
Generating Basic Software
Platforms

Reference Guide

UG1138 (v2018.2) July 16, 2018

https://www.xilinx.com


Revision History
The following table shows the revision history for this document.

Date Version Revision
July 16, 2018 2018.2 Updated copyright statements and logos. Some reformatting. No

technical content changes.

April 6, 2016 2016.1 Updated MLB keywords section with OS_TYPE keyword.

September 30, 2015 2015.3 Updated Hardware Design File (.hdf) section.

April 1, 2015 2015.1
• Updated Pre-Synthesis Hardware Handoff Project Flow Images

• Updated Post-Bitstream Tcl Projectless flow

• Added name space to common Tcl commands. Existing scripts
without namespaces in the commands work fine. However,
using namespaces in all the commands is recommended to
avoid any conflicts in future.

• Updated Tcl Examples section with advanced configuration and
multi- block design

• Added appendix C for generating software outputs from within
Vivado

• Added Appendix G for customized template applications (MAD)

November 19, 2014 2014.4 First version of the document

Revision History

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=2


Table of Contents
Revision History...............................................................................................................2

Chapter 1: Introduction.............................................................................................. 7

Chapter 2: Hardware Handoff................................................................................. 8
Pre-Synthesis Hardware Handoff..............................................................................................9
Post-Bitstream Hardware Handoff..........................................................................................10

Chapter 3: Tcl Capabilities Overview................................................................. 13
First Class Tcl Object Types and Relationships...................................................................... 13
Tcl Commands Listed by Category..........................................................................................15

Chapter 4: Tcl Examples............................................................................................ 19
Accessing Hardware Design Data........................................................................................... 19

Chapter 5: Input and Output Files...................................................................... 33
Input Files...................................................................................................................................33
Output Files................................................................................................................................34
Generating Libraries and Drivers............................................................................................35

Appendix A: Obsolete Commands.......................................................................40

Appendix B: Deprecated Commands................................................................. 42

Appendix C: BSP, DTS, and Application Generation in Vivado.............47

Appendix D: Microprocessor Software Specification (MSS)..................50
MSS Overview............................................................................................................................ 50
MSS Format................................................................................................................................50
Global Parameters.................................................................................................................... 52
Instance-Specific Parameters.................................................................................................. 52

Appendix E: Microprocessor Library Definition (MLD)............................ 58
Microprocessor Library Definition (MLD) Overview............................................................. 58

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=3


MLD Library Definition Files.....................................................................................................58
MLD Format Specification........................................................................................................ 59
MLD Parameter Descriptions...................................................................................................65

Appendix F: Microprocessor Driver Definition (MDD)............................. 73
Microprocessor Driver Definition (MDD) Overview.............................................................. 73
MDD Driver Definition Files......................................................................................................73
MDD Format Specification....................................................................................................... 74
MDD Format Examples.............................................................................................................74
MDD Parameter Description....................................................................................................76
MDD Keywords.......................................................................................................................... 77
MDD Design Rule Check (DRC) Section.................................................................................. 82
MDD Driver Generation (Generate) Section.......................................................................... 82
Custom Driver............................................................................................................................83

Appendix G: Microprocessor Application Definition (MAD)................. 86
Microprocessor Application Definition (MAD) Overview......................................................86
Microprocessor Application Definition Files.......................................................................... 86
MAD Format Specification........................................................................................................87
MAD Format Example............................................................................................................... 88

Appendix H: Tcl Commands Listed Alphabetically.....................................89
common::create_property........................................................................................................89
common::get_msg_config........................................................................................................ 92
common::get_param................................................................................................................ 93
common::get_property.............................................................................................................95
common::help............................................................................................................................97
common::list_param................................................................................................................. 98
common::list_property........................................................................................................... 100
common::list_property_value................................................................................................ 102
common::load_features..........................................................................................................103
common::register_proc.......................................................................................................... 104
common::report_environment.............................................................................................. 105
common::report_param......................................................................................................... 106
common::report_property..................................................................................................... 108
common::reset_msg_config...................................................................................................111
common::reset_msg_count....................................................................................................112
common::reset_param........................................................................................................... 113
common::reset_property........................................................................................................115

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=4


common::set_msg_config...................................................................................................... 117
common::set_param............................................................................................................... 118
common::set_property........................................................................................................... 120
common::unregister_proc......................................................................................................123
common::version.................................................................................................................... 124
hsi::add_library........................................................................................................................ 125
hsi::close_hw_design...............................................................................................................127
hsi::close_sw_design............................................................................................................... 129
hsi::create_comp_param........................................................................................................ 131
hsi::create_dt_node................................................................................................................. 133
hsi::create_dt_tree................................................................................................................... 135
hsi::create_node...................................................................................................................... 137
hsi::create_sw_design............................................................................................................. 139
hsi::current_dt_tree................................................................................................................. 141
hsi::current_hw_design...........................................................................................................143
hsi::current_hw_instance........................................................................................................145
hsi::current_sw_design........................................................................................................... 147
hsi::delete_objs........................................................................................................................ 149
hsi::generate_app....................................................................................................................151
hsi::generate_bsp.................................................................................................................... 154
hsi::generate_target................................................................................................................156
hsi::get_arrays..........................................................................................................................157
hsi::get_cells.............................................................................................................................160
hsi::get_comp_params............................................................................................................163
hsi::get_drivers........................................................................................................................ 166
hsi::get_dt_nodes.....................................................................................................................169
hsi::get_dt_trees...................................................................................................................... 172
hsi::get_fields........................................................................................................................... 175
hsi::get_hw_designs................................................................................................................ 177
hsi::get_hw_files.......................................................................................................................180
hsi::get_intf_nets..................................................................................................................... 183
hsi::get_intf_pins......................................................................................................................186
hsi::get_intf_ports....................................................................................................................189
hsi::get_libs.............................................................................................................................. 192
hsi::get_mem_ranges..............................................................................................................195
hsi::get_nets.............................................................................................................................198
hsi::get_nodes..........................................................................................................................201
hsi::get_os................................................................................................................................ 204

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=5


hsi::get_pins............................................................................................................................. 206
hsi::get_ports........................................................................................................................... 209
hsi::get_sw_cores.....................................................................................................................212
hsi::get_sw_designs.................................................................................................................215
hsi::get_sw_interfaces.............................................................................................................217
hsi::get_sw_processor.............................................................................................................220
hsi::open_hw_design...............................................................................................................222
hsi::open_sw_design............................................................................................................... 224
hsi::set_repo_path................................................................................................................... 226

Appendix I: Additional Resources and Legal Notices.............................228

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=6


Chapter 1

Introduction
Hardware Software Interface (HSI) is a scalable framework enabling embedded SW tool
integration with Vivado. It enables third-party OS vendors and software providers to distribute
their software for Xilinx FPGA Platforms. HSI consumes hardware design (.hdf) files and the
software repository (Drivers, OS, board support packages (BSPs), Libs, Apps, and DTG). It
provides a rich set of Tcl APIs to access hardware information and to generate BSPs, Device Tree,
and template applications.

Figure 1:   Design Flow Using HSI

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=7


Chapter 2

Hardware Handoff
This chapter describes the Vivado hardware handoff flow for the pre-synthesis and post-
bitstream designs. The figure below shows the IP integrator Zynq ZC702 example design.

Figure 2:   Example Zynq Design and Bus Functional Simulation

CAUTION!: Vivado hardware handoff flow supports only single Block Diagram and independent multi
Block Diagram designs. It does not support RTL, Reference Block Diagram, and dependent multi-Block
Diagram designs.

Chapter 2: Hardware Handoff

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=8


Pre-Synthesis Hardware Handoff
GUI Project Flow

Do the following to perform pre-synthesis hardware handoff in the Vivado interface.

1. Generate the block design. To do this:

a. In the Flow Navigator under IP Integrator, click Generate Block Design. The Generate
Output Products dialog box opens.

b. Click Generate to generate the block design.

2. Export the hardware design. To do this:

a. Select File > Export > Export Hardware. The Export Hardware dialog box opens.

Chapter 2: Hardware Handoff

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=9


b. Leave the Include bitstream check box unchecked.

c. Click OK to export the hardware design.

Tcl Projectless Flow

Use the following Tcl commands to perform pre-synthesis hardware handoff using Tcl commands
outside of the Vivado project.

1. create_project –in_memory –part xc7z020clg484-1

2. set_property board_part xilinx.com:zc702:part0:1.0
[current_project]

3. read_bd base_zynq_design.bd

4. read_vhd base_zynq_design_wrapper.vhd

5. generate_target all [get_files base_zynq_design.bd]

6. write_hwdef -file base_zynq_design_wrapper.hdf

Post-Bitstream Hardware Handoff
GUI Project Flow

Do the following to perform post-bitstream hardware handoff in the Vivado interface.

1. Generate the block design. To do this:

a. In the Flow Navigator under Program and Debug, click Generate Bitstream. The
following dialog box opens.

Chapter 2: Hardware Handoff

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=10


b. Click Yes to launch synthesis and implementation.When synthesis and implementation
complete, the Generate Bitstream process automatically runs.

2. Export the hardware design. To do this:

a. Select File > Export > Export Hardware. The Export Hardware dialog box opens.

b. Check the Include bitstream check box.

c. Click OK to export the hardware design and include the bitstream.

Tcl Projectless Flow

Use the following Tcl commands to perform post-bitstream hardware handoff using Tcl
commands outside of the Vivado project.

1. create_project –in_memory –part xc7z020clg484-1

2. set_property board_part xilinx.com:zc702:part0:1.0[current_project]

3. read_bd base_zynq_design.bd

4. read_vhd base_zynq_design_wrapper.vhd

5. generate_target all [get_files base_zynq_design.bd]

6. synth_design -top base_zynq_design_wrapper

7. opt_design

8. place_design

9. write_hwdef -file base_zynq_design_wrapper.hwdef

Chapter 2: Hardware Handoff

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=11


10. route_design

11. write_bitstream base_zynq_design_wrapper.bit

12. write_sysdef –hwdef base_zynq_design_wrapper.hwdef -bitfile
base_zynq_design_wrapper.bit -file base_zynq_design_wrapper.hdf

Chapter 2: Hardware Handoff

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=12


Chapter 3

Tcl Capabilities Overview
The Tool Command Language (Tcl) is the scripting language integrated in the Hardware Software
Interface (HSI) environment.

Tcl lets you perform interactive queries to design tools and execute automated scripts. Tcl offers
the ability to “ask” questions interactively of design databases, particularly around tool and
design settings and state. Examples are:

• Querying IP, Driver, BSP, and Driver configuration

• Querying interrupt and other connectivity information

The following sections describe some of the basic capabilities of Tcl with HSI.
Note: This manual is a reference to the specific capabilities of the HSI Tcl shell, and provides reference to
additional Tcl programming resources. It is not a comprehensive reference for the Tcl language.

First Class Tcl Object Types and
Relationships
Hardware

• HardwareDb: Represents hardware design loaded in memory. SDK, PetaLinux, and third-party
tools can have multiple HardwareDb objects.

• Port: A special type of pin on the top-level module or entity. Ports are normally attached to
I/O pads and connect externally to the FPGA device.

• InterfacePort: A special type of bus-interface on the top level module or entity. Interface
Ports are normally attached to I/O pads and connect externally to the FPGA device.

• Net: A wire or list of wires that eventually can be physically connected directly together. Nets
can be hierarchical or flat, but always sort a list of pins together.

• InterfaceNet: A list of wires that eventually can be physically connected directly together.
Interface nets can be hierarchical or flat, but always sort a list of interface pins together.

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=13


• Pin: A point of logical connectivity on a cell. A pin allows the internals of a cell to be
abstracted away and simplified for easier use on cell. Examples of pins include clock, data,
reset, and output pins of a flop.

• InterfacePin: A point of logical connectivity on a cell. It allows the internals of a cell to be
abstracted away and simplified for easier use on cell. Examples of interface pins include the
M_AXI_DP interface of MicroBlaze processors, and the S_AXI interface of gpio.

• Cell: The instantiation of IP in the hardware design. Examples of cells include instantiation of
microblaze, gpio, and axi_dma, as well as hierarchical instances which are wrappers for other
groups of cells.

• MemoryRange: Represents the memory range associated with the peripherals in the memory
map of the processor.

• SupportingDesignFile: Represents files associated with the hardware design. For example, .bit
or .mmi.

Hardware Object Relationships

Figure 3:   Hardware Object Relationships Diagram

Software

• SoftwareDb: Represents one software design or microprocessor software specification (MSS).
SDK, PetaLinux, and other third-party tools can have multiple SoftwareDb objects.

• SwCore: Represents driver/library/OS present in the software repositories. For example: cpu,
gpio, standalone, xilffs.

• SwProcessor: The driver mapped to the processor instance in the hardware design. For
example: cpu driver mapped for MicroBlaze processor cell.

Chapter 3: Tcl Capabilities Overview

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=14


• SwDriver: The driver mapped to the peripheral instance in the hardware design. For example:
gpio driver mapped for axi_gpio cell.

• SwLibrary: The library added in the software design. For example: xilflash, xilffs.

• SwOS: The OS in the software design. For example: standalone, xilkernel.

• SwInterface: The interface of the library/driver. It describes the interface functions and
header files used by the library/driver. For example: stdin, stdout of uart driver.

• SwArray: The array defined in driver/library/os. It contains any number of PARAMs and
PROPERTYs which describe the size and description of the array and default values of
elements in the array. It represents software array of the driver/library/os. For example:
mem_table, shm_table of xilkernel bsp.

• SwDTNode: Represents node in Device Tree (DTS) file.

• SwParam: Represents parameters of node.

Tcl Commands Listed by Category
Categories

• DeviceTree

• Hardware

• Object

• Project

• PropertyAndParameter

• Report

• Software

• Tools

DeviceTree

• hsi::create_dt_node

• hsi::create_dt_tree

• hsi::current_dt_tree

• hsi::get_dt_nodes

• hsi::get_dt_trees

Chapter 3: Tcl Capabilities Overview

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=15


Hardware

• hsi::close_hw_design

• hsi::current_hw_design

• hsi::get_cells

• hsi::get_hw_designs

• hsi::get_hw_files

• hsi::get_intf_nets

• hsi::get_intf_pins

• hsi::get_intf_ports

• hsi::get_mem_ranges

• hsi::get_nets

• hsi::get_pins

• hsi::get_ports

• hsi::open_hw_design

Object

• common::get_property

• common::list_property

• common::list_property_value

• common::report_property

• common::reset_property

• common::set_property

Project

• common::help

PropertyAndParameter

• common::create_property

• common::get_param

• common::get_property

• common::list_param

• common::list_property

• common::list_property_value

Chapter 3: Tcl Capabilities Overview

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=16


• common::report_param

• common::report_property

• common::reset_param

• common::reset_property

• common::set_param

• common::set_property

Report

• common::report_environment

• common::report_param

• common::report_property

• common::reset_msg_config

• common::reset_msg_count

• common::set_msg_config

• common::version

Software

• hsi::add_library

• hsi::close_sw_design

• hsi::create_comp_param

• hsi::create_node

• hsi::create_sw_design

• hsi::current_sw_design

• hsi::delete_objs

• hsi::generate_app

• hsi::generate_bsp

• hsi::generate_target

• hsi::get_arrays

• hsi::get_comp_params

• hsi::get_drivers

• hsi::get_fields

• hsi::get_libs

Chapter 3: Tcl Capabilities Overview

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=17


• hsi::get_nodes

• hsi::get_os

• hsi::get_sw_cores

• hsi::get_sw_designs

• hsi::get_sw_interfaces

• hsi::get_sw_processor

• hsi::open_sw_design

• hsi::set_repo_path

Tools

• common::load_features

Chapter 3: Tcl Capabilities Overview

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=18


Chapter 4

Tcl Examples
This chapter demonstrates how to load a .hdf file, access the hardware information, and
generate BSPs, applications, and the Device Tree.

Accessing Hardware Design Data
# Opening the hardware design

hsi::open_hw_design base_zynq_design_wrapper.hdf 
                base_zynq_design_imp
            

# List loaded hardware designs

hsi::get_hw_designs 
                base_zynq_design_imp
            

# Switch to current hardware design

hsi::current_hw_design 
                base_zynq_design_imp
            

# Report properties of the current hardware design

common::report_property [hsi::current_hw_design]
            

Property Type Read-
only

Visibl
e Value

ADDRESS_TAG string* true true base_zynq_design_i/
ps7_cortexa9_0:base_zynq_design_ibase_zynq_design_i/
ps7_cortexa9_1:base_zynq_design_i

BOARD string true true xilinx.com:zc702:part0:1.1

CLASS string true true hw_design

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=19


Property Type Read-
only

Visibl
e Value

DEVICE string true true 7x020

FAMILY string true true zynq

NAME string true true base_zynq_design_imp

PACKAGE string true true clg484

PATH string true true /scratch/demo//base_zynq_design.hwh

SPEEDGRADE string true true ???1

SW_REPOSITORIES string* true true

TIMESTAMP string true true <current date and time>

VIVADO_VERSION string true true 2014.3

# List the hdf files in the container

hsi::get_hw_files 
                base_zynq_design.hwh ps7_init.c ps7_init.h ps7_init_gpl.c 
ps7_init_gpl.h ps7_init.tcl ps7_init.html 
                base_zynq_design_wrapper.mmi base_zynq_design_bd.tcl
            

# Filter the .bit files

hsi::get_hw_files -filter {TYPE==bit} 
                base_zynq_design_wrapper.bit 
            

# List of external ports in the design

hsi::get_ports 
                DDR_cas_n DDR_cke DDR_ck_n DDR_ck_p DDR_cs_n DDR_reset_n 
DDR_odt DDR_ras_n  
                DDR_we_n DDR_ba DDR_addr DDR_dm DDR_dq DDR_dqs_n DDR_dqs_p 
FIXED_IO_mio  
                FIXED_IO_ddr_vrn FIXED_IO_ddr_vrp FIXED_IO_ps_srstb 
FIXED_IO_ps_clk  
                FIXED_IO_ps_porb leds_4bits_tri_o
            

# Reports properties of an external port

common::report_property [hsi::get_ports leds_4bits_tri_o]
            

Property Type Read-
only Visible Value

CLASS string true true port

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=20


Property Type Read-
only Visible Value

CLK_FREQ string true true

DIRECTION string true true O

INTERFACE bool true true 0

IS_CONNECTED bool true true 0

LEFT string true true 3

NAME string true true leds_4bits_tri_o

RIGHT string true true 0

SENSITIVITY enum true true

TYPE enum true true undef

# List of IP instances in the design

hsi::get_cells 
                axi_bram_ctrl_0 axi_gpio_0 blk_mem_gen_0 
processing_system7_0_axi_periph_m00_couplers_auto_pc  
                processing_system7_0_axi_periph_s00_couplers_auto_pc 
processing_system7_0_axi_periph_xbar  
                rst_processing_system7_0_50M ps7_clockc_0 ps7_uart_1 
ps7_pl310_0 ps7_pmu_0 ps7_qspi_0  
                ps7_qspi_linear_0 ps7_axi_interconnect_0 ps7_cortexa9_0 
ps7_cortexa9_1 ps7_ddr_0  
                ps7_ethernet_0 ps7_usb_0 ps7_sd_0 ps7_i2c_0 ps7_can_0 
ps7_ttc_0 ps7_gpio_0  
                ps7_ddrc_0 ps7_dev_cfg_0 ps7_xadc_0 ps7_ocmc_0 
ps7_coresight_comp_0 ps7_gpv_0 ps7_scuc_0  
                ps7_globaltimer_0 ps7_intc_dist_0 ps7_l2cachec_0 ps7_dma_s 
ps7_iop_bus_config_0 ps7_ram_0  
                ps7_ram_1 ps7_scugic_0 ps7_scutimer_0 ps7_scuwdt_0 
ps7_slcr_0 ps7_dma_ns ps7_afi_0 ps7_afi_1  
                ps7_afi_2 ps7_afi_3 ps7_m_axi_gp0
            

#List of processors in the design

hsi::get_cells -filter {IP_TYPE==PROCESSOR} 
                ps7_cortexa9_0 ps7_cortexa9_1
            

# Properties of IP instance

common::report_property [hsi::get_cells axi_gpio_0]
            

Property Type Read-
only Visible Value

CLASS string true true cell

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=21


Property Type Read-
only Visible Value

CONFIG.C_ALL_INPUTS string true true 0

CONFIG.C_ALL_INPUTS_2 string true true 0

CONFIG.C_ALL_OUTPUTS string true true 1

CONFIG.C_ALL_OUTPUTS_2 string true true 0

CONFIG.C_BASEADDR string true true 0x41200000

CONFIG.C_DOUT_DEFAULT string true true 0x00000000

CONFIG.C_DOUT_DEFAULT_2 string true true 0x00000000

CONFIG.C_FAMILY string true true zynq

CONFIG.C_GPIO2_WIDTH string true true 32

CONFIG.C_GPIO_WIDTH string true true 4

CONFIG.C_HIGHADDR string true true 0x4120FFFF

CONFIG.C_INTERRUPT_PRESENT string true true 0

CONFIG.C_IS_DUAL string true true 0

CONFIG.C_S_AXI_ADDR_WIDTH string true true 9

CONFIG.C_S_AXI_DATA_WIDTH string true true 32

CONFIG.C_TRI_DEFAULT string true true 0xFFFFFFFF

CONFIG.C_TRI_DEFAULT_2 string true true 0xFFFFFFFF

CONFIG.Component_Name string true true base_zynq_design_axi_gpio_0_0

CONFIG.EDK_IPTYPE string true true PERIPHERAL

CONFIG.GPIO2_BOARD_INTERFACE string true true Custom

CONFIG.GPIO_BOARD_INTERFACE string true true leds_4bits

CONFIG.USE_BOARD_FLOW string true true true

CONFIGURABLE bool true true 0

IP_NAME string true true axi_gpio

IP_TYPE enum true true PERIPHERAL

NAME string true true axi_gpio_0

PRODUCT_GUIDE string true true LogiCORE IP AXI GPIO v2.0 Product Guide

SLAVES string* true true

VLNV string true true xilinx.com:ip:axi_gpio:2.0

# Memory range of the Slave IPs

common::report_property [lindex [hsi::get_mem_ranges -of_objects 
                [hsi::get_cells -filter {IP_TYPE==PROCESSOR}]] 39]
            

Property Type Read-
only

Visibl
e Value

BASE_NAME string true true C_BASEADDR

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  22Send Feedback

http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_gpio;v=v2_0;d=pg144-axi-gpio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=22


Property Type Read-
only

Visibl
e Value

BASE_VALUE string true true 0x41200000

CLASS string true true mem_range

HIGH_NAME string true true C_HIGHADDR

HIGH_VALUE string true true 0x4120FFFF

INSTANCE cell true true axi_gpio_0

IS_DATA bool true true 1

IS_INSTRUCTION bool true true 0

MEM_TYPE enum true true REGISTER

NAME string true true axi_gpio_0

Creating Standalone Software Design and Accessing Software Information

# List of the drivers in the software repository

hsi::get_sw_cores *uart* 
                uartlite_v2_01_a uartlite_v3_0 uartns550_v2_01_a 
uartns550_v2_02_a uartns550_v3_0  
                uartns550_v3_1 uartps_v1_04_a uartps_v1_05_a uartps_v2_0 
uartps_v2_1 uartps_v2_2
            

# Creates software design

hsi::create_sw_design swdesign -proc ps7_cortexa9_0 -os standalone 
                swdesign
            

# To switch to active software design

hsi::current_sw_design 
                swdesign
            

# Properties of the current software design

common::report_property [hsi::current_sw_design ]
            

Property Type Read-
only Visible Value

APP_COMPILER string false true arm-xilinx-eabi-gcc

APP_COMPILER_FLAGS string false true

APP_LINKER_FLAGS string false true

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=23


Property Type Read-
only Visible Value

BSS_MEMORY string false true

CLASS string true true sw_design

CODE_MEMORY string false true

DATA_MEMORY string false true

NAME string true true swdesign

# The drivers associated to current hardware design

hsi::get_drivers 
                axi_bram_ctrl_0 axi_gpio_0 ps7_afi_0 ps7_afi_1 ps7_afi_2 
ps7_afi_3 ps7_can_0  
                ps7_coresight_comp_0 ps7_ddr_0 ps7_ddrc_0 ps7_dev_cfg_0 
ps7_dma_ns ps7_dma_s  
                ps7_ethernet_0 ps7_globaltimer_0 ps7_gpio_0 ps7_gpv_0 
ps7_i2c_0 ps7_intc_dist_0  
                ps7_iop_bus_config_0 ps7_l2cachec_0 ps7_ocmc_0 ps7_pl310_0 
ps7_pmu_0 ps7_qspi_0  
                ps7_qspi_linear_0 ps7_ram_0 ps7_ram_1 ps7_scuc_0 
ps7_scugic_0 ps7_scutimer_0  
                ps7_scuwdt_0 ps7_sd_0 ps7_slcr_0 ps7_ttc_0 ps7_uart_1 
ps7_usb_0 ps7_xadc_0 
                hsi% get_osstandalone
            

# Properties of the OS object

common::report_property[hsi::get_os]
            

Property Type Read-
only Visible Value

CLASS string true true os

CONFIG.enable_sw_intrusive_profiling string false true false

CONFIG.microblaze_exceptions string false true false

CONFIG.predecode_fpu_exceptions string false true false

CONFIG.profile_timer string false true none

CONFIG.stdin string false true ps7_uart_1

CONFIG.stdout string false true ps7_uart_1

NAME string false true standalone

VERSION string false true 4.2

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=24


# Properties of the processor object

common::report_property [hsi::get_sw_processor ]
            

Property Type Read-only Visible Value
CLASS string true true sw_proc

CONFIG.archiver string false true arm-xilinx-eabi-ar

CONFIG.compiler string false true arm-xilinx-eabi-gcc

CONFIG.compiler_flags string false true -O2 -c

CONFIG.extra_compiler_flags string false true -g

HW_INSTANCE string true true ps7_cortexa9_0

NAME string false true cpu_cortexa9

VERSION string false true 2.1

# Generate BSP. BSP source code will be dumped to the output directory.

hsi::generate_bsp -dir bsp_out
            

# List of available apps in the repository

hsi::generate_app -lapp 
peripheral_tests dhrystone empty_application hello_world lwip_echo_server  
memory_tests rsa_auth_app srec_bootloader xilkernel_thread_demo 
zynq_dram_test  
zynq_fsbl linux_empty_app linux_hello_world opencv_hello_world
            

# Generate template application

hsi::generate_app -app hello_world -proc ps7_cortexa9_0 -dir app_out
            

# Generate Device Tree. Clone device tree repo from GIT to /device_tree_repository/device-tree-
generator-master directory.

