
Versal ACAP Design Guide

UG1273 (v2020.1) July 14, 2020

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
07/14/2020 Version 2020.1

Initial release N/A

Revision History

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..5
Introduction to Versal ACAP...5
Navigating Content by Design Process.. 6
About This Guide... 7

Chapter 2: System Architecture... 8
AI Engine.. 9
Programmable Logic.. 10
NoC..11
XPIO.. 11
DDRMC..12
CIPS... 12
GT.. 18
HSDP... 18

Chapter 3: System Methodology..19
System Design Methodology...19
System Simulation Methodology.. 27
System Debug Methodology... 28

Chapter 4: Design Flow.. 31
Vitis Environment Design Flow.. 31
Vivado Tools Design Flow... 39
Simulation Flows... 47
Boot and Configuration..49

Chapter 5: System Migration... 51
Soft Memory Controllers.. 52
GT.. 53
AXI Interconnect..53
Power and Error Handling... 53

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=3

System Monitor... 54
DSP.. 54
On-Chip Memory Resources.. 55
CLB.. 55
System Debug..55
Processor and Peripherals... 57
I/O... 57
PCIe Subsystems... 57
Security... 59
PL Configuration and JTAG... 59

Appendix A: Primitives.. 61
RAM Primitives...61
DSP Primitives..66
CLB Primitives.. 70

Appendix B: Additional Resources and Legal Notices............................. 73
Xilinx Resources...73
Documentation Navigator and Design Hubs...73
References..73
Please Read: Important Legal Notices... 75

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=4

Chapter 1

Overview

Introduction to Versal ACAP
Versal™ adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex™-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.

Chapter 1: Overview

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=5

The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• Chapter 2: System Architecture

• Chapter 3: System Methodology

• Chapter 4: Design Flow

• Chapter 5: System Migration

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs. Topics in this document that apply to this design process include:

• Vitis Environment Design Flow

• Simulation Flows

• Host Software Development: Developing the application code, accelerator development,
including library, XRT, and Graph API use. Topics in this document that apply to this design
process include:

• Vitis Environment Design Flow

Chapter 1: Overview

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 6Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=6

• Simulation Flows

• AI Engine Development: Creating the AI Engine graph and kernels, library use, simulation
debugging and profiling, and algorithm development. Also includes the integration of the PL
and AI Engine kernels. Topics in this document that apply to this design process include:

• AI Engine

• Vitis Environment Design Flow

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Vivado Tools Design Flow

• Simulation Flows

• System Integration and Validation: Integrating and validating the system functional
performance, including timing, resource use, and power closure. Topics in this document that
apply to this design process include:

• System Simulation Methodology

• System Debug Methodology

• Chapter 4: Design Flow

About This Guide
This guide provides a high-level overview of the Versal ACAP as follows:

• Chapter 2: System Architecture: Provides an overview of the Versal ACAP with a summary of
each high-level integrated block, including the purpose of each block and how blocks are
related to each other.

• Chapter 3: System Methodology: Provides high-level methodology recommendations.

• Chapter 4: Design Flow: Describes the Xilinx design tools and supported design flows
available for Versal ACAPs.

• Chapter 5: System Migration: Provides high-level system migration recommendations as well
as block-by-block migration information for designs targeting the Versal ACAP.

• Appendix A: Primitives: Provides information on Versal ACAP primitives.

Chapter 1: Overview

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=7

Chapter 2

System Architecture
The Xilinx® Versal™ ACAP is a collection of programmable resources that work together to form
a system on chip (SoC). Following are the major resource blocks:

• AI Engine

Note: AI Engine availability is device specific.

• Programmable logic (PL)

• Network on chip (NoC)

• High-speed I/O (XPIO)

• Integrated memory controllers LPDDR4 and DDR4 (DDRMC)

• Processing system (PS)

• Platform management controller (PMC)

• Integrated block for PCIe® with DMA and cache coherent interconnect (CPM)

Note: CPM availability is device specific.

• Transceivers (GT)

• High-speed debug port (HSDP)

Versal ACAP applications can exploit the capabilities of each of these resources. To create or
migrate a design to a Versal ACAP, you must identify which resources best satisfy the different
needs of the application and partition the application across those resources.

The following figure shows the layout of the Versal ACAP.

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=8

Figure 1: Versal ACAP Layout

AI Engines or XPIO & Memory Controllers

XPIO & Memory Controllers

Serial
Transceivers

PS, PMC, CPM

Serial
Transceivers

Logic,
DSP & Memory

NoC

N
oC

N
oC

NoC

Co
nn

ec
tiv

ity
 IP

Co
nn

ec
tiv

ity
 IP

X22326-062920

The following sections provide a summary of the blocks that comprise the Versal architecture.
For detailed information on these blocks, see the Versal Architecture and Product Data Sheet:
Overview (DS950).

AI Engine
The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high
compute density to accelerate the performance of any application. Given the AI Engine's
advanced signal processing compute capability, it is well-suited for highly optimized wireless
applications such as radio, 5G, backhaul, and other high-performance DSP applications.

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=9

AI Engines are an array of very-long instruction word (VLIW) processors with single instruction
multiple data (SIMD) vector units that are highly optimized for compute-intensive applications,
specifically digital signal processing (DSP), 5G wireless applications, and artificial intelligence (AI)
technology such as machine learning (ML).

AI Engines provide multiple levels of parallelism including instruction-level and data-level
parallelism. Instruction-level parallelism includes a scalar operation, up to two moves, two vector
reads (loads), one vector write (store), and one vector instruction that can be executed—in total, a
7-way VLIW instruction per clock cycle. Data-level parallelism is achieved via vector-level
operations where multiple sets of data can be operated on a per-clock-cycle basis. Each AI
Engine contains both a vector and scalar processor, dedicated program memory, local 32 KB data
memory, access to local memory in any of three neighboring directions. It also has access to
DMA engines and AXI4 interconnect switches to communicate via streams to other AI Engines or
to the programmable logic (PL) or the DMA. Refer to the Versal ACAP AI Engine Architecture
Manual (AM009) for specific details on the AI Engine array and interfaces.

Programmable Logic
The Versal ACAP programmable logic (PL) comprises configurable logic blocks (CLBs), internal
memory, and DSP engines. Every CLB contains 64 flip-flops and 32 look-up tables (LUTs). Half of
the CLB LUTs can be configured as a 64-bit RAM, as a 32-bit shift register (SRL32), or as two 16-
bit shift registers (SRL16). In addition to the LUTs and flip-flops, the CLB contains the following:

• Carry lookahead logic for implementing arithmetic functions or wide logic functions

• Dedicated, internal connections to create fast LUT cascades without external routing

This enables a flexible carry logic structure that allows a carry chain to start at any bit in the
chain. In addition to the distributed RAM (64-bit each) capability in the CLB, there are dedicated
blocks for optimally building memory arrays in the design:

• Accelerator RAM (4MB) (available in some Versal devices only)

• Block RAM (36 Kb each) where each port can be configured as 4Kx9, 2Kx18, 1Kx36, or
512x72 in simple dual-port mode

• UltraRAM (288 Kb each) where each port can be configured as 32Kx9, 16Kx18, 8Kx36, or
4Kx72

Versal devices also include many low-power DSP Engines, combining high speed with small size
while retaining system design flexibility. The DSP engines can be configured in various modes to
better match the application needs:

• 27×24-bit twos complement multiplier and a 58-bit accumulator

• Three element vector/INT8 dot product

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am009-versal-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=10

• Complex 18bx18b multiplier

• Single precision floating point

For more information on PL resources, see the Versal ACAP Configurable Logic Block Architecture
Manual (AM005), Versal ACAP Memory Resources Architecture Manual (AM007), and Versal ACAP
DSP Engine Architecture Manual (AM004).

NoC
The NoC is a high-speed communication subsystem that transfers data between intellectual
property (IP) Endpoints in the PL, PS, and other integrated blocks, providing unified intra-die
connectivity. The NoC master and slave interfaces can be configured as AXI3, AXI4, or AXI4-
Stream. The NoC converts these AXI interfaces to a 128-bit wide NoC packet protocol that
moves data horizontally and vertically across the device via the HNoC and VNoC respectively.
The HNoC runs at the bottom and top of the Versal ACAP, close to the I/O banks and integrated
blocks (e.g., processors, memory controllers, PCIe interfaces). The number of VNoCs (up to 8)
depends on the device and the amount of DDRMCs (up to 4 DDRMCs). For more information on
the AXI protocol, see the Vivado Design Suite: AXI Reference Guide (UG1037).

The Versal ACAP NoC IP acts as the logical representation of the Versal ACAP NoC. The NoC
main function is to efficiently move data between the DDR controllers and the rest of the device.
The Versal ACAP NoC IP enables multiple masters to access a shared DDRMC with advanced
quality of service (QoS) settings. The AXI NoC IP is required to connect the PS or the PL to the
DDRMC. The AXI NoC IP can also be used to create additional connections between the PS and
the PL or between design modules located in the PL.

For more information on the NoC IP and performance, see the Versal ACAP Programmable
Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313).

XPIO
The XPIO in Versal ACAPs are similar to the high-speed I/O (HPIO) in the UltraScale™
architecture. However, the XPIO are located at the bottom and/or top periphery of the device,
unlike the I/O columnar layout in previous devices. The XPIO provide XPHY logic that is similar
to UltraScale device native mode. The XPHY logic encapsulates calibrated delays along with
serialization and deserialization logic for 6 single-ended I/O ports known as nibble. Each XPIO
bank contains 9 XPHY logic sites and supports up to 54 single-ended I/O ports. The XPHY logic
is used for the integrated DDRMC, soft memory controllers, and custom high-performance I/O
interfaces. For more information on the XPIO, see the Versal ACAP SelectIO Resources Architecture
Manual (AM010).

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am010-versal-selectio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=11

DDRMC
The DDRMC is a high-efficiency, low-latency integrated DDR controller for a variety of
applications, including general purpose central processing units (CPUs) as well as other traditional
field programmable gate array (FPGA) applications, such as video or network buffering.

The controller operates at half the DRAM clock frequency and supports DDR4, LPDDR4, and
LPDDR4X standards up to 4266 Mb/s. The controller can be configured as a single DDR
interface with data widths of 16, 32, and 64 bits, plus an extra 8 check bits when error-correction
code (ECC) is enabled. The controller can also be configured as 2 independent or interleaved
DDR interfaces of 16 or 32 data bits each. The controller supports x4, x8, and x16 DDR4 and
x32 LPDDR4 components, small outline dual in-line memory modules (SODIMMs), unbuffered
DIMMs (UDIMMs), registered DIMMs (RDIMMs), and load-reduced DIMMs (LRDIMMs). The
DDRMC is accessed through the NoC.

In Versal ACAP, the DDRMC is a system-wide, shared resource. It is shared between the PS and
PL via the device-wide, high-performance NoC interface. The NoC IP core can be configured to
include one or more integrated DDRMCs. If two or four DDRMCs are selected, the DDRMCs are
grouped to form a single interleaved memory. In interleaved mode, the application views the
participating DDRMCs as a single unified block of memory. The NoC supports interleaving across
two or four DDRMCs by automatically dividing AXI requests into interleaved, block-sized
subrequests and alternately sending the subrequests to each of the participating DDRMCs.

Note: You must use the NoC to connect between the PL, PS, CPM, or AI Engine and the DDRMC.

For more information on the DDRMC, see the Network on Chip and Integrated Memory Controller
v1.0 LogiCORE IP Product Guide (PG313).

Note: Versal ACAP also supports soft memory controllers in the PL fabric, similar to previous device
families.

CIPS
The PS, PMC, and CPM modules are grouped together and configured using the Control,
Interface, and Processing System (CIPS) IP core as shown in the following figure.

