfigurable Partitions are
not modified, these cores can be instantiated easily to debug the portion of the design in
question. This is easy to manage when all the ChipScope Pro cores are placed within the
static portion of the design. The ICON core must remain in the static logic due to the fact
that it contains both BUFG and BSCAN elements.

If ILA or VLO cores are instantiated in a Reconfigurable Partition, additional measures
must be taken. The bounding region in the floorplan must include all the necessary
elements to implement the ChipScope Pro cores, specifically enough block RAM to build
the requested functionality. Given the size and physical location of this requirement, this
could have a significant impact on the Reconfigurable Partition.

The CONTROL bus that connects the ICON core and the ILA or VIO cores is defined as
bidirectional, to simplify HDL instantiation. In truth, this bus is actually a collection of 35
signals going from ICON to ILA, and one signal going the opposite direction. Bidirectional
signals are not permitted on Reconfigurable Partition interfaces due to proxy logic
insertion, so a wrapper for each ChipScope Pro core must be created to convert these
inout ports to input and output ports.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 117
UG702 (v14.5) April 26, 2013

Interaction with Other Xilinx Tools

For a complete description of how ChipScope Pro cores are inserted into Reconfigurable
Modules, including samples of the HDL wrappers for ICON, ILA, and VIO cores, see
Answer Record 42899.

If there is a need to debug signals in multiple regions (static and reconfigurable), this can
be done, but the appropriate signals (data, trigger, and/or control bus) must be threaded
up from the individual Reconfigurable Partitions to the top-level. This requires
modifications to the Partition interface and must be done for each Reconfigurable Module.
This strategy is supported for the CORE Generator flow only.

The ChipScope Pro Core Inserter software modifies the design at the netlist itself, rather
than the HDL source. This flow is supported in PlanAhead, but probe points are limited to
signals that exist in the static logic. If an attempt to probe logic in a Reconfigurable Module
is made, the tool reports that this modification changes the Partition interface, and is
therefore not allowed.

Interaction with System Generator for DSP and CORE Generator
When using advanced tools and IP from Xilinx or third party sources, rules similar to those
for ChipScope Pro software must be followed. Because these tools build and modify
designs at the HDL or netlist level, they work smoothly with a bottom-up synthesis
approach required by the Partial Reconfiguration flow. Considerations must be made for
the definition of the reconfigurable regions (to ensure the proper elements are contained
within) and for timing in and out of the Reconfigurable Partition, but other than these
general requirements, these tools will work well with Partial Reconfiguration.

One significant consideration for use of Partial Reconfiguration with advanced tools and
IP is the contents of these design blocks. No global clocks or clock modifying logic (BUFG,
DCM, PLL, etc.) may exist in any module to be reconfigured.

Like the ChipScope ICON core, certain blocks will be required to remain in static logic if
they contain non-reconfigurable design elements.

Interaction with EDK
To understand the Partial Reconfiguration flow for a processor design developed in EDK,
see the Partial Reconfiguration of a Processor Peripheral Tutorial (UG744). This tutorial can be
downloaded from the Partial Reconfiguration web page at:

http://www.xilinx.com/tools/partial-reconfiguration

Details of the Partial Reconfiguration interaction with EDK:

• When you create a PlanAhead project and specify the top-level netlist for a design
developed in EDK, specify the top-level netlist in the synthesis directory
(../synthesis/top_level_filename.ngc)instead of the netlist in the
implementation directory (../implementation/top_level_filename.ngc).

Any netlists that you intend to use as reconfigurable modules should be removed from
the EDK implementation directory prior to launching PlanAhead. Since the removed
netlists are called out in the top-level netlist in the EDK synthesis directory, PlanAhead
will offer you the choice of treating these netlists as black boxes. After allowing
PlanAhead to create the black boxes, you can create netlists with the same port
definitions as the removed netlists outside of EDK and add these netlists as new
reconfigurable modules with PlanAhead.

• When generating BIT files for a design that is an EDK processor system, you must run
the Data2MEM program on the BIT file to update block RAM contents with the

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;d=PlanAhead_Tutorial_Reconfigurable_Processor.pdf
http://www.xilinx.com/tools/partial-reconfiguration
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=42899

118 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

compiled software program. When running in the PlanAhead environment, there are
no direct links to call the Data2MEM program. However, you can have BitGen call
Data2MEM directly using the BitGen -bd switch. In PlanAhead, when you choose the
Generate Bitstream command, a dialog box with available BitGen options opens. In
the list of options there will be a -bd switch. In the value field for the -bd switch, you
can browse to the ELF file generated by EDK.