# load the hardware design

hsi::open_hw_design zynq_1_wrapper.hdf
            

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=25


# Cloned GIT repo path

hsi::set_repo_path ./device_tree_repository/device-tree-generator-master
            

# create sw design

hsi::create_sw_design sw1 -proc ps7_cortexa9_0 -os device_tree
            

# generate device tree

hsi::generate_target {dts} -dir dtg_out
            

Creating Standalone Software Design and Accessing
Software Information
# List of the drivers in the software repository

hsi::get_sw_cores *uart* 
                uartlite_v2_01_a uartlite_v3_0 uartns550_v2_01_a 
uartns550_v2_02_a uartns550_v3_0  
                uartns550_v3_1 uartps_v1_04_a uartps_v1_05_a uartps_v2_0 
uartps_v2_1 uartps_v2_2
            

# Creates software design

hsi::create_sw_design swdesign -proc ps7_cortexa9_0 -os standalone 
                swdesign
            

# To switch to active software design

hsi::current_sw_design 
                swdesign
            

# Properties of the current software design

common::report_property [hsi::current_sw_design ]
            

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=26


Property Type Read-
only Visible Value

APP_COMPILER string false true arm-xilinx-eabi-gcc

APP_COMPILER_FLAGS string false true

APP_LINKER_FLAGS string false true

BSS_MEMORY string false true

CLASS string true true sw_design

CODE_MEMORY string false true

DATA_MEMORY string false true

NAME string true true swdesign

# The drivers associated to current hardware design

hsi::get_drivers 
                axi_bram_ctrl_0 axi_gpio_0 ps7_afi_0 ps7_afi_1 ps7_afi_2 
ps7_afi_3 ps7_can_0  
                ps7_coresight_comp_0 ps7_ddr_0 ps7_ddrc_0 ps7_dev_cfg_0 
ps7_dma_ns ps7_dma_s  
                ps7_ethernet_0 ps7_globaltimer_0 ps7_gpio_0 ps7_gpv_0 
ps7_i2c_0 ps7_intc_dist_0  
                ps7_iop_bus_config_0 ps7_l2cachec_0 ps7_ocmc_0 ps7_pl310_0 
ps7_pmu_0 ps7_qspi_0  
                ps7_qspi_linear_0 ps7_ram_0 ps7_ram_1 ps7_scuc_0 
ps7_scugic_0 ps7_scutimer_0  
                ps7_scuwdt_0 ps7_sd_0 ps7_slcr_0 ps7_ttc_0 ps7_uart_1 
ps7_usb_0 ps7_xadc_0 
                hsi% get_osstandalone
            

# Properties of the OS object

common::report_property[hsi::get_os]
            

Property Type Read-
only Visible Value

CLASS string true true os

CONFIG.enable_sw_intrusive_profiling string false true false

CONFIG.microblaze_exceptions string false true false

CONFIG.predecode_fpu_exceptions string false true false

CONFIG.profile_timer string false true none

CONFIG.stdin string false true ps7_uart_1

CONFIG.stdout string false true ps7_uart_1

NAME string false true standalone

VERSION string false true 4.2

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=27


# Properties of the processor object

common::report_property [hsi::get_sw_processor ]
            

Property Type Read-only Visible Value
CLASS string true true sw_proc

CONFIG.archiver string false true arm-xilinx-eabi-ar

CONFIG.compiler string false true arm-xilinx-eabi-gcc

CONFIG.compiler_flags string false true -O2 -c

CONFIG.extra_compiler_flags string false true -g

HW_INSTANCE string true true ps7_cortexa9_0

NAME string false true cpu_cortexa9

VERSION string false true 2.1

# Generate BSP. BSP source code will be dumped to the output directory.

hsi::generate_bsp -dir bsp_out
            

# List of available apps in the repository

hsi::generate_app -lapp 
                peripheral_tests dhrystone empty_application hello_world 
lwip_echo_server  
                memory_tests rsa_auth_app srec_bootloader 
xilkernel_thread_demo zynq_dram_test  
                zynq_fsbl linux_empty_app linux_hello_world 
opencv_hello_world
            

# Generate template application

                hsi::generate_app -app hello_world -proc ps7_cortexa9_0 -
dir app_out
            

# Generate Device Tree. Clone device tree repo from GIT to /device_tree_repository/device-tree-
generator-master directory.

# load the hardware design

hsi::open_hw_design zynq_1_wrapper.hdf
            

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=28


# Cloned GIT repo path

hsi::set_repo_path ./device_tree_repository/device-tree-generator-master
            

# create sw design

hsi::create_sw_design sw1 -proc ps7_cortexa9_0 -os device_tree
            

# generate device tree

hsi::generate_target {dts} -dir dtg_out
            

Generating and Compiling Application with compiler
settings and memory sections of choice
Generating and Compiling Application with compiler settings and memory sections
of choice

#Create a software design for the template application with default compiler flags and memory
section settings

set sw_system_1 [hsi::create_sw_design system_1 -proc microblaze_1 -os 
xilkernel -app hello_world] 

#Change compiler and its flags of the software design

common::set_property APP_COMPILER "mb-gcc" $sw_system_1  
common::set_property -name APP_COMPILER_FLAGS -value "-DRSA_SUPPORT -
DFSBL_DEBUG_INFO"  
-objects $sw_system_1 
common::set_property -name APP_LINKER_FLAGS -value "-Wl,--start-group,-
lxil,-lgcc,-lc,--end-group" 
-objects $sw_system_1 

#Change memory sections

common::set_property CODE_MEMORY axi_bram_ctrl_1 $sw_system_1  
common::set_property BSS_MEMORY axi_bram_ctrl_1 $sw_system_1 
common::set_property DATA_MEMORY axi_bram_ctrl_2 $sw_system_1 

#Genereate application for the above customized software design to Zynq_Fsbl directory

hsi::generate_app -dir hw_output -compile 

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=29


Generating and Compiling BSP with advanced
driver/library/os/processor configuration
Generating and Compiling BSP with advanced driver/library/os/processor
configuration

#Create a software design for the template application with default compiler flags and memory
section settings

 set sw_system_1 [hsi::create_sw_design system_1 -proc microblaze_1 -os 
xilkernel ] 

#Get the old driver object

 set old_driver [hsi::get_drivers myip1] 

#Set repository path to find the custom drivers and libraries

hsi::set_repo_path ./my_local_sw_repository 

#Set the new driver name and version to old driver object

common::set_property NAME myip1_custom_driver $old_driver  
common::set_property VERSION 1.0 $old_driver

#Change default OS configuration to desired one

set OS [hsi::get_os]  
common::set_property CONFIG.systmr_dev axi_timer_0 $OS 
common::set_property CONFIG.stdin axi_uartlite_0 $OS  
common::set_property CONFIG.stdout axi_uartlite_0 $OS

#Add custom library to software design

hsi::add_library xilflash 

#Get all the properties of the library, only read_only = false properties can be changed

common::report_property [hsi::get_libs xilflash] 

#Change the default configuration of the library

set lib [hsi::get_libs xilflash]  
common::set_property CONFIG.enable_amd true $lib 
common::set_property CONFIG.enable_intel false $lib 

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=30


#Generate the BSP with the above configuration

hsi::generate_bsp -dir advanced_bsp -compile 

#Delete the library added to software design

 hsi::delete_objs $lib 

Generating and Compiling BSP for a multi-block
design
Generating and Compiling BSP for a multi block design

Figure 4:   Example Design with multiple block design instances in the active top
design

#Open hardware design with multiple block design instances

hsi% hsi::open_hw_design system_wrapper.hdf  
design_1_wrapper 

#Get the hardware cell instances

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=31


#NOTE: cell instances from all the block designs in the top are shown andtheir names are
prefixed with their hierarchy

hsi% join [get_cells ] \n 
ps_0_wrapper_i_ps_0_i_processing_system7_0 
ps7_uart_1  
ps7_qspi_0 
ps7_cortexa9_0 
ps7_cortexa9_1  
ps7_ddr_0 
ps7_ethernet_0 
.... 
mb_2_wrapper_i_mb_2_i_axi_gpio_0 
mb_2_wrapper_i_mb_2_i_mdm_1 
mb_2_wrapper_i_mb_2_i_microblaze_0 
mb_2_wrapper_i_mb_2_i_microblaze_0_axi_periph 
mb_2_wrapper_i_mb_2_i_microblaze_0_local_memory_dlmb_bram_if_cntlr 
mb_2_wrapper_i_mb_2_i_microblaze_0_local_memory_dlmb_v10 
mb_2_wrapper_i_mb_2_i_microblaze_0_local_memory_ilmb_bram_if_cntlr 
mb_2_wrapper_i_mb_2_i_microblaze_0_local_memory_ilmb_v10 
mb_2_wrapper_i_mb_2_i_microblaze_0_local_memory_lmb_bram 
mb_2_wrapper_i_mb_2_i_rst_clk_wiz_1_100M 
mb_1_wrapper_i_mb_1_i_axi_gpio_0 
mb_1_wrapper_i_mb_1_i_mdm_1 
mb_1_wrapper_i_mb_1_i_microblaze_0 
mb_1_wrapper_i_mb_1_i_microblaze_0_axi_periph 
mb_1_wrapper_i_mb_1_i_microblaze_0_local_memory_dlmb_bram_if_cntlr 
 mb_1_wrapper_i_mb_1_i_microblaze_0_local_memory_dlmb_v10 
mb_1_wrapper_i_mb_1_i_microblaze_0_local_memory_ilmb_bram_if_cntlr 
mb_1_wrapper_i_mb_1_i_microblaze_0_local_memory_ilmb_v10 
mb_1_wrapper_i_mb_1_i_microblaze_0_local_memory_lmb_bram 
mb_1_wrapper_i_mb_1_i_rst_clk_wiz_1_100M 
common_wrapper_i_common_i_axi_gpio_0 
common_wrapper_i_common_i_axi_interconnect_0 
common_wrapper_i_common_i_clk_wiz_1 
common_wrapper_i_common_i_rst_clk_wiz_1_100M

#Generate BSP for a processor in bsp_out directory and compile the bsp sources

hsi::generate_bsp -proc mb_2_wrapper_i_mb_2_i_microblaze_0 -dir bsp_out -
compile  
ls ./bsp_out/mb_2_wrapper_i_mb_2_i_microblaze_0 
code 
indent 
lib 
libsrc

Chapter 4: Tcl Examples

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=32


Chapter 5

Input and Output Files

Input Files
HDF
Hardware Design File (.hdf) is a Xilinx proprietary file format and only Xilinx software tools
understand it. Third-party software tools can communicate to the HSI Tcl interface to extract
data from the .hdf file.

Note: Xilinx does not recommend manually editing the HDF file or altering its contents.

HDF is a container and contains:

• One or more .hwh files

○ Vivado tool version, part, and board tag information

○ IP - instance, name, VLNV, and parameters

○ Memory Map information of the processors

○ Internal Connectivity information (including interrupts, clocks, etc.) and external ports
information

• BMM/MMI and BIT files

• User and HLS driver files

• Other meta-data files

Software Repository
Default Repositories

By default, the tool scans the following repositories for software components:

• <install>/data/embeddedsw/lib/XilinxProcessorIPLib

• <install>/data/embeddedsw/lib

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=33


• <install>/data/embeddedsw/ThirdParty

The following figure shows the repository directory structure.

Figure 5:   Example Directory Structure

GIT Repositories

The Device Tree repository can be cloned from Xilinx GIT. Use the set_repo_path Tcl
command to specify the cloned GIT repository.

User Repositories

You can create drivers, BSPs, and Apps in an example directory structure format, as illustrated in
the figure above. Use the set_repo_path Tcl command to specify the user repository.

Search Priority Mechanism

The tool uses a search priority mechanism to locate drivers and libraries, as follows:

1. Search the repositories under the library path directory specified using the set_repo_path
Tcl command.

2. Search the default repositories described above.

Output Files
The tool generates directories, files, and the software design file (MSS) in the <your_project>
directory. For every processor instance in the MSS file, the tool generates a directory with the
name of the processor instance. Within each processor instance directory the tool generates the
following directories and files.

• The include Directory: 

Chapter 5: Input and Output Files

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=34


The include directory contains C header files needed by drivers. The include file
xparameters.h is also created using the tool in this directory. This file defines base
addresses of the peripherals in the system, #defines needed by drivers, OSs, libraries, and user
programs, as well as function prototypes.

• The Microprocessor Driver Definition (MDD) file for each driver specifies the definitions
that must be customized for each peripheral that uses the driver. See Microprocessor
Driver Definition (MDD) Overview.

• The Microprocessor Library Definition (MLD) file for each OS and library specifies the
definitions that you must customize. See Microprocessor Library Definition (MLD)
Overview.

• The lib Directory: 

The lib directory contains libc.a, libm.a, and libxil.a libraries. The libxil library
contains driver functions that the particular processor can access. For more information about
the libraries, refer to the introductory section of the OS and Libraries Document Collection
(UG643).

• The libsrc Directory: 

The libsrc directory contains intermediate files and make files needed to compile the OSs,
libraries, and drivers. The directory contains peripheral-specific driver files, BSP files for the
OS, and library files that are copied from install, as well as your driver, OS, and library
directories. Refer to Drivers, OS Block, and Libraries for more information.

• The code Directory: 

The code directory is a repository for tool executables. The tool creates an xmdstub.elf file
(for the MicroBlaze™ processor on-board debug) in this directory.

Note: The tool removes these directories every time you run the it. You must put your sources,
executables, and any other files in an area that you create.

Generating Libraries and Drivers
This section provides an overview of generating libraries and drivers. The hardware specification
file and the MSS files define a system. For each processor in the system, the tool finds the list of
addressable peripherals. For each processor, a unique list of drivers and libraries are built. The
tool does the following for each processor:

• Builds the directory structure, as defined in Output Files.

• Copies the necessary source files for the drivers, OSs, and libraries into the processor instance
specific area: OUTPUT_DIR/processor_instance_name/libsrc.

Chapter 5: Input and Output Files

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  35Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=oslib_rm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=35


• Calls the Design Rule Check (DRC) procedure, which is defined as an option in the MDD or
MLD file, for each of the drivers, OSs, and libraries visible to the processor.

• Calls the generate Tcl procedure (if defined in the Tcl file associated with an MDD or MLD
file) for each of the drivers, OSs, and libraries visible to the processor. This generates the
necessary configuration files for each of the drivers, OSs, and libraries in the include directory
of the processor.

• Calls the post_generate Tcl procedure (if defined in the Tcl file associated with an MDD or
MLD file) for each of the drivers, OSs, and libraries visible to the processor.

• Runs make (with targets include and libs) for the OSs, drivers, and libraries specific to the
processor. On the Linux platform, the gmake utility is used, while on NT platforms, make is
used for compilation.

• Calls the execs_generate Tcl procedure (if defined in the Tcl file associated with an MDD
or MLD file) for each of the drivers, OSs, and libraries visible to the processor.

MDD, MLD, and Tcl

A driver or library has two associated data files:

• Data Definition File (MDD or MLD file): This file defines the configurable parameters for the
driver, OS, or library.

• Data Generation File (Tcl): This file uses the parameters configured in the MSS file for a driver,
OS, or library to generate data. Data generated includes but is not limited to generation of
header files, C files, running DRCs for the driver, OS, or library, and generating executables.

The Tcl file includes procedures that tool calls at various stages of its execution. Various
procedures in a Tcl file include:

• DRC: The name of DRC given in the MDD or MLD file.

• generate: A tool-defined procedure that is called after files are copied.

• post_generate: A tool-defined procedure that is called after generate has been called on all
drivers, OSs, and libraries.

• execs_generate: A tool-defined procedure that is called after the BSPs, libraries, and drivers
have been generated.

Note: The data generation (Tcl) file is not necessary for a driver, OS, or library.

For more information about the Tcl procedures and MDD/MLD related parameters, refer to 
Microprocessor Driver Definition (MDD) Overview and Microprocessor Library Definition (MLD)
Overview.

Chapter 5: Input and Output Files

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=36


MSS Parameters

For a complete description of the MSS format and all the parameters that MSS supports, refer to 
MSS Overview

Drivers

Most peripherals require software drivers. The peripherals are shipped with associated drivers,
libraries and BSPs. Refer to the Device Driver Programmer Guide for more information on driver
functions. This guide is located in your SDK installation, in < <install_directory>\SDK
\<version> \data\embeddedsw\doc\xilinx_drivers_guide.pdf.

The MSS file includes a driver block for each peripheral instance. The block contains a reference
to the driver by name (DRIVER_NAME parameter) and the driver version (DRIVER_VER). There is
no default value for these parameters.

A driver has an associated MDD file and a Tcl file.

• The driver MDD file is the data definition file and specifies all configurable parameters for the
drivers.

• Each MDD file has a corresponding Tcl file which generates data that includes generation of
header files, generation of C files, running DRCs for the driver, and generating executables.

You can write your own drivers. These drivers must be in a specific directory under / or /
drivers, as shown in the figure in Software Repository.

• The DRIVER_NAME attribute allows you to specify any name for your drivers, which is also
the name of the driver directory.

• The source files and make file for the driver must be in the /src subdirectory under the /
directory.

• The make file must have the targets /include and /libs.

• Each driver must also contain an MDD file and a Tcl file in the /data subdirectory.

Open the existing driver files to get an understanding of the required structure.

Refer to Microprocessor Driver Definition (MDD) Overview for details on how to write an MDD
and its corresponding Tcl file.

Libraries

The MSS file includes a library block for each library. The library block contains a reference to the
library name (LIBRARY_NAME parameter) and the library version (LIBRARY_VER). There is no
default value for these parameters. Each library is associated with a processor instance specified
using the PROCESSOR_INSTANCE parameter. The library directory contains C source and
header files and a make file for the library.

Chapter 5: Input and Output Files

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=37


The MLD file for each library specifies all configurable options for the libraries and each MLD file
has a corresponding Tcl file.

You can write your own libraries. These libraries must be in a specific directory under /
sw_services as shown in the figure in Software Repository.

• The LIBRARY_NAME attribute lets you specify any name for your libraries, which is also the
name of the library directory.

• The source files and make file for the library must be in the /src subdirectory under the /
directory.

• The make file must have the targets /include and /libs.

• Each library must also contain an MLD file and a Tcl file in the /data subdirectory.

Refer to the existing libraries for more information about the structure of the libraries.

Refer to Microprocessor Library Definition (MLD) Overview for details on how to write an MLD
and its corresponding Tcl file.

OS Block

The MSS file includes an OS block for each processor instance. The OS block contains a
reference to the OS name (OS_NAME parameter), and the OS version (OS_VER). There is no
default value for these parameters. The bsp directory contains C source and header files and a
make file for the OS.

The MLD file for each OS specifies all configurable options for the OS. Each MLD file has a
corresponding Tcl file associated with it. Refer to Microprocessor Library Definition (MLD)
Overview and MSS Overview.

You can write your own OSs. These OSs must be in a specific directory under /bsp or /bsp as
shown in the figure in Software Repository.

• The OS_NAME attribute allows you to specify any name for your OS, which is also the name
of the OS directory.

• The source files and make file for the OS must be in the src subdirectory under the /
directory.

• The make file should have the targets /include and /libs.

• Each OS must contain an MLD file and a Tcl file in the /data subdirectory.

Chapter 5: Input and Output Files

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=38


Look at the existing OSs to understand the structures. See Microprocessor Library Definition
(MLD) Overview for details on how to write an MLD and its corresponding Tcl file, refer to the
Device Driver Programmer Guide. This guide is located in your SDK installation, in
<install_directory> \SDK\<version>\data\embeddedsw\doc
\xilinx_drivers_guide.pdf.

Chapter 5: Input and Output Files

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=39


Appendix A

Obsolete Commands
The table below shows the equivalent HSI Tcl commands that are equivalent to obsolete Libgen
commands.

Libgen TCL commands HSI TCL commands

xget_hw_busif_handle <handle>
<busif_name>

hsi::get_bus_intfs <busif_name> -
of_objects <handle>

xget_hw_busif_value <handle>
<busif_name>

common::get_property BUS_NAME
[hsi::get_bus_intfs <busif_name> -
of_objects <handle>]

xget_hw_ipinst_handle <handle>
<ipinst_name>

hsi::get_cells <ipinst_name> -
of_objects <handle>

xget_hw_name <handle> common::get_property NAME <handle>

xget_hw_value <inhandle> set class [common::get_property
class $inhandle] if { $class ==
"hsm_cell" } { return
[common::get_property ip_name
$inhandle] } elseif { $class ==
"hsm_port" } { return
[common::get_property net_name
$inhandle] } elseif { $class ==
"hsm_bus_intf" } { return
[common::get_property bus_name
$inhandle] } else { #throw error,
parameter and others are not
handled return "" }

xget_hw_proc_slave_periphs
<merged_proc_handle>

common::get_property slaves
<proc_handle>

xget_hw_port_handle <handle>
<port_name>

hsi::get_ports <port_name> -
of_objects <port_handle>

xget_hw_port_value <handle>
<port_name>

common::get_property SIG_NAME
[hsi::get_ports <port_name> -
of_objects <port_handle>]

xget_hw_connected_busifs_handle
<merged_mhs_handle> <businst_name>
<busif_type>

hsi::get_bus_intfs -conn_name
<businst_name> –of_objects
<hw_db_handle> -filter "TYPE ==
<busif_type>"

Appendix A: Obsolete Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=40


Libgen TCL commands HSI TCL commands

xget_hw_connected_ports_handle
<merged_mhs_handle>
<connector_name> <port_type>

hsi::get_ports -conn_name
<connector_name> – of_objects
<hw_db_handle> –filter "TYPE ==
<port_type>"

xget_hw_parameter_handle <handle>
<parameter_name>

There is no equivalent command in HSI.

xget_hw_parameter_value <handle>
<parameter_name>

common::get_property
CONFIG.<parameter_name>
<cell_handle>

xget_hw_bus_slave_addrpairs
<merged_bus_handle>

There is no equivalent command in HSI, because there is no
way to get address range values from BUSIF handle.

xget_hw_subproperty_value
<property_handle> <subprop_name>

common::get_property
<subprop_name> <property_handle>

xget_hwhandle <ip_name> hsi::get_cells <ip_name>

Appendix A: Obsolete Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=41


Appendix B

Deprecated Commands
The table below shows the old Tcl commands that are deprecated, and the new Tcl commands to
replace them.