Note: The Versal ACAP includes multiple power domains in the PS, PL and PMC. In the PS, the RPU is in
the in the low-power domain (LPD), and the APU is in the full-power domain (FPD). There are two
implementations of the CPM depending on the target device capability: CPM4 that is compliant with the
PCIe Base Specification Revision 4.0 and CPM5 that is compliant with the PCIe Base Specification Revision
5.0. CPM4 is fully powered by the PL domain while CPM5 is powered by its own dedicated supply
(VCCINT_CPM) as well as the PS LPD.

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=12

Figure 2: System-level Interconnect Architecture

FPD with APU
Arm Cortex-A72

LPD with RPU
Arm Cortex-R5F

HDIO

100G
Ethernet

to CCI

to CCI

GTY x16

PCIe/CCIX
HSDP

GTs

XPIO

DDR Memory
Controller

PS

AI Engine

NPI

NoC
Interconnect LVCMOS

ACE
ACE_LITE

ACP
AXI4

AXI4

AXI4

AXI4

PMC
CFI

PL
 C

on
fig

Stream

CHI

Transceivers

CPM

DSP Engine
CLB
UltraRAM
Block RAM
Clocking

PL
SPD
FPD
LPD
PMC

Power
Domains

MIO

MIO

PLPL

X21692-041720

PS
The PS contains the application processing unit (APU), real-time processing unit (RPU), and
peripherals. The DDRMC is shared between the PS and PL via the device-wide, high-
performance NoC interface.

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=13

APU

The Versal ACAP APU includes a dual-core Arm® Cortex™-A72 processor attached to a 1 MB
unified L2 cache. The APU is designed for system control and compute-intensive applications
that do not need real-time performance. The increased performance of Versal ACAP requires
higher performance from the memory subsystem. To help meet these requirements, the Versal
ACAP includes an increased L1 instruction cache size (32 KB to 48 KB) as well as multiple
DDRMCs and the NoC, which improve the performance of the main memory.

The following table shows the difference between the Cortex-A53 in Zynq® UltraScale+™
MPSoCs and the Cortex-A72 processors in Versal ACAPs.

Table 1: Cortex-A53 and Cortex-A72 Comparison

Cortex-A53 Cortex-A72 Versal ACAP Benefits
Armv8A architecture (64-bit and 32-bit operations) No application code changes required

EL0-EL3 exception levels

Secure/non-secure operation

Advanced SIMD NEON floating-point unit

Integrated memory manager

Power island control

Up to 1500 MHz Up to 1700 MHz Higher frequency

2.23 DMIPS per MHz 5.74 DMIPS per MHz 2 times higher raw performance (per
Arm benchmarks)

3.65 SPEC2006int per GHz 6.84 SPEC2006int per GHz

2-way super scalar 3-way super scalar More efficient instruction cycle

In-order execution Out-of-order execution Higher performance and fewer
memory stalls

Power efficient Improved power efficiency 20% lower power

8-stage pipeline 15-stage pipeline More instructions queued and
executed

Conditional branch prediction Two-level branch prediction Higher cache hits and less memory
fetches

RPU

The Versal ACAP RPU Arm Cortex-R5F processor has faster clocking frequencies than the Zynq
UltraScale+ MPSoC. The Versal Arm Cortex-R5F processor supports Vector Floating-Point v3
(VFPv3) whereas the Zynq UltraScale+ MPSoC Arm Cortex-R5F processor supports VFPv2.

Standard Peripherals

Versal ACAP standard I/O peripherals are located in the low-power domain (LPD) and in the
PMC. The NoC must be configured to provide access to the DDRMC so that the peripherals with
direct memory access (DMA) can access the DDR interfaces.

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=14

The following table shows the difference between the standard peripherals in Zynq UltraScale+
MPSoCs and Versal ACAPs.

Table 2: Standard Peripherals Comparison

Peripheral Zynq UltraScale+ MPSoC Versal ACAP
CAN, CAN-FD 2 controllers with standard CAN 2 controllers with controller area

network - flexible data rates (CAN-FD)

GEM 4 controllers 2 controllers with time-sensitive
networking (TSN) feature

GPIO 1 controller 2 controllers

I2C 2 controllers 2 controllers in LPD (general purpose)
1 controller in PMC (general purpose)

NAND 1 controller N/A

PCIe (Gen1, Gen2) 1 controller N/A

PCIe (Gen3, Gen4) 1 controller Varies by device

SPI 2 controllers 2 controllers

SATA 1 controller N/A

UART 2 controllers with standard UART 2 controllers with Server Base System
Architecture (SBSA)

USB 2.0, 3.0 (host, device, on-the-go) 2 controllers N/A

USB 2.0 (host, device, dual-role
device)

N/A 1 controller

AMBA Specification Interfaces

The PS-PL Arm Advanced Microcontroller Bus Architecture (AMBA) specification interfaces in
the Versal ACAP have similar functionality to Zynq UltraScale+ MPSoCs, as shown in the
following table.

Note: Enabling and disabling the different power domains in the LPD, FPD, and PL enables and disables the
AXI connections to those domains.

IMPORTANT! Because the DDRMC is shared between the PS and PL via the device-wide, high-performance
NoC interface, there are fewer PS-PL AXI interconnects.

Table 3: AMBA Interface Comparison

PS-PL AMBA
Interface Master Coherency

Zynq UltraScale+ MPSoC Versal ACAP
Name Count Name Count

Accelerator
Coherency Port
(ACP)

PL I/O S_AXI_ACP_FPD 1 S_ACP_FPD 1

AXI Coherency
Extensions (ACE)

PL 2-way S_AXI_ACE_FPD 1 S_ACE_FPD 1

PL-to-FPD AXI PL - S_AXI_HPx_FPD 4 S_AXI_HP 1

PL-to-FPD AXI PL I/O S_AXI_HPCx_FPD 2 S_AXI_HPC 1

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=15

Table 3: AMBA Interface Comparison (cont'd)

PS-PL AMBA
Interface Master Coherency

Zynq UltraScale+ MPSoC Versal ACAP
Name Count Name Count

PL-to-LPD AXI PL - S_AXI_LPD 1 S_AXI_LPD 1

FPD-to-PL AXI FPD - M_AXI_HPMx_FPD 2 M_AXI_FPD 1

LPD-to-PL AXI LPD - M_AXI_HPM0_LPD 1 M_AXI_LPD 1

PMC
The PMC subsystem includes the following functions:

• Boot and configuration management

• Dynamic Function eXchange (DFX)

• Power management

• Reliability and safety functions

• Life-cycle management, including device integrity, debug, and system monitoring

• I/O peripherals, including PMC I2C and GPIO

The PMC block executes the BootROM and platform loader and manager (PLM) to handle the
boot and configuration for the PS, CPM, PL, NoC register initialization and settings, and I/O and
interrupt configuration settings. In addition to boot and configuration, the PLM provides life-
cycle management services. The PMC bus architecture and centralized integration enables
significantly faster configuration and readback performance when compared with previous
devices. The following table shows the Zynq UltraScale+ MPSoC blocks that are comparable to
the Versal ACAP blocks.

Table 4: Block Comparison

Zynq UltraScale+ MPSoC Versal ACAP
Configuration security unit (CSU) and platform
management unit (PMU)

PMC

CSU ROM code unit (RCU)

PMU Platform processing unit (PPU)

First stage boot loader (FSBL) and PMU firmware PLM

For more information on the PMC, see the Versal ACAP Technical Reference Manual (AM011). For
more information on the PLM, see the Versal ACAP System Software Developers Guide (UG1304).

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=16

Flash Memory Controllers

The PMC includes three types of flash memory controllers, any of which can be used as a boot
device or by the application. The following table shows the difference between the flash memory
controllers in Zynq UltraScale+ MPSoCs and Versal ACAPs.

Table 5: Flash Memory Controllers Comparison

Peripheral Zynq UltraScale+ MPSoC Versal ACAP
Octal SPI (OSPI) N/A 1 controller

Quad SPI (QSPI) 1 controller 1 controller that does not support
linear address mode

SD/eMMC 2 controllers 2 controllers with the same
functionality and updated DLL

Note: Versal ACAPs can also support secondary boot modes (e.g., Ethernet, USB, etc.). For more
information, see the Versal ACAP System Software Developers Guide (UG1304).

CPM
The Versal architecture includes several blocks for implementation of high performance,
standards-based interfaces built on PCI™-SIG technologies. In Versal ACAPs that contain a CPM,
the CPM provides the primary interfaces for designs following the server system methodology.
As part of the Versal architecture integrated shell, the CPM has dedicated connections to the
NoC over which it can access DDR and other hardened IP. The CPM is configured separately
from the programmable logic, which enables the integrated shell to become operational quickly
after boot without the need to configure the PL. This separate configuration addresses a
common power-up and reset timing challenge imposed by the PCIe specification. Two
implementations of the CPM exist: CPM4 and CPM5.

In Versal ACAPs with an available CPM4, the block is compliant with the PCIe Base Specification
Revision 4.0 and capable of supporting defined line rates up to the maximum of 16 GT/s. CPM4
contains two PCIe controllers with shared access to 16 GTY transceivers, and integrates a single
direct memory access (DMA) controller functionality (either QDMA or XDMA that is user
selectable) associated with CPM PCIe Controller #0. Cache Coherent Interconnect for
Accelerators (CCIX) support in CPM4 complies with CCIX Base Specification Revision 1.0.

In Versal ACAPs with an available CPM5, the block is compliant with the PCIe Base Specification
Revision 5.0 and capable of supporting defined line rates up to the maximum of 32 GT/s. CPM5
contains two PCIe controllers with dedicated access to 16 GTYP transceivers. CPM5 integrates
two DMA controllers (both QDMA) each associated with CPM PCIe Controller #0 and CPM PCIe
Controller #1. CCIX support in CPM5 complies with CCIX Base Specification Revision 1.1.

CPM4 and CPM5 include the following additional components:

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=17

• The coherent mesh network (CMN) forms the CCIX block, which is based on the Arm
CoreLink CMN-600.

• There are two Coherent Hub Interface (CHI) PL interface (CPI) blocks. CPM4 has one L2 cache
instance, and CPM5 has two L2 cache instances. CPI blocks interface with the accelerators in
the PL and perform 512-to-256 bit data width conversion and clock domain crossing into the
internal core clock.

• The non-coherent interconnect block, which interfaces with the PS for access to the NoC and
DDRMC. The interconnect is connected to all of the other sub-blocks via an advanced
peripheral bus (APB) or AXI slave interface for configuration.

• A clock/reset block, which includes a phase-locked loop (PLL) and clock dividers.

CPM availability is device specific. For information, see the Versal Architecture and Product Data
Sheet: Overview (DS950). For more information on CPM, see the Versal ACAP CPM CCIX
Architecture Manual (AM016) and Versal ACAP CPM Mode for PCI Express Product Guide (PG346).

Note: Versal ACAP also supports implementation of subsystems based on PCI-SIG technologies in the PL
fabric, similar to previous device families.

GT
GTs provide several protocols for high-speed interfaces, such as Ethernet and Aurora IP. Versal
ACAP features the XPIPE mechanism to connect the PCIe block to the GT at high speed. XPIPE
and GTs are shared between PL-based IP and PS-based IP (e.g., CPM, Ethernet, Aurora link for
debug, etc.). For Versal ACAP, GT components are updated from Common/Channel to a quad
granularity. For more information on the GT, see the Versal ACAP GTY Transceivers Architecture
Manual (AM002).

HSDP
The heterogeneous nature of the Versal ACAP necessitates a system-level high-bandwidth debug
and trace solution. The high-speed debug port (HSDP) is a new feature in Versal ACAP that
provides unified, at-speed debugging and tracing of the various integrated, fabric-based, and
processor blocks in the device under test (DUT). HSDP functions are accessed via high-speed
GT-based interfaces, such as the integrated Aurora interface in the PS block.