You can also use this switch from the BitGen command line, instead of running
Data2MEM separately. An example command is shown below:

bitgen -bd <path_to_ELF_file>/executable.elf

Partial Reconfiguration Design Checklist
Consider the following items for a design using Partial Reconfiguration:

• Are you using Global Clock Buffers, Regional Clock Buffers, or Clock Modifying
Blocks (DCM, MMCM, PLL)?

• Global Clock Buffers, Regional Clock Buffers, and Clock Modifying Blocks must
be in static logic.

- See the Design Elements Inside Reconfigurable Modules section of this
chapter for more information.

- See the Global Clocking Rules section of this chapter for complete details on
global clock implementation.

• Are you using device features blocks (BSCAN, CAPTURE, DCIRESET, FRAME_ECC,
ICAP, KEY_CLEAR, STARTUP, USR_ACCESS)?

• Device feature blocks must be in static logic.

- See the Design Elements Inside Reconfigurable Modules section of this
chapter for more information.

• Is all logic that must be packed together in the same Reconfigurable Partition?

• Any logic that must be packed together must be in the same RP/RM.

- See the Packing Logic section of this chapter for more information.

• Are critical paths contained within the same partition?

• Reconfigurable partition boundaries limits some optimization and packing, so
critical paths should be contained within the same partition.

- See the Packing Logic section of this chapter for more information.

• Do you have I/Os in reconfigurable modules?

• All I/Os must reside in static logic.

• Have you created decoupling logic on the outputs of your RMs?

• During reconfiguration the outputs of RPs are in a indeterminate state, so
decoupling logic must be used to prevent static data corruption.

- See the Decoupling Functionality section of this chapter for more information.

• Are you resetting the logic in an RM after reconfiguration?

• After reconfiguration, new logic may have moved on from its initial value. If the
Reset After Reconfiguration property is not used, a local reset must be used to
ensure it comes up as expected when decoupling is released. Clock and other
inputs to the reconfigurable partition can also be disabled during reconfiguration
to prevent initialization issues.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 119
UG702 (v14.5) April 26, 2013

Partial Reconfiguration Design Checklist

• Alternatively, the Reset After Reconfiguration property can be applied. This
option holds internal signals steady during reconfiguration, then issues a masked
global reset to the reconfigured logic.

- See the Reset After Reconfiguration section of this chapter for more
information.

• Do you have high speed transceivers in your design?

• High speed transceivers must remain in the static Partition.

- See the Using High Speed Transceivers section of this chapter for specific
requirements.

• Are you using ChipScope Pro Analyzer with your Partial Reconfiguration design?

• ChipScope Pro can be used with Partial Reconfiguration, but certain requirements
must be met.

- See the Interaction with ChipScope Pro section of this chapter for more
information.

• Are you using System Generator for DSP or CORE Generator with your Partial
Reconfiguration design?

• Both System Generator and CORE Generator can be used with Partial
Reconfiguration, but certain requirements must be met.

- See the Interaction with System Generator for DSP and CORE Generator
section of this chapter for more information.

• Are you using EDK with your Partial Reconfiguration design?

• EDK can be used with Partial Reconfiguration, if certain requirements are met.

- See the Interaction with EDK section of this chapter for more information.

- See the Partial Reconfiguration of a Processor Peripheral Tutorial (UG744) for
more information.
This tutorial can be downloaded from the Partial Reconfiguration web page
at: http://www.xilinx.com/tools/partial-reconfiguration.htm

• Do you need to have encrypted partial BIT files with a Virtex-4 or Virtex-5 design?

• This is not directly supported for Virtex-4 or Virtex-5.

- See Known Limitations in Appendix A for more information.

- See Xilinx Application Note, PRC/EPRC: Data Integrity and Security Controller
for Partial Reconfiguration (XAPP887) for information on building encrypted
partial BIT files for Virtex-5.

• Do you need to update block RAM contents?