Category Old Tcl Proc New Tcl Proc Description
Hardware xget_connected_intf ::hsi::utils::get_connected_intf

<periph_name> <intf_name>
Returns the connected
interface.

Hardware xget_hw_port_value ::hsi::utils::get_net_name
<periph_name> <pin_name>

Returns the connected
net name to an IP pin.

Hardware xget_hw_busif_value ::hsi::utils::get_intfnet_name
<periph_name> <intf_name>

Returns the connected
interface name.

Hardware xget_hw_proc_slave_periph
s

::hsi::utils::get_proc_slave_periph
s <processor_cell_object>

Returns all the
peripheral objects
which are connected
to the processor.

Hardware xget_ip_clk_pin_freq ::hsi::utils::get_clk_pin_freq
<periph_object> <pin_name>

Returns the clock
frequency value of the
IP clock pin.

Hardware is_external_pin ::hsi::utils::is_external_pin
<pin_object>

Returns true if pin is
connected to external
port. Otherwise it will
return false.

Hardware xget_port_width ::hsi::utils::get_port_width
<port_object>

Returns the width of
port.

Hardware xget_interrupt_sources ::hsi::utils::get_interrupt_sources
<periph_object>

Returns the handles
for all ports driving
the interrupt pin of a
peripheral.

Hardware xget_source_pins ::hsi::utils::get_source_pins
<pin_object>

Returns the source
pins of a peripheral
pin object.

Hardware xget_sink_pins ::hsi::utils::get_sink_pins
<pin_object>

Returns the sink pins
of a peripheral pin
object.

Hardware xget_connected_pin_count ::hsi::utils::get_connected_pin_cou
nt <pin_object>

Returns the count of
pins that are
connected to
peripheral pin.

Hardware xget_param_value ::hsi::utils::get_param_value
<periph_object> <param_name>

Returns the parameter
value of a peripheral.

Hardware xget_p2p_name ::hsi::utils::get_p2p_name
<periph_object> <arg>

Returns the name of
the point2point (p2p)
peripheral if arg is
present.

Appendix B: Deprecated Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=42


Category Old Tcl Proc New Tcl Proc Description
Hardware xget_procs ::hsi::utils::get_procs Returns all the

processor instance
object in the design.

Hardware xget_port_interrupt_id ::hsi::utils::get_port_intr_id
<periph_obj> <interrupt_port_name>

Returns the interrupt
ID of a peripheral
interrupt port.

Hardware is_interrupt_controller ::hsi::utils::is_intr_cntrl
<periph_name>

Returns true if
peripheral is interrupt
controller.

Hardware get_connected_interrupt_c
ontroller

::hsi::utils::get_connected_intr_cn
trl <periph_name> <pin_name>

Returns the connected
interrupt controller.

Hardware get_ip_sub_type ::hsi::utils::get_ip_sub_type
<periph_object>

Returns the IP
subtype.
(EDK_SPECIAL)

Common xget_swverandbld ::hsi::utils::get_sw_build_version Returns the software
version.

Common xget_copyrightstr ::hsi::utils::get_copyright_msg Returns the copyright
message along with
software version.

Common xprint_generated_header ::hsi::utils::write_c_header
<file_handle> <description>

Writes the standard
Xilinx Header for .h/.c
files.

Common xprint_generated_header_t
cl

::hsi::utils::write_tcl_header
<file_handle> <description>

Writes the standard
Xilinx Header for Tcl
files.

Common xformat_addr_string ::hsi::utils::format_addr_string
<value> <param_name>

get the special format
for the address
parameters that have
special string in
parameter value.

Common xformat_address_string ::hsi::utils::format_address_string
<value>

get the hex format
string of input value.

Common xconvert_binary_to_hex ::hsi::utils::convert_binary_to_hex
<value>

Converts a binary
number to a hex
value.

Common xconvert_binary_to_decima
l

::hsi::utils::convert_binary_to_dec
imal <value>

Converts a binary
number to decimal
value.

Common xconvert_num_to_binary ::hsi::utils::convert_num_to_binary
<value> <length>

Converts a number
(hex or decimal formt)
to binary.

Common compare_unsigned_addr_str
ings

::hsi::utils::compare_unsigned_addr
esses <base_addr> <base_param>
<high_addr> <high_param>

return 1 if
$base_addr >
$high_addr.

return 0 if
$base_addr ==
$high_addr.

return -1 if
$base_addr <
$high_addr.

Appendix B: Deprecated Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=43


Category Old Tcl Proc New Tcl Proc Description

Common compare_unsigned_int_valu
es

::hsi::utils::compare_unsigned_int_
values <int_base> <int_high>

return 1 if $int_base
> $int_high.

return 0 if $int_base
== $int_high.

return -1 if
$int_base <
$int_high.

Common xformat_tohex ::hsi::utils::format_to_hex <value>
<bitwidth> <direction>

Writes the given hex
number in the format
specified by bitwidth.
Padding or truncating
bits as necessary in
direction specified by
direction.

Common xformat_tobin ::hsi::utils::format_to_bin <value>
<bitwidth> <direction>

Writes the given
binary number in the
format specified by
bitwidth, padding or
truncating bits as
necessary in direction
specified by direction.

Common xget_nameofexecutable ::hsi::utils::get_nameofexecutable Returns the
executable name.

Common xget_hostos_platform ::hsi::utils::get_hostos_platform Returns the host os
platform. Possible
return values are lnx,
lnx64, win, win64

Common xget_hostos_exec_suffix ::hsi::utils::get_hostos_exec_suffi
x

Returns the
executable suffix .exe
for windows; empty
for linux.

Common xget_hostos_sharedlib_suf
fix

::hsi::utils::get_hostos_sharedlib_
suffix

Returns the shared
library suffix.

Common xfind_file_in_dirs ::hsi::utils::find_file_in_dirs
<dir_list> <related_filepath>

Finds a file within a list
of given directory.

Common xfind_file_in_xilinx_inst
all

::hsi::utils::find_file_in_xilinx_i
nstall <relative_filepath>

Finds a specific file
within the Xilinx tool
install.

Common xload_xilinx_library ::hsi::utils::load_xilinx_library
<libname>

Dynamically loads a
DLL into TCL
interpreter. This
procedure searches
for DLLs in $MYXILINX
and $XILINX.

Software xopen_include_file ::hsi::utils::open_include_file
<file_name>

Opens file in the
include directory.

Software xget_name ::hsi::utils::get_ip_param_name
<periph_name> <param>

Creates a parameter
name based on the
format of Xilinx device
drivers. Uses
peripheral name to
form the parameter
name.

Appendix B: Deprecated Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=44


Category Old Tcl Proc New Tcl Proc Description
Software xget_dname ::hsi::utils::get_driver_param_name

<driver_name> <param>
Creates a parameter
name based on the
format of Xilinx Device
Drivers. Uses driver
name to form the
parameter name.

Software xdefine_include_file ::hsi::utils::define_include_file
<driver_handler> <file_name>
<drv_string> <args>

Given a list of
arguments, define
them all in an
include file.

Software xdefine_zynq_include_file ::hsi::utils::define_zynq_include_f
ile <driver_handler> <file_name>
<drv_string> <args>

Given a list of
arguments, define
them all in an
include file.

Software xdefine_if_all ::hsi::utils::define_if_all
<driver_handler> <file_name>
<driver_string> <args>

Given a list of
arguments, define
parameter only if all
peripherals have this
parameter defined.

Software xdefine_max ::hsi::utils::define_max
<driver_handle>r <file_name>
<define_name> <arg>

Define parameter as
the maximum value
for all connected
peripherals.

Software xdefine_config_file ::hsi::utils::define_config_file
<driver_handle> <file_name>
<driver_string> <args>

Creates Configuration
C file as required by
Xilinx Drivers.

Software xdefine_zynq_config_file ::hsi::utils::define_zynq_config_fi
le <driver_handle> <file_name>
<driver_string> <args>

Creates Configuration
C file as required by
Xilinx Zynq®-7000 SoC
Drivers.

Software xdefine_with_names ::hsi::utils::define_with_names
<driver_handle> <periph>_handlr
<file_name> <args>

Add definitions in an
include file. Args
must be name value
pairs.

Software xdefine_include_file_memb
ank

::hsi::utils::define_include_file_m
embank <drv_handle> <file_name>
<args>

Given a list of memory
bank arguments,
define them all in an
include file. The args
is a base, high address
pairs of the memory
banks.

Software xdefine_membank ::hsi::utils::define_membank
<periph>_object <file_name> <args>

Generates the
definition for a
memory bank.

Software xfind_addr_params ::hsi::utils::find_addr_params
<periph>

Find all possible
address params for
the given peripheral
periph.

Software xdefine_addr_params ::hsi::utils::define_addr_params
<drv_handle> <file_name>

Defines all possible
address params in the
filename for all
periphs that use this
driver.

Software xdefine_all_params ::hsi::utils::define_all_params
<drv_handle> <file_name>

Defines all params in
the filename for all
periphs that use this
driver.

Appendix B: Deprecated Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=45


Category Old Tcl Proc New Tcl Proc Description
Software xdefine_canonical_xpars ::hsi::utils::define_canonical_xpar

s <drv_handle> <file_name>
<driver_string> <args>

Defines canonical for a
driver. Given a list of
arguments, define
each as a canonical
constant name, using
the driver name, in an
include file.

Software xdefine_zynq_canonical_xp
ars

::hsi::utils::define_zynq_canonical
_xpars <drv_handle> <file_name>
<driver_string> <args>

Defines canonical for a
driver. Given a list of
arguments, define
each as a canonical
constant name, using
the driver name, in an
include file.

Software xdefine_processor_params ::hsi::utils::define_processor_para
ms <drv_handle> <file_name>

Define processor
params using IP Type.

Software xget_ip_mem_ranges ::hsi::utils::get_ip_mem_ranges
<periph>

Get the memory
ranges of IP for
current processor.

Software handle_stdin ::hsi::utils::handle_stdin
<drv_handle>

Handle the stdin
parameter of a
processor.

Software handle_stdout ::hsi::utils::handle_stdout
<drv_handle>

Handle the stdout
parameter of a
processor.

Software xget_sw_iplist_for_driver ::hsi::utils::get_common_driver_ips
<drv_handle>

Returns list of IP cell
objects which have a
common driver.

Software is_interrupting_current_p
rocessor

::hsi::utils::is_pin_interrupting_c
urrent_proc <periph_name>
<intr_pin>

Returns true if it is
interrupting the
current proecessor.

Software get_current_processor_int
errupt_controller

::hsi::utils::get_current_proc_intr
_cntrl

Returns the interrupt
controller that
belongs to current
processor of the
sw_design.

Software is_ip_interrupting_curren
t_processor

::hsi::utils::is_ip_interrupting_cu
rrent_proc <periph_name>

Returns true if at
least one interrupt
port of IP is
interrupting the
current processor

Appendix B: Deprecated Commands

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=46


Appendix C

BSP, DTS, and Application
Generation in Vivado

This chapter demonstrates how to load a .hdf file, access the hardware and software information,
and generate BSPs, Applications, and the Device Tree from within Vivado.

1. Run the Vivado hardware handoff flow either in Pre-Synth or Post-Bitstream mode. See the
Hardware Handoff section for more information on hardware handoff .

2. Load the hsi feature in Vivado to access all hsi and its util commands as shown below. The
hsi:: namespace should be used to access hsi commands.

# Load hsi feature in vivado. After loading the hsi feature, all the hsi commands can be accessed
through hsi namespace:

Vivado% common::load_feature hsi

# Set the software repository path so that driver/bsp/library/applications are available to hsi.
Refer to Software Repository section for more information on default and git repositories. If
software repository path is not set then only hardware information can be accessed.

Vivado% hsi::set_repo_path <software repository path>

# Open the hardware design

Vivado% hsi::open_hw_design base_zynq_design_wrapper.hdf

# Get the processor instances in the design

Vivado% hsi::get_cells -filter {IP_TYPE==PROCESSOR} 
ps7_cortexa9_0 ps7_cortexa9_1

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=47


# Get the top level ports in the hardware design

Vivado% hsi::get_ports 
DDR_cas_n DDR_cke DDR_ck_n DDR_ck_p DDR_cs_n DDR_reset_n DDR_odt DDR_ras_n 
DDR_we_n  
DDR_ba DDR_addr DDR_dm DDR_dq DDR_dqs_n DDR_dqs_p FIXED_IO_mio 
FIXED_IO_ddr_vrn  
FIXED_IO_ddr_vrp FIXED_IO_ps_srstb FIXED_IO_ps_clk FIXED_IO_ps_porb 
leds_4bits_tri_o

# Get the list of BSPs available in software repository specified above

Vivado% hsi::get_sw_cores -filter {TYPE==OS} 
freertos820_xilinx_v1_0 standalone_v3_10_a standalone_v3_11_a 
standalone_v3_12_a  
standalone_v4_0 xilkernel_v5_01_a xilkernel_v5_02_a xilkernel_v6_0 
standalone_v4_1  
xilkernel_v6_1 xilkernel_v6_2 standalone_v5_0 standalone_v4_2 device-tree

# Create a software design

Vivado% hsi::create_sw_design swdesign -proc ps7_cortexa9_0 -os 
standalone  
swdesign

# Generate BSP. BSP source code will be dumped to the bsp_out
directory

Vivado% hsi::generate_bsp -dir bsp_out  
hsi::generate_bsp: Time (s): cpu = 00:00:00.29 ; elapsed = 00:00:27 . 
Memory (MB): peak = 975.637 ;  
gain = 0.000 ; free physical = 14087 ; free virtual = 135939 
Vivado% ls ./bsp_out/ Makefile ps7_cortexa9_0 swdesign.mss  
  
Vivado% ls ./bsp_out/ps7_cortexa9_0/ 
 code include lib libsrc 

# List of available apps in the repository

Vivado% hsi::generate_app -lapp  
peripheral_tests dhrystone empty_application hello_world lwip_echo_server  
memory_tests srec_bootloader …

#Generate a template application. Template application will be dumped to app_out directory

Vivado% hsi::generate_app -app peripheral_tests -proc ps7_cortexa9_0 -os 
standalone -dir app_out  
hsi::generate_app: Time (s): cpu = 00:00:00.53 ; elapsed = 00:01:16 . 
Memory (MB): peak = 975.637 ;  
gain = 0.000 ; free physical = 14846 ; free virtual = 136743>
Vivado% ls ./app_out/ 
canps_header.h scugic_header.h xemacps_example_intr_dma.c 
devcfg_header.h scutimer_header.h xemacps_example_util.c 

Appendix C: BSP, DTS, and Application Generation in Vivado

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=48


dmaps_header.h scuwdt_header.h xgpio_tapp_example.c 
emacps_header.h testperiph.c xiicps_selftest_example.c 
gpio_header.h ttcps_header.h xqspips_selftest_example.c 
iicps_header.h xcanps_intr_example.c xscugic_tapp_example.c 
lscript.ld xcanps_polled_example.c xscutimer_intr_example.c 
Makefile xdevcfg_selftest_example.c xscutimer_polled_example.c 
peripheral_tests_bsp xdmaps_example_w_intr.c xscuwdt_intr_example.c  
qspips_header.h xemacps_example.h xttcps_tapp_example.c

#Generate Processing System core initialization files. Generated ps_init* are dumped to
psinit_out directory

Vivado% hsi::generate_target {psinit} [hsi::get_cells -filter 
{CONFIGURABLE==1}] -dir ./psinit_out 
hsi::generate_target: Time (s): cpu = 00:00:08 ; elapsed = 00:00:10 . 
Memory (MB): peak = 997.637 ;  
gain = 22.000 ; free physical = 14785 ; free virtual = 136900 
Vivado% ls ./psinit_out/ 
ps7_init.c ps7_init_gpl.h ps7_init.html ps7_parameters.xml 
ps7_init_gpl.c ps7_init.h ps7_init.tcl 
# Generate Device Tree. Clone device tree repo from GIT  
# to ./device_tree_repository/device-tree-generator-master directory. 
# Set cloned GIT repo path 
Vivado% hsi::set_repo_path ./device_tree_repository/device-tree-generator-
master 
# create sw design for device tree 
Vivado% set proc_name [common::get_property NAME [hsi::get_cells 
*ps7_cortexa9_0*  
-filter {IP_TYPE == PROCESSOR}]] 
Vivado% hsi::create_sw_design sw_dsgn_device_tree -proc $proc_name -os 
device_tree 
sw_dsgn_device_tree 
# generate device tree. Device tree files are dumped to dtg_out directory 
Vivado% hsi::generate_target -dir ./device_tree_out 
hsi::generate_target: Time (s): cpu = 00:00:04 ; elapsed = 00:00:05 . 
Memory (MB): peak = 997.637 ;  
gain = 0.000 ; free physical = 14731 ; free virtual = 136955 
Vivado% ls ./device_tree_out/ 
pl.dtsi skeleton.dtsi sw_dsgn_device_tree.mss system.dts zynq-7000.dtsi

Appendix C: BSP, DTS, and Application Generation in Vivado

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=49


Appendix D

Microprocessor Software
Specification (MSS)

MSS Overview
The MSS file contains directives for customizing operating systems (OSs), libraries, and drivers.

MSS Format
An MSS file is case insensitive and any reference to a file name or instance name in the MSS file
is also case sensitive. Comments can be specified anywhere in the file. A pound (#) character
denotes the beginning of a comment, and all characters after it, right up to the end of the line,
are ignored. All white spaces are also ignored and carriage returns act as sentence delimiters.

MSS Keywords

The keywords that are used in an MSS file are as follows:

BEGIN

The keyword begins a driver, processor, or file system definition block. BEGIN should be followed
by the driver, processor, or filesys keywords.

END

This keyword signifies the end of a definition block.

PARAMETER

The MSS file has a simple name = value format for statements. The PARAMETER keyword is
required before NAME and VALUE pairs. The format for assigning a value to a parameter is
parameter name = value. If the parameter is within a BEGIN-END block, it is a local assignment;
otherwise it is a global (system level) assignment.

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=50


Requirements

The syntax of various files that the embedded development tools use is described by the
Platform Specification Format (PSF). The current PSF version is 2.1.0. The MSS file should also
contain version information in the form of parameter Version = 2.1.0, which represents the PSF
version 2.1.0.

MSS Example

An example MSS file follows:

   parameter VERSION = 2.1.0 
    
   BEGIN OS 
   parameter PROC_INSTANCE = my_microblaze 
   parameter OS_NAME = standalone 
   parameter OS_VER = 1.0 
   parameter STDIN = my_uartlite_1 
   parameter STDOUT = my_uartlite_1 
   END 
    
   BEGIN PROCESSOR 
   parameter HW_INSTANCE = my_microblaze 
   parameter DRIVER_NAME = cpu 
   parameter DRIVER_VER = 1.0 
   parameter XMDSTUB_PERIPHERAL = my_jtag 
   END 
    
   BEGIN DRIVER 
   parameter HW_INSTANCE = my_intc 
   parameter DRIVER_NAME = intc 
   parameter DRIVER_VER = 1.0 
   END 
    
   BEGIN DRIVER 
   parameter HW_INSTANCE = my_uartlite_1 
   parameter DRIVER_VER = 1.0 
   parameter DRIVER_NAME = uartlite 
   END 
    
   BEGIN DRIVER 
   parameter HW_INSTANCE = my_uartlite_2 
   parameter DRIVER_VER = 1.0 
   parameter DRIVER_NAME = uartlite 
   END 
    
   BEGIN DRIVER 
   parameter HW_INSTANCE = my_timebase_wdt 
   parameter DRIVER_VER = 1.0 
   parameter DRIVER_NAME = timebase_wdt 
   END 
    
   BEGIN LIBRARY 
   parameter LIBRARY_NAME = XilMfs 
   parameter LIBRARY_VER = 1.0 
   parameter NUMBYTES = 100000 
   parameter BASE_ADDRESS = 0x80f00000 
   END 
    

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=51


   BEGIN DRIVER 
   parameter HW_INSTANCE = my_jtag 
   parameter DRIVER_NAME = uartlite 
   parameter DRIVER_VER = 1.0 
   END

Global Parameters
These parameters are system-specific parameters and do not relate to a particular driver, file
system, or library.

PSF Version

This option specifies the PSF version of the MSS file. This option is mandatory, and is formatted
as:

   parameter VERSION = 2.1.0

Instance-Specific Parameters
OS, Driver, Library, and Processor Block Parameters
The following list shows the parameters that can be used in OS, driver, library, and processor
blocks.

• PROC_INSTANCE

• HW_INSTANCE

• OS_NAME

• OS_VER

• DRIVER_NAME

• DRIVER_VER

• LIBRARY_NAME

• LIBRARY_VER

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=52


PROC_INSTANCE

This option is required for the OS associated with a processor instances specified in the hardware
database, and is formatted as:

parameter PROC_INSTANCE = <instance_name>

All operating systems require processor instances to be associated with them. The instance name
that is given must match the name specified in the hardware database.

HW_INSTANCE

This option is required for drivers associated with peripheral instances specified in the hardware
database and is formatted as:

parameter HW_INSTANCE = <instance_name>

All drivers in software require instances to be associated with the drivers. Even a processor
definition block should refer to the processor instance. The instance name that is given must
match the name specified in the BD file.

OS_NAME

This option is needed for processor instances that have OSs associated with them and is
formatted as:

   parameter OS_NAME = standalone

OS_VER

The OS version is set using the OSVER option and is formatted as:

parameter OS_VER = 1.0

This version is specified as x.y, where x and y are digits. This is translated to the OS directory
searched as follows:

OS_NAME_vx_y

The MLD (Microprocessor Library Definition) files needed for each OS should be named
OS_NAME.mld and should be present in a subdirectory data/ within the driver directory. Refer to 
Mircoprocessor Library Definition (MLD) for more information.

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=53


DRIVER_NAME

This option is needed for peripherals that have drivers associated with them and is formatted as:

   parameter DRIVER_NAME = uartlite

Library Generator copies the driver directory specified to the OUTPUT_DIR/
processor_instance_name/libsrc directory and compiles the drivers using makefiles
provided.

DRIVER_VER

The driver version is set using the DRIVER_VER option, and is formatted as:

   parameter DRIVER_VER = 1.0

This version is specified as x.y, where x and y are digits. This is translated to the driver directory
searched as follows:

   DRIVER_NAME_vx_y

The MDD (Microprocessor Driver Definition) files needed for each driver should be named
DRIVER_NAME_v2_1_0.mdd and should be present in a subdirectory data/ within the driver
directory. Refer to Mircoprocessor Driver Definition (MDD) for more information.

LIBRARY_NAME

This option is needed for libraries, and is formatted as:

   parameter LIBRARY_NAME = xilmfs

The tool copies the library directory specified in the OUTPUT_DIR/
processor_instance_name/libsrc directory and compiles the libraries using makefiles
provided.

LIBRARY_VER

The library version is set using the LIBRARY_VER option and is formatted as:

parameter LIBRARY_VER = 1.0

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=54


This version is specified as x.y, where x and y are digits. This is translated to the library directory
searched by the tool as follows:

   LIBRARY_NAME_vx_y

The MLD (Microprocessor Library Definition) files needed for each library should be named
LIBRARY_NAME.mld and should be present in a subdirectory data/ within the library
directory. Refer to Microprocessor Library Defintion (MLD) for more information.