Chapter 2: System Architecture

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 18Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=cpm_wrapper;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=18

Chapter 3

System Methodology
System methodology consists of understanding all of the system requirements based on the
target application. This includes identifying the appropriate Versal™ device with the correct
features (e.g., the number of DDRMC IP, AI Engines, etc.). You must also consider power and
thermal requirements. With the appropriate device selection, the next steps are system design,
including hardware/software co-design of the target application on the device, system
simulation, and bring-up and debug.

The following sections walk through the various steps on the hardware/software co-design and
subsequent steps for simulation and validation of systems designed with Versal ACAP.

System Design Methodology
Versal ACAP is a heterogeneous compute platform with multiple compute engines introduced in
the previous chapter. A wide range of applications can be mapped on Versal ACAP,
predominantly in the areas of signal processing, wireless, machine learning inference, and video
processing algorithms. Versal ACAP offers very high system bandwidth using high-speed serial
I/Os, NoC, DDR4/LPDDR4 memory controllers, and multi-rate Ethernet Media Access
Controllers (MRMACs).

The system applications use mode of Versal ACAP falls in the following key categories:

• Embedded system: embedded processing system with compute acceleration

• Server system: data center host attached compute acceleration

Embedded System Methodology

An embedded system comprises the embedded processor in Versal ACAP and the acceleration
logic built into two key categories of acceleration components, the traditional PL (LUTs, BRAMs,
URAMs, DSPs) and the AI Engines. For Versal ACAP, the embedded compute system comprises
the Arm® Cortex™-A72 and Cortex-R5F processors. The use models in this system category can
range from a sophisticated embedded software stack to a simple bare-metal stack only required
to support programming of the acceleration units.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=19

An embedded system runs a software stack executed on the built-in embedded processor that
serves as an overall control plane for the kernels running on the acceleration units. Data transfer
is managed between the server and Versal ACAP by the Xilinx Runtime (XRT) application
programming interfaces (APIs). These APIs also have function calls for managing the acceleration
units.

Figure 3: Embedded System

Programmable Logic = {LUTs, BRAM, DSP}
(Bit-level processor)

AI Engine Subsystem (Vector Processor)

Acc#1 Acc#2 Acc#N

PCIE
Gen4x16

OR CCIXv1.1

GT I/O
Subsystems

PCIE
Gen4x16

OR CCIXv1.1

GT I/O
Subsystems

Arm Cortex-A72
Subsystem

(Linux/Baremetal)
Acc#1 Acc#2 Acc#N

DDR1 DDR2 DDR3 DDR4

X24152-062920

Server System Methodology

A server system comprises a server class central processing unit (CPU) system (e.g., x86 host,
Arm processor, etc.) to which the Versal ACAP device is attached via PCIe® or a cache coherent
interface, such as CCIX. The application acceleration is implemented on the two key categories of
acceleration components, traditional PL (LUTs, BRAMs, URAMs, DSPs) and the AI Engines. PCIe-
based Versal ACAP platforms are managed by XRT open-source software. XRT provides tools and
APIs for data transfer between server device, acceleration image download (Dynamic Function
eXchange (DFX)), acceleration kernel management, and board management.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=20

Figure 4: Server System

Programmable Logic = {LUTs, BRAM, DSP}
(Bit-level processor)

Host Server
(multi-core
x86/Arm)

AI Engine Subsystem (Vector Processor)

Acc#1 Acc#2 Acc#N

PCIE
Gen4x16

OR CCIXv1.1

PCIe
Gen4x16

or CCIX Rev 1.1

PCIE
Gen4x16

OR CCIXv1.1

GT I/O
Subsystems

Arm Cortex-A72
Subsystem

(Linux/Baremetal)
Acc#1 Acc#2 Acc#N

DDR1 DDR2 DDR3 DDR4

X24153-062920

Embedded and Server System Design Considerations
Following are the key steps in the development flow for embedded and server system designs.
Each step has its unique challenges depending on whether a system is embedded or server
attached.

1. Hardware and software compute acceleration development

a. Accelerator hardware/software co-design

i. Architecture

ii. Datapath and transport layer

iii. Control plane

iv. Memory hierarchy

v. Kernel design and verification

b. Hardware platform design

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=21

c. Design verification

i. Hardware and software co-simulation

ii. Performance validation

d. Timing closure

e. Hardware validation

i. Hardware and software bring-up and validation

ii. System debug

iii. Power and performance validation

2. Software development for effective use of hardware acceleration

a. Boot and OS considerations

b. Software application development

c. Software debug

Hardware and Software Compute Acceleration Development

Accelerator Hardware and Software Co-Design

The following accelerator design steps are common to both embedded and server systems:

1. Architecture

2. Datapath and transport layer

3. Control plane

4. Memory hierarchy

5. Kernel design and verification

Architecture

The primary challenge to resolve as part of system design architecture is power and performance
optimization. Your choice of acceleration hardware, whether PL or AI Engines, depends on the
type of algorithm and data ingress and egress paths. In the case of streaming data ingress and
egress to and from sensors (e.g., LiDAR, RADAR, dual-camera vision systems), data is available to
fabric through high-speed transceivers. This data is aggregated from external protocol interfaces
on AXI4-Stream buses and can be distributed to the PL or AI Engines.

The Scalar Engines (processor subsystem), Adaptable Engines (programmable logic), and
Intelligent Engines (AI Engines) form a tightly-integrated, heterogeneous compute platform.
Scalar Engines provide complex software support. Adaptable Engines provide flexible custom
compute and data movement. Given their high compute density, AI Engines are well suited for
vector-based algorithms.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=22

During this step, you develop a mapping of the core application and of each algorithm to the
most appropriate architectural area (e.g., AI Engine, PS, PL, NoC, DDRMC) in the Versal ACAP.
This consists of mapping all of the major blocks in the application and considering requirements
on these major blocks in terms of bandwidth and availability. This application mapping and design
partition step is manual.

You must consider which architecture is best for which task as follows:

• Scalar processing elements like CPUs are very efficient at complex algorithms with diverse
decision trees and a broad set of libraries. However, these elements are limited in performance
scaling. Application control code is well suited to run on the scalar processing elements.

• Programmable logic can be precisely customized to a particular compute function, which
makes them best at latency-critical real-time applications (e.g., automotive driver assist) and
irregular data structures (e.g., genomic sequencing). However, algorithmic changes have
traditionally taken hours to compile versus minutes.

• The AI Engine processors deliver more compute capacity per silicon area versus PL
implementation of compute-intensive applications. AI Engines also reduce compute-intensive
power consumption by 50% versus the same functions implemented in PL and also provide
deterministic, high-performance, real-time DSP capabilities. Because the AI Engine kernels can
be written in C/C++, this approach also delivers greater designer productivity. Signal
processing and compute-intensive algorithms are well suited to run on the AI Engines.

You can implement additional features, such as clock gating, for regions of the PL and AI Engine
that are not used concurrently. You can handle traditional multi-clock domain fabric design and
datapath clock domain crossing using the same approach that is used with FPGA architectures.

Datapath and Transport Layer

In an embedded design, the primary purpose of the datapath is to capture the dataflow of
interest in the system application. For vision processing systems, the dataflow might include
incoming data from image sensors (e.g., camera, LiDAR, etc.) that is stored in on-chip and off-chip
system memory (e.g., BRAM, URAM, DRAM) to be processed inline. For networking systems, the
dataflow might be a protocol bridge between two standards like Ethernet and Interlaken.

In a server system, the datapath defines the primary dataflow between the server processor
system and the Versal ACAP. There are two key datapath configurations that are available for the
server to attach to the Versal ACAP, PCI Express® or cache coherent interface. The PCI Express
datapath allows standard PCI Express I/O transactions between the server and Versal ACAP. The
datapath also supports more complex DMA transactions for the transfer of larger blocks of
information. The Versal ACAP CPM also includes support for cache coherent interconnect using
a protocol overlaid on the PCIe transport layer and enables a cache coherent view of the server
system memory for all of the accelerators running on Versal ACAP.

The PL accelerators datapath (ingress and egress) is mapped to AXI4-Stream interfaces and
control interfaces, which are mapped to memory-mapped AXI interconnect. The control interface
enables these accelerators to be controlled by the software stack.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=23

Similarly, the AI Engine accelerators datapath is mapped to the AXI4-Stream interfaces. The AI
Engine kernels have a run-time parameter (RTP) interface that enables run-time updates. You can
access the RTP feature through the Xilinx run-time (XRT) APIs.

Control Plane

The control path orchestrates the system control functions, such as accelerator initialization, data
transfer initialization, and acceleration execution. Xilinx recommended using the XRT APIs for
control path design for both embedded and server systems. For more information, see the XRT
Release Notes (UG1451).

Memory Hierarchy

For data-intensive applications that demand high-bandwidth memory, the best approach is to
construct a domain-specific memory hierarchy, such as memory caching from DDR to PL RAMs
(URAM/BRAM). Versal devices can access the DDR memory through the NOCs. The DDR is
connected to the device fabric, and the Arm Cortex-A72 and the AI Engines are connected
through the NoC. Using DMA data movers in the PL, you can coordinate data movement to and
from the hard IP to the DDR, leveraging the intermediate PL RAM stages for caching or data
buffering.

Versal devices provide access to DDR memories using DMAs. The DDR memories are connected
to the device fabric and other hard IP through the hard memory controller and NoC. You can use
DMA data movers in the PL to coordinate data movement to and from the DDR. You can also
configure the NoC for maximum bandwidth using the DDR controllers available on the Versal
device.

Following are additional recommendations:

• Use the NoC compiler to find the optimal solution for a required aggregate bandwidth.

• For data-intensive applications that demand high-bandwidth memory, construct a domain-
specific memory hierarchy, such as memory caching from DDR to PL RAMs (URAM/BRAM).

Kernel Design and Verification

The accelerator kernels are the executable functional block implemented on the Versal ACAP
platform. There are two key types of kernels, AI Engine kernels and PL kernels:

• AI Engine kernels can be designed and simulated in the Vitis™ environment.

• PL kernels designed with register transfer level (RTL) languages can be individually simulated
in the Vivado® tools using AXI Verification IP (VIP).

• PL kernels designed in C/C++/OpenCL™ can be simulated using the Vitis HLS tool.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 24Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1451-xrt-release-notes.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=24

Hardware Platform Design

After the design architecture is complete, the next step is to create a Vitis platform that
comprises several components, including CIPS, NoC, DDR, GTs, AI Engine, etc. Any number of
subsequent designs can leverage a single platform. For more information, see the Vitis Unified
Software Development Platform Documentation.

Design Verification

For information, see System Simulation Methodology.

Timing Closure

All typical timing closure practices that apply to the use of PL resources also apply to the PL in
the Versal ACAP. In addition, with the introduction of the hard AI Engine system that is physically
located above the fabric, the AI Engine compiler provides the directive for AI Engine-PL interface
placement.

Following are general guidelines to improve system-level timing closure issues:

• Leverage RTL and architecture design guidelines to achieve better design performance.

• Use AXI register slices to pipeline the AXI4-Stream datapath and assist the Vivado placer in
spreading the logic in the fabric for better timing closure. The AXI register slice can also be
used to help timing closure on the AI Engine-PL interface.

Software Development

Boot and OS

Versal devices have a centralized PMC that boots the device after power on reset. Versal devices
support different boot modes, including JTAG, SD, eMMC, OSPI, QSPI, SelectMAP, and PCIe
boot modes. Depending on the boot time requirement, you must select the appropriate boot
device.

• For PCIe-based applications where there is a requirement to detect an Endpoint in less than
100 ms of system power on, use a faster boot device like OSPI. The image can be partitioned
so that a minimal boot image boots from the OSPI boot mode in less than 100 ms, and the
larger boot partition can be transferred over PCIe in Tandem PCIe boot mode.

• Use SD and eMMC boot devices for general embedded applications. Use eMMC boot mode
for embedded applications that require higher density.