• Data2MEM is not supported for partial bitstreams.

- See Known Limitations in Appendix A for more information.

• Do all of your RPs have Area Groups following Xilinx Guidelines?

• There are several requirements for Area Group ranges for RPs.

- See Area Group Constraints in Chapter 3 for more information.

• Have you created your Reconfigurable Partition Area Groups in an efficient manner?

• Partial Reconfiguration is done on a frame by frame basis, so Xilinx has
recommendations for how to create them.

- See the Defining Reconfigurable Partition Boundaries section of this chapter
for more information.

http://www.xilinx.com
http://www.xilinx.com/tools/partial-reconfiguration.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;d=PlanAhead_Tutorial_Reconfigurable_Processor.pdf

120 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Chapter 7: Design Considerations

• Have you validated consistency between all configurations?

• pr_ verify is used to ensure that all configurations have matching imported
resources.

- See pr_verify in Chapter 3 for more information.

• Are you aware of the particular configuration requirements for your device?

• Each family has specific configuration considerations.

- See Chapter 6, Configuring the FPGA Device.

- See the Configuration User Guide for your device family. Configuration User
Guides are listed in Appendix C, Additional Resources.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 121
UG702 (v14.5) April 26, 2013

Appendix A

Known Issues and Known Limitations

This appendix lists the known issues and limitations for the 14.5 Partial Reconfiguration
software.

Known Issues
For a complete listing of Partial Reconfiguration Known Issues, see Answer Record 35019.

Known Issues are:

• Typos in Tcl scripts might be silently ignored.

When using the sample Tcl scripts supplied with the Color2 design, names of
instances (such as Configurations, Reconfigurable Modules, and paths) must be
modified to accommodate user designs. If a name is misspelled or otherwise incorrect,
no error messaging is returned to communicate that mistake back to the user. Closely
examine the report files to ensure all the correct files and settings have been applied
during the synthesis and implementation runs.

Known Limitations
Following are known limitations:

• No Spartan® device families are supported by Partial Reconfiguration software.

• Partial Reconfiguration cannot be implemented in ISE software for Virtex®-7 FPGAs
that use stacked silicon interconnect (SSI) technology.

• When implementing designs for 7 series devices, you may see the following error:

ERROR:XCad:248 - Partition Name </pr_top/pr_A> with Area Group
<pblock_pr_A> has a right edge that terminates on an improper column
boundary at tile INT_L_X12Y50. This is due to Range
SLICE_X16Y60:SLICE_X17Y70

This error may appear when horizontal area group edges are placed between
interconnect tiles. This may cause disruptions to clocking networks, so slight
adjustments may be necessary to ensure safe operation. More details for identifying
and understanding this situation can be found in Answer Record 53290.

• ISE® Design Suite 14.5 restricts the component types that are permitted in
reconfigurable regions. Serial transceivers (MGTs), configuration components
(STARTUP, XADC, BSCAN, ICAP, etc.) and IO and related components
(ILOGIC/OLOGIC, IODELAY, SERDES, etc., plus BUFR) must remain in the static
part of the design. Recent testing has uncovered rare scenarios where specific
components do not function perfectly after reconfiguration, so it was decided for the
safety of all partial reconfiguration designs to remove these resource types from

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=35019
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=53290

122 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Appendix A: Known Issues and Known Limitations

consideration. Unfortunately this requires limiting all component types that reside in
these reconfiguration frames. Xilinx® is currently investigating methods to ensure
design safety while re-enabling these components in a future software release.

• The Reset After Reconfiguration feature requires an additional BitGen option for
7 series devices. Use bitgen -g glutmask_b:0 to ensure LUT-based memories are
initialized.

• In PlanAhead, submodule Area Groups within an RP are not permitted.

• Encrypted partial BIT files (by means of bitgen -g encrypt) are not directly
supported for Virtex-4 and Virtex-5 devices. Xilinx Application Note:
PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration (XAPP887)
shows how to build encrypted partial BIT files for Virtex-5 devices.

Encrypted partial BIT files are supported for 7 series and Virtex-6 devices. Users must
supply the same NKY file for each configuration to ensure consistency of the
encryption key values.

The ICAP must be used, with an 8-bit bus only, for Partial Reconfiguration for
encrypted 7 series and Virtex-6 partial BIT files. Reconfiguration through external
configuration ports is not permitted when encryption is used.