MLD/MDD Specific Parameters
Parameters specified in the MDD/MLD file can be overwritten in the MSS file and formatted as

parameter PARAM_NAME = PARAM_VALUE 

See Mircoprocessor Library Definition (MLD) and Mircoprocessor Driver Definition (MDD) for
more information.

OS—Specific Specific Parameters
The following list identifies all the parameters that can be specified only in an OS definition
block.

STDIN

Identify the standard input device with the STDIN option, which is formatted as:

parameter STDIN = instance_name

STDOUT

Identify the standard output device with the STDOUT option, which is formatted as:

   parameter STDOUT = instance_name

Example: MSS Snippet Showing OS Options

   BEGIN OS 
   parameter PROC_INSTANCE = my_microblaze 
   parameter OS_NAME = standalone 
   parameter OS_VER = 1.0 
   parameter STDIN = my_uartlite_1 
   parameter STDOUT = my_uartlite_1 
   END

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=55


Processor—Specific Specific Parameters
Following is a list of all of the parameters that can be specified only in a processor definition
block.

XMDSTUB_PERIPHERAL

The peripheral that is used to handle the XMDStub should be specified in the
XMDSTUB_PERIPHERAL option. This is useful for the MicroBlaze™ processor only, and is
formatted as follows:

parameter XMDSTUB_PERIPHERAL = instance_name

COMPILER

This option specifies the compiler used for compiling drivers and libraries. The compiler defaults
to or powerpc-eabi-gcc depending on whether the drivers are part of the MicroBlaze™
processor or PowerPC® processor instance. Any other compatible compiler can be specified as
an option, and should be formatted as follows:

This example denotes the Diab compiler as the compiler to be used for drivers and libraries.

ARCHIVER

This option specifies the utility to be used for archiving object files into libraries. The archiver
defaults to mb-ar or powerpc-eabi-ar depending on whether or not the drivers are part of the
MicroBlaze or PowerPC processor instance. Any other compatible archiver can be specified as an
option, and should be formatted as follows:

   parameter ARCHIVER = ar
parameter COMPILER = dcc

This example denotes the archiver ar to be used for drivers and libraries.

COMPILER_FLAGS

This option specifies compiler flags to be used for compiling drivers and libraries. If the option is
not specified, the tool automatically uses platform and processor-specific options. This option
should not be specified in the MSS file if the standard compilers and archivers are used.

The COMPILER_FLAGS option can be defined in the MSS if there is a need for custom compiler
flags that override generated flags.

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=56


The EXTRA_COMPILER_FLAGS option is recommended if compiler flags must be appended to
the ones already generated.

Format this option as follows:

   parameter COMPILER_FLAGS = ““

EXTRA_COMPILER_FLAGS

This option can be used whenever custom compiler flags need to be used in addition to the
automatically generated compiler flags, and should be formatted as follows:

   parameter EXTRA_COMPILER_FLAGS = -g

This example specifies that the drivers and libraries must be compiled with debugging symbols in
addition to the generated COMPILER_FLAGS.

Example MSS Snippet Showing Processor Options

   BEGIN PROCESSOR 
   parameter HW_INSTANCE = my_microblaze 
   parameter DRIVER_NAME = cpu 
   parameter DRIVER_VER = 1.00.a 
   parameter DEFAULT_INIT = xmdstub 
   parameter XMDSTUB_PERIPHERAL = my_jtag 
   parameter STDIN = my_uartlite_1 
   parameter STDOUT = my_uartlite_1 
   parameter COMPILER = mb-gcc 
   parameter ARCHIVER = mb-ar 
   parameter EXTRA_COMPILER_FLAGS = -g -O0 
   parameter OS = standalone 
   END

Appendix D: Microprocessor Software Specification (MSS)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=57


Appendix E

Microprocessor Library Definition
(MLD)

Microprocessor Library Definition (MLD)
Overview
This section describes the Microprocessor Library Definition (MLD) format, Platform
Specification Format 2.1.0.

An MLD file contains directives for customizing software libraries and generating Board Support
Packages (BSP) for Operating Systems (OS). This document describes the MLD format and the
parameters that can be used to customize libraries and OSs.

Requirements

Each OS and library has an MLD file and a Tcl (Tool Command Language) file associated with it.
The MLD file is used by the Tcl file to customize the OS or library, depending on different options
in the MSS file. For more information on the MSS file format, see Microprocessor Software
Specification (MSS).

The OS and library source files and the MLD file for each OS and library must be located at
specific directories to find the files and libraries.

MLD Library Definition Files
Library Definition involves defining Data Definition (MLD) and a Data Generation (Tcl) files.

Data Definition File

The MLD file (named as <library_name>.mld or <os_name>.mld ) contains the
configurable parameters. A detailed description of the various parameters and the MLD format is
described in MLD Parameter Descriptions.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=58


Data Generation File

The second file (named as <library_name>.tcl or <os_name>.tcl, with the filename
being the same as the MLD filename) uses the parameters configured in the MSS file for the OS
or library to generate data.

Data generated includes, but is not limited to, header files, C files, DRCs for the OS or library, and
executables. The Tcl file includes procedures that are called by the tool at various stages of its
execution. Various procedures in a Tcl file include the following:

• DRC (the name of the DRC given in the MLD file)

• generate (tool defined procedure) called after OS and library files are copied

• post_generate (tool defined procedure) called after generate has been called on all OSs,
drivers, and libraries

• execs_generate (a tool-defined procedure) called after the BSPs, libraries, and drivers have
been generated .

Note: An OS/library does not require a data generation file (Tcl file).

MLD Format Specification
The MLD format specification involves the MLD file format specification and the Tcl file format
specification. The following subsections describe the MLD.

MLD File Format Specification
The MLD file format specification involves the description of configurable parameters in an OS/
library. The format used to describe this section is discussed in MLD Parameter Descriptions.

Tcl File Format Specification
Each OS and library has a Tcl file associated with the MLD file. This Tcl file has the following:

DRC Section: This section contains Tcl routines that validate your OS and library parameters for
consistency.

Generation Section: This section contains Tcl routines that generate the configuration header
and C files based on the library parameters.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=59


MLD Design Rule Check Section

proc mydrc { handle } { }

The DRC function could be any Tcl code that checks your parameters for correctness. The DRC
procedures can access (read-only) the Platform Specification Format database (which the tool
builds using the hardware (HDF) and software (MSS) database files) to read the parameter values
that you set. The handle is associated with the current library in the database. The DRC
procedure can get the OS and library parameters from this handle. It can also get any other
parameter from the database by first requesting a handle and using the handle to get the
parameters.

For errors, DRC procedures call the Tcl error command error "error msg" that displays in an
error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures return without any value.

MLD Format Examples

This section explains the MLD format through an example MLD file and its corresponding Tcl file.

Example: MLD File for a Library

Following is an example of an MLD file for the xilmfs library.

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the tool. The option name following the OPTION keyword is a
directive to the tool to do a specific action.

The psf_version of the MLD file is defined to be 2.1 in this example. This is the only option
that can occur before a BEGIN LIBRARY construct now.

BEGIN LIBRARY xilmfs

The BEGIN LIBRARY construct defines the start of a library named xilmfs.

 OPTION DESC = "Xilinx Memory File System" ; 
 OPTION drc = mfs_drc ;  
 option copyfiles = all; 
 OPTION REQUIRES_OS = (standalone xilkernel freertos_zynq); 
 OPTION VERSION = 2.0; 
 OPTION NAME = xilmfs;

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=60


The NAME option indicates the name of the driver. The VERSION option indicates the version of
the driver.

The COPYFILES option indicates the files to be copied for the library. The DRC option specifies
the name of the Tcl procedure that the tool invokes while processing this library. The mfs_drc is
the Tcl procedure in the xilmfs.tcl file that would be invoked while processing the xilmfs
library.

 PARAM name = numbytes, desc = "Number of Bytes", type = int, default = 
100000, drc = drc_numbytes ;  
 PARAM name = base_address, desc = "Base Address", type = int, default = 
0x10000, drc = drc_base_address ;  
 PARAM name = init_type, desc = "Init Type", type = enum, values = ("New 
file system"=MFSINIT_NEW,  
 "MFS Image"=MFSINIT_IMAGE, "ROM Image"=MFSINIT_ROM_IMAGE), default = 
MFSINIT_NEW ;  
 PARAM name = need_utils, desc = "Need additional Utilities?", type = 
bool, default =  false ; 

PARAM defines a library parameter that can be configured. Each PARAM has the following
properties associated with it, whose meaning is self-explanatory: NAME, DESC, TYPE, DEFAULT,
RANGE, DRC. The property VALUES defines the list of possible values associated with an ENUM
type.

 BEGIN INTERFACE file  
  PROPERTY HEADER="xilmfs.h" ;  
  FUNCTION NAME=open, VALUE=mfs_file_open ;  
  FUNCTION NAME=close, VALUE=mfs_file_close ;  
  FUNCTION NAME=read, VALUE=mfs_file_read ;  
  FUNCTION NAME=write, VALUE=mfs_file_write ;  
  FUNCTION NAME=lseek, VALUE=mfs_file_lseek ;  
 END INTERFACE

An Interface contains a list of standard functions. A library defining an interface should have
values for the list of standard functions. It must also specify a header file where all the function
prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN construct.
Here HEADER is a property with value xilmfs.h, defined by the file interface. FUNCTION
defines a function supported by the interface.

The open, close, read, write, and lseek functions of the file interface have the values
mfs_file_open, mfs_file_close, mfs_file_read, mfs_file_write, and
mfs_file_lseek. These functions are defined in the header file xilmfs.h.

BEGIN INTERFACE filesystem

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=61


BEGIN INTERFACE defines an interface the library supports. Here, file is the name of the
interface.

  PROPERTY HEADER="xilmfs.h" ;  
  FUNCTION NAME=cd, VALUE=mfs_change_dir ;  
  FUNCTION NAME=opendir, VALUE=mfs_dir_open ;  
  FUNCTION NAME=closedir, VALUE=mfs_dir_close ;  
  FUNCTION NAME=readdir, VALUE=mfs_dir_read ;  
  FUNCTION NAME=deletedir, VALUE=mfs_delete_dir ;  
  FUNCTION NAME=pwd, VALUE=mfs_get_current_dir_name ;  
  FUNCTION NAME=rename, VALUE=mfs_rename_file ;  
  FUNCTION NAME=exists, VALUE=mfs_exists_file ;  
  FUNCTION NAME=delete, VALUE=mfs_delete_file ;  
 END INTERFACE 

END LIBRARY 

END is used with the construct name that was used in the BEGIN statement. Here, END is used
with INTERFACE and LIBRARY constructs to indicate the end of each of INTERFACE and
LIBRARY constructs.

Example: Tcl File of a Library

The following is the xilmfs.tcl file corresponding the xilmfs.mld file described in the
previous section. The mfs_drc procedure would be invoked for the xilmfs library while
running DRCs for libraries. The generate routine generates constants in a header file and a c file
for the xilmfs library based on the library definition segment in the MSS file.

proc mfs_drc {lib_handle} { 
    puts "MFS DRC ..." 
} 

proc mfs_open_include_file {file_name} { 
    set filename [file join "../../include/" $file_name] 
    if {[file exists $filename]} { 
   set config_inc [open $filename a] 
    } else { 
   set config_inc [open $filename a] 
   ::hsi::utils::write_c_header $config_inc "MFS Parameters" 
    } 
    return $config_inc 
} 

proc generate {lib_handle} { 

    puts "MFS generate ..." 
    file copy "src/xilmfs.h"  "../../include/xilmfs.h"  

    set conffile  [mfs_open_include_file "mfs_config.h"] 

    puts $conffile "#ifndef _MFS_CONFIG_H"  
    puts $conffile "#define _MFS_CONFIG_H"  
    set need_utils [common::get_property CONFIG.need_utils $lib_handle] 
    if {$need_utils} {  
        # tell libgen or xps that the hardware platform needs to provide 
stdio functions  
        # inbyte and outbyte to support utils  

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=62


   puts $conffile "#include <stdio.h>"  
    }  
    puts $conffile "#include <xilmfs.h>" 
    set value  [common::get_property CONFIG.numbytes $lib_handle] 
    puts  $conffile "#define MFS_NUMBYTES  $value" 
    set value  [common::get_property CONFIG.base_address $lib_handle] 
    puts  $conffile "#define MFS_BASE_ADDRESS $value" 
    set value  [common::get_property CONFIG.init_type $lib_handle] 
    puts  $conffile "#define MFS_INIT_TYPE  $value" 
    puts $conffile "#endif"  
    close $conffile  
}

Example: MLD File for an OS

An example of an MLD file for the standalone OS is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the tool. The option name following the OPTION keyword is a
directive to the tool to do a specific action. Here the psf_version of the MLD file is defined to be
2.1. This is the only option that can occur before a BEGIN OS construct at this time.

BEGIN OS standalone

The BEGIN OS construct defines the start of an OS named standalone.

OPTION DESC = "Generate standalone BSP";  
OPTION COPYFILES = all;

The DESC option gives a description of the MLD. The COPYFILES option indicates the files to be
copied for the OS.

PARAM NAME = stdin, DESC = "stdin peripheral ", TYPE = 
peripheral_instance, REQUIRES_INTERFACE = stdin, DEFAULT = none; PARAM 
NAME = stdout, DESC = "stdout peripheral ", TYPE = peripheral_instance, 
REQUIRES_INTERFACE = stdout, DEFAULT = none ; PARAM NAME = need_xilmalloc, 
DESC = "Need xil_malloc?", TYPE = bool, DEFAULT = false ;

PARAM defines an OS parameter that can be configured. Each PARAM has the following,
associated properties: NAME, DESC, TYPE, DEFAULT, RANGE, DRC. The property VALUES defines
the list of possible values associated with an ENUM type.

END OS

END is used with the construct name that was used in the BEGIN statement. Here END is used
with OS to indicate the end of OS construct.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=63


Example: Tcl File of an OS

The following is the standalone.tcl file corresponding to the standalone.mld file
described in the previous section.The generate routine generates constants in a header file and a
c file for the xilmfs library based on the library definition segment in the MSS file.

proc generate {os_handle} { 
   global env 
     
   set need_config_file "false" 
       
   # Copy over the right set of files as src based on processor type 
   set sw_proc_handle [get_sw_processor] 
   set hw_proc_handle [get_cells [get_property HW_INSTANCE 
$sw_proc_handle] ] 
   set proctype [get_property IP_NAME $hw_proc_handle] 
   set procname [get_property NAME    $hw_proc_handle] 
           
   set enable_sw_profile [get_property 
CONFIG.enable_sw_intrusive_profiling $os_handle] 
      set mb_exceptions false 
     
      switch $proctype { 
          "microblaze" { 
              foreach entry [glob -nocomplain [file join $mbsrcdir *]] { 
                 # Copy over only files that are not related to exception 
handling.  
                 # All such files have exception in their names. 
                 file copy -force $entry "./src/" 
              } 
                  set need_config_file "true" 
                  set mb_exceptions [mb_has_exceptions $hw_proc_handle] 
              } 
              "ps7_cortexa9"  { 
                  set procdrv [get_sw_processor] 
                  set compiler [get_property CONFIG.compiler $procdrv] 
                  if {[string compare -nocase $compiler "armcc"] == 0} { 
                      set ccdir "./src/cortexa9/armcc" 
                  } else { 
                      set ccdir "./src/cortexa9/gcc" 
                  } 
                  foreach entry [glob -nocomplain [file join 
$cortexa9srcdir *]] { 
                      file copy -force $entry "./src/" 
                  } 
                  foreach entry [glob -nocomplain [file join $ccdir *]] { 
                      file copy -force $entry "./src/" 
                  } 
                      file delete -force "./src/armcc" 
                      file delete -force "./src/gcc" 
                  if {[string compare -nocase $compiler "armcc"] == 0} { 
                          file delete -force "./src/profile" 
                          set enable_sw_profile "false" 
                  } 
                  set file_handle [xopen_include_file "xparameters.h"] 
                  puts $file_handle "#include \"xparameters_ps.h\"" 

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=64


                  puts $file_handle "" 
                  close $file_handle 
              } 
              "default" {puts "unknown processor type $proctype\n"} 
          }

MLD Parameter Descriptions
MLD Parameter Description Section
This section gives a detailed description of the constructs used in the MLD file.

Conventions

[] Denotes optional values.

<> Value substituted by the MLD writer.

Comments

Comments can be specified anywhere in the file. A “#” character denotes the beginning of a
comment and all characters after the “#” right up to the end of the line are ignored. All white
spaces are also ignored and semi-colons with carriage returns act as sentence delimiters.

OS or Library Definition

The OS or library section includes the OS or library name, options, dependencies, and other
global parameters, using the following syntax:

 OPTION psf_version = <psf version number> BEGIN LIBRARY/OS <library/os 
name> [OPTION drc = <global drc name>] [OPTION depends = <list of 
directories>] [OPTION help = <help file>] [OPTION requires_interface = 
<list of interface names>] PARAM <parameter description> [BEGIN CATEGORY 
<name of category> <category description> END CATEGORY] BEGIN INTERFACE 
<interface name> ....... END INTERFACE] END LIBRARY/OS

MLD Keywords
The keywords that are used in an MLD file are as follows:

BEGIN

The BEGIN keyword begins one of the following: os, library, driver, block, category,
interface, array.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=65


END

The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by the GUI
configuration tool or the command-line tool. This DRC function is called once you enter all the
parameters and MLD or MDD writers can verify that a valid OS, library, or driver can be
generated with the given parameters.

OPTION

Specifies that the name following the keyword option is an option to the GUI tools.

OS

Specifies the type of OS. If it is not specified, then OS is assumed as standalone type of OS.

COPYFILES

Specifies the files to be copied for the OS, library, or driver. If ALL is used, then the tool copies all
the OS, library, or driver files.

DEPENDS

Specifies the list of directories that needs to be compiled before the OS or library is built.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the OS. The values of this option can be specified as
a list, or as a regular expression. For example:

   option supported_peripherals = (microblaze)

Indicates that the OS supports all versions of microblaze. Regular expressions can be used in
specifying the peripherals and versions. The regular expression (RE) is constructed as follows:

• Single-Character REs:

○ Any character that is not a special character (to be defined) matches itself.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=66


○ A backslash (followed by any special character) matches the literal character itself. That is,
this “escapes” the special character.

○ The special characters are: + * ? . [ ] ^ $

○ The period (.) matches any character except the new line. For example, .umpty matches
both Humpty and Dumpty.

○ A set of characters enclosed in brackets ([]) is a one-character RE that matches any of the
characters in that set. For example, [akm] matches either an "a", "k", or "m".

○ A range of characters can be indicated with a dash. For example, [a-z] matches any lower-
case letter. However, if the first character of the set is the caret (^), then the RE matches
any character except those in the set. It does not match the empty string. Example: [^akm]
matches any character except "a", "k", or "m". The caret loses its special meaning if it is not
the first character of the set.

• Multi-Character REs:

○ A single-character RE followed by an asterisk (*) matches zero or more occurrences of the
RE. Thus, [a-z]* matches zero or more lower-case characters.

○ A single-character RE followed by a plus (+) matches one or more occurrences of the RE.
Thus, [a-z]+ matches one or more lower-case characters.

○ A question mark (?) is an optional element. The preceeding RE can occur zero or once in
the string, no more. Thus, xy?z matches either xyz or xz.

○ The concatenation of REs is a RE that matches the corresponding concatenation of strings.
For example, [A-Z][a-z]* matches any capitalized word.

○ For example, the following matches a version of the axidma:

   OPTION supported_peripherals = (axi_dma_v[3-9]_[0-9][0-9]_[a-z] 
   axi_dma_v[3-9]_[0-9]);

LIBRARY_STATE

Specifies the state of the library. Following is the list of values that can be assigned to
LIBRARY_STATE:

• ACTIVE: An active library. By default the value of LIBRARY_STATE is ACTIVE.

• DEPRECATED: This library is deprecated

• OBSOLETE: This library is obsolete and will not be recognized by any tools. Tools error out on
an obsolete library and a new library should be used instead.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=67


APP_COMPILER_FLAGS

This option specifies what compiler flags must be added to the application when using this
library. For example:

   OPTION APP_COMPILER_FLAGS = “-D MYLIBRARY”

The GUI tools can use this option value to automatically set compiler flags automatically for an
application.

APP_LINKER_FLAGS

This option specifies that linker flags must be added to the application when using a particular
library or OS. For example:

   OPTION APP_LINKER_FLAGS = “-lxilkernel”

The GUI tools can use this value to set linker flags automatically for an application.

BSP

Specifies a boolean keyword option that can be provided in the MLD file to identify when an OS
component is to be treated as a third party BSP. For example:

   OPTION BSP = true;

This indicates that the SDK tools will offer this OS component as a board support package. If set
to false, the component is handled as a native embedded software platform.

OS_STATE

Specifies the state of the operating system (OS). Following is the list of values that can be
assigned to OS_STATE:

• ACTIVE: This is an active OS. By default the value of OS_STATE is ACTIVE.

• DEPRECATED: This OS is deprecated.

• OBSOLETE: This OS is obsolete and will not be recognized by the tools. Tools error out on an
obsolete OS and a new OS must be specified.

OS_TYPE

Specifies the type of OS. This value is matched with SUPPORTED_OS_TYPES of the driver MDD
file for assigning the driver. Default is standalone.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=68


REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other OSs, libraries, or drivers in the system.

REQUIRES_OS

Specifies the list of OSs with which the specified library will work. For example:

   OPTION REQUIRES_OS = (standalone xilkernel_v4_[0-9][0-9])

The GUI tools use this option value to determine which libraries are offered for a given operating
system choice. The values in the list can be regular expressions as shown in the example.
Note: This option must be used on libraries only.

HELP

Specifies the HELP file that describes the OS, library, or driver.

DEP

Specifies the condition that must be satisfied before processing an entity. For example to include
a parameter that is dependent on another parameter (defined as a DEP, for dependent,
condition), the DEP condition should be satisfied. Conditions of the form (operand1 OP
operand2) are the only supported conditions.

INTERFACE

Specifies the interfaces implemented by this OS, library, or driver. It describes the interface
functions and header files used by the library/driver.

   BEGIN INTERFACE <interface name>
        OPTION DEP=;<list of dependencies>; 
        PROPERTY HEADER=<name of header file where the function is 
declared>; 
       FUNCTION NAME=<name of the interface function>, VALUE=<function 
name of       library/driver implementation> ; 
   END INTERFACE

HEADER

Specifies the HEADER file in which the interface functions would be defined.

FUNCTION

Specifies the FUNCTION implemented by the interface. This is a name-value pair in which name
is the interface function name and value is the name of the function implemented by the OS,
library, or driver.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=69


CATEGORY

Defines an unconditional block. This block gets included based on the default value of the
category or if included in the MSS file.

   BEGIN CATEGORY <category name>
        PARAM name = <category name>, DESC=<param description>, 
TYPE=<category type>, 
       DEFAULT=<default>, GUI_PERMIT=<value>, DEP = <condition>
        OPTION DEPENDS=<list of dependencies>, DRC=<drc name>, HELP=<help 
file>; 
        <parameters or categories description>
   END CATEGORY

Nested categories are not supported through the syntax that specifies them. A category is
selected in a MSS file by specifying the category name as a parameter with a boolean value
TRUE. A category must have a PARAM with category name.

PARAM

The MLD file has a simple <name = value> format for most statements. The PARAM keyword is
required before every such NAME, VALUE pair. The format for assigning a value to a parameter is
param name = <name>, default = value. The PARAM keyword specifies that the
parameter can be overwritten in the MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement.

NAME

Specifies the name of the entity in which it was defined. (Examples: param and property.) It
also specifies the name of the library if it is specified with option.

VERSION

Specifies the version of the library.

DESC

Describes the entity in which it was defined. (Examples: param and property.)