• Use JTAG boot mode for initial system bring-up and for debug. To enable system debug,
switch to JTAG boot mode by configuring the boot mode register from the TAP chain.

Applications that require device-level security need to implement boot image encryption and
authentication supported by the Versal ACAP hardware. With encryption and authentication
enabled, there is a corresponding increase in the system boot time.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=25

Versal ACAP boot devices support partition fallback to avoid catastrophic boot failure. During a
field upgrade, if the upgraded image has an error, the PLM can fall back to a golden image to
recover the boot mode. The golden image can reside in the same boot device as other upgrade
images.

Select the OS depending on your application-specific use case. For applications requiring buffer
management, locked access, and interrupt handling with multiple processes running in parallel,
use the Linux OS. These applications can leverage the open source Linux framework that
provides higher level abstraction. Typical applications include video, OpenCL, OpenCV, and
networking stacks that can leverage the Linux framework. Xilinx provides Linux run time support
using the Xilinx run time (XRT) stack that handles interrupt management, starting and stopping of
kernels, buffer allocation, and sharing. XRT can interface with higher-level software stacks like
OpenCL, OpenCV, FFmpeg, and Python-based frameworks. One downside of using the Linux-
based stack is the stack overhead, which is not suitable for real-time operations. Also, the Linux
OS requires FPD power to be on. Applications requiring significant power saving can use Arm
Cortex-R5F processor that works in LPD.

Applications that require real-time processing can leverage the Arm Cortex-R5F processors in
Versal ACAP. Arm Cortex-R5F processors are ASIL-C safety compliant. Typical application
mapping involves system monitoring, hardware monitoring, direct hardware control with light
weight stack, and so forth. If the Arm Cortex-R5F processor is targeted for a functional safety
application, Xilinx recommends fitting the application code in the TCM instead of accessing the
code from DDR memory. The Arm Cortex-R5F processor can also work as a co-processor to the
Linux OS, monitoring specific hardware functionality and providing hardware status to the Linux
application. The communication between the Linux OS and RTOS/bare-metal OS on the Arm
Cortex-R5F can happen via the inter-processor interrupt.

Versal devices support virtualization. You can use the same hardware for multiple guest OS using
a hypervisor. There is a longer interrupt processing overhead with virtualized hardware.

For applications that require low latency processing, use dedicated hardware.

Software Application Development

To manage PL accelerators written in C/C++/OpenCL (HLS) or RTL, as well as AI Engine kernels,
Xilinx recommends using the XRT APIs. Any IP that is in the platform must be explicitly managed
by the designer. Any accelerator (PL or AI Engine) linked to the platform using the Vitis linker (v+
+ --link) is best managed by the XRT APIs. Tailor the design architecture to allow the
application to reset the user-defined PL IP to a known good state to be able to handle errors. You
can develop other high-level software applications using OpenCL, similar to previous 16 nm
FPGA SDAccel™ flows. The Vitis tools provide a complete software development environment.

Software Debug

For information, see System Debug Methodology.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=26

System Simulation Methodology
The complexity of Versal ACAPs with its different compute domains challenges traditional FPGA
simulation methods. With traditional FPGA simulation, most of the design can be verified using
logic simulation. With Versal ACAP, the programmable logic is only one of the compute domains,
and the simulation methodology must consider the software domain as well as the AI Engine
domain when used.

The system simulation methodology for Versal ACAP is based on a hierarchical approach. This
methodology acknowledges the need to simulate each compute domain independently, while
also being able to simulate the entire system when appropriate.

The system simulation methodology is built around the following key concepts:

• Scope of the simulation: The simulation can include the entire system or just portions of the
system. Xilinx recommends testing blocks and functions individually before integrating and
simulating them in the entire system. You can use different simulation flows to test the
different compute domains, including the PS, PL, and AI Engine.

• Abstraction of the simulation: In some cases, you can simulate specific functions at different
abstraction levels. This is true of both AI Engine and HLS code, which you can simulate either
as untimed or as cycle-accurate models. This is also the case for specific Versal ACAP
infrastructure blocks, such as the NoC or DDR controllers, which you can simulate as SystemC
transaction-level models (TLM) or RTL models. Abstraction allows you to trade simulation
speed for simulation accuracy.

• Purpose of the simulation: The purpose of each simulation can vary. For example, is the focus
on functional validation or performance measurement? Is the intention to test a single
function or the interactions between multiple functions? Different simulation purposes rely on
different simulation setups and configurations. Purpose is closely related to scope and
abstraction.

Related Information
Simulation Flows

Simulation Recommendations
Following are Versal ACAP simulation recommendations:

• Choose the appropriate simulation flow and abstraction based on the scope and intended
purpose.

• Simulate and verify each component individually before integrating them and running
hardware emulation, including the AI Engine graph, HLS kernels, RTL blocks, hardware
platform, and PS code.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=27

• Reuse test benches and test vectors whenever possible when testing different blocks and
functions. For example, if the output of one block is the input to another block, reusing test
vectors to simulate these two blocks eases the integration process.

• Perform gradual system integration. You do not need to run hardware emulation on the entire
system. Running hardware emulation with a subset of the PS, PL, and AI Engine components
can establish a known foundation, and you can gradually add functionality.

• Simulate and verify every design change. The earlier an issue is caught, the easier it is to
address.

System Debug Methodology
The Versal ACAP includes an HSDP feature that enables enhanced system debug methodology
capabilities. This feature is designed to work in any environment, including the lab, data center,
and edge computing environments.

The HSDP feature consists of a centralized debug packet controller (DPC), which is the packet
processing engine of the HSDP. The packets that are processed by the DPC are referred to as the
debug and trace packets (DTP). These packets are decoded by the DPC to determine the
commands, the destinations, and any potential higher-level flow control and management tasks.
The DPC processes the DTP sent by a host, executes any commands embedded in the packets,
and generates responses that are sent back to the host.

The HSDP DPC can be accessed from any of the following interfaces:

• JTAG interface

• Integrated Aurora via GTs

• PL fabric (using soft Aurora, PCIe, or any other suitable interface)

• PCIe interface

The HSDP feature enables debug of the use cases described in the following sections.

Note: The various APUs and RPUs of the PS can be debugged via the Arm CoreSight™ infrastructure that is
integrated into the PS. The CoreSight infrastructure is accessible via the JTAG-DAP and HSDP interfaces.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=28

Debug via JTAG
The PMC includes a JTAG interface that can be used for both programming and debugging
designs running on the Versal ACAP. The JTAG interface consists of two cascaded blocks: the
debug access port (DAP) and test access port (TAP). The DAP is primarily used to access the
various debug features of the PS and can also be used for low-bandwidth read/write access to
any accessible register and memory location within the address range of the PS. The TAP
interface is primarily used for accessing the device configuration and boundary scan
infrastructure, and also includes instructions for configuring and accessing the HSDP DPC
functionality.

Debug via Aurora
The PS includes an integrated Aurora 64B/66B block that is dedicated for use in accessing the
HSDP function via a high-speed GT-based interface. The Aurora interface to the HSDP DPC
provides bidirectional access to the device from an external host debug/trace cable, allowing for
high-speed debug and trace operations.

Note: The integrated Aurora interface is not available in all Versal ACAPs.

Debug via PL Fabric
The HSDP DPC can also be accessed from the PL fabric. This allows you to integrate HSDP into
your systems using methods other than the dedicated CPM/PCIe pathway, integrated Aurora,
and JTAG.

Debug via PCIe
In data center applications and other PCIe interface-hosted systems, the HSDP DPC can be
accessed via the same PCIe interface in the CPM that is used for host-to-ACAP communication.
You can choose how to map the HSDP function to a PCIe physical function and BAR space. The
HSDP function includes a dedicated HSDP DMA engine that is used to move debug data
between the HSDP and host memory.

Note: CPM availability is device specific. For information, see the Versal Architecture and Product Data Sheet:
Overview (DS950).

Debugging the AI Engine
Every AI Engine in the AI Engine array has a debug interface, which can be used to read/write to
all the individual AI Engine registers. The following files can be read and written over this
interface: scalar register files, vector register files, status registers (for overflow, saturation, etc.),
special registers like stack pointer, and zero overhead loop registers.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=29

Requests for reading and writing AI Engine registers are sent via the AXI4 memory-mapped
(AXI4-MM) interface and are then forwarded to the AI Engine Debug Interface. All the registers
in the AI Engine are mapped on the AXI4-MM. The AXI4-MM interface has a 32-bit read/write
bus. You can specify any AXI4-MM mapped address to read over the AXI4-MM interface. Any
external AXI4-MM master (e.g., PS) can issue a stall signal to a specific AI Engine by writing into
the control/status register. There are independent registers for system control (e.g., normal
program flow) and the debugger. The Vitis System Debugger provides a comprehensive source
code debugger that helps debug AI Engine graphs and kernels.

Events are another important feature of AI Engine debug and performance analysis. Events are
similar to triggers. An event signal is high in the cycle for which the condition associated with
that event is true. Examples of events include Conflict DM bank 0, Lock 11 Released, Floating
point Overflow, and PC event 0. Each event has a unique 7-bit number, and there are up to 128
events in each AI Engine. Following are additional details:

• Event Actions: can be configured to perform a task whenever a specific event occurs.
Examples of event actions include Debug halt core, Single step core, and Increment
Performance Counter.

• Event Broadcast: can be used to send events signals to a neighboring AI Engine and the PL.

• Event Trace Unit: can collect cycle-by-cycle event activity from 8 numbered event signals and
send compressed trace information from the AI Engine array via the AXI4-Stream network.
The Vitis environment allows you to capture specific events from an AI Engine that can be
analyzed in the Vitis Analyzer tool.

Debugging the PS
The DAP supports Arm CoreSight debug and trace of the PS. This includes both secure and non-
secure debug support. The DAP also interfaces to external Arm debug tools via JTAG, according
to Arm debug interface version 5 (ADIv5). TAP has access via JTAG Boundary Scan to the
ERROR_STATUS register containing various error and alarm status bits. The Vitis System
Debugger provides an integrated design environment (IDE) for PS debug with Baremetal and
Linux-based applications.

Chapter 3: System Methodology

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=30

Chapter 4

Design Flow
Xilinx recommends using the Vitis™ and Vivado® tools to create and migrate designs targeted to
Versal™ ACAPs. The design flows are similar to the flows used when targeting previous
architectures.

The Versal ACAP Vitis environment supports a variety of applications that target the following:

• Server systems with the x86 host communicating through PCIe® blocks with a Xilinx®

acceleration platform and with Vitis kernels in the PL and in the AI Engines

• Embedded systems with the PS (Arm® processor-based) host communicating with a Vivado
Design Suite PL design packaged as a hardware platform and with Vitis kernels in the PL and
in the AI Engines

• Embedded systems with the PS (Arm processor-based) host communicating with a Vivado
Design Suite PL design packaged as a hardware platform

The Versal ACAP Vivado tools support creation of hardware platforms and designs either using
the Vivado IP integrator or register transfer level (RTL).

Note: Depending on your design flow, you run either the Vitis or Vivado tools. If you are running the Vitis
tools, the Vivado tools are run automatically at certain points during the flow.

Vitis Environment Design Flow
Versal ACAP designs are enabled by the Vitis tools, libraries, and IP. The Vitis environment lets
you program, run, and debug the different elements of a Versal ACAP AI Engine application,
which can include AI Engine kernels and graphs, PL, high-level synthesis (HLS) IP, RTL IP, and PS
applications. Each domain has its own set of tools and methodologies. For more information, see
the Vitis Unified Software Development Platform Documentation.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 31Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=31

The Vitis environment includes AI Engine tools for programming, debugging, and deploying graph
algorithms, including the aiecompiler, SystemC simulator (aiesimulator), and x86 simulator
(x86simulator). The Vitis compiler (v++ --compile) allows integration of kernels to the graph
running in the PL region of the device or running alongside the graph to define additional
subsystems. The Vitis embedded software development flow (with the system software stack
including PetaLinux) provides support for the PS domain of the embedded processor. The Vitis
environment facilitates the creation and integration of subsystems for each of these domains,
providing standardized interface requirements and data handoff between the different domains.