• If a Reconfigurable Partition (RP) contains BRAM or FIFO blocks, these special
considerations apply:

• If RAMB18 are used, the entire RAMB36 block must be included in the
AREA_GROUP range. You cannot break a RAMB36 into two RAMB18 with one
belonging to the RP and one belonging to static logic. The entire RAMB36 must
belong to the same partition.

• If using cascade mode, the smallest unit should be a RAMB36 because there are
shared signals between the two RAMB18.

• When on BRAM/FIFO is used, all BRAM/FIFO within the clock region are
reconfigured. For this reason BRAM/FIFO that belong to static logic cannot be
placed in the same configuration frame as BRAM/FIFO that belong to the RP. It is
recommended that all RPs are aligned to clock region boundaries or configuration
frame boundaries, and this is especially true for RPs that contain BRAM/FIFO
blocks.

• In PlanAhead, the Data2MEM program cannot be run directly to update block RAM
contents (for example, in an EDK processor system). You can, however, run
Data2MEM as part of bitstream generation by specifying that the BitGen command
will run with the -bd switch. For details, see Interaction with EDK in Chapter 7.

• Bi-directional Partition Pins are not supported; the interface between static and
reconfigurable logic must use unidirectional pins only.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf

Partial Reconfiguration User Guide www.xilinx.com 123
UG702 (v14.5) April 26, 2013

Appendix B

Partial Reconfiguration Migration
Guide

This Partial Reconfiguration (PR) Migration Guide provides step-by-step instructions to
migrate designs created with the 9.2.04i Modular Design Early Access PR (EA) solution to
the Partition-based ISE® 14 solution described in this user guide.

The basic ISE 14 Partial Reconfiguration design flow is the same as the ISE 13 design flow,
and the method of migration is also the same whether the destination is ISE 13 or ISE 14.

Differences Between the Early Access and Production Solutions

Compatible Designs for Migration
Any EA design that targets Virtex®-4 or newer can be migrated to the ISE 14 solution.
Users will need to create a new PlanAhead™ software project in ISE 14. To create this
project, simply follow the instructions found in Chapter 4, PlanAhead Support.

Bus Macro instantiations no longer required
Bus Macros (BMs) are no longer needed. Partition Pins are automatically managed, and
this automation replaces some of the aspects of Bus Macro functionality. Both Synchronous
and Asynchronous Bus Macros were available in the EA solution. To follow good
hierarchical design practices in registering boundaries and to decouple the reconfigurable
logic, you can add registers in HDL to replace the functionality of the output registers
delivered within Synchronous Bus Macros.

It is very important to register the partition boundaries, and to use enables with these
registers. During reconfiguration, the activity in these regions is indeterminate and could
lead to design corruption if the output of the reconfiguring logic is used. Therefore, you
should register boundaries with enables to disable the reconfigurable region during
reconfiguration.

PR-Specific Environment Variables Deprecated
The EA solution required several different environment variables to be set. These are no
longer required for the ISE 14 solution. Please make sure to unset all environment variables
that were set specifically for the EA solution.

http://www.xilinx.com

124 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Appendix B: Partial Reconfiguration Migration Guide

MODE Constraint Deprecated
With the EA solution, the tools had to be explicitly told which area groups were
reconfigurable. This was handled by specific constraints added to the UCF
(MODE=RECONFIG). These constraints are no longer required. This functionality has
been replaced by using the ‘Set Reconfigurable’ option in PlanAhead which in turn adds
the ‘Reconfigurable=TRUE’ information to the xpartition.pxml.

'NGDBuild -modular' Switch Deprecated
It is no longer necessary to specifically tell NGDBuild that you are running a PR design.
This concept is now handled by an xpartition.pxml file. See the following section for more
details.

Partition Information is Stored in the xpartition.pxml File
In the ISE 14 solution, a PXML file manages partition-specific information. This file is
named xpartition.pxml, and this name cannot be changed. This file is ASCII XML and is
created for each implementation. Most of the PR-specific information (everything save for
Area Group Range constraints) is contained in the xpartition.pxml file. The tools will
automatically check for the xpartition.pxml file. Any design with reconfigurable partitions
requires that the xpartition.pxml file be present and have at least one partition
defined. If it is not found, the design is treated as a ‘flat’ design.