TYPE

Specifies the type for the entity in which it was defined. (Example: param. ) The following types
are supported:

• bool: Boolean (true or false)

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=70


• int: Integer

• string: String value within “ " (quotes)

• enum: List of possible values that a parameter can take

• library: Specify other library that is needed for building the library/driver

• peripheral_instance: Specify other hardware drivers that is needed for building the library

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:

• NONE: The value cannot be modified at all.

• ADVANCED_USER: The value can be modified by all. The SDK GUI does not display this value
by default. This is displayed only for the advanced option in the GUI.

• ALL_USERS: The value can be modified by all. The SDK GUI displays this value by default.
This is the default value for all the values. If GUI_PERMIT = NONE, the category is always
active.

ARRAY

ARRAY can have any number of PARAMs, and only PARAMs. It cannot have CATEGORY as one of
the fields of an array element. The size of the array can be defined as one of the properties of the
array. An array with default values specified in the default property leads to its size property
being initialized to the number of values. If there is no size property defined, a size property is
created before initializing it with the default number of elements. Each parameter in the array
can have a default value. In cases in which size is defined with an integer value, an array of size
elements would be created wherein the value of each element would be the default value of
each of the parameters.

   BEGIN ARRAY <array name>
        PROPERTY desc = <array description> ; 
       PROPERTY size = <size of the array>; 
        PROPERTY default = <List of Values for each element based on the 
size of the       array>
       # array field description as parameters 
        PARAM name = <name of parameter>, desc = "description of param”, 
type = <type       of param>, default = <default value>
        ..... 
   END ARRAY 

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=71


MLD Design Rule Check Section
proc mydrc { handle } { }

The DRC function could be any Tcl code that checks your parameters for correctness. The DRC
procedures can access (read-only) the Platform Specification Format database (which the tool
builds using the hardware (HDF) and software (MSS) database files) to read the parameter values
that you set. The handle is associated with the current library in the database. The DRC
procedure can get the OS and library parameters from this handle. It can also get any other
parameter from the database by first requesting a handle and using the handle to get the
parameters.

For errors, DRC procedures call the Tcl error command error "error msg" that displays in an
error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures return without any value.

MLD Tool Generation (Generate) Section
proc mygenerate { handle } {
   } 

Generate could be any Tcl code that reads your parameters and generates configuration files
for the OS or library. The configuration files can be C files, Header files, Makefiles, etc. The
generate procedures can access (read-only) the Platform Specification Format database (which
the tool builds using the MSS files) to read the parameter values of the OS or library that you set.
The handle is a handle to the current OS or library in the database. The generate procedure can
get the OS or library parameters from this handle. It can also get any other parameter from the
database by first requesting a handle and using the handle to get the parameter.

Appendix E: Microprocessor Library Definition (MLD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=72


Appendix F

Microprocessor Driver Definition
(MDD)

Microprocessor Driver Definition (MDD)
Overview
This chapter describes the Microprocessor Driver Definition (MDD) format, Platform
Specification Format 2.1.0.

An MDD file contains directives for customizing software drivers. This document describes the
MDD format and the parameters that can be used to customize drivers.

Requirements

Each device driver has an MDD file and a Tool Command Language (Tcl) file associated with it.
The MDD file is used by the Tcl file to customize the driver, depending on different options
configured in the MSS file. For more information on the MSS file format, see Microprocessor
Software Specification (MSS).

The driver source files and the MDD file for each driver must be located at specific directories in
order to find the files and the drivers.

MDD Driver Definition Files
Driver Definition involves defining a Data Definition file (MDD) and a Data Generation file (Tcl
file).

• Data Definition File: The MDD file (<driver_name>.mdd) contains the configurable
parameters. A detailed description of the parameters and the MDD format is described in 
MDD Parameter Description.

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=73


• Data Generation File: The second file (<driver_name>.tcl), with the filename being the
same as the MDD filename) uses the parameters configured in the MSS file for the driver to
generate data. Data generated includes but is not limited to generation of header files, C files,
running DRCs for the driver, and generating executables. The Tcl file includes procedures that
are called by the tool at various stages of its execution.

Various procedures in a Tcl file includes: the DRC (name of the DRC given in the MDD file),
generate (tool defined procedure) called after driver files are copied, post_generate (tool defined
procedure) called after generate has been called on all drivers and libraries, and execs_generate
called after the libraries and drivers have been generated.
Note: A driver does not require the data generation file (Tcl file).

MDD Format Specification
The MDD format specification involves the MDD file Format specification and the Tcl file Format
specification which are described in the following subsections.

MDD File Format Specification
The MDD file format specification describes the parameters defined in the Parameter
Description section. This data section describes configurable parameters in a driver. The format
used to describe these parameters is discussed in MDD Parameter Description.

Tcl File Format Specification
Each driver has a Tcl file associated with the MDD file. This Tcl file has the following sections:

• DRC Section: This section contains Tcl routines that validate your driver parameters for
consistency.

• Generation Section: This section contains Tcl routines that generate the configuration header
and C files based on the driver parameters.

MDD Format Examples
This section explains the MDD format through an example of an MDD file and its corresponding
Tcl file.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=74


Example: MDD File

The following is an example of an MDD file for the uartlite driver.

OPTION psf_version = 2.1;

OPTION is a keyword identified by the tool. The option name following the OPTION keyword is a
directive to the tool to do a specific action. Here the psf_version of the MDD file is defined
as 2.1. This is the only option that can occur before a BEGIN DRIVER construct.

BEGIN DRIVER uartlite 

The BEGIN DRIVER construct defines the start of a driver named uartlite.

  OPTION supported_peripherals = (mdm axi_uartlite); 
  OPTION driver_state = ACTIVE; 
  OPTION copyfiles = all;    
  OPTION VERSION = 3.0; 
  OPTION NAME = uartlite;

The NAME option indicates the name of the driver. The VERSION option indicates the version of
the driver. The COPYFILES option indicates the files to be copied for a “level” 0 uartlite driver.

    BEGIN INTERFACE stdin

BEGIN INTERFACE defines an interface the driver supports. The interface name is stdin.

      PROPERTY header = xuartlite_l.h; 
      FUNCTION name = inbyte, value = XUartLite_RecvByte; 
    END INTERFACE

An Interface contains a list of standard functions. A driver defining an interface should have
values for the list of standard functions. It must also specify a header file in which all the function
prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN construct.
The header is a property with the value xuartlite_l.h, defined by the stdin interface.
FUNCTION defines a function supported by the interface. The inbyte function of the stdin
interface has the value XUartLite_RecvByte. This function is defined in the header file
xuartlite_l.h.

    BEGIN INTERFACE stdout 
      PROPERTY header = xuartlite_l.h; 
      FUNCTION name = outbyte, value = XUartLite_SendByte; 
    END INTERFACE 

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=75


    BEGIN INTERFACE stdio 
      PROPERTY header = xuartlite_l.h; 
      FUNCTION name = inbyte, value = XUartLite_RecvByte; 
      FUNCTION name = outbyte, value = XUartLite_SendByte; 
    END INTERFACE

END is used with the construct name that was used in the BEGIN statement. Here END is used
with BLOCK and DRIVER constructs to indicate the end of each BLOCK and DRIVER construct.

Example: Tcl File

The following is the uartlite.tcl file corresponding to the uartlite.mdd file described in
the previous section. The “uartlite_drc” procedure would be invoked for the uartlite driver while
running DRCs for drivers. The generate routine generates constants in a header file and a c file
for uartlite driver, based on the driver definition segment in the MSS file.

proc generate {drv_handle} { 
    ::hsi::utils::define_include_file $drv_handle "xparameters.h" 
"XUartLite" "NUM_INSTANCES" "C_BASEADDR"  
"C_HIGHADDR" "DEVICE_ID" "C_BAUDRATE" "C_USE_PARITY" "C_ODD_PARITY" 
"C_DATA_BITS" 
    ::hsi::utils::define_config_file $drv_handle "xuartlite_g.c" 
"XUartLite"  "DEVICE_ID" "C_BASEADDR"  
"C_BAUDRATE" "C_USE_PARITY" "C_ODD_PARITY"  "C_DATA_BITS" 

    ::hsi::utils::define_canonical_xpars $drv_handle "xparameters.h" 
"UartLite" "DEVICE_ID" "C_BASEADDR"  
"C_HIGHADDR" "C_BAUDRATE" "C_USE_PARITY" "C_ODD_PARITY" "C_DATA_BITS" 
}

MDD Parameter Description
This section gives a detailed description of the constructs used in the MDD file.

Conventions

[]: Denotes optional values.

<>: Value substituted by the MDD writer.

Comments

Comments can be specified anywhere in the file. A pound (#) character denotes the beginning of
a comment, and all characters after it, right up to the end of the line, are ignored. All white spaces
are also ignored and semicolons with carriage returns act as sentence delimiters.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=76


Driver Definition

The driver section includes the driver name, options, dependencies, and other global parameters,
using the following syntax:

   OPTION psf_version = <
psf version number>
   BEGIN DRIVER <driver name>
      [OPTION drc = <global drc name>] 
      [OPTION depends  = <list of directories>] 
      [OPTION help = <help file>] 
      [OPTION requires_interface = <list of interface names>
] 
      PARAM <parameter description>
      [BEGIN BLOCK,dep = <condition>
            ....... 
      END BLOCK] 
      [BEGIN INTERFACE <interface name>
            ....... 
      END INTERFACE] 
   END DRIVER

MDD Keywords
The keywords that are used in an MDD file are as follows:

BEGIN

The BEGIN keyword begins with one of the following: library, drive, block, category, or
interface.

END

The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function that is called by the GUI
configuration tool or the command line tool. This DRC function is called when you enter all the
parameters and the MLD or MDD writers can verify that a valid library or driver can be
generated with the given parameters.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=77


OPTION

Specifies the name following the keyword OPTION is an option to the tool. The following five
options are supported: COPYFILES, DEPENDS, SUPPORTED_PERIPHERALS, and
DRIVER_STATE.

SUPPORTED_OS_TYPES

Specifies the list of supported OS types. If it is not specified, then driver is assumed as
standalone driver.

COPYFILES

Specifies the list of files to be copied for the driver. If ALL is specified as the value, the tool
copies all the driver files.

DEPENDS

Specifies the list of directories on which a driver depends for compilation.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the driver. The values of this option can be specified
as a list or as a regular expression. The following example indicates that the driver supports all
versions of opb_jtag_uart and the opb_uartlte_v1_00_b version:

   option supported_peripherals = (xps_uartlite_v1_0, xps_uart16550)

Regular expressions can be used in specifying the peripherals and versions. The regular
expression (RE) is constructed as described below.

Single-Character REs:

• Any character that is not a special character (to be defined) matches itself.

• A backslash (followed by any special character) matches the literal character itself. That is, it
escapes the special character.

• The special characters are: + * ? . [ ] ^ $

• The period matches any character except the newline. For example, .umpty matches both
Humpty and Dumpty.

• A set of characters enclosed in brackets ([]) is a one-character RE that matches any of the
characters in that set. For example, [akm]matches an a, k, or m. A range of characters can be
indicated with a dash. For example, [a-z] matches any lower-case letter.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=78


However, if the first character of the set is the caret (^), then the RE matches any character
except those in the set. It does not match the empty string. For example, [^akm] matches
any character except a, k, or m. The caret loses its special meaning if it is not the first
character of the set.

Multi-Character REs:

• A single-character RE followed by an asterisk (*) matches zero or more occurrences of the RE.
Therefore, [a-z]* matches zero or more lower-case characters.

• A single-character RE followed by a plus (+) matches one or more occurrences of the RE.
Therefore, [a-z]+ matches one or more lower-case characters.

• A question mark (?) is an optional element. The preceding RE can occur no times or one time
in the string. For example, xy?z matches either xyz or xz.

• The concatenation of REs is an RE that matches the corresponding concatenation of strings.
For example, [A-Z][a-z]* matches any capitalized word.

The following example matches any version of xps_uartlite, xps_uart16550, and mdm.

   OPTION supported_peripherals = (xps_uartlite_v[0-9]+_[1-9][0-9]_[a-z] 
          xps_uart16550 mdm);

DRIVER_STATE

Specifies the state of the driver. The following are the list of values that can be assigned to
DRIVER_STATE:

ACTIVE: This is an active driver. By default the value of DRIVER_STATE is ACTIVE.

DEPRECATED : This driver is deprecated and is scheduled to be removed.

OBSOLETE This driver is obsolete and is not recognized by any tools. Tools error out on an
obsolete driver, and a new driver should be used instead.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other libraries or drivers in the system.

HELP

Specifies the help file that describes the library or driver.

DEP

Specifies the condition that needs to be satisfied before processing an entity. For example, to
enter into a BLOCK, the DEP condition should be satisfied. Conditions of the form ( operand1
OP operand2) are supported.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=79


BLOCK

Specifies the block is to be entered into when the DEP condition is satisfied. Nested blocks are
not supported.

INTERFACE

Specifies the interfaces implemented by this library or driver and describes the interface
functions and header files used by the library or driver.

   BEGIN INTERFACE <interface name>
      OPTION DEP=<list of dependencies>; 
      PROPERTY HEADER=<name of header file where the function is declared>
; 
      FUNCTION NAME=<name of interface function>, VALUE=<function name 
of       library/driver implementation> ; 
   END INTERFACE

HEADER

Specifies the header file in which the interface functions would be defined.

FUNCTION

Specifies the function implemented by the interface. This is a name-value pair where name is the
interface function name and value is the name of the function implemented by the library or
driver.

PARAM

Generally, the MLD/MDD file has a name = value format for statements. The PARAM keyword
is required before every such NAME, VALUE pair. The format for assigning a value to a parameter
is param name = <name>, default= value. The PARAM keyword specifies that the
parameter can be overwritten in the MSS file.

DTGPARAM

The DTGPARAM keyword is specially used for the device-tree specific parameters that can be
configured. Driver defines these DTGPARAMs if it needs to dump any parameters in the Tool
DTG generated DTS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=80


NAME

Specifies the name of the entity in which it was defined (example: PARAM, PROPERTY ). It also
specifies the name of the driver if it is specified with option.

VERSION

Specifies the version of the driver.

DESC

Describes the entity in which it was defined (example: PARAM, PROPERTY ).

TYPE

Specifies the type for the entity in which it was defined (example: PARAM ). The following are the
supported types:

• bool: Boolean (true or false)

• int: Integer

• string: String value within “ " (quotes).

• enum: List of possible values, that this parameter can take.

• library: Specify other library that is needed for building the library or driver.

• peripheral_instance: Specify other hardware drivers needed for building the library or
driver. Regular expressions can be used to specify the peripheral instance. Refer to 
SUPPORTED_PERIPHERALS for more details about regular expressions.

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:

• NONE: The value can not be modified at all.

• ADVANCED_USER: The value can be modified by all. The SDK GUI does not display this value
by default. It is displayed only as an advanced option in the GUI.

• ALL_USERS: The value can be modified by all. The SDK GUI displays this value by default.
This is the default value for all the values. If GUI_PERMIT = NONE, the category is always
active.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=81


MDD Design Rule Check (DRC) Section
   proc mydrc { handle }

The DRC function can be any Tcl code that checks your parameters for correctness. The DRC
procedures can access (read-only) the Platform Specification Format database (built by the tool
using the hardware (HDF) and software (MSS) database files) to read the parameter values you
set. The "handle" is a handle to the current driver in the database. The DRC procedure can get
the driver parameters from this handle. It can also get any other parameter from the database by
first requesting a handle and then using the handle to get the parameters.

• For errors, DRC procedures call the Tcl error command error "error msg" that displays in
an error dialog box.

• For warnings, DRC procedures return a string value that can be printed on the console.

• On success, DRC procedures just return without any value.

MDD Driver Generation (Generate) Section
   proc mygenerate { handle }

generate could be any Tcl code that reads your parameters and generates configuration files
for the driver. The configuration files can be C files, Header files, or Makefiles.

The generate procedures can access (read-only) the Platform Specification Format database
(built by the tool using the MSS files) to read the parameter values of the driver that you set.

The handle is a handle to the current driver in the database.

The generate procedure can get the driver parameters from this handle. It can also get any
other parameters from the database by requesting a handle and then using the handle to get the
parameter.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=82


Custom Driver
This section demonstrates how to handoff a custom driver associated with an IP(driver files are
specified in IPXACT file of the IP component) and access the driver information in HSI as well as
associate the driver with IP during BSP generation. For more information on packaging IP with
custom driver, refer to Vivado Design Suite User Guide: Creating and Packaging Custom IP
(UG1118).

Figure 6:   Example Design with an IP with custom driver

The figure above shows an example design of an IP with custom driver specified in its IPXACT
definition.

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  83Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=83


Figure 7:   Custom driver specified in IPXACT specification of an IP

Run Vivado hardware handoff flow either in Pre-Synth or Post-Bitstream mode. Refer to
Hardware Handoff section for more information. Custom driver for each IP is packaged in HDF.

# Open the hardware design with custom drivers.

hsi::open_hw_design ./base_zynq_design_wrapper.hdf 
base_zynq_design_wrapper

# Create a software design

hsi::create_sw_design swdesign -proc ps7_cortexa9_0 -os standalone 
Swdesign

# Check if the custom drivers are assign to respective IP cores or not

join [hsi::get_drivers ] \n 
axi_bram_ctrl_0 
axi_gpio_0 
myip_0

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=84


# Check the custom driver properties

common::report_property [ hsi::get_drivers myip*]

Property Type Read-only Visible Value
CLASS string true true driver

HW_INSTANCE string true true myip_0

NAME string false true myip

VERSION string false true 1.0

# Generate BSP. BSP source code including custom driver sources will be dumped to the bsp_out
#directory

hsi::generate_bsp -dir bsp_out 
base_zynq_design_wrapper 
ls ./bsp_out/ps7_cortexa9_0/libsrc/ 
. . . 
myip_v1_0 
. . .

Appendix F: Microprocessor Driver Definition (MDD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=85


Appendix G

Microprocessor Application
Definition (MAD)

Microprocessor Application Definition
(MAD) Overview
A MAD file contains directives for customizing software application. This section describes the
Microprocessor Application Definition (MAD) format, Platform Specification Format 2.1.0. and
the parameters that can be used to customize applications.

Requirements

Each application has an MAD file and a Tool Command Language (Tcl) file associated with it.

The MAD file is used by Hsi to recognize it as an application and to consider its configuration
while generating the application sources. The MAD file for each application must be located in its
data directory.

Microprocessor Application Definition Files
Application Definition involves defining a Microprocessor Application Definition file (MAD) and a
Data Generation file (Tcl file).

Application Definition File

The MAD file (<application_name>.mad) contains the name, description, and other
configurable parameters. A detailed description of the various parameters and the MAD format is
described in MAD Format Specification.

Data Generation File

The second file (<application_name>.tcl, with the filename being the same as the MAD
filename) uses the parameters in the MAD file for the application to generate data..

Appendix G: Microprocessor Application Definition (MAD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=86


Data generated includes, but is not limited to, generation of header files, C files, running DRCs
for the application, and generating executables. The Tcl file includes procedures that are called by
the tool at various stages of its execution. Various procedures in a Tcl file includes the following:

• DRC (swapp_is_supported_hw, swapp_is_supported_sw)

• swapp_generate (tool defined procedure) called after application source files are copied

MAD Format Specification
The MAD format specification involves the MAD file format specification and the Tcl file format
specification.

MAD File Format Specification

The MAD file format specification describes the parameters using a sample MAD file and its
corresponding Tcl file.

The following example shows a MAD file for a sample application called my_application.

 OPTION psf_version = 2.1;

OPTION is a keyword identified by the tool. The option name following the OPTION keyword is a
directive to the tool to do a specific action.

The psf_version of the MAD file is defined to be 2.1 in this example. This is the only option
that can occur before a BEGIN APPLICATION construct.

 BEGIN APPLICATION my_application

The BEGIN APPLICATION construct defines the start of an application named
my_application.

 OPTION NAME = myapplication 
 OPTION DESCRIPTION = "My custom application" 
 END APPLICATION

Note: The application NAME should match the return value of the Tcl process swapp_get_name in the
application Tcl file described above.

Tcl File Format Specification

Each application has a Tcl file associated with the MAD file. This Tcl file has the following
sections:

Appendix G: Microprocessor Application Definition (MAD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=87


• DRC Section: This section contains Tcl routines that validate your hardware and software
instances and their configuration needed for the application.

• Generation Section: This section contains Tcl routines that generate the application header
and C files based on the hardware and software configuration.

MAD Format Example
This section explains the MAD format through an example MAD file and its corresponding Tcl
file.

Example: MAD File

The following is an example of an MAD file for a sample application called my_application.

 OPTION psf_version = 2.1;

OPTION is a keyword identified by the tool. The option name following the OPTION keyword is a
directive to the tool to do a specific action.

The psf_version of the MAD file is defined to be 2.1 in this example. This is the only option
that can occur before a BEGIN APPLICATION construct.

 BEGIN APPLICATION my_application

The BEGIN APPLICATION construct defines the start of an application named
my_application.

 OPTION NAME = myapplication 
 OPTION DESCRIPTION = "My custom application" 
 END APPLICATION

Note: Applicaiton NAME should match the return value of Tcl proc swapp_get_name in application Tcl file
described above.

Appendix G: Microprocessor Application Definition (MAD)

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=88


Appendix H

Tcl Commands Listed Alphabetically
This section contains all Hardware Software Interface Tcl commands, arranged alphabetically.

common::create_property
Create property for class of objects(s).

Syntax

 create_property [-description <arg>] [-type <arg>] [-enum_values <args>] 
[-default_value <arg>] [-file_types <args>] [-display_text <arg>] [-quiet] 
[-verbose] <name> <class>

Returns

The property that was created if success, "" if failure

Usage

Name Description
[-description] Description of property

[-type] Type of property to create; valid values are: string, int, long,
double, bool, enum, file Default: string

[-enum_values] Enumeration values

[-default_value] Default value of type string

[-file_types] File type extensions (without the dot)

[-display_text] Text to display when selecting the file in file browser

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Name of property to create

<class> Object type to create property for; valid values are: design, net, cell,
pin, port, pblock, interface, fileset

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=89


Categories

PropertyAndParameter

Description

Creates a new property of the type specified with the user-defined namefor the specified class of
objects. The property that is created can be assigned to an object of the specified class with the
set_property command, but is not automatically associated with all objects of that class.

The report_property -all command will not report the newly created property for an object of the
specified class until the property has been assigned to that object

Arguments

-description - (Optional) Provide a description of the property being created. The description
will be returned by the HSM help system when the property is queried.

-type - (Optional) The type of property to create. Allowed property types include:

• string - Allows the new property to be defined with string values. This is the default value
when -type is not specified.

• int - Allows the new property to be defined with short four-byte signed integer values with a
range of -2,147,483,648 to 2,147,483,647. If a floating point value is specified for an int
property type, the HSM tool will return an error.

• long - Specifies signed 64-bit integers with value range of -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. If a floating point value is specified for an long property type, the
tool will return an error.

• double - Allows the new property value to be defined with a floating point number.

• bool - Allows the new property to be defined as a boolean with a true (1, or yes) or false (0, or
no) value.

• enum - An enumerated data type, with the valid enumerated values specified by the -
enum_values option.

• string_list - A Tcl list of string values.

• int_list - A Tcl list of integer values.

• double_list - A Tcl list of floating point values.

-enum_values<args> - (Optional) A list of enumerated values that the property can have. The
list must be enclosed in braces, {}, with values separated by spaces. This option can only be used
with -type enum.

-default_value<args> - (Optional) The default value to assign to the property. This option
can be used for string, int, bool, and enum type properties.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=90


-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - (Required) The name of the property to be defined. The name is case sensitive.

<class> - (Required) The class of object to assign the new property to. All objects of the specified
class will be assigned the newly defined property. Valid classes are: design, net, cell, pin, port,
Pblock, interface, and fileset.

Examples

Create a property called PURPOSE for cell objects:

common::create_property PURPOSE cell

Note: Because the type was not specified, the value will default to "strings".

Create a pin property called COUNT which holds an Integer value:

common::create_property -type int COUNT pin

See Also

• common::get_property
• common::list_property
• common::list_property_value
• common::report_property
• common::reset_property
• common::set_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=91


common::get_msg_config
Returns the current message count, limit, or the message configuration rules previously defined
by the set_msg_config command.