The Vitis tools take a platform-based approach, separating the essential services provided by the
platform from the user-specific features of the application provided through the subsystems.

Platforms

Platforms come in two halves, the hardware platform and the software platform. The hardware
platform includes the PS, NoC, DDR controllers, primary I/Os, AI Engine array, and any other
user-specified IP blocks. The software platform defines the domains, device tree, and OS.

The platform insulates application developers from the details of low-level infrastructure and lets
them focus on development of a specific subsystem function, such as software, AI Engine graph,
or PL kernel logic. It is common for application developers to start their work by targeting a
standard Xilinx platform before transitioning to a custom platform developed for a specific board
and application. Custom platforms are developed using the Vivado tools.

Subsystems

Subsystems perform well-defined functions within the application. Subsystems are designed,
debugged, and eventually integrated with other subsystems to form the top-level application.
Using this approach, a complete Versal ACAP system is built using a collection of subsystems on
a platform. This approach is similar to designing large FPGA designs.

A subsystem can include PS firmware, AI Engine graphs, and PL kernels. The subsystem is a
standalone functional entity, performing well-defined functions under the supervision and
coordination of the PS or PL. The subsystem always includes controlling software that configures
the system as well as orchestrates the execution of subsystems in the AI Engine and PL fabric. A
subsystem can interact with other subsystems via shared memory and streams.

The PL and AI Engine components of a subsystem are assembled using the Vitis compiler and
linker (v++ --compile and v++ --link), and the PS firmware is integrated with the Vitis
packager (v++ --package).

Note: Currently, the AI Engine domain can only be part of a single subsystem.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=32

Developing independent subsystems allows the concurrent development of multiple subsystems
and integration into the platform. Custom platform development can also occur at the same time
as application development, allowing simultaneous development of the custom application and
the custom platform to deploy the application. The top-level system project comprises multiple
subsystems, whether delivered by one team working on different elements at different times or
by multiple teams working on multiple subsystems to build the system.

Subsystem Methodology
Prior to starting development, you must choose the Versal device that is best suited for your
application and partition the design into functions targeted to the PS, AI Engine, and PL,
depending on the application requirements. At this point, you must have an understanding of the
following:

• System design considerations, such as throughput and latency

• Domain and inter-domain capabilities, including compute and bandwidth

• Data flows and control flows throughout the entire system and the various subsystems

In addition, you must consider the type of platform to target. You must plan and design for the
peripherals and interfaces on the board and the memory resources available on your custom
board.

The following figure shows a subsystem that targets a custom hardware platform.

Figure 5: Custom Hardware Platform Subsystem

Subsystem (PL+ AI Engine Components)

AI Engine
Kernel 1

AI Engine
Kernel 2

AI Engine
Kernel 3

AI Engine
Kernel 4

PL
Kernel

PL
DMA

I/O
Controller

I/O
Controller

DDR
Controller PS

NoC

Firmware

Custom Hardware Platform Subsystem (PS Component)
X24114-070120

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=33

The Vitis design flow is an iterative process that might loop through each step multiple times,
adding layers or elements to the subsystem through subsequent iterations. Teams can iterate
through the early steps more quickly and take more time with later steps, which provide more
detailed performance data.

Following are the recommended steps for creating your design in the Vitis environment.

• Kernel and Graph Development: This step includes the development and functional
verification of application kernels. These kernels can run on the AI Engine domain or the PL
domain.

• Subsystem Assembly and Verification Using Hardware Emulation: This step includes
assembling the AI Engine and PL kernels with the platform as well as building for hardware
emulation using a Xilinx standard platform.

• Subsystem Assembly and Verification on Hardware: This step includes building the subsystem
against the Xilinx standard platform and testing in real hardware on a Xilinx standard board.

• Subsystem Integration on Custom Platform: This step includes building the subsystem against
your custom platform and testing using your custom board.

The Vitis environment design flow makes a distinction between platforms and subsystems, which
insulates subsystem developers from internal platform details and allows them to build fully
functional designs independently. The first three steps of the subsystem design flow assume you
are using Xilinx-provided platforms and you are integrating the subsystem to your custom
platform in the final step. The custom platform is developed using the Vivado Design Suite and
can happen in parallel with the subsystem, which is developed using the Vitis tool flow. This
approach reduces risk and uncertainty and increases the chances of success when integrating the
subsystem with the custom platform.

Kernel and Graph Development
The first step in this design flow includes the development and functional verification of the
individual components of the subsystem: AI Engine graph and PL kernels (HLS and/or RTL).
During this step, these components are typically developed and tested independently from one
another. However, it is possible to use the Vitis environment hardware emulation flow to start
testing the integration of these components.

In this step, verification focuses primarily on functional considerations. Performance information
generated for each component typically assumes ideal I/O patterns and no backpressure with
data always available. However, it is important to make note of the available performance data,
because the system performance is not likely to improve as you progress through your design. Be
sure to meet your performance objectives in each step, starting with the first step in the design
flow.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=34

Developing the AI Engine Graph and Kernels

An AI Engine program comprises a data-flow graph specification written in C++, which consists
of nodes and edges. Nodes represent compute kernel functions, and edges represent data
connections. Kernels in the application can be compiled to run on the AI Engines or in the PL
region of the device. The AI Engine graph specification is compiled using the aiecompiler and
executed with the aiesimulator.

Xilinx recommends gradually refining and testing the graph, slowly progressing from scalar to
vectorized operations. Using scalars, you can target AI Engine tiles without having to code with
intrinsics right away. This allows you to set up your system (e.g., build scripts, functional
correctness, etc.) without having to do low-level AI Engine coding.

The graph is tested with a user-written test bench that drives and manages the graph using the
graph APIs. The test bench and graph APIs serve as the foundation for the development of PS
firmware in later steps. There are multiple methods for getting data into and out of a graph. Run-
time parameters (RTPs) are programmable registers for scalar values. GMIOs provide a direct
connection from the AI Engine to global memory. Streaming connections provide a direct
connection between AI Engine kernels and PL kernels modeled with PLIOs in the simulation. At
this stage in development, file I/O is often the simplest and most effective way to get data into
and out of your graph.

Meeting performance in the aiesimulator at this early stage in the design is not a benchmark of
the final system performance, because performance data is idealistic at this point. The impact of
going out of or into the graph through the PLIOs is difficult to model, which limits the ability to
accurately estimate performance.

Developing PL Kernels with Vitis HLS

PL kernels can be developed using C/C++ code and the Vitis HLS tool. The Vitis HLS tool
simplifies the use of C/C++ functions for implementation as PL kernels in the Vitis application
acceleration development flow.

The Vitis HLS tool automates much of the code modifications required to implement and
optimize the C/C++ code in programmable logic and to achieve low latency and high throughput.
The Vitis HLS tool allows inference of required pragmas to produce the right interface for your
function arguments and to pipeline loops and functions within your code.

Note: Although HLS development is done outside of the AI Engine tool environment, it is possible to
optionally include HLS kernels in the AI Engine graph C++ specification.

The Vitis HLS design flow includes the following main steps:

1. Compile, simulate, and debug the C/C++ algorithm.

2. View reports to analyze and optimize the design.

3. Synthesize the C algorithm into an RTL design.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=35

4. Verify the RTL implementation using RTL co-simulation.

5. Compile the RTL implementation into a compiled object file (.xo), or export to an RTL IP.

For more information, see the Vitis High-Level Synthesis User Guide (UG1399).

Developing PL Kernels with RTL and the Vivado Design Suite

PL kernels can also be developed using RTL kernels and the Vivado Design Suite. This approach is
convenient for hardware engineers that have existing RTL IP, including Vivado IP integrator-
based designs, or prefer creating new functions by writing RTL code.

An RTL kernel is a regular design packaged as Vivado Design Suite IP, but the kernel must comply
with specific interface rules and requirements to be usable in the Vitis environment design flow.
For more information about RTL kernels, see RTL Kernels in the Application Acceleration
Development flow of the Vitis Unified Software Platform Documentation (UG1416).

Creating an RTL kernel follows traditional RTL design guidelines. Xilinx highly recommends that
you create custom test benches and use behavioral simulation to thoroughly verify the RTL code
before packaging and using the code as PL kernels in the Vitis environment design flow. After an
RTL design is fully verified and meets all the requirements for a Vitis kernel, the design can be
compiled into a Vitis kernel object (XO file) using the package_xo command.

Subsystem Assembly and Verification Using
Hardware Emulation
In the second step of this design flow, you gradually assemble subsystem components (PS, PL,
and AI Engine) on top of the target platform and use the Vitis hardware emulation flow to
simulate the integrated system. Hardware emulation is a cycle approximate simulation of the
system. The AI Engine graph runs in the SystemC simulator. RTL behavioral models of the PL run
in the Vivado simulator or a supported third-party simulator. The software code executing on the
PS is simulated using the Xilinx Quick Emulator (QEMU).

The target platform contains all of the necessary hardware and software infrastructure resources
required for the project. It is possible to target a standard Xilinx platform or a custom platform for
your project. At this step in the flow, Xilinx recommends using a standard and pre-verified
platform to reduce uncertainty in the process and focus efforts on the system components (graph
and kernels).

The Vitis linker (v++ --link) is used to assemble the compiled AI Engine graph (libsdf.a)
and PL kernels (.xo) with the targeted platform. The Vitis linker establishes connections between
the AI Engine ports, PL kernels, and other platform resources.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=devrtlkernel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=36

Because this design flow progresses gradually, certain elements might not exist in early iterations.
You might need to terminate unconnected signals, drive signals, or provide sinks. In this case,
unterminated streaming connections between the AI Engine graph and PL kernels (PLIOs and
AXI4-Stream) require the addition of simulation I/Os and traffic generator IP for emulation
purposes, which can be added during the linking process using v++ options.

The Vitis linker automatically inserts FIFOs on streaming interfaces as well as clock domain
converters (CDC) and data width converters (DWC) between the AI Engine and PL kernels as
needed. On the Versal ACAP, the clock on the AI Engine array can run at 1 GHz, but the clock in
the PL region runs at a different, lower frequency. This means there can be a difference between
the data throughput of the AI Engine kernels and the PL kernels based on their clock frequencies.
When linking the subsystem, the Vitis compiler can insert CDCs, DCWs, and FIFOs to match the
throughput capacities of the PL and AI Engine regions.

The Vitis packager (v++ --package) is used to add the PS application and firmware and to
generate the required setup to run hardware emulation. The PS application controls the AI
Engine graph, including how it is loaded, initialized, run, and updated, and the PL kernels. To
control the AI Engine graph, you must use the graph APIs generated by the aiecompiler or the
standard XRT APIs. To control the PL kernels, Xilinx recommends using the standard XRT APIs.
XRT is an open-source library that makes it easy to interact with PL kernels and AI Engine graphs
from a software application, either embedded or x86-based.

Optionally, you can build higher-level functionality on top of the graph and PL drivers. For the PS
subsystem, you write code in this step that did not fully exist in the first step. Drivers or firmware
interact directly with the kernels and a higher-level application that uses these drivers.

You can develop PS firmware, graph drivers, and PL kernels as follows:

• PS firmware: Use the test bench from the first step in the design flow, which drives and
manages the graph using graph APIs.

• Graph drivers: Use the graph APIs to test the graph and to interact with RTPs and GMIOs.

• PL kernel drivers: Use XRT APIs or UIO drivers to interact with the PL kernels.