The xpartition.pxml file is generated by PlanAhead, and should not be edited. If you are
using the Xilinx® HD Tcl scripting method to implement the design, the file will be created
when the implementation script is run.

Tcl Flow is the Only Command Line Option
In the EA solution, the tools could be run directly from command line. While the tools can
also be run in ISE 14 from command line, the difference is that the PXML file needs to exist
before the ISE 14 tools will treat the design as a PR design. This requires the user to script
the flow in Tcl to generate the PXML file.

Note: To help get started with the Xilinx HD Tcl scripting method, some basic ‘flat flow’ scripts can
be generated using the ‘Generate Scripts Only’ option when creating runs. To write Xilinx HD Tcl
scripts that leverage the Reconfigurable Partition promoting, implementing, and importing
functionality, see Chapter 5, Command Line Scripting.

UCF Only Required in NGDBuild
There was also a requirement that the UCF be available for post-Translate implementation
processes (MAP and PAR) in the EA solution. This is no longer the case, and all
information that is required for downstream implementation processes is embedded in the
design database files.

Manage Full-Design Timing Constraints
As ISE 14 implements complete designs in context, timing constraints and timing budgets
should be established. Review the recommendations for timing management in Chapter 3,
Software Tools Flow.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 125
UG702 (v14.5) April 26, 2013

Migrating a Design

BUFRs Require Partition Pins in Virtex-5
In the EA solution, BUFRs had several restrictions, but the network did not require Bus
Macros. In the ISE 14 solution, Partition Pins are added to the BUFR networks to meet clock
region pre-routing requirements. This is only true for Virtex-5.

Migrating a Design
EA designs can easily be migrated to the ISE 14 solution. The first step is to remove or
replace the Bus Macros in the HDL and regenerate (resynthesize) the appropriate netlists.
Once the netlists are correctly set up, a new PlanAhead project must be created in the ISE
14 solution. Do not attempt to directly migrate a 9.2.04i PlanAhead project to 14.5
PlanAhead.

Bus Macro Removal
The first step in design migration is removal of the Bus Macros, and this is done in HDL.
There are two general ways to remove BMs:

• Remove Bus Macro Instantiations

• PRO: Leaves cleaner HDL

• CON: This is time consuming and must be done for all instances

• Redefine Bus Macros

• PRO: This is the fastest way to replace large numbers of BMs

• CON: This leaves BM instantiations littered throughout a design

If you fail to make any attempt to remove the BMs and remove the BM NMC files, then you
will receive the following error in Translate (NGDBuild):

ERROR:NgdBuild:604 - logical block 'my_RP/my_BM_GENERATE[7].my_BM'
with type 'busmacro_xc5v_async_enable' could not be resolved. A pin
name misspelling can cause this, a missing edif or ngc file, case
mismatch between the block name and the edif or ngc file name, or the
misspelling of a type name. Symbol 'busmacro_xc5v_async_enable' is
not supported in target 'virtex5'.

VHDL Bus Macro Removal

Remove Only Bus Macros Instantiations

In the following example, an asynchronous BM is used. To simplify the BM removal
process in this example, the BM inputs are connected directly to the BM outputs. However,
this is not necessary and a single network could replace the BM inputs and BM outputs.
Conversely, several BMs have associated control logic and these BM types would require
both input and output signals to be preserved, as the control logic will interface the two
signals.

In a later section, the Redefine Bus Macro process is explained.

http://www.xilinx.com

126 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Appendix B: Partial Reconfiguration Migration Guide

Step 1: Remove the component declarations for all bus macros.

Example – VHDL Bus Macro Declaration to be removed:

 component busmacro_xc5v_async is
 port (
 input0 : in std_logic;
 input1 : in std_logic;
 input2 : in std_logic;
 input3 : in std_logic;
 output0 : out std_logic;
 output1 : out std_logic;
 output2 : out std_logic;
 output3 : out std_logic
);
 end component;

Step 2: Replace Bus Macro Instantiations with a 1:1 signal mapping assignment.