Syntax

 get_msg_config [-id <arg>] [-severity <arg>] [-rules] [-limit] [-count] [-
quiet] [-verbose] 

Returns

Nothing

Usage

Name Description
[-id] The message id to match. Should be used in conjunction with -limit

or -count Default: empty

[-severity] The message severity to match. Should be used in conjunction with
-limit or -count Default: empty

[-rules] Show a table displaying all message control rules for the current
project

[-limit] Show the limit for the number of messages matching either -id or -
severity that will be displayed

[-count] Show the number of messages matching either -id or -severity that
have been displayed

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Report

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=92


common::get_param
Get a parameter value.

Syntax

 get_param [-quiet] [-verbose] <name>

Returns

Parameter value

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Parameter name

Categories

PropertyAndParameter

Description

Gets the currently defined value for a specified tool parameter. These parameters are user-
definable configuration settings that control various behaviors within the tool. Refer to
report_param for a description of what each parameter configures or controls.

Arguments

<name> - (Required) The name of the parameter to get the value of. The list of user-definable
parameters can be obtained with list_param. This command requires the full name of the desired
parameter. It does not perform any pattern matching, and accepts only one parameter at a time.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=93


Note: Message limits can be defined with the set_msg_config command.

Examples

Get the current value of the messaging parameter used for enabling the description:

common::get_param messaging.enableDescription

See Also

• common::list_param
• common::report_param
• common::reset_param
• common::set_param

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=94


common::get_property
Get properties of object.

Syntax

 get_property [-min] [-max] [-quiet] [-verbose] <name> <object>

Returns

Property value

Usage

Name Description
[-min] Return only the minimum value

[-max] Return only the maximum value

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Name of property whose value is to be retrieved

<object> Object to query for properties

Categories

Object, PropertyAndParameter

Description

Gets the current value of the named property from the specified object or objects. If multiple
objects are specified, a list of values is returned.

If the property is not currently assigned to the object, or is assigned without a value, then the
get_property command returns nothing, or the null string. If multiple objects are queried, the null
string is added to the list of values returned.

This command returns a value, or list of values, or returns an error if it fails.

Arguments

-min - (Optional) When multiple objects are specified, this option examines the values of the
named property, and returns the smallest value from the list of objects. Numeric properties are
sorted by value. All other properties are sorted as strings.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=95


-max - (Optional) When multiple objects are specified, this option examines the values of the
named property, and returns the largest value from the list of objects. Numeric properties are
sorted by value. All other properties are sorted as strings.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - (Required) The name of the property to be returned. The name is not case sensitive.

<object> - (Required) One or more objects to examine for the specified property.

Examples

Get the NAME property from the specified cell:

common::get_property NAME [lindex [get_cells] 0]

Get the BOARD property from the current hardware design:

common::get_property BOARD [current_hw_design]

See Also

• common::create_property
• hsi::get_cells
• hsi::get_ports
• common::report_property
• common::reset_property
• common::set_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=96


common::help
Display help for one or more topics.

Syntax

 help [-category <arg>] [-args] [-syntax] [-long] [-prop <arg>] [-class 
<arg>] [-message <arg>] [-quiet] [-verbose] [<pattern_or_object>] 

Returns

Nothing

Usage

Name Description
[-category] Search for topics in the specified category

[-args] Display arguments description

[-syntax] Display syntax description

[-long] Display long help description

[-prop] Display property help for matching property names Default: *

[-class] Display object type help

[-message] Display information about the message with the given message.
Every message delivered by the tool has a unique global message
ID that consists of an application sub-system code and a message
identifier. Example: -message {Common 17-8}.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<pattern_or_object>] Display help for topics that match the specified pattern Default: *

Categories

Project

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=97


common::list_param
Get all parameter names.

Syntax

 list_param [-quiet] [-verbose] 

Returns

List

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

PropertyAndParameter

Description

Gets a list of user-definable configuration parameters. These parameters configure a variety of
settings and behaviors of the tool. For more information on a specific parameter use the
report_param command, which returns a description of the parameter as well as its current value.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=98


Examples

Get a list of all user-definable parameters:

common::list_param

See Also

• common::get_param
• common::report_param
• common::reset_param
• common::set_param

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=99


common::list_property
List properties of object.

Syntax

 list_property [-class <arg>] [-regexp] [-quiet] [-verbose] [<object>] 
[<pattern>] 

Returns

List of property names

Usage

Name Description
[-class] Object type to query for properties. Ignored if object is specified.

[-regexp] Pattern is treated as a regular expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<object>] Object to query for properties

[<pattern>] Pattern to match properties against Default: *

Categories

Object, PropertyAndParameter

Description

Gets a list of all properties on a specified object or class.
Note: report_property returns a list of properties on an object or class of objects and also reports the
property type and property value.

Arguments

-class<arg> - (Optional) Return the properties of the specified class instead of a specific object.
The class argument is case sensitive, and most class names are lower case.
Note: -class cannot be used together with an <object>

<-regexp> - (Optional) Specifies that the search <pattern> is written as a regular expression.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=100


-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<object> - (Optional) A single object on which to report properties.
Note: If you specify multiple objects you will get an error.

<pattern> - (Optional) Match the available properties on the <object> or -class against the
specified search pattern. The <pattern> applies to the property name, and only properties
matching the specified pattern will be reported. The default pattern is the wildcard `*` which
returns a list of all properties on the specified object.
Note: The search pattern is case sensitive, and most properties are UPPER case

Examples

The following example returns all properties of the specified CELL object:

common::list_property [get_cells microblaze_0]

See Also

• common::create_property
• hsi::get_cells
• common::list_property_value
• common::report_property
• common::reset_property
• common::set_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=101


common::list_property_value
List legal property values of object.

Syntax

 list_property_value [-default] [-class <arg>] [-quiet] [-verbose] <name> 
[<object>] 

Returns

List of property values

Usage

Name Description
[-default] Show only the default value.

[-class] Object type to query for legal property values. Ignored if object is
specified.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Name of property whose legal values is to be retrieved

[<object>] Object to query for legal properties values

Categories

Object, PropertyAndParameter

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=102


common::load_features
Load Tcl commands for a specified feature.

Syntax

 load_features [-quiet] [-verbose] [<features>...] 

Returns

Nothing

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<features>] Feature(s) to load, use list_features for a list of available features.

Categories

Tools

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=103


common::register_proc
Register a Tcl proc with Vivado.

Syntax

 register_proc [-quiet] [-verbose] <proc> [<tasknm>] 

Returns

Nothing

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<proc> Name of proc to register. Proc must be known to Tcl

[<tasknm>] Name of Tcl task that wraps the proc. Default: Register the proc
using the root name proc (no namespaces).

Categories

Tools

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=104


common::report_environment
Report system information.

Syntax

 report_environment [-file <arg>] [-format <arg>] [-append] [-
return_string] [-quiet] [-verbose] 

Returns

Nothing

Usage

Name Description
[-file] Write system information to specified file.

[-format] Specifies how to format the report. Default is 'text', another option
is 'xml'. Only applies if -file is used. If xml output is used, -append
is not allowed. Default: text

[-append] Append report to existing file

[-return_string] Return report content as a string value

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Report

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=105


common::report_param
Get information about all parameters.

Syntax

 report_param [-file <arg>] [-append] [-non_default] [-return_string] [-
quiet] [-verbose] [<pattern>] 

Returns

Param report

Usage

Name Description
[-file] Filename to output results to. (send output to console if -file is not

used)

[-append] Append the results to file, don't overwrite the results file

[-non_default] Report only params that are set to a non default value

[-return_string] Return report as string

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<pattern>] Display params matching pattern Default: *

Categories

PropertyAndParameter, Report

Description

Gets a list of all user-definable parameters, the current value, and a description of what the
parameter configures or controls.

Arguments

-file<arg> - (Optional) Write the report into the specified file. The specified file will be
overwritten if one already exists, unless -append is also specified.
Note: If the path is not specified as part of the file name, the file will be written into the current working
directory, or the directory from which the tool was launched.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=106


<-append> - (Optional) Append the output of the command to the specified file rather than
overwriting it.
Note: The -append option can only be used with the -file option.

<-return_string> - (Optional) Directs the output to a Tcl string rather than to the standard output.
The Tcl string can be captured by a variable definition and parsed or otherwise processed.
Note: This argument cannot be used with the -file option.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<pattern> (Optional) Match parameters against the specified pattern. The default pattern is the
wildcard `*` which gets all user-definable parameters.

Examples

The following example returns the name, value, and description of all user-definable parameters:

common::report_param

The following example returns the name, value, and description of user-definable parameters
that match the specified search pattern:

common::report_param *coll*

See Also

• common::get_param
• common::list_param
• common::reset_param
• common::set_param

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=107


common::report_property
Report properties of object.

Syntax

 report_property [-all] [-class <arg>] [-return_string] [-file <arg>] [-
append] [-regexp] [-quiet] [-verbose] [<object>] [<pattern>] 

Returns

Property report

Usage

Name Description
[-all] Report all properties of object even if not set

[-class] Object type to query for properties. Not valid with <object>

[-return_string] Set the result of running report_property in the Tcl interpreter's
result variable

[-file] Filename to output result to. Send output to console if -file is not
used

[-append] Append the results to file, don't overwrite the results file

[-regexp] Pattern is treated as a regular expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<object>] Object to query for properties

[<pattern>] Pattern to match properties against Default: *

Categories

Object, PropertyAndParameter, Report

Description

Gets the property name, property type, and property value for all of the properties on a specified
object, or class of objects.
Note: list_property also returns a list of all properties on an object, but does not include the property type
or value.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=108


You can specify objects for report_property using the get_* series of commands to get a specific
object. You can use the lindex command to return a specific object from a list of objects:

    report_property [lindex [get_cells] 0]

However, if you are looking for the properties on a class of objects, you should use the -
classoption instead of an actual object.

This command returns a report of properties on the object, or returns an error if it fails.

Arguments

<-all> - (Optional) Return all of the properties for an object, even if the property value is not
currently defined.

-class<arg>- (Optional) Return the properties of the specified class instead of a specific object.
The class argument is case sensitive, and most class names are lower case.
Note: -class cannot be used together with an <object>

<-return_string>- (Optional) Directs the output to a Tcl string. The Tcl string can be captured by a
variable definition and parsed or otherwise processed.

-file<arg>- (Optional) Write the report into the specified file. The specified file will be
overwritten if one already exists, unless -append is also specified.
Note: If the path is not specified as part of the file name, the file will be written into the current working
directory, or the directory from which the tool was launched.

-append - (Optional) Append the output of the command to the specified file rather than
overwriting it.
Note: The -append option can only be used with the -file option

-regexp- (Optional) Specifies that the search <pattern> is written as a regular expression.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<object> - (Optional) A single object on which to report properties.
Note: If you specify multiple objects you will get an error.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=109


<pattern> - (Optional) Match the available properties on the <object> or -class against the
specified search pattern. The <pattern> applies to the property name, and only properties
matching the specified pattern will be reported. The default pattern is the wildcard `*` which
returns a list of all properties on the specified object.
Note: The search pattern is case sensitive, and most properties are UPPER case.

Examples

The following example returns all properties of the specified object:

common::report_property -all [get_cells microblaze_0]

To determine which properties are available for the different design objects supported by the
tool, you can use multiple report_property commands in sequence. The following example
returns all properties of the specified current objects:

common::report_property -all [current_hw_design]

common::report_property -all [current_sw_design]

See Also

• common::create_property
• hsi::get_cells
• common::get_property
• common::list_property
• common::list_property_value
• common::reset_property
• common::set_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=110


common::reset_msg_config
Resets or removes a message control rule previously defined by the set_msg_config command.

Syntax

 reset_msg_config [-string <args>] [-id <arg>] [-severity <arg>] [-limit] 
[-suppress] [-count] [-default_severity] [-regexp] [-quiet] [-verbose] 

Returns

Nothing

Usage

Name Description
[-string] A qualifier, apply the selected operation only to messages that

contain the given strings Default: empty

[-id] A qualifier, the message id to match. If not specified, all message
ids will be matched

[-severity] A qualifier, apply the selected operation only to messages at the
given severity level

[-limit] reset the limit values for message controls that match the given
qualifiers for the current project

[-suppress] stop suppressing messages that match the given qualifiers for the
current project

[-count] reset the count of messages for all message controls that match
the given qualifiers for the current project. This will prevent
messages from being suppressed by a -limit control until the
message count once again exceeds the specified limit.

[-default_severity] reset the message severity of all messages controls for the current
project that match the given qualifiers to their default value

[-regexp] The values used for -string are full regular expressions

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Report

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=111


common::reset_msg_count
Reset message count.

Syntax

 reset_msg_count [-quiet] [-verbose] <id>

Returns

New message count

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<id> Unique message Id to be reset, e.g. "Common 17-99".
"reset_msg_count -id *" reset all counters

Categories

Report

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=112


common::reset_param
Reset a parameter.

Syntax

 reset_param [-quiet] [-verbose] <name>

Returns

Original value

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Parameter name

Categories

PropertyAndParameter

Description

Restores a user-definable configuration parameter that has been changed with the set_param
command to its default value.

You can use the report_param command to see which parameters are currently defined.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=113


<name> - (Required) The name of a parameter to reset. You can only reset one parameter at a
time.

Examples

The following example restores the tcl.statsThreshold parameter to its default value:

common::reset_param tcl.statsThreshold

See Also

• common::get_param
• common::list_param
• common::report_param
• common::set_param

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=114


common::reset_property
Reset property on object(s).

Syntax

 reset_property [-quiet] [-verbose] <property_name> <objects>..
.

Returns

The value that was set if success, "" if failure

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<property_name> Name of property to reset

<objects> Objects to set properties

Categories

Object, PropertyAndParameter

Description

Restores the specified property to its default value on the specified object or objects. If no
default is defined for the property, the property is unassigned on the specified object.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<property_name> - (Required) The name of the property to be reset.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=115


<objects> - (Required) One or more objects on which the property will be restored to its default
value.

Examples

The following example sets the archiver property on the specified processor, and then resets the
property:

common::set_property CONFIG.archiver armar [get_sw_processor]

common::reset_property CONFIG.archiver armar [get_sw_processor]

See Also

• common::create_property
• hsi::get_cells
• common::get_property
• common::list_property
• common::list_property_value
• common::report_property
• common::set_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=116


common::set_msg_config
Configure how the Vivado tool will display and manage specific messages based on message ID,
string, or severity.

Syntax

 set_msg_config [-id <arg>] [-string <args>] [-severity <arg>] [-limit 
<arg>] [-new_severity <arg>] [-suppress] [-regexp] [-quiet] [-verbose] 

Returns

Nothing

Usage

Name Description
[-id] A qualifier, apply the selected operation only to messages that

match given message id. Example: '-id {Common 17-35}'. Default:
match any id

[-string] A qualifier, apply the selected operation only to messages that
contain the given list of strings. Default: none

[-severity] A qualifier, apply the selected operation only to messages at the
given severity level. Example: '-severity INFO' Default: match any
severity

[-limit] for the messages that match the qualifiers, limit the number of
messages displayed to the given integer value. Can only be used in
conjunction with one of -id or -severity.

[-new_severity] for the messages that match the qualifiers, change the severity to
the given value for the current project

[-suppress] for the messages that match the qualifiers, suppress (do not
display) any messages for the current project

[-regexp] The values used for -string are full regular expressions

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Report

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=117


common::set_param
Set a parameter value.

Syntax

 set_param [-quiet] [-verbose] <name> <value>

Returns

Newly set parameter value

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Parameter name

<value> Parameter value

Categories

PropertyAndParameter

Description

Sets the value of a user-definable configuration parameter. These parameters configure and
control various behaviors of the tool. Refer to report_param for a description of currently defined
parameters.

You can use the reset_param command to restore any parameter that has been modified back to
its default setting.
Note: Setting a specified parameter value to -1 will disable the feature

Arguments

<name> - (Required) The name of the parameter to set the value of. You can only set the value of
one parameter at a time.

<value> - (Required) The value to set the specified parameter to.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=118


Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Examples

common::set_param messaging.defaultLimit 1000

See Also

• common::get_param

• common::list_param

• common::report_param

• common::reset_param

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=119


common::set_property
Set property on object(s).

Syntax

 set_property [-dict <args>] [-quiet] [-verbose] <name> <value> <objects>..
.

Returns

Nothing

Usage

Name Description
[-dict] list of name/value pairs of properties to set

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Name of property to set. Not valid with -dict option

<value> Value of property to set. Not valid with -dict option

<objects> Objects to set properties on

Categories

Object, PropertyAndParameter

Description

Assigns the defined property <name> and <value> to the specified <objects>.

This command can be used to define any property on an object in the design. Each object has a
set of predefined properties that have expected values, or a range of values. The set_property
command can be used to define the values for these properties. To determine the defined set of
properties on an object, use report_property, list_property, or list_property_values.

You can also define custom properties for an object by specifying a unique <name> and <value>
pair for the object. If an object has custom properties, these will also be reported by the
report_property and list_property commands.

This command returns nothing if successful, and an error if it fails.
Note: You can use the get_property command to validate any properties that have been set on an object

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=120


Arguments

-dict - (Optional) Use this option to specify multiple properties (<name> <value> pairs) on an
object with a single set_property command. Multiple <name> <value> pairs must be enclosed in
braces, {}, or quotes, "".

-dict "name1 value1 name2 value2 ... nameN valueN"

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - (Required) Specifies the name of the property to be assigned to the object or objects.
The <name> argument is case sensitive and should be specified appropriately.

<value> - (Required) Specifies the value to assign to the <name> on the specified object or
objects. The value is checked against the property type to ensure that the value is valid. If the
value is not appropriate for the property an error will be returned.
Note: In some cases the value of a property may include special characters, such as the dash character (`-`),
which can cause the tool to interpret the value as a new argument to the command. In this case, you must
use the explicit arguments (-name, -value, -objects) instead of the implied positional arguments (name,
value, objects) as described here. This is shown in the Examples section below

<objects> - (Required) One or more objects to assign the property to.

Examples

Create a user-defined boolean property, TRUTH, for cell objects, and set the property on a cell:

common::create_property -type bool truth cell 
common::set_property truth false [lindex [get_cells] 1]

The following example sets the compiler and archiver property value for the specified software
processor:

common::set_property CONFIG.archiver armar [get_sw_processor] 
common::set_property CONFIG.compiler armcc [get_sw_processor]

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=121


See Also

• common::create_property
• hsi::get_cells
• common::get_property
• common::list_property
• common::list_property_value
• common::report_property
• common::reset_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=122


common::unregister_proc
Unregister a previously registered Tcl proc.

Syntax

 unregister_proc [-quiet] [-verbose] <tasknm>

Returns

Nothing

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<tasknm> Name of Tcl task to unregister. The task must be wrapping a proc.

Categories

Tools

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=123


common::version
Returns the build for hsi and the build date.

Syntax

 version [-short] [-quiet] [-verbose] 

Returns

Hsi version

Usage

Name Description
[-short] Return only the numeric version number

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Report

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=124


hsi::add_library
Add software library to software design.

Syntax

 add_library [-sw <arg>] [-quiet] [-verbose] <name> [<version>] 

Returns

The Software Library object. Returns nothing if the command fails

Usage

Name Description
[-sw] Software design name

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Software library name

[<version>] Version of software Library

Categories

Software

Description

Adds library to the active software design. The software design must previously have been
created using the create_sw_design command. This command returns a message with the name
of the library, or returns an error if the command fails.

Arguments

<-sw> - (Optional) Name of the software design to which library to the added.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=125


Note: Message limits can be defined with the set_msg_config command.

<name> - Name of the library.

<version> - (Optional) Version of the library name. Version less library will be picked if version is
not specified.

Examples

The following adds the specified Library to the current software design:

hsi::add_library xilffs

adds version of the library

hsi::add_library xilrsa 1.0

See Also

• hsi::current_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=126


hsi::close_hw_design
Close a hardware design.

Syntax

 close_hw_design [-quiet] [-verbose] <name>

Returns

Returns nothing, error message if failed

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Name of design to close

Categories

Hardware

Description

Closes the hardware design in the HSM active session. Design modification is not allowed in the
current release, otherwise it will prompt to save the design prior to closing.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - The name of the hardware design object to close.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=127


Examples

Close the current hardware design object:

hsi::close_hw_design [current_hw_design]

Close the specified hardware design object:

hsi::close_hw_design design_1_imp

See Also

• hsi::current_hw_design
• hsi::get_hw_designs
• hsi::open_hw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=128


hsi::close_sw_design
Close a software design.

Syntax

 close_sw_design [-quiet] [-verbose] <name>..
.

Returns

Returns nothing, error message if failed

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Name of design to close

Categories

Software

Description

Closes the specified software design in the current Hardware Software Interface session.

IMPORTANT!: If the design has been modified, you will not be prompted to save the design prior to
closing. In the current release the persistence option is not available.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=129


<name> - The name of the software design object to close.

Examples

Close the current software design in the current session:

hsi::close_sw_design [current_sw_design]

hsi::close_sw_design

Close the specified software design in the current session:

hsi::close_sw_design [current_sw_design]

See Also

• hsi::create_sw_design
• hsi::current_sw_design
• hsi::get_sw_designs
• hsi::open_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=130


hsi::create_comp_param
Add Parameter.

Syntax

 create_comp_param [-quiet] [-verbose] <name> <value> <objects>

Returns

Parameter object. Returns nothing if the command fails

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Parameter name

<value> Parameter value

<objects> List of Nodes

Categories

Software

Description

Create a new param to list of nodes (driver/os/proc/node).

If successful, this command returns the name of the param created. Otherwise it returns an error.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=131


<name> - The name of the param to create.

<value> - The value of the param to create. Default type of param is string.

<objects> - List of nodes to which new param is created.

Examples

The following example creates a new param called p1 to specified driver:

hsi::create_comp_param p1 [get_drivers ps7_uart_1]

The following example creates a new param called p2 to all drivers.

hsi::create_comp_param p2 [get_drivers]

See Also

• hsi::create_node
• hsi::create_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=132


hsi::create_dt_node
Create a DT Node.

Syntax

 create_dt_node -name <arg> [-unit_addr <arg>] [-label <arg>] [-objects 
<args>] [-quiet] [-verbose] 

Returns

DT Node object. Returns nothing if the command fails

Usage

Name Description
-name child DT node name

[-unit_addr] unit address of node

[-label] label of node

[-objects] List of nodes

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

DeviceTree

Description

Create a new DT node and add to the current DT tree.

If successful, this command returns the name of the DT node created where name is represented
as <node_label>+<node_name>+@<unit_address>. Otherwise it returns an error.

Arguments

-name - The name of the node to be created.

-label - The label of the node to represent in generated dtsi file.

--unit_addr - The unit address of the node to represent in generated dtsi file.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=133


-objects - The list of node objects where the newly created node will be a child to all specified
nodes.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Examples

Create a new DT node amba with lable axi_interconnect and unit_addr 0x000 in the current DT
tree:

hsi::create_dt_node -name amba -label axi_interconnect -unit_addr 0x0000

hsi::create_dt_node -name amba -label axi_interconnect -unit_addr 0x0000 -
objects [get_dt_nodes -of_objects\ [current_dt_tree]

See Also

• hsi::get_dt_nodes
• hsi::current_dt_tree

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=134


hsi::create_dt_tree
Create a DT tree.

Syntax

 create_dt_tree -dts_file <arg> [-dts_version <arg>] [-quiet] [-verbose] 

Returns

Tree object. Returns nothing if the command fails

Usage

Name Description
-dts_file dts file name

[-dts_version] dts version

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

DeviceTree

Description

Create a new DT tree add to the current HSI session.

If successful, this command returns the name of the DT tree created. Otherwise it returns an
error.

Arguments

-dts_file - The DT tree name or file name targeted for the output DTSI file.