In this step, most models are cycle accurate. However, some models are only approximate, and
other models are transaction-level models (TLM). PL kernels are simulated using the target clock,
which is not guaranteed to be met during implementation. The interactions between the AI
Engine graph and PL kernels are modeled at the cycle level, but overall accuracy depends on the
accuracy of the patterns produced by the traffic generators and other test bench modules. The
impact of other subsystems or complex I/O interactions cannot be accurately modeled. The
slower performance of the emulation environment limits the number of traffic/vectors that can
be tested.

Note: Meeting performance in hardware emulation is necessary but is not a guarantee of results. Hardware
emulation is cycle approximate with better accuracy in performance than during the first step in the design
flow. However, performance results are still not final at this stage.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=37

Subsystem Assembly and Verification on Hardware
After hardware emulation provides a good view of the subsystem, you can proceed to the
hardware build on a Xilinx standard platform. Targeting a Xilinx standard platform helps to
eliminate some uncertainty from the test environment.

In this step, you are reusing the subsystem from the previous step but are now targeting the
hardware build. Using the Vitis linker, you take the assembled PL kernels through synthesis and
place and route. Using the Vitis packager, you package the PS and AI Engine programs to
generate the required output files to load and run the application on the Xilinx standard
development board.

In the early stages of the design, this step is similar to iterating through Vivado synthesis, place
and route, and timing closure to achieve optimal results. Iterate until the performance objectives
are met, including Fmax, throughput, and resource utilization.

Like the previous two steps of this design flow, this step also allows an incremental approach in
which different components are gradually added to the subsystem and taken to hardware. This
gradual approach allows you to safely build upon previously verified components, which is a
proven strategy to manage design complexity.

From a performance standpoint, running in real hardware gives you more accurate numbers than
running in hardware emulation. Potential sources of differences between this step and the
preceding step include the following:

• Implementation results in potentially lower clock frequency

• More accurate execution profile of control code running on the PS

• More realistic I/O patterns, resulting in more realistic exercising of stalls and back pressure

• Discovery of corner cases that cannot be reached in the slower hardware emulation runs

Subsystem Integration on Custom Platform
In the final step of this flow, all the elements of the subsystem from the preceding step are
integrated and built on the custom platform, which was developed to deploy the application. This
step is similar to the previous step but uses the custom platform instead of a Xilinx platform.

The goal of this step is to meet timing and performance closure on the actual target platform. By
running through Vivado synthesis and place and route, you can address any differences in timing,
utilization, and power that occur when you switch from the Xilinx standard platform to your
custom platform.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=38

This step also allows you to test and debug the custom platform as well as the application and
subsystem. Testing the subsystem with external I/Os means you might encounter some
differences between the previous step and this step in the hardware execution. However, if you
designed your custom platform correctly, the standardized interfaces of the platform can insulate
subsystem testing from such differences.

Vivado Tools Design Flow
The Vivado Design Suite offers multiple ways to accomplish the tasks involved in Xilinx device
design, implementation, and verification. You can use the traditional register transfer level (RTL)
to device configuration design flow. You can also use system-level integration flows that focus on
intellectual property (IP)-centric design and C-based design. Design analysis and verification is
enabled at each stage of the flow. Design analysis features include logic simulation, I/O and clock
planning, power analysis, constraint definition and timing analysis, design rule checks (DRC),
visualization of design logic, analysis and modification of implementation results, programming,
and debugging.

IMPORTANT! Most Versal ACAP designs are created with the Vitis environment design flow and require a Vitis
hardware platform. Xilinx provides standard platforms as starting points, which can be customized and
regenerated by the Vivado IP integrator to better fit the target system application.

System Hardware Design Flow
Xilinx highly recommends using the Vivado IP integrator cockpit for designs that target Versal
ACAPs. The Vivado IP integrator lets you create complex system designs by instantiating and
interconnecting IP cores from the Vivado IP catalog onto a design canvas. The Vivado IP
integrator is designed to simplify Versal ACAP AXI-based IP connectivity.

Vivado IP Integrator

The following sections provide information on significant IP that you can access from the Vivado
IP integrator to create and configure your Versal ACAP design. For usage information and general
hardware platform generation information, see the Vivado Design Suite User Guide: Designing IP
Subsystems Using IP Integrator (UG994).

Versal CIPS IP Core

The CIPS IP allows you to configure the following:

• Device clocking to the PMC, PS, NoC, and optionally, PL

• PS peripherals and their associated I/O

• PS-PL interrupts and cross-triggering

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=39

• CPM (the integrated block for PCIe with DMA and cache coherent interconnect)

• PS and CPM AXI interfaces to NoC and PL

• System Monitor supply and temperature monitoring and alarms

• HSDP for high-speed debugging

Versal AI Engine IP

The AI Engine is configured using the AI Engine IP, which lets you define the number of:

• AXI4-Stream master and slave interfaces to and from the AI Engine and PL

• AXI4-Stream clock ports for the PL and NoC channels

• Memory-mapped AXI interfaces to and from the AI Engine to the NoC

• Events being triggered and monitored both from AI Engine and the PL

Note: AI Engine IP is used only for custom platform creation.

Versal AXI NoC IP

The NoC is configured using the AXI NoC IP. The IP acts as logical representations of the NoC.
The AXI NoC IP supports the AXI memory-mapped protocol, and the AXIS NoC IP supports the
AXI4-Stream protocol. A Versal ACAP design can include multiple instances of each type of IP.

The DDRMC is integrated into the AXI NoC IP. An instance of the AXI NoC can be configured to
include one, two, or four instances of the DDRMC. You must use the NoC IP to communicate
with the integrated DDRMC. During the validate step, the Versal NoC compiler is run on the
unified traffic specification. After validation, the NoC Viewer window allows you to review and
edit the NoC solution.

For configuration details on the NoC and related IP as well as details on the system address map,
see the Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313).

Versal Clocking Wizard

The Versal Clocking wizard generates source RTL code to implement a clocking network matched
to your requirements. This wizard generates the clocking network for all Versal clocking
primitives.

Versal Transceivers Bridge

The Versal ACAP transceivers are highly configurable and tightly integrated with the PL block.
The Versal Transceiver Bridge enables Vivado IP integrator-based design entry for GT-based IP.
This allows you to generate designs that use multiple quads or designs that share quads with
multiple protocol IP. You must use the Advanced I/O planner to add physical GT locations.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 40Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=40

Versal Advanced I/O Wizard

The I/O planning flow for high-performance I/O in Versal ACAP includes significant
improvements from previous devices. The I/O planning flow is unified for both memory and non-
memory interfaces in the Advanced I/O Planner. If you previously generated high-performance
interfaces using the High-Speed SelectIO™ wizard or SelectIO component mode, you must
rebuild the interfaces using the Versal Advanced I/O wizard, which now supports multi-bank
interface generation.

Design Address Map

The Versal ACAP uses a single, unified system address map. All memory-mapped AXI
transactions must adhere to this map. The Versal ACAP system address map defines the default
address locations of slaves in the Versal ACAP. The address map is built into the fabric
interconnect and the NoC. The Vivado IP integrator automatically resolves the base name, offset
address, and range of the address region based on the DDR4 memory options selected in the AXI
NoC IP customization. These addresses are used by the AXI master to communicate with the
DDR. You use the Vivado IP integrator Address Editor to select or automatically assign compliant
addresses for all the memory-mapped blocks within the design. For configuration details on the
NoC and related IP as well as details on the system address map, see the Versal ACAP
Programmable Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide
(PG313).

RTL Design Flow
The RTL design flow is provided for designers that do not want to use Vivado IP integrator. If you
choose not to use Vivado IP integrator, essential automation related to the CIPS and NoC IP is
not available, including the following:

• PS functions (e.g., Arm cores)

• Automation across all blocks connected to CIPS and NoC

• Connection automation between CIPS and NoC

In a pure RTL flow, you can instantiate the CIPS IP primarily for accessing device configuration
features and use the NoC to exclusively connect several AXI masters in the PL to one or several
DDRMC IP. Alternatively, you can use Vivado IP integrator to integrate and configure the CIPS IP
and NoC IP together, specify the interface to the rest of the design, and instantiate the resulting
block design in the top-level RTL. Although the final method allows access to all Versal ACAP
advanced hardware features, the design must maintain both the RTL and the block design in
parallel when making any functionality or connectivity change.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=41

Vivado IP Catalog

The following sections provide information on essential IP that you can access from the Vivado
IP catalog to create and configure your Versal ACAP design.

Versal CIPS IP

The CIPS IP allows you to configure the following:

• Device clocking to the PMC, PS, NoC, and optionally, PL

• PS peripherals and their associated I/O

• PS-PL interrupts and cross-triggering

• CPM (the integrated block for PCIe with DMA and cache coherent interconnect)

• PS and CPM AXI interfaces to NoC and PL

• System Monitor supply and temperature monitoring and alarms

• HSDP for high-speed debugging

Versal AXI NoC IP

Depending on your design, you can use the IP in one of the following ways:

• In designs with fabric-based logic that access the DDRMC, you can use the AXI NoC IP from
the Vivado IP catalog.

• In designs where the DDR memory is shared across the PL and the PS, you must use the
Vivado IP integrator design flow to create a block design (BD) with at least both CIPS and AXI
NoC IP and instantiate the BD in the RTL design.

The NoC is configured using the AXI NoC IP. The IP acts as logical representations of the NoC.
The AXI NoC IP supports the AXI memory-mapped protocol, and the AXIS NoC IP supports the
AXI4-Stream protocol. A Versal ACAP design can include multiple instances of each type of IP.

The DDRMC is integrated into the AXI NoC IP. An instance of the AXI NoC can be configured to
include one, two, or four instances of the DDRMC. You must use the NoC IP to communicate
with the integrated DDRMC. During the validate step, the Versal NoC compiler is run on the
unified traffic specification. After validation, the NoC Viewer window allows you to review and
edit the NoC solution.

For configuration details on the NoC and related IP as well as details on the system address map,
see the Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313).

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=42

Versal Clocking Wizard

The Versal Clocking wizard generates source RTL code to implement a clocking network matched
to your requirements. This wizard generates the clocking network for all Versal clocking
primitives.

Versal Transceivers Wizard

The Versal ACAP transceivers are highly configurable and tightly integrated with the PL block.
The Versal Transceivers wizard automatically generates XDC file templates that configure the
transceivers and contain placeholders for transceiver placement information. This wizard also
supports generating example designs to simulate key features like rate switching and quad
sharing across various protocols.

Note: The Vivado IP integrator is recommended for designs sharing GT quads.

Versal Advanced I/O Wizard

The I/O planning flow for high-performance I/O in Versal ACAP includes significant
improvements from previous devices. The I/O planning flow is unified for both memory and non-
memory interfaces in the Advanced I/O Planner. If you previously generated high-performance
interfaces using the High-Speed SelectIO™ wizard or SelectIO component mode, you must
rebuild the interfaces using the Versal Advanced I/O wizard, which now supports multi-bank
interface generation.

Design Address Map

The Versal ACAP uses a single, unified system address map. All memory-mapped AXI
transactions must adhere to this map. The Versal ACAP system address map defines the default
address locations of slaves in the Versal ACAP. The address map is built into the fabric
interconnect and the NoC. The Vivado IP integrator automatically resolves the base name, offset
address, and range of the address region based on the DDR4 memory options selected in the AXI
NoC IP customization. These addresses are used by the AXI master to communicate with the
DDR. You use the Vivado IP integrator Address Editor to select or automatically assign compliant
addresses for all the memory-mapped blocks within the design. For configuration details on the
NoC and related IP as well as details on the system address map, see the Versal ACAP
Programmable Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide
(PG313).

Implementation
You must use Vivado tools for synthesis and implementation. The Versal ACAP includes new
primitives that the Vivado synthesis tool infers.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 43Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=43

Design closure techniques related to the device fabric are similar to previous device families. In
addition to considerations for timing, congestion, and wirelength, the placer calls the NoC
compiler again to account for modified NoC port location constraints or for merging traffic in
Dynamic Function eXchange (DFX) mode while meeting the original QoS requirements, as shown
in the following figure.