Example – Old VHDL Bus Macro Instantiation:

 Control1_0_BM : busmacro_xc5v_async
 port map (

 input0 => MY_ADDR_SPACE,
 input1 => PLB_SAValid,
 input2 => PLB_rdPrim,
 input3 => PLB_wrPrim,
 output0 => MY_ADDR_SPACE_pr,
 output1 => PLB_SAValid_pr,
 output2 => PLB_rdPrim_pr,
 output3 => PLB_wrPrim_pr

);

Example – New VHDL Replacement for Bus Macro, a 1:1 Assignment:

 MY_ADDR_SPACE_pr <= MY_ADDR_SPACE;
 PLB_SAValid_pr <= PLB_SAValid;
 PLB_rdPrim_pr <= PLB_rdPrim;
 PLB_wrPrim_pr <= PLB_wrPrim;

This is a very simple (asynchronous) BM, but it does convey the idea of how to replace the
BMs. There are BMs with control logic and synchronous types of BMs. These BMs need to
be replaced with register inferences and any desired control logic (enables, clock enables,
etc.) as necessary. Below is another asynchronous example, but with control logic.

Example – Old VHDL Bus Macro Instantiation with Enable:

 Control2_0_BM : busmacro_xc5v_async_enable
 port map (
 input0 => Sl_addrAck_pr,
 input1 => Sl_SSize_pr(0),
 input2 => Sl_SSize_pr(1),
 input3 => Sl_wait_pr,
 enable0 => busmacro_enable,
 enable1 => busmacro_enable,
 enable2 => busmacro_enable,
 enable3 => busmacro_enable,
 output0 => Sl_addrAck,
 output1 => Sl_SSize(0),
 output2 => Sl_SSize(1),
 output3 => Sl_wait
);

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 127
UG702 (v14.5) April 26, 2013

Migrating a Design

Example – New VHDL Replacement for Bus Macro with Enable:

 Sl_addrAck <= Sl_addrAck_pr and busmacro_enable;
 Sl_SSize(0) <= Sl_SSize_pr(0) and busmacro_enable;
 Sl_SSize(1) <= Sl_SSize_pr(1) and busmacro_enable;
 Sl_wait <= Sl_wait_pr and busmacro_enable;

Redefine Bus Macros

The BMs can be replaced with a newly created netlist that matches the BMs old name. This
method is recommended for Synchronous Bus Macros, as they can be used directly for
logic decoupling needs. The task of re-validating the PR solution is greatly simplified, as
the logic design will remain equivalent.

Create a netlist with the same interface as a BM from HDL, with the internal assignments
defined as desired. During synthesis, ensure that I/O buffer insertion is disabled (for
example, in XST the option is named ‘Add I/O Buffers [-iobuf]’).

Note: These logic modules will exist in static logic, regardless of whether or not the replaced BM
was an input or an output of a Reconfigurable Partition.

Example – VHDL Bus Macro Redefined for ‘busmacro_xc5v_async’:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity busmacro_xc5v_async is
 Port (input0 : in STD_LOGIC;
 input1 : in STD_LOGIC;
 input2 : in STD_LOGIC;
 input3 : in STD_LOGIC;
 output0 : out STD_LOGIC;
 output1 : out STD_LOGIC;
 output2 : out STD_LOGIC;
 output3 : out STD_LOGIC);
end busmacro_xc5v_async;
architecture Behavioral of busmacro_xc5v_async is
begin
output0 <= input0;
output1 <= input1;
output2 <= input2;
output3 <= input3;

end Behavioral;

While this may seem like more work up front, if a design has hundreds of BMs throughout,
this will make the conversion much easier and quicker, as each of those instances do not
have to be changed. As you begin to redefine these bus macros, any problems with the
module can be fixed and the change will be consistent with all BMs of that type throughout
the design. Below is another asynchronous example, but with control logic.

http://www.xilinx.com

128 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Appendix B: Partial Reconfiguration Migration Guide