-dts_version - The DTS version of the DTSI file.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=135


Examples

Create a new DT tree pl.dtsi and add the tree to the current session:

hsi::create_dt_tree -dts_file pl.dtsi -dts_version /dts-v1/

hsi::create_dt_tree -dts_file system.dts -dts_version /dts-v3/ -header 
"include pl.dtsi, include ps.dtsi"

hsi::create_dt_tree -dts_file ps.dtsi -dts_version /dts-v3/ -header "PS 
system info"

See Also

• hsi::current_dt_tree
• hsi::get_dt_trees

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=136


hsi::create_node
Add Node.

Syntax

 create_node [-quiet] [-verbose] <name> <objects>

Returns

Node object. Returns nothing if the command fails

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> child node name

<objects> List of nodes

Categories

Software

Description

Create a new node to list of existing nodes (driver/os/prco/node).

If successful, this command returns the name of the node created. Otherwise it returns an error.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - The name of the node to create.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=137


<objects> - List of nodes to which new node is created.

Examples

The following example creates a new node called n1 to the specified driver:

hsi::create_node n1 [get_drivers ps7_uart_1]

The following example creates a new node called n2 to all drivers.

hsi::create_node n2 [get_drivers]

See Also

• hsi::create_comp_param
• hsi::create_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=138


hsi::create_sw_design
Create a software design.

Syntax

 create_sw_design -proc <arg> [-app <arg>] [-os <arg>] [-os_ver <arg>] [-
quiet] [-verbose] <name>..
.

Returns

Software design object. Returns nothing if the command fails

Usage

Name Description
-proc processor name

[-app] Application name

[-os] os name Default: standalone

[-os_ver] os version

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<name> Software design name

Categories

Software

Description

Create a new software design module to add to the current session.

If successful, this command returns the name of the software design created. Otherwise it
returns an error.

Arguments

-proc - The processor instance name targeted for the software design.

-app - The template application name.

-os - (Optional) The OS name targeted for the software design. Default value is standalone.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=139


-os_ver - (Optional) The OS version targeted for the software design. Default value is the latest
OS version.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - The name of the software design module to create.

Examples

Create a new software design module called sw_design_1 and add the module to the current
session:

hsi::create_sw_design sw_design_1 -proc microblaze_0 -os xilkernel

hsi::create_sw_design sw_design_1 -proc microblaze_0 -os xilkernel -os_ver 
6.0

hsi::create_sw_design sw_design_1 -proc ps7_cortexa9_0

See Also

• hsi::close_sw_design
• hsi::current_sw_design
• hsi::get_sw_designs
• hsi::open_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=140


hsi::current_dt_tree
Set or get current tree.

Syntax

 current_dt_tree [-quiet] [-verbose] [<tree>] 

Returns

Tree object, "" if failed

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<tree>] tree to be set

Categories

DeviceTree

Description

Defines the current DT tree for use with the Hardware Software Interface, or returns the name of
the current DT tree in the active session.

The current DT tree is the target of the Hardware Software Interface - DeviceTree Tcl commands.

You can use the get_dt_trees command to get a list of created DT trees in the active session.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=141


<dt_tree> - (Optional) The name of a DT tree to set as the current DT tree in the session. If a
dt_tree is not specified, the command returns the current DT tree of the active session.

Examples

Get the current DT tree object:

hsi::current_dt_tree

OR

Set the specified dt_tree as the current session:

hsi::current_dt_tree pl.dtsi

See Also

• hsi::create_dt_tree
• hsi::get_dt_trees

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=142


hsi::current_hw_design
Set or get current hardware design.

Syntax

 current_hw_design [-quiet] [-verbose] [<design>] 

Returns

Current hardware design object, "" if failed

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<design>] design to be set

Categories

Hardware

Description

Defines the current hardware design for use with the Hardware Software Interface, or returns
the name of the current design in the active project.

The current hardware design is the target of the Hardware Software Interface hardware Tcl
commands.

You can use the get_hw_designs command to get a list of open hardware designs in the active
project.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=143


Note: Message limits can be defined with the set_msg_config command.

<design> - (Optional) The name of a hardware design to set as the current design in the session.
If a design is not specified, the command returns the current hardware design of the active
session.

Examples

Get the current hardware design object:

hsi::current_hw_design

OR

Set the specified hardware design object as the current design:

hsi::current_hw_design hw_design_1

See Also

• hsi::close_hw_design
• hsi::get_hw_designs
• hsi::open_hw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=144


hsi::current_hw_instance
Set or reset current hardware instance.

Syntax

 current_hw_instance [-quiet] [-verbose] [<instance>] 

Returns

Current cell instance object, "" if failed

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<instance>] hardware cell instance to be set

Categories

Hardware

Description

Sets or resets the current hardware instance to the given hierarchial instance, for scoping the
hardware data access commands in a hierarchial design. Default is top design.

Arguments

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<instance> - (Optional) Hardware cell instance (hierarchial instance) to be set.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=145


Examples

The following example sets the current hardware instance to axi_ethernet_0:

hsi::current_hw_instance [get_cells axi_ethernet_0]

hsi::get_cells

Returns the hardware cell instances inside current hierarchial instance axi_ethernet_0.

See Also

• hsi::get_cells
• hsi::get_nets
• hsi::get_intf_pins
• hsi::get_intf_nets

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=146


hsi::current_sw_design
Set or get current software design.

Syntax

 current_sw_design [-quiet] [-verbose] [<design>] 

Returns

Software design object, "" if failed

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<design>] design to be set

Categories

Software

Description

Sets the current software design for use with the Hardware Software Interface, or returns the
name of the current design in the active project.

The current software design is the target of the Hardware Software Interface software Tcl
commands.

You can use the get_sw_designs command to get a list of open software designs in the active
project.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=147


Note: Message limits can be defined with the set_msg_config command.

<design> - (Optional) The name of a software design to set as the current design in the Hardware
Software Interface. If a design is not specified, the command returns the current software design
of the active project.

Examples

Get the current software design object:

hsi::current_sw_design

OR

Set the specified software design object as the current design:

hsi::current_sw_design sw_design_1

See Also

• hsi::close_sw_design
• hsi::create_sw_design
• hsi::get_sw_designs
• hsi::open_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=148


hsi::delete_objs
Delete specified objects.

Syntax

 delete_objs [-quiet] [-verbose] <objects>..
.

Returns

Pass if successful in deleting objects

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<objects> The objects to be deleted

Categories

Software

Description

Delete specified objects from the current software design.

Objects must be passed directly to the delete_objs command, and not simply referenced by the
object name.

This command returns nothing if it is successful, and returns an error if it fails.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=149


<objects> - A list of objects to delete from the current software design.

Examples

The following example deletes the specified objects from the current software design:

hsi::delete_objs [get_libs xilffs] [get_drivers gpio]

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=150


hsi::generate_app
Generates Template Application.

Syntax

 generate_app [-dir <arg>] [-hw <arg>] [-hw_xml <arg>] [-sw <arg>] [-proc 
<arg>] [-os <arg>] [-os_ver <arg>] [-app <arg>] [-lapp] [-sapp] [-compile] 
[-quiet] [-verbose] 

Returns

Returns nothing

Usage

Name Description
[-dir] Output directory where App needs to be generated

[-hw] Hardware Design Name

[-hw_xml] Hardware Design XML File Path

[-sw] Software Design Name

[-proc] Instance Name of the Processor to which App needs to be
generated

[-os] Name of Operating System for App

[-os_ver] Version of Operating System for App

[-app] Name of the Application

[-lapp] List all the Applications in Repositories

[-sapp] List all the Supported Applications for Hardware and Software
Designs

[-compile] Compile the generated source files

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Software

Description

Generates a template application for a processor on an operating system

If successful, this command returns nothing. Otherwise it returns an error.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=151


Arguments

-dir - (Optional) The output where the application needs to be generated.

-hw - (Optional) Hardware design name.

-hw_xml - (Optional) XML file path of the hw design.

-sw - (Optional) Software design name.

-proc - Instance Name of the Processor to which App needs to be generated.

-os - (Optional) Name of Operating System for App.

-os_ver - (Optional) Version of Operating System for App.

-app - Name of the application.

-lapp - (Optional) List all the Applications in Repositories.

-sapp - (Optional) List all the Supported Applications for Hardware and Software Designs.

-compile - (Optional) Compile the generated source files.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Examples

List all applications in the repositories:

hsi::generate_app -lapp

The following example gets a list of all supported applications for processor ps7_cortexa9_0 and
stanalone operating system:

hsi::generate_app -sapp -proc ps7_cortexa9_0

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=152


The following example generates a hello_world application for processor microblaze_0 for
xilkernel OS:

hsi::generate_app -app hello_world -proc microblaze_0 -os xilkernal

See Also

• hsi::generate_bsp
• hsi::generate_target

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=153


hsi::generate_bsp
Generates Board Support Package.

Syntax

 generate_bsp [-dir <arg>] [-hw <arg>] [-hw_xml <arg>] [-sw <arg>] [-
sw_mss <arg>] [-proc <arg>] [-os <arg>] [-os_ver <arg>] [-compile] [-
quiet] [-verbose] 

Returns

Returns nothing

Usage

Name Description
[-dir] Output directory where BSP needs to be generated

[-hw] Hardware Design Name

[-hw_xml] Hardware Design XML File Path

[-sw] Software Design Name

[-sw_mss] Software Design MSS File Path

[-proc] Instance Name of the Processor to which BSP needs to be
generated

[-os] Name of Operating System for BSP

[-os_ver] Version of Operating System for BSP

[-compile] Compile the generated source files

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

Categories

Software

Description

Generates a template application for a processor on an operating system

If successful, this command returns nothing. Otherwise it returns an error.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=154


Arguments

-dir - (Optional) Output directory where BSP needs to be generated.

-hw - (Optional) Hardware design name.

-hw_xml - (Optional) XML file path of the hw design.

-sw - (Optional) Software design name.

-sw_mss - (Optional) Software Design MSS File Path.

-proc - Instance Name of the Processor to which BSP needs to be generated.

-os - (Optional) Name of Operating System for BSP.

-os_ver - (Optional) Version of Operating System for BSP.

-compile - (Optional) Compile the generated source files.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Examples

generates a BSP for the processor ps7_cortexa9_0:

hsi::generate_bsp -proc ps7_cortexa9_0

The following example generates BSP for the processor ps7_cortexa9_0 for a MSS file
sw_app.mss:

hsi::generate_bsp -sw_mss sw_app.mss

See Also

• hsi::generate_app
• hsi::generate_target

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=155


hsi::generate_target
Generates Target.

Syntax

 generate_target [-dir <arg>] [-compile] [-quiet] [-verbose] [<name>] 
[<objects>] 

Returns

Returns nothing

Usage

Name Description
[-dir] Output directory where target needs to be generated

[-compile] Compile the generated source files

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<name>] List of targets to be generated, or 'all' to generate all supported
targets

[<objects>] The objects for which target needs to be generate

Categories

Software

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=156


hsi::get_arrays
Get a list of software Arrays.

Syntax

 get_arrays [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Array objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'array' objects of these types: 'sw_proc os driver lib sw_core'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Software

Description

Arrays are defined in MDD/MLDs. It contains any number of PARAMs and PROPERTYs which
describes size, description of array and default values of elements in array.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=157


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For array objects, "NAME", and "other config parameters" are some of the properties that can be
used to filter results.

-of_objects<arg> - (Optional) Get the arrays that are available in OS, Drivers, Libraries,
Processor, and Core, as returned by the get_os, get_drivers, get_libs, get_sw_processor, or
get_sw_cores commands.

Note: The -of_objects option requires objects to be specified using one of the the get_* commands such as
get_os or get_libs, rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match arrays against the specified patterns. The default pattern is the
wildcard `*` which gets a list of all arrays. More than one pattern can be specified to find multiple
arrays based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=158


Examples

The following example gets a list of arrays present in all software cores(drivers/libs/os)

hsi::get_arrays

The following example gets a list of all arrays matching the name "mem_table"

hsi::get_arrays mem_table

The following example gets a list of arrays present in OS of current software design.

hsi::get_arrays -of_objects [get_os]

See Also

• hsi::get_sw_interfaces

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=159


hsi::get_cells
Get a list of cells.

Syntax

 get_cells [-regexp] [-filter <arg>] [-hierarchical] [-of_objects <args>] 
[-quiet] [-verbose] [<patterns>...] 

Returns

Cell objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-hierarchical] Get cells from all levels of hierarchical cells

[-of_objects] Get 'cell' objects of these types: 'hw_design port bus_intf net
intf_net'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of IP instance objects in the current design that match a specified search pattern. The
default command returns a list of all IP instances in the design.

Note: To improve memory and performance, the get_* commands return a container list of a single type of
objects (e.g. cells, nets, or ports). You can add new objects to the list (using lappend for instance), but you
can only add the same type of object that is currently in the list. Adding a different type of object or string
to the list is not permitted and will result in a Tcl error.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=160


Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For cell objects, "IP_TYPE", and "IP_NAME" are some of the properties you can use to filter
results. The following gets cells with an IP_TYPE of "PROCESSOR" and with names containing
"ps7":

get_cells * -filter {IP_TYPE == PROCESSOR && NAME !~ "*ps7*"}

-hierarchical - (Optional) Get cells from all levels of hierarchical cells.

-of_objects<arg> - (Optional) Get the cells connected to the specified pins, timing paths,
nets, bels, clock regions, sites, or DRC violation objects.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=161


-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match cells against the specified patterns. The default pattern is the
wildcard `*` which gets a list of all cells in the project. More than one pattern can be specified to
find multiple cells based on different search criteria.
Note: You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list as a single
element.

Examples

The following example returns list of processor instances:

hsi::get_cells -filter { IP_TYPE == "PROCESSOR" }

This example gets a list of properties and property values attached to the second object of the
list returned by get_cells:

common::report_property [lindex [get_cells] 1]

Note: If there are no cells matching the pattern you will get a warning.

See Also

• hsi::get_nets
• hsi::get_pins
• hsi::get_ports
• hsi::get_intf_nets
• hsi::get_intf_pins
• hsi::get_intf_ports
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=162


hsi::get_comp_params
Get a list of parmas.

Syntax

 get_comp_params [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Property objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'param' objects of these types: 'driver sw_proc os node'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match names against patterns Default: *

Categories

Software

Description

Get a list of params in drivers/os/nodes in the current software design.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=163


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

The following gets params that match NAME and VALUE within their name:

get_comp_params -filter {NAME == clock-names && VALUE == "ref_clk 
aper_clk"}

-of_objects<arg> - (Optional) Get 'node' objects of these types: 'sw_driver', 'sw_os', 'sw_proc',
'sw_node'.
Note: The -of_objects option requires objects to be specified using the get_* commands, such as
get_nodes, rather than specifying objects by name. In addition, -of_objects cannot be used with a search
<pattern>.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match sotfware design cells against the specified patterns. The default
pattern is the wildcard `*` which gets a list of all cells in the current IP subsystem design. More
than one pattern can be specified to find multiple cells based on different search criteria.
Note: You must enclose multiple search patterns in braces, {}, to present the list as a single element.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=164


Examples

The following example gets a list of params that include the specified driver in the software
design:

hsi::get_comp_params -of_objects [get_drivers ps7_uart_0]

The following example gets a list of all params of OS:

hsi::get_comp_params -of_objects [get_os]

See Also

• hsi::get_nodes
• hsi::get_drivers

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=165


hsi::get_drivers
Get a list of software driver instances.

Syntax

 get_drivers [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Driver instance objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'driver' objects of these types: 'sw_design'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Software

Description

Get a list of driver instances in the current software design, Each instance is mapping to the IP
instances in the loaded hardware design.Generic driver is assigned for the IPs which does not
have drivers.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=166


Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

NAME and HW_INSTANCE are some of the properties you can use to filter results for drivers.
The following gets drivers named gpio with a HW_INSTANCE of axi_gpio_0:

get_drivers * -filter {NAME==gpio && HW_INSTANCE == axi_gpio_0}

-of_objects<arg> - (Optional) Get 'driver' objects of these types: 'sw_design'.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match sotfware design cells against the specified patterns. The default
pattern is the wildcard `*` which gets a list of all cells in the current IP subsystem design. More
than one pattern can be specified to find multiple cells based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=167


Examples

The following example gets a list of drivers that include the specified Software design:

hsi::get_drivers

The following example gets a list of all driver instances of gpio driver:

hsi::get_drivers * -filter {NAME==gpio]

See Also

• hsi::get_libs
• hsi::get_os
• hsi::get_sw_processor

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=168


hsi::get_dt_nodes
Get a list of DT node objects.

Syntax

 get_dt_nodes [-hier] [-regexp] [-filter <arg>] [-of_objects <args>] [-
quiet] [-verbose] [<patterns>...] 

Returns

Node objects. Returns nothing if the command fails

Usage

Name Description
[-hier] List of nodes in the current tree.

[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get '' objects of these types: 'dtsNode dtsTree'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

DeviceTree

Description

Gets a list of DT nodes created under a DT tree in the current HSI session that match a specified
search pattern. The default command gets a list of all root DT nodes in the current DT tree.

Arguments

-of_objects<arg> - (Optional) Gets all nodes of DTSNode and DTSTree
Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_dt_nodes or get_dt_trees rather than specifying objects by name. In addition, -of_objects cannot be
used with a search <pattern>

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=169


-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match nodes against the specified patterns. The default pattern is the
wildcard `*` which gets a list of all root nodes in the current DT tree. More than one pattern can
be specified to find multiple nodes based on different search criteria.
Note: You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list as a single
element.

Examples

The following example gets a list of root nodes attached to the specified DT tree:

hsi::get_dt_nodes -of_objects [lindex [get_dt_trees] 1]

Note: If there are no nodes matching the pattern, the tool will return empty.

The following example gets a list of all nodes in the current DT tree:

hsi::get_dt_nodes -hier

Note: If there are no nodes matching the pattern, the tool will return empty.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=170


The following example gets a list of nodes created under a root node:

hsi::get_dt_nodes -of_objects [current_dt_tree]

Note: If there are no nodes matching the pattern, the tool will return empty.

See Also

• hsi::current_dt_tree
• hsi::create_dt_node

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=171


hsi::get_dt_trees
Get a list of dts trees created.

Syntax

 get_dt_trees [-regexp] [-filter <arg>] [-quiet] [-verbose] [<patterns>...] 

Returns

DTS tree objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match tree names against patterns Default: *

Categories

DeviceTree

Description

Gets a list of DT trees created in the current HSI session that match a specified search pattern.
The default command gets a list of all open DT trees in the HSI session.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=172


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For the "DT tree" object you can use the"DTS_FILE_NAME" property to filter results. The
following gets dt trees that do NOT contain the "pl.dtsi" substring within their name:

get_dt_trees * -filter {NAME !~ "*pl.dtsi*"}

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match DT trees against the specified patterns. The default pattern is the
wildcard `*` which gets all DT trees. More than one pattern can be specified to find multiple trees
based on different search criteria.

Examples

Get all created DT trees in the current session:

hsi::get_dt_trees

See Also

• hsi::current_dt_tree
• hsi::create_dt_tree

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=173


Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=174


hsi::get_fields
Get a list of fields of a register.

Syntax

 get_fields [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Register objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'field' objects of these types: 'register'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Software

Description

Get a list of fields of a register. By default, the command returns the fields of all registers, of all
the cells.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=175


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For array objects, "NAME", and "other config parameters" are some of the properties that can be
used to filter results.

-of_objects<arg> - (Optional) Get 'field' objects of these types: 'register'.
Note: The -of_objects option requires objects to be specified using the get_registers command, rather than
specifying objects by name. In addition, -of_objects cannot be used with a search <pattern>.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match field names against the specified patterns. The default pattern is
the wildcard `*` which gets a list of all fields. More than one pattern can be specified to find
multiple fields based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Examples

The following example gets a list of fields present in all registers of all the software driver cores:

hsi::get_fields

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=176


hsi::get_hw_designs
Get a list of hardware designs opened.

Syntax

 get_hw_designs [-regexp] [-filter <arg>] [-quiet] [-verbose] 
[<patterns>...] 

Returns

Hardware design objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match design names against patterns Default: *

Categories

Hardware

Description

Gets a list of hardware designs open in the current HSM session that match a specified search
pattern. The default command gets a list of all open hardware designs in the session.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=177


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For the "Hardware design" object you can use the"NAME" property to filter results. The following
gets hardware designs that do NOT contain the "design" substring within their name:

get_hw_designs * -filter {NAME !~ "*design*"}

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match designs against the specified patterns. The default pattern is the
wildcard `*` which gets all hardware designs. More than one pattern can be specified to find
multiple designs based on different search criteria.

Examples

Get all open hardware designs in the current session:

hsi::get_hw_designs

See Also

• hsi::close_hw_design
• hsi::current_hw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=178


• hsi::open_hw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=179


hsi::get_hw_files
Get a list of hardware design supporting files.

Syntax

 get_hw_files [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Hardware design supporting file objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'hw_file' objects of these types: 'hw_design'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of hardware handoff files in the current hardware session.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=180


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For "file" objects you can use the "TYPE" property to filter results.

-of_objects<args> - (Optional) Get the files that are associated with the specified fileset
objects. The default is to search all filesets. When -compile_order and -used_in are specified, the
-of_objects switch will only accept a single fileset, or a single sub-design such as an IP core, Block
Design, or DSP design. A sub-design is also known as a composite file.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_cells or get_pins rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match files against the specified patterns. The default pattern is the
wildcard `*` which gets all files in the project or of_objects. More than one pattern can be
specified to find multiple files based on different search criteria.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=181


Examples

The following example returns the bit files in the design that are used for programming FPGA:

 hsi::get_hw_files -filter {TYPE == bit}

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=182


hsi::get_intf_nets
Get a list of interface Nets.

Syntax

 get_intf_nets [-regexp] [-filter <arg>] [-boundary_type <arg>] [-
hierarchical] [-of_objects <args>] [-quiet] [-verbose] [<patterns>...] 

Returns

Interface Net objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-boundary_type] Used when source object is on a hierarchical block's pin. Valid
values are 'upper', 'lower', or 'both'. If 'lower' boundary, searches
from the lower level of hierarchy onwards. This option is only valid
for connected_to relations. Default: upper

[-hierarchical] Get interface nets from all levels of hierarchical cells

[-of_objects] Get 'intf_net' objects of these types: 'hw_design cell bus_intf'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of interface nets in the current hardware design that match a specified search pattern.
The default command gets a list of all interface nets in the subsystem design.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=183


Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For hardware design nets you can use the "NAME" property to filter results.

-hierarchical - (Optional) Get interface nets from all levels of hierarchical cells.

-boundary_type - (Optional) Used when source object is on a hierarchical block's pin. Valid
values are 'upper', 'lower', or 'both'. If 'lower' boundary, searches from the lower level of hierarchy
onwards. This option is only valid for connected_to relations.

-of_objects<args> - (Optional) Get a list of the nets connected to the specified IP Integrator
subsystem cell, pin, or port objects.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_cells or get_pins rather than specifying objects by name. In addition, -of_objects cannot be used with a
search pattern.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=184


Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match hardware design interface nets against the specified patterns. The
default pattern is the wildcard `*` which returns a list of all interface nets in the current IP
Integrator subsystem design. More than one pattern can be specified to find multiple nets based
on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Examples

The following example gets the interface net attached to the specified pin of an hardware design,
and returns the net:

hsi::get_intf_nets -of_objects [get_pins aclk]

Note: If there are no interface nets matching the pattern you will get a warning.

See Also

• hsi::get_cells
• hsi::get_nets
• hsi::get_pins
• hsi::get_ports
• hsi::get_intf_pins
• hsi::get_intf_ports
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=185


hsi::get_intf_pins
Get a list of interface Pins.

Syntax

 get_intf_pins [-regexp] [-filter <arg>] [-hierarchical] [-of_objects 
<args>] [-quiet] [-verbose] [<patterns>...] 

Returns

Interface pin objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-hierarchical] Get interface pins from all levels of hierarchical cells

[-of_objects] Get 'bus_intf' objects of these types: 'hw_design cell port intf_net'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of pin objects in the current design that match a specified search pattern. The default
command gets a list of all pins in the design.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=186


Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

"NAME" and "TYPE" are some of the properties you can use to filter results for interface pins.
The following gets slave interface pins that do NOT contain the "S_AXI" substring within their
name:

get_intf_pins * -filter {TYPE == SLAVE && NAME !~ "*S_AXI*"}

-hierarchical - (Optional) Get interface pins from all levels of hierarchical cells.