Figure 6: NoC Compiler Flow

Design Creation

Connectivity & QoS

NoC Compiler

Performance Analysis

Synthesis

Place NoC Compiler

Route

IP Integrator

X21272-060320

Related Information
Primitives

Power and Thermal
Use the Versal ACAP Xilinx Power Estimator (XPE) to estimate power requirements. XPE is a
powerful tool for getting early power estimates for your design. The Versal ACAP version of XPE
is similar to the XPE for previous devices but includes various enhancements, including a new
Power Design sheet with voltage regulator assignment and decoupling capacitor
recommendations. In addition, XPE can import data files from the AI Engine Compiler and NoC
Compiler with accurate resource information for power estimation.

Note: AI Engine Compiler data is not simulation based and is an estimation from the tool.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=44

Versal devices are available in both lidded and lidless packaging. Where possible, Xilinx
recommends lidless packaging, which offers an optimized thermal solution that minimizes
thermal resistance and provides the most effective Theta Ja possible. From the XPE Power
Design sheet, you can access Xilinx-provided thermal models that support Siemens Simcenter
Flotherm and Ansys Icepac. For verified power delivery solutions for Versal ACAP, see the Power
page on the Xilinx website.

I/O Planning
For Versal ACAP, the I/O planning flow for high-performance I/O differs from previous devices,
and the I/O planning flow for low-performance I/O (e.g., below 500 Mb/s) remains the same.

XPIO

The high-performance I/O in Versal ACAP is known as XPIO. The XPIO are located at the bottom
periphery of the device, unlike the columnar I/O architecture found in previous devices. XPIO
ports that exist below the PS on the left side of the device and below the GTs on the right side of
the device are known as corner I/O. Corner I/O have limited use, such as for the integrated
DDRMC and limited clocking. For more information on corner I/O, see the Versal ACAP Packaging
and Pinouts Architecture Manual (AM013).

The XPIO provide XPHY logic that is similar to UltraScale™ device native mode. The XPHY logic
encapsulates calibrated delays along with serialization and deserialization logic for 6 single-ended
I/O ports known as nibble. Each XPIO bank contains 9 XPHY logic sites and allows for up to 54
single-ended I/O ports. The XPHY logic is used for the integrated DDRMC, soft memory
controllers, and any high-performance I/O interfaces.

IMPORTANT! Individual component mode cells, such as IDELAY, ODELAY, ISERDES, OSERDES, IDDR, and
ODDR, are eliminated for high-performance interfaces. The ISERDES and OSERDES primitives are not
supported in the Versal architecture, but similar functionality is supported through the XPHY logic.

Uncalibrated IDELAY, ODELAY, IDDR, and ODDR, known as I/O logic (IOL), exist in both XPIO
and HDIO banks to support legacy low-performance interfaces operating at 500 Mb/s and
below.

The I/O planning flow for high-performance interfaces is different from previous architectures
due to the use of XPHY logic. If you previously generated high-performance interfaces using the
Xilinx Memory Interface Generator, High-Speed SelectIO wizard, or SelectIO component mode,
you must rebuild the interfaces using Versal IP wizards.

The following table shows how the high-performance UltraScale device I/O generation maps to
the Versal device I/O generation.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 45Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=power+central
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=45

Table 6: Device I/O Generation Comparison

UltraScale Device I/O Generation Versal ACAP I/O Generation
Soft memory controllers Integrated DDRMC via the Versal NoC IP

Soft memory controllers

High Speed SelectIO Wizard Versal Advanced I/O Wizard

UltraScale Component Mode

• High-performance interfaces

• Calibrated IDELAY, ODELAY, ISERDES, OSERDES, IDDR,
and ODDR

Versal Advanced I/O Wizard

UltraScale Component Mode

• Low-performance interfaces (500 Mb/s and below)

• Uncalibrated IDELAY, ODELAY, IDDR, and ODDR

I/O logic instantiated in RTL

After you regenerate the IP for the Versal ACAP, you can perform I/O planning using the
Advanced I/O Planner, which is similar to soft memory controller I/O planning flow for UltraScale
devices. The Advanced I/O Planner guides you through the process of mapping your interfaces
to the desired XPIO banks using the XPHY logic, ensuring that your high-speed interfaces are
legally mapped to the XPHY logic. For more information, see the Advanced I/O Wizard LogiCORE
IP Product Guide (PG320).

Xilinx recommends I/O planning high-speed interfaces in the following order to achieve the
maximum utilization of available XPHY logic resources:

1. Integrated DDRMC via NoC

2. Soft memory controllers

3. Advanced I/O wizard

4. I/O logic

For information, see the following documents:

• For DDR4 and LPDDR4 pinout rules, see the Versal ACAP Programmable Network on Chip and
Integrated Memory Controller LogiCORE IP Product Guide (PG313).

• For information on the Advanced I/O wizard, see the Versal ACAP SelectIO Resources
Architecture Manual (AM010).

High-Density I/O

The low-performance I/O in Versal ACAP are known as high-density I/O (HD I/O). The HD I/O
support a subset of the UltraScale device component mode primitives through uncalibrated
IDELAY, ODELAY, IDDR, and ODDR primitives known as I/O logic. HD I/O maintain the
columnar I/O architecture found in previous devices.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=advanced_io_wizard;v=latest;d=pg320-advanced-io-wizard.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am010-versal-selectio.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=46

The I/O planning flow for HD I/O is unchanged from previous architectures. You can continue to
instantiate the I/O logic primitives in your HDL code. The tools support an XDC-based
constraints flow for assigning PACKAGE_PIN constraints. As with previous architectures, you can
drag and drop from the I/O Ports window onto the Package window. In addition, you can move
I/O logic primitives between HD I/O banks and XPIO banks in the Versal ACAP.

IMPORTANT! The voltage ranges between XPIO and HD I/O do not overlap. XPIO supports a lower range of
voltage than HD I/O.

Clocking
The Versal ACAP clocking architecture introduces some hardware improvements and changes
from the UltraScale architecture. For detailed architecture information, see the Versal ACAP
Clocking Resources Architecture Manual (AM003).

Design Closure
The Versal architecture introduces new hardware features that require additional considerations
to reach design closure, including timing and performance closure.

Simulation Flows
To address the different needs in simulation scope, abstraction, and purpose, Xilinx provides
dedicated flows for the various components of a Versal ACAP design, including the AI Engine, PS,
and PL. The hardware emulation system simulation flow also allows for simulating the entire
system in a single setup.

AI Engine Simulation
AI Engine simulation tests code running on the Versal AI Engines. The scope of this simulation is
an arbitrary number of AI Engine graphs and kernels, and you can include PL kernels inside the
graph modeled in C++ or SystemC. Two abstractions are supported, untimed and cycle-
approximate, providing a trade-off between simulation speed and accuracy. The purpose of this
simulation is to verify the functional correctness of the code and to validate performance in a
standalone context, independently of interactions with other functions.

AI Engine simulation is available through the Vitis unified software platform.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=47

HLS Simulation
HLS simulation exclusively tests HLS code and is an integral part of the HLS development
process. The scope of this simulation is a single HLS kernel. Two abstractions are supported,
untimed and RTL (cycle-accurate). These two abstractions are referred to as Csim and Cosim
respectively. In the Cosim flow, the output of RTL code generated by the HLS compiler is
automatically compared against the output of the original C code. The purpose of this flow is to
verify the functional correctness of the RTL and to validate performance in a standalone context,
independently of interactions with other functions.

HLS simulation is available through the Vitis unified software platform. For more information, see
the Vitis High-Level Synthesis User Guide (UG1399).

Embedded Software Simulation
Embedded software simulation tests a software design that targets only the PS. It is based on the
Quick Emulator (QEMU), which emulates the behavior of the dual-core Arm® Cortex™-A72
integrated in the Versal ACAP device. This simulation enables a fast, compact functional
validation of the platform OS. This flow includes a SystemC transaction-level model of the
system, which allows for early system exploration and verification.

Embedded software simulation is available through the Vitis unified software platform.

Logic Simulation
Logic simulation tests a hardware design targeting the PL fabric and is the traditional FPGA
simulation flow. The scope of this simulation is scalable, ranging from individual hardware blocks
to the complete hardware platform. The simulated models are generally RTL, making the
abstraction cycle-accurate. Simulation speed is proportional to the size of the test design, and
larger designs take comparatively longer to simulate. To improve simulation performance, you can
replace some Versal ACAP IP blocks with SystemC transaction-level models, which simulate
faster but are no longer be cycle-accurate. The purpose of this simulation is to verify and debug
detailed hardware functionality before implementing the design on the device.

Logic simulation is available through the Vivado Design Suite. For more information, see the
Vivado Design Suite User Guide: Logic Simulation (UG900).

Hardware Emulation
Hardware emulation simulates a complete Versal ACAP system composed of the AI Engine, PS,
and PL. Using the Vitis software platform, you can integrate blocks and functions targeting all
three compute domains. The Vitis linker automatically generates a complete co-simulation setup
involving RTL, SystemC, and QEMU models:

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=48

• Embedded software code running on the PS is emulated using QEMU.

• Code running on the AI Engines is emulated using the SystemC AI Engine simulator.

• User PL kernels are simulated as RTL code.

• IP blocks in the hardware platform are simulated either as RTL or SystemC TLM, based on the
types of models available or selected.

As a result, the abstraction of the Vitis hardware emulation is very close to but not fully cycle-
accurate. Some details of the Versal ACAP platform are abstracted with TLM models for
simulation speed purposes.

The scope of the Vitis hardware emulation also defines its purpose. Hardware emulation allows
you to simulate the entire design and test the interactions between the PL, PS, and AI Engine
prior to implementation. Because hardware emulation provides full debug visibility into all
aspects of the application, it is easier to debug complex problems in this environment than in real
hardware.

Hardware emulation is available through the Vitis unified software platform. For more
information, see Vitis Unified Software Platform Documentation: Application Acceleration
Development (UG1393).

Boot and Configuration
Versal ACAPs have a centralized PMC subsystem responsible for the boot-up process, security,
power management, and integrated debug. The Versal ACAP includes a separate power domain
for the PMC that must be powered and must perform boot-up prior to configuring the PL, NPI,
and PS elements. Versal ACAP uses the BootROM and PLM for booting.

If you are migrating from UltraScale+™ device families, consider the following:

• UltraScale+ device designs: These devices contain integrated configuration logic that supports
a set of configuration modes on power-up. With Versal ACAP, there are changes to the boot
and configuration flows.

• Zynq UltraScale+ MPSoC PS designs: Zynq® UltraScale+™ MPSoCs have a PMU and CSU to
manage and carry out the boot-up process. There are changes in the boot flow methodology.

Note: For more information, see the Versal ACAP Technical Reference Manual (AM011).

The following table compares the boot and configuration modes of UltraScale+ devices with
Versal ACAP.

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=49

Table 7: Boot Mode Comparison

Mode Virtex UltraScale+ or
Kintex UltraScale+ FPGA

Zynq UltraScale+ MPSoC
or Zynq UltraScale+ RFSoC Versal ACAP

JTAG Yes Yes Yes

OSPI No No Yes

QSPI32 Yes Yes Yes

QSPI24 Yes Yes Yes

SelectMAP Yes No Yes1

eMMC1 (4.51) No Yes Yes

SD1 (3.0) No Yes Yes

SD1 (2.0) No Yes Yes

SD0 (3.0) No No Yes

SD0 (2.0) No Yes No

PJTAG_0 No No No

PJTAG_1 No Yes No

Serial Yes No No

BPI Yes No No2

NAND No Yes No2

USB (2.0) No Yes No

Notes:
1. SelectMAP mode provides hardware flow control using a BUSY signal.
2. Octal SPI and eMMC1 modes supersede the BPI and NAND modes used in previous architectures. Octal SPI and

eMMC1 modes provide similar performance while reducing pin count.