Example – VHDL Bus Macro with Enable Redefined for
‘busmacro_xc5v_async_enable’:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity busmacro_xc5v_async_enable is
 Port (input0 : in STD_LOGIC;
 input1 : in STD_LOGIC;
 input2 : in STD_LOGIC;
 input3 : in STD_LOGIC;
 enable0 : in STD_LOGIC;
 enable1 : in STD_LOGIC;
 enable2 : in STD_LOGIC;
 enable3 : in STD_LOGIC;
 output0 : out STD_LOGIC;
 output1 : out STD_LOGIC;
 output2 : out STD_LOGIC;
 output3 : out STD_LOGIC);
end busmacro_xc5v_async_enable;
architecture Behavioral of busmacro_xc5v_async_enable is
begin
output0 <= input0 and enable0;
output1 <= input1 and enable1;
output2 <= input2 and enable2;
output3 <= input3 and enable3;

end Behavioral;

Verilog Bus Macro Removal

The flow is exactly the same as the VHDL flow, except the Verilog flow does not have
module declarations. Follow the VHDL flow but use Verilog syntax.

Create a PlanAhead Project in 14.5
To create this project, follow the instructions in Creating a Partial Reconfiguration Project
in Chapter 4.

If the Redefine Bus Macro process was used, then the BM replacement netlists need to be
included as static logic source files for PlanAhead when the project is created.

Summary
Designs created and implemented with the Modular Design Early Access Partial
Reconfiguration tools can be easily converted to the Partition-based ISE 14 solution. Bus
macros must be removed or replaced, decoupling logic should be considered, and
Modular Design-specific options can be removed. In no time at all you will be
implementing designs with the latest Partial Reconfiguration software.

http://www.xilinx.com

Partial Reconfiguration User Guide www.xilinx.com 129
UG702 (v14.5) April 26, 2013

Appendix C

Additional Resources

To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support

For additional information to help build Partial Reconfiguration designs, see:

• Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite (WP374):
http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Vir
tex_FPGAs.pdf

• Partial Reconfiguration Tutorial (UG743):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/PlanAhe
ad_Tutorial_Partial_Reconfiguration.pdf

• Partial Reconfiguration of a Processor Peripheral Tutorial (UG744):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/PlanAhead_Tutori
al_Reconfigurable_Processor.pdf

• Fast Configuration of PCI Express Technology through Partial Reconfiguration
(XAPP883)
http://www.xilinx.com/support/documentation/application_notes/xapp883_Fast_Config_PCIe.pdf

• PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration
(XAPP887):
http://www.xilinx.com/support/documentation/application_notes/xapp887_PRC_EPRC.pdf

• Differenc-Based Partial Reconfiguration (XAPP290):
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

• Hierarchical Design Methodology Guide (UG748):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/Hierarchical_Desi
gn_Methodolgy_Guide.pdf

• Repeatable Results with Design Preservation (WP362):
http://www.xilinx.com/support/documentation/white_papers/wp362.pdf

• PlanAhead User Guide (UG632):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/PlanAhead_UserGuide.pdf

• Command Line Tools User Guide (UG628):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/devref.pdf

• Constraints Guide (UG625):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/cgd.pdf

• 7 Series FPGAs Configuration User Guide (UG470):
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=PlanAhead_UserGuide.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=devref.pdf
http://www.xilinx.com/publications/prod_mktg/index.htm
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp362.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp374_Partial_Reconfig_Virtex_FPGAs.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=white+papers&sub=wp374_Partial_Reconfig_Virtex_FPGAs.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=PlanAhead_Tutorial_Partial_Reconfiguration.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp290.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp883_Fast_Config_PCIe.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;d=PlanAhead_Tutorial_Reconfigurable_Processor.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=cgd.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug470_7Series_Config.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp887_PRC_EPRC.pdf

130 www.xilinx.com Partial Reconfiguration User Guide
UG702 (v14.5) April 26, 2013

Appendix C: Additional Resources

• Virtex-6 FPGA Configuration User Guide (UG360):
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

• Virtex-5 FPGA Configuration User Guide (UG191):
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

• Virtex-4 FPGA Configuration User Guide (UG071):
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

• XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices (UG627):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/xst.pdf

• XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/xst_v6s6.pdf

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=xst.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;t=ise+docs;d=xst_v6s6.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug360.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug191.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug071.pdf

	Partial Reconfiguration User Guide
	Revision History
	Table of Contents
	Introduction
	Partial Reconfiguration Overview
	Terminology
	Bottom-Up Synthesis
	Configuration
	Configuration Frame
	Frame
	Internal Configuration Access Port (ICAP)
	Partial Reconfiguration (PR)
	Partition
	Partition Pin
	Proxy Logic
	Reconfigurable Logic
	Reconfigurable Module (RM)
	Reconfigurable Partition (RP)
	Static Logic