-of_objects<arg> - (Optional) Get the pins connected to the specified cell, clock, timing path,
or net; or pins associated with specified DRC violation objects.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_cells or get_pins rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>

<-match_style [sdc | ucf]> - (Optional) Indicates that the search pattern matches UCF constraints
or SDC constraints. The default is SDC.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=187


Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match pins against the specified patterns. The default pattern is the
wildcard `*` which gets a list of all pins in the project. More than one pattern can be specified to
find multiple pins based on different search criteria.
Note: You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list as a single
element.

Examples

The following example gets a list of pins attached to the specified cell:

hsi::get_intf_pins -of_objects [lindex [get_cells] 1]

Note: If there are no pins matching the pattern, the tool will return a warning.

See Also

• hsi::get_cells
• hsi::get_nets
• hsi::get_pins
• hsi::get_ports
• hsi::get_intf_nets
• hsi::get_intf_ports
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=188


hsi::get_intf_ports
Get a list of interface Ports.

Syntax

 get_intf_ports [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Interface Port objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'bus_intf' objects of these types: 'hw_design port intf_net'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of interface port objects in the current hardware subsystem design that match a
specified search pattern. The default command gets a list of all interface ports in the subsystem
design.

The external connections in an IP subsystem design are ports, or interface ports. The external
connections in an IP Integrator cell or hierarchical module are pins and interface pins. Use the
get_pins and get_intf_pins commands to select the pin objects.

Note: To improve memory and performance, the get_* commands return a container list of a single type of
objects (e.g. cells, nets, pins, or ports). You can add new objects to the list (using lappend for instance), but
you can only add the same type of object that is currently in the list. Adding a different type of object or
string to the list is not permitted and will result in a Tcl error.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=189


Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For IP subsystem interface ports, "DIRECTION", and "NAME" are some of the properties you can
use to ilter results.

-of_objects<arg> - (Optional) Get the interface ports connected to the specified IP
subsystem interface nets returned by get_intf_nets.
Note: The -of_objects option requires objects to be specified using the get_* commands, such as get_cells
or get_pins, rather than specifying objects by name. In addition, -of_objects cannot be used with a search
<pattern>

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=190


<patterns> - (Optional) Match interface ports against the specified patterns. The default pattern
is the wildcard `*` which gets a list of all interface ports in the subsystem design. More than one
pattern can be specified to find multiple interface ports based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Examples

The following example gets the interface ports in the subsystem design that operate in Master
mode:

hsi::get_intf_ports -filter {MODE=="master"}

Note: If there are no interface ports matching the pattern, the tool will return a warning.

See Also

• hsi::get_cells
• hsi::get_nets
• hsi::get_pins
• hsi::get_ports
• hsi::get_intf_nets
• hsi::get_intf_pins
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=191


hsi::get_libs
Get a list of software libraries.

Syntax

 get_libs [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Library objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'lib' objects of these types: 'sw_design'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Software

Description

Get a list of libraries in the current software design.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=192


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

"NAME", "VERSION", and "other config parameters" are some of the properties you can use to
filter results for libraries. The following gets software libraries that which are named xilrsa and are
version 1.0:

get_libs * -filter {NAME == xilrsa && VERSION == "1.0"}

-of_objects<arg> - (Optional) Get the subsystem cells that are connected to the specified pin
or net objects as returned by the get_nets and get_pins, or by the get_intf_pins commands.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_cells or get_pins rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match subsystem cells against the specified patterns. The default pattern
is the wildcard `*` which gets a list of all cells in the current IP subsystem design. More than one
pattern can be specified to find multiple cells based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=193


Examples

The following example gets a list of libraries:

 hsi::get_libs

See Also

• hsi::get_drivers
• hsi::get_os
• hsi::get_sw_processor
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=194


hsi::get_mem_ranges
Get a list of memory ranges.

Syntax

 get_mem_ranges [-regexp] [-filter <arg>] [-hierarchical] [-of_objects 
<args>] [-quiet] [-verbose] [<patterns>...] 

Returns

Memory range objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-hierarchical] Get memory ranges from all levels of hierarchical cells

[-of_objects] Get 'mem_range' objects of these types: 'cell'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Get a list of slaves of the processor in the current hardware design.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=195


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

-hierarchical - (Optional) Get memory ranges from all levels of hierarchical cells.

-of_objects<arg> - (Optional) Get the slaves of the specified object.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match address segments against the specified patterns. The default
pattern is the wildcard `*` which gets a list of all address segments in the current IP subsystem
design. More than one pattern can be specified to find multiple address segments based on
different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Examples

The following example gets the slaves of the processor:

hsi::get_mem_ranges

hsi::get_mem_ranges -of_objects [lindex [get_cells -filter 
{IP_TYPE==PROCESSOR} ] 0]

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=196


Note: If there are no objects matching the pattern you will get a warning.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=197


hsi::get_nets
Get a list of nets.

Syntax

 get_nets [-regexp] [-filter <arg>] [-boundary_type <arg>] [-hierarchical] 
[-of_objects <args>] [-quiet] [-verbose] [<patterns>...] 

Returns

Net objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-boundary_type] Used when source object is on a hierarchical block's pin. Valid
values are 'upper', 'lower', or 'both'. If 'lower' boundary, searches
from the lower level of hierarchy onwards. This option is only valid
for connected_to relations. Default: upper

[-hierarchical] Get nets from all levels of hierarchical cells

[-of_objects] Get 'net' objects of these types: 'hw_design cell port'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of nets in the current hardware design that match a specified search pattern. The
default command gets a list of all nets in the subsystem design.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=198


Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For the "hardware design " object you can use the "NAME" property to filter results.

<-boundary_type> - (Optional) Used when source object is on a hierarchical block's pin. Valid
values are 'upper', 'lower', or 'both'. If 'lower' boundary, searches from the lower level of hierarchy
onwards. This option is only valid for connected_to relations. Default: upper.

<-hierarchical> - (Optional) Get nets from all levels of hierarchical cells.

<-of_objects> - (Optional) Get 'net' objects of these types: 'hw_design cell port'.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=199


Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match hardware design nets against the specified patterns. The default
pattern is the wildcard `*` which returns a list of all nets in the current IP Integrator subsystem
design. More than one pattern can be specified to find multiple nets based on different search
criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Examples

The following example gets the net attached to the specified pin of an hardware design module,
and returns both the net:

hsi::get_nets -of_objects [get_pins aclk]

Note: If there are no nets matching the pattern you will get a warning.

See Also

• hsi::get_cells
• hsi::get_pins
• hsi::get_ports
• hsi::get_intf_nets
• hsi::get_intf_pins
• hsi::get_intf_ports
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=200


hsi::get_nodes
Get a list of child nodes.

Syntax

 get_nodes [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Node objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'node' objects of these types: 'driver sw_proc os node'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Software

Description

Get a list of nodes in drivers/os/nodes in the current software design.

A node can have child nodes in it.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=201


Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

The following gets nodes that matches NAME and PARENT within their name:

 get_nodes -filter {NAME==clkc && PARENT == ps7_slcr_0}

-of_objects<arg> - (Optional) Get 'node' objects of these types: 'sw_driver', 'sw_os', 'sw_proc',
'sw_node'.
Note: The -of_objects option requires objects to be specified using the get_* commands, such as
get_nodes, rather than specifying objects by name. In addition, -of_objects cannot be used with a search
<pattern>

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match sotfware design cells against the specified patterns. The default
pattern is the wildcard `*` which gets a list of all cells in the current IP subsystem design. More
than one pattern can be specified to find multiple cells based on different search criteria.
Note: You must enclose multiple search patterns in braces, {}, to present the list as a single element.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=202


Examples

The following example gets a list of nodes that include the specified driver in the software
design:

hsi::get_nodes -of_objects [get_drivers ps7_uart_0]

The following example gets a list of all nodes of OS:

hsi::get_nodes -of_objects [get_os]

See Also

• hsi::get_comp_params
• hsi::get_drivers

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=203


hsi::get_os
Get OS in the software design.

Syntax

 get_os [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-verbose] 
[<patterns>...] 

Returns

OS object. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'os' objects of these types: 'sw_design'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match design names against patterns Default: *

Categories

Software

Description

Returns OS object on success and nothing if the command fails.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=204


Examples

The following example returns OS object of the current software design:

hsi::get_os

See Also

• hsi::get_drivers
• hsi::get_libs
• hsi::get_sw_processor

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=205


hsi::get_pins
Get a list of pins.

Syntax

 get_pins [-regexp] [-filter <arg>] [-hierarchical] [-of_objects <args>] [-
quiet] [-verbose] [<patterns>...] 

Returns

Pin objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-hierarchical] Get pins from all levels of hierarchical cells

[-of_objects] Get 'port' objects of these types: 'hw_design cell bus_intf net'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of pin objects on the current hardware design that match a specified search pattern.
The default command gets a list of all pins in the subsystem design.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=206


Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

"DIR" and "TYPE" are some of the properties you can use to filter results for pins. The following
gets input pins that do NOT contain the "RESET" substring within their name:

get_pins * -filter {DIRECTION == IN && NAME !~ "*RESET*"}

-hierarchical - (Optional) Get pins from all levels of hierarchical cells.

-of_objects<arg> - (Optional) Get the pins connected to the specified IP subsystem cell or
net.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_cells or get_pins rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match hardware design pins against the specified patterns.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=207


Note: More than one pattern can be specified to find multiple pins based on different search criteria. You
must enclose multiple search patterns in braces {} to present the list as a single element

Examples

The following example gets a list of pins attached to the specified cell:

hsi::get_pins -of [get_cells axi_gpio_0]

Note: If there are no pins matching the pattern, the tool will return a warning.

The following example gets a list of pins attached to the specified subsystem net:

hsi::get_pins -of [get_nets ps7_axi_interconnect_0_M_AXI_BRESP]

See Also

• hsi::get_cells
• hsi::get_nets
• hsi::get_ports
• hsi::get_intf_pins
• hsi::get_intf_nets
• hsi::get_intf_ports
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=208


hsi::get_ports
Get a list of external ports.

Syntax

 get_ports [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] [-
verbose] [<patterns>...] 

Returns

Port objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'port' objects of these types: 'hw_design bus_intf net'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Hardware

Description

Gets a list of port objects in the current hardware design that match a specified search pattern.
The default command gets a list of all ports in the hardware design.

The external connections in an hardware design are ports or interface ports. The external
connections in an IP Integrator cell or hierarchical module are pins and interface pins. Use the
get_pins and get_intf_pins commands to select the pin objects.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=209


Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For IP subsystem ports, "DIRECTION", "TYPE", and "SENSITIVITY" are some of the properties
you can use to filter results.

-of_objects<arg> - (Optional) Get the ports connected to the specified IP subsystem nets
returned by get_nets.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_cells or get_pins rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=210


Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match ports against the specified patterns. The default pattern is the
wildcard `*` which gets a list of all ports in the subsystem design. More than one pattern can be
specified to find multiple ports based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Examples

The following example gets the ports connected to the specified hardware subsystem net:

hsi::get_ports -of_objects [get_nets bridge_1_apb_m] -filter {DIRECTION==I}

Note: If there are no ports matching the pattern, the tool will return a warning.

See Also

• hsi::get_cells
• hsi::get_nets
• hsi::get_pins
• hsi::get_intf_nets
• hsi::get_intf_pins
• hsi::get_intf_ports
• common::list_property
• common::report_property

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=211


hsi::get_sw_cores
Get a list of software cores like driver, library, and os.

Syntax

 get_sw_cores [-regexp] [-filter <arg>] [-quiet] [-verbose] [<patterns>...] 

Returns

Software core objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match swcore name and versions against patterns Default: *

Categories

Software

Description

Get a list of SW cores defined in the SW repository of the current session, based on the specified
search pattern. The default is to return all SW cores defined in the repo.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=212


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

"NAME", "CORE_STATE", and "TYPE" are some of the properties you can use to filter results for
sw_cores.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match IP core definitions in the IP catalog against the specified search
patterns. The default pattern is the wildcard `*` which gets a list of all IP cores in the catalog.
More than one pattern can be specified to find multiple core definitions based on different search
criteria.
Note: You must enclose multiple search patterns in braces, {}, or quotes, "", to present the list as a single
element.

Examples

The following example returns a list of all SW cores with TYPE property matching the specified
pattern:

get_sw_cores -filter {TYPE == "driver"}

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=213


The following example returns a list of all SW cores with REPOSITORY property matching the
specified pattern:

get_sw_cores -filter {REPOSITORY=="C:/user/repo"}

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=214


hsi::get_sw_designs
Get a list of software designs opened.

Syntax

 get_sw_designs [-regexp] [-filter <arg>] [-quiet] [-verbose] 
[<patterns>...] 

Returns

Software design objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match design names against patterns Default: *

Categories

Software

Description

Gets a list of software designs open in the current HSM session that match a specified search
pattern. The default command gets a list of all open software designs in the active sesion.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=215


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

For software designs you can use "NAME" to filter results.

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match designs against the specified patterns. The default pattern is the
wildcard `*` which gets all software designs. More than one pattern can be specified to find
multiple designs based on different search criteria.

Examples

The following example gets all open Software designs in the current session:

get_sw_designs

See Also

• hsi::close_sw_design
• hsi::create_sw_design
• hsi::current_sw_design
• hsi::open_sw_design

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=216


hsi::get_sw_interfaces
Get a list of software Interfaces.

Syntax

 get_sw_interfaces [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] 
[-verbose] [<patterns>...] 

Returns

Software Interface objects. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'interface' objects of these types: 'sw_proc os driver lib
sw_core'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match cell names against patterns Default: *

Categories

Software

Description

Specifies the interfaces implemented by the library or driver and describes the interface
functions and header files used by the library or driver.

Arguments

-regexp - (Optional) Specifies that the search <patterns> are written as regular expressions.
Both search <patterns> and -filter expressions must be written as regular expressions when
this argument is used. Xilinx regular expression Tcl commands are always anchored to the start of
the search string. You can add ".*" to the beginning or end of a search string to widen the search
to include a substring. See http://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for help with
regular expression syntax.
Note: The Tcl built-in command regexp is not anchored, and works as a standard Tcl command. For more
information refer to http://www.tcl.tk/man/tcl8.5/TclCmd/regexp.htm.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=217


-filter<args> - (Optional) Filter the results list with the specified expression. The -filter
argument filters the list of objects returned based on property values on the objects. You can find
the properties on an object with the report_property or list_property commands.

You should quote the filter search pattern to avoid having to escape special characters that may
be found in net, pin, or cell names, or other properties. String matching is case-sensitive and is
always anchored to the start and to the end of the search string. The wildcard "*" character can
be used at the beginning or at the end of a search string to widen the search to include a
substring of the property value.
Note: The filter returns an object if a specified property exists on the object, and the specified pattern
matches the property value on the object. In the case of the "*" wildcard character, this will match a
property with a defined value of "".

For string comparison, the specific operators that can be used in filter expressions are "equal"
(==), "not-equal" (!=), "match" (=~), and "not-match" (!~). Numeric comparison operators <, >,
<=, and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

sw_interface, "NAME", and "other config parameters" are some of the properties you can use to
filter results.

-of_objects<arg> - (Optional) Get the software interfaces that are available in OS, Drivers,
Libraries, Processor, Core, as returned by the get_os, get_drivers, get_libs, get_sw_processor,
get_sw_cores commands.

Note: The -of_objects option requires objects to be specified using one of the get_* commands such as
get_os or get_libs rather than specifying objects by name. In addition, -of_objects cannot be used with a
search <pattern>

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<patterns> - (Optional) Match software interfaces against the specified patterns. The default
pattern is the wildcard `*` which gets a list of all software interfaces. More than one pattern can
be specified to find multiple software interfaces based on different search criteria.
Note: You must enclose multiple search patterns in braces {} to present the list as a single element.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=218


Examples

The following example gets a list of interfaces present in all software cores(drivers/libs/os)

get_sw_interfaces

The following example gets a list of all software interfaces matching the name "stdout"

get_sw_interfaces stdout

The following example gets a list of software interfaces present in OS of current software design.

get_sw_interfaces -of_objects [get_os]

See Also

• hsi::get_arrays

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=219


hsi::get_sw_processor
Get processor of the software design.

Syntax

 get_sw_processor [-regexp] [-filter <arg>] [-of_objects <args>] [-quiet] 
[-verbose] [<patterns>...] 

Returns

Processor object. Returns nothing if the command fails

Usage

Name Description
[-regexp] Patterns are full regular expressions

[-filter] Filter list with expression

[-of_objects] Get 'sw_proc' objects of these types: 'sw_design'.

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<patterns>] Match design names against patterns Default: *

Categories

Software

Description

Returns the processor object of the active software design or nothing if the command fails.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=220


Examples

The following example returns the software processor of the current software design:

get_sw_processor

See Also

• hsi::get_drivers
• hsi::get_libs
• hsi::get_os

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=221


hsi::open_hw_design
Open a hardware design from disk file.

Syntax

 open_hw_design [-quiet] [-verbose] [<file>] 

Returns

Hardware design object. Returns nothing if the command fails

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<file>] Hardware design file to open

Categories

Hardware

Description

Opens a Hardware design in the Hardware Software Interface. The hardware design must be
exported previously using the Vivado product. Users can open multiple hardware designs at same
time.

If successful, this command returns a hardware design object representing the opened Hardware
design. Otherwise it returns an error.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=222


<file> - The path and file name of the Hardware design to open in the HSM. The name must
include the file extension.

Examples

Open the specified IP subsystem design in the current project:

open_hw_design C:/Data/project1/project1.sdk/SDK/SDK_Export/hw/design_1.xml

OR

open_hw_design  C:/Data/project1/project1.sdk/design_1_wrapper.hdf

See Also

• hsi::close_hw_design
• hsi::current_hw_design
• hsi::get_hw_designs

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=223


hsi::open_sw_design
Open a software design from disk file.

Syntax

 open_sw_design [-quiet] [-verbose] [<file>] 

Returns

Software design object. Returns nothing if the command fails

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[<file>] Software design file to open

Categories

Software

Description

Open a software design in the Hardware Software Interface.

If successful, this command returns software design object representing the opened Software
design. Otherwise it returns an error.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<name> - The name of the software design to open.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=224


Examples

Open the specified software design in the current session:

open_sw_design sw_design_1

See Also

• hsi::close_sw_design
• hsi::create_sw_design
• hsi::current_sw_design
• hsi::get_sw_designs

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=225


hsi::set_repo_path
Set a list of software repository paths.

Syntax

 set_repo_path [-quiet] [-verbose] <paths>..
.

Returns

Returns nothing

Usage

Name Description
[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

<paths> List of software repository paths separated by spaces

Categories

Software

Description

Loads the software cores available in the repository path. Users can specify multiple repository
paths.

Arguments

-quiet - (Optional) Execute the command quietly, returning no messages from the command.
The command also returns TCL_OK regardless of any errors encountered during execution.
Note: Any errors encountered on the command-line, while launching the command, will be returned. Only
errors occurring inside the command will be trapped.

-verbose - (Optional) Temporarily override any message limits and return all messages from this
command.
Note: Message limits can be defined with the set_msg_config command.

<paths> List of software repository paths separated by spaces.

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=226


Examples

The following example loads the user software cores in the current session:

set_repo_path C:/users/user_driver_repo

See Also

• hsi::get_sw_cores

Appendix H: Tcl Commands Listed Alphabetically

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=227


Appendix I

Additional Resources and Legal
Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at 
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can
be viewed at www.xilinx.com/legal.htm#tos.

Appendix I: Additional Resources and Legal Notices

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  228Send Feedback

http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=228


© Copyright 2014-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Appendix I: Additional Resources and Legal Notices

UG1138 (v2018.2) July 16, 2018  www.xilinx.com  [placeholder text]
Generating Basic Software Platforms  229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1138&Title=Generating%20Basic%20Software%20Platforms%3A%20Reference%20Guide&releaseVersion=2018.2&docPage=229

	Generating Basic Software Platforms: Reference Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: Hardware Handoff
	Pre-Synthesis Hardware Handoff
	Post-Bitstream Hardware Handoff

	Ch. 3: Tcl Capabilities Overview
	First Class Tcl Object Types and Relationships
	Tcl Commands Listed by Category

	Ch. 4: Tcl Examples
	Accessing Hardware Design Data
	Creating Standalone Software Design and Accessing Software Information
	Generating and Compiling Application with compiler settings and memory sections of choice
	Generating and Compiling BSP with advanced driver/library/os/processor configuration
	Generating and Compiling BSP for a multi-block design


	Ch. 5: Input and Output Files
	Input Files
	HDF
	Software Repository

	Output Files
	Generating Libraries and Drivers

	Appx. A: Obsolete Commands
	Appx. B: Deprecated Commands
	Appx. C: BSP, DTS, and Application Generation in Vivado
	Appx. D: Microprocessor Software Specification (MSS)
	MSS Overview
	MSS Format
	Global Parameters
	Instance-Specific Parameters
	OS, Driver, Library, and Processor Block Parameters
	MLD/MDD Specific Parameters
	OS—Specific Specific Parameters
	Processor—Specific Specific Parameters


	Appx. E: Microprocessor Library Definition (MLD)
	Microprocessor Library Definition (MLD) Overview
	MLD Library Definition Files
	MLD Format Specification
	MLD File Format Specification
	Tcl File Format Specification
	MLD Design Rule Check Section
	MLD Format Examples


	MLD Parameter Descriptions
	MLD Parameter Description Section
	MLD Keywords
	MLD Design Rule Check Section
	MLD Tool Generation (Generate) Section


	Appx. F: Microprocessor Driver Definition (MDD)
	Microprocessor Driver Definition (MDD) Overview
	MDD Driver Definition Files
	MDD Format Specification
	MDD File Format Specification
	Tcl File Format Specification

	MDD Format Examples
	MDD Parameter Description
	MDD Keywords
	MDD Design Rule Check (DRC) Section
	MDD Driver Generation (Generate) Section
	Custom Driver

	Appx. G: Microprocessor Application Definition (MAD)
	Microprocessor Application Definition (MAD) Overview
	Microprocessor Application Definition Files
	MAD Format Specification
	MAD Format Example

	Appx. H: Tcl Commands Listed Alphabetically
	common::create_property
	common::get_msg_config
	common::get_param
	common::get_property
	common::help
	common::list_param
	common::list_property
	common::list_property_value
	common::load_features
	common::register_proc
	common::report_environment
	common::report_param
	common::report_property
	common::reset_msg_config
	common::reset_msg_count
	common::reset_param
	common::reset_property
	common::set_msg_config
	common::set_param
	common::set_property
	common::unregister_proc
	common::version
	hsi::add_library
	hsi::close_hw_design
	hsi::close_sw_design
	hsi::create_comp_param
	hsi::create_dt_node
	hsi::create_dt_tree
	hsi::create_node
	hsi::create_sw_design
	hsi::current_dt_tree
	hsi::current_hw_design
	hsi::current_hw_instance
	hsi::current_sw_design
	hsi::delete_objs
	hsi::generate_app
	hsi::generate_bsp
	hsi::generate_target
	hsi::get_arrays
	hsi::get_cells
	hsi::get_comp_params
	hsi::get_drivers
	hsi::get_dt_nodes
	hsi::get_dt_trees
	hsi::get_fields
	hsi::get_hw_designs
	hsi::get_hw_files
	hsi::get_intf_nets
	hsi::get_intf_pins
	hsi::get_intf_ports
	hsi::get_libs
	hsi::get_mem_ranges
	hsi::get_nets
	hsi::get_nodes
	hsi::get_os
	hsi::get_pins
	hsi::get_ports
	hsi::get_sw_cores
	hsi::get_sw_designs
	hsi::get_sw_interfaces
	hsi::get_sw_processor
	hsi::open_hw_design
	hsi::open_sw_design
	hsi::set_repo_path

	Appx. I: Additional Resources and Legal Notices