	Partial Reconfiguration Design Criteria for ISE 14.5
	Design Requirements and Guidelines
	Design Performance
	Design Considerations

	Common Applications
	Networked Multiport Interface
	Configuration by Means of PCIe Interface
	Dynamically Reconfigurable Packet Processor
	Asymmetric Key Encryption
	Summary

	Software Tools Flow
	Example Design Structure
	Example Project File Structure
	Synthesis
	Configurations
	Constraints
	Area Group Constraints
	Partition Pins
	Timing Constraints for the ICAP
	Extracting Partition Pin information
	Constraints Editor
	RM Constraints in PlanAhead

	Partitions and Import
	The Role of PXML Files
	First Configuration PXML File
	Second Configuration PXML File
	Third Configuration PXML File

	Implementation
	Debugging Placement and Routing Problems

	Generating BIT Files
	Report Files
	NGDBuild Report
	MAP Report
	PAR Report
	TRACE Report
	Bitgen Report

	pr_verify
	pr_verify Usage

	Flow Differences

	PlanAhead Support
	Creating a Partial Reconfiguration Project
	Setting the Project as a PR Project
	Opening the Netlist Design
	Defining the Reconfigurable Instances
	Adding Reconfigurable Modules to the Project
	Adding Black Box Modules
	Managing Design Sources
	Defining a PR Region
	Applying Reset After Reconfiguration

	Running Partial Reconfiguration Design Rule Checks
	Creating Configurations
	Controlling Configurations
	Verifying Configurations
	Generating BIT Files
	PlanAhead Project Directory Structure

	Command Line Scripting
	Tcl Scripts
	Data.tcl Format
	Section 1: Set Project Options
	Section 2: Specify Modules for Synthesis and Define Partition Attributes
	Section 3: Define Configurations
	Section 4: Implementation Options

	Recommended Flow
	Required Files and Directory Structure
	Synthesis RM Directories
	Configuration Directories
	Export Directories

	Configuring the FPGA Device
	Configuration Modes
	Downloading a Full Bit File
	Downloading a Partial Bit File
	System Design for Configuring an FPGA Device
	Partial Bit File Integrity
	Partial Bitstream CRC Checking
	Frame-by-Frame CRC Checking in 7 Series and Zynq-7000 Devices
	Partial Bitstream CRC checking in Pre-7 Series FPGAs

	Configuration Frames
	Configuration Time
	Configuration Debugging

	Design Considerations
	Design Hierarchy
	Design Elements Inside Reconfigurable Modules
	Dynamic Reconfiguration Using the DRP
	Packing Logic
	Packing Input/Output Registers in the IOB
	Design Instance Hierarchy
	Submodules in Reconfigurable Modules

	Global Clocking Rules
	Active Low Resets and Clock Enables
	Decoupling Functionality
	Reset After Reconfiguration
	Software Considerations
	Hardware Considerations

	Design Revision Checks
	Defining Reconfigurable Partition Boundaries
	Proxy Logic
	Controlled Routes

	Black Boxes
	Module-Level Constraint Files
	Implementation Strategies
	Simulation and Verification
	Using High Speed Transceivers
	Interaction with Other Xilinx Tools
	Interaction with ChipScope Pro
	Interaction with System Generator for DSP and CORE Generator
	Interaction with EDK

	Partial Reconfiguration Design Checklist

	Known Issues and Known Limitations
	Known Issues
	Known Limitations

	Partial Reconfiguration Migration Guide
	Differences Between the Early Access and Production Solutions
	Compatible Designs for Migration
	Bus Macro instantiations no longer required
	PR-Specific Environment Variables Deprecated
	MODE Constraint Deprecated
	'NGDBuild -modular' Switch Deprecated
	Partition Information is Stored in the xpartition.pxml File
	Tcl Flow is the Only Command Line Option
	UCF Only Required in NGDBuild
	Manage Full-Design Timing Constraints
	BUFRs Require Partition Pins in Virtex-5

	Migrating a Design
	Bus Macro Removal
	Create a PlanAhead Project in 14.5

	Summary

	Additional Resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