Programmable Device Image
The Versal ACAP PMC uses a proprietary boot and configuration file format called the
programmable device image (PDI) to program and configure the Versal ACAP. The PDI consists of
headers, the PLM image, and design data image partitions to be loaded into the Versal ACAP. The
PDI also contains configuration data, ELF files, NoC register settings, etc. The PDI image is
programmed through the PMC block by the BootROM and PLM.

IMPORTANT! The Vivado tools require the CIPS IP to be present in the design to create the PDI image. For
pure RTL designs, access the CIPS IP in the Vivado IP catalog and instantiate the CIPS IP using the default
configuration to enable the PDI creation.

For information on the differences between the Versal architecture and previous device
architectures, see the Versal ACAP Technical Reference Manual (AM011).

Chapter 4: Design Flow

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=50

Chapter 5

System Migration
When you migrate designs to Versal™ ACAP from the UltraScale™ architecture, the Xilinx® tools
can only automatically migrate some of the PL primitives and integrated IP blocks due to the
functional and connectivity differences. Partial migration is possible but generally leads to sub-
optimal hardware and application performance. Therefore, Xilinx recommends using the
following steps instead:

• Rearchitect any high-bandwidth connections between major blocks to use the NoC instead of
the PL-based AXI Interconnect or similar IP.

• Reduce PL logic by leveraging all new integrated blocks, such as the integrated memory
controller, DMA, and AI Engine.

• Replace instantiated PL primitives from previous architectures with the equivalent RTL
descriptions or XPMs (e.g., memory blocks, DSPs, carry logic, multiplexers, etc.).

• Regenerate or recreate all IP blocks.

• Resynthesize the complete design instead of migrating netlists created for previous
architectures.

Any portion of the design that is automatically migrated must be carefully reviewed to ensure
that the application's performance, resource, and power will be met.

The following table shows the blocks for which automatic migration is available.

Table 8: Block Migration Support

Block Automated
Soft memory controllers No

GT No

AXI Interconnect No

Power and error handling No

System monitor (SYSMON) No

DSP Yes

On-chip memory (OCM) resources (block RAM and
UltraRAM)

Most

Configurable logic block (CLB) Yes

System debug No

Processor and peripherals No

I/O Some

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=51

Table 8: Block Migration Support (cont'd)

Block Automated
PCIe subsystem Some

Tandem PCIe interfaces No

PL configuration and JTAG No

IMPORTANT! If your existing design contains blocks that are discontinued in Versal ACAP, you must manually
migrate these blocks to a corresponding Versal ACAP block. For details, see the appropriate Versal Architecture
Manual.

For designs migrating from Kintex® UltraScale™ or Virtex® UltraScale™ devices, the CIPS IP must
be added to enable essential functionality, such as device configuration and hardware debug
features. Other designs migrating from Zynq® UltraScale+™ MPSoCs are expected to already
have a PS block.

Soft Memory Controllers
If your previous design used soft memory controller IP, you can either use the Versal ACAP soft
memory controller IP or the integrated DDRMC. Xilinx recommends using the integrated
DDRMC rather than using the Versal ACAP soft memory controller IP. In Versal ACAP, you can
use the integrated DDRMC only via the NoC. The NoC and DDRMC have very high bandwidth
but generally have a higher latency than a standalone soft memory controller. For some I/O
banks, only the integrated DDRMC is supported. For more information on the DDRMC, see the
Versal Architecture and Product Data Sheet: Overview (DS950).

If you are using the soft memory controller IP, you must regenerate the IP for Versal ACAP. In
Versal ACAP, an I/O bank comprises nine nibbles, and each nibble has six pins. Depending on the
device and package, some I/O banks or some nibbles in an I/O bank are dedicated for the
integrated DDRMC. Soft memory controllers cannot use these dedicated pins. Pins dedicated for
the integrated DDRMC are designated as YES in the package file under the column named
DDRMC ONLY. The soft memory controllers can only use pins designated as NO.

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 52Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=52

GT
For Versal ACAP, GT components are updated from Common/Channel to a quad granularity. To
enable some of the GT sharing use cases, GT wizard flows are modified to use the Vivado® IP
integrator. Use the Vivado IP integrator to build system designs and Advanced I/O planner to add
physical GT locations. This results in some manual migration effort for most of the non-Xilinx GT-
based IP. When migrating your design, you must be aware of the full GT quad layout and
supported configuration options. For detailed architectural differences, see the Versal ACAP GTY
Transceivers Architecture Manual (AM002).

AXI Interconnect
The soft IP AXI Interconnect is fully replaced by a combination of the integrated NoC resources
and SmartConnect IP. When migrating your design, first consider using NoC resources for all
memory access pathways as well as to reduce PL resource utilization and support the high-
bandwidth connections. You can then use SmartConnect to accommodate some conversions
onto the NoC or to offload traffic from a fully-utilized NoC network. When migrating your design
to NoC resources, Xilinx strongly recommends using Vivado IP integrator for the instantiation
and configuration of the NoC IP. For more information, see the Versal ACAP Programmable
Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313) and
SmartConnect LogiCORE IP Product Guide (PG247).

Power and Error Handling
Zynq UltraScale+ MPSoCs have some power modes that can be mapped to the power modes in
Versal ACAP. Because the DDR is shared in the Versal ACAP, the DDR power modes, including
DDR self refresh and system power domain switching, are handled in the PLM. Zynq UltraScale+
MPSoCs had error handling that was bound to the PS. In Versal ACAP, the PS handles its own
errors but sends a summary to the PMC if action is required by the PMC. Errors from the DDR,
PL, and SYSMON are handled by the PMC in Versal ACAP instead of the PS. For detailed
architectural differences, see the Versal ACAP Technical Reference Manual (AM011).

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=53

System Monitor
The Versal ACAP provides system monitoring capabilities similar to UltraScale+ devices. In
UltraScale+ device designs you instantiated the SYSMON IP on the PL side and used the System
Management wizard to set up the register configuration for instantiation in the hardware
description language (HDL). In Versal ACAP, you configure the System Monitor settings in the
CIPS IP core. To migrate your design, you must manually remove the SYSMON IP from the
design. Xilinx recommends configuring the System Monitor using the CIPS IP. For more
information, see the Versal ACAP System Monitor Architecture Manual (AM006).

DSP
The Versal ACAP includes the DSP58 slice, which is a superset of and backward compatible with
the UltraScale+ device DSP48E2 slice. In addition, the Versal ACAP DSP Engine supports floating
point operations in a single DSP58 slice and can combine two back-to-back DSP58 slices with
dedicated interconnect to build an 18-bit complex multiplier or complex multiply-accumulate
(MACC). The DSPFP32 mode in Versal ACAP is supported through the Floating-Point Operator
IP. If you want to use this mode, update the Floating- Point Operator IP in your migrated design.

Xilinx supports automated migration of designs with DSP slices by inferring the appropriate
internal Versal ACAP legacy primitive (DSP48E5) for the DSP slices. Register-transfer level (RTL)
instantiations are also automatically migrated. When migrating inferred code, Xilinx supports
automatic migration using the same templates and resources. However, inference templates for
previous architectures do not automatically update to take advantage of the new modes of
operation in the DSP58 (e.g., DSPCPLX). Xilinx recommends manual migration to take advantage
of the new features in the Versal ACAP DSP58 slice for superior performance.

For detailed architectural differences, see the Versal ACAP DSP Engine Architecture Manual
(AM004).

IMPORTANT! To take advantage of the Versal ACAP potential for increasing performance, consider which
parts of the datapath can be ported from the PL and into the AI Engines.

Related Information
DSP Primitives
AI Engine

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=54

On-Chip Memory Resources
Block RAM and UltraRAM used in designs from previous architectures are automatically migrated
by inferring the appropriate Versal ACAP block. RTL instantiations are also automatically
migrated. If certain block RAM and UltraRAM configurations are not supported in Versal ACAP, a
critical warning message is issued and the instance is converted to a black box element. The
design must be changed to adhere to the supported configurations for Versal ACAP. Xilinx
recommends that you examine the configuration settings after design migration to ensure the
correct defaults and settings were automatically selected. Xilinx recommends using Xilinx
parameterizable macros (XPMs) to infer FIFOs and other memories. Integrated FIFOs are not
supported in Versal ACAP. In the Vivado IP integrator flow, the Embedded Memory Generator
and Embedded FIFO Generator replace the Block Memory Generator and FIFO Generator IP. The
migration for the Block Memory Generator and FIFO Generator IP is not automatic. For detailed
architectural differences, see the Versal ACAP Memory Resources Architecture Manual (AM007).

Related Information
RAM Primitives

CLB
CLBs in Versal ACAP have been enhanced from previous architectures. CLB resources that are no
longer supported in Versal ACAP (e.g., CARRY8, MUXF7, MUXF8, MUXF9, etc.) are
automatically migrated by inferring the appropriate Versal ACAP block. RTL instantiations are
also automatically migrated. For optimal area and timing results, Xilinx recommends that you do
not instantiate CLB UNISIMs that are no longer supported in Versal ACAP and that you re-
synthesize your RTL to infer the appropriate Versal ACAP block. For detailed architectural
differences, see the Versal ACAP Configurable Logic Block Architecture Manual (AM005).

Related Information
CLB Primitives

System Debug
Debugging designs in PL fabric is similar to previous architectures, but there are several key
differences:

• All fabric debug IP cores have AXI4-Stream slave control interfaces. Previous architectures
used a proprietary interface standard.

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am005-versal-clb.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=55

• The debug hub IP core has both AXI4-Stream master control interfaces (for connection to
fabric debug IP cores) and an AXI4-Memory Map slave interface for connection from the host.
Debug hub IP in previous architectures relied on proprietary interfaces for connection to the
debug cores and host.

• The debug flows in the Vivado tools now support both automated and manual connectivity
between debug hub and debug cores.

• The JTAG-to-AXI soft debug IP is no longer offered as an option in the Versal ACAP
architecture. The DAP and DPC can be used to access AXI-based blocks in your design.

• The AXI4-Stream-based integrated logic analyzer (ILA) core supports both ILA and System ILA
functionality. In previous architectures, these were offered as separate IP cores.

When migrating, consider the following:

• Vivado IP integrator: You must manually remove or replace previously instantiated legacy
debug cores. Replace the legacy debug cores with the new AXIS-ILA cores in the block design
using IP integrator.

• Netlist: Xilinx design constraints (XDC) commands for inserting ILA cores into the synthesized
design automatically migrate to the new AXIS-ILA debug IP.

• RTL: Due to the new interface requirements, the fabric debug cores from previous
architectures are not automatically migrated to the new AXI4-Stream-based debug IP cores. If
debug cores from previous architectures are instantiated in the design, new debug IP must be
manually recustomized, regenerated, and reinstantiated in the design.

• IBERT and soft memory controller calibration: The integrated bit error ratio test (IBERT) IP
functionality is part of the GT blocks and can be used with any design that uses the
transceivers. Memory controller calibration debug is available for both DDRMC blocks and for
fabric-based soft memory controller IP.

• Debug Hub: Due to the new interface requirements, the legacy Debug Hub is automatically
inserted into the netlist only if pl0_resetn is enabled on the CIPS. Alternatively, an AXI4
Debug Hub can be manually added.

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=56

Processor and Peripherals
Software stack for bare-metal applications and Linux applications on the PS in Versal ACAP are
similar to Zynq UltraScale+ MPSoCs. Versal ACAP uses the PLM for booting. Zynq UltraScale+
MPSoC designs that target the APU can be migrated to work with the Versal ACAP APU. The
Versal ACAP RPU uses the same Arm® Cortex™-R5F processor with the same GIC as Zynq
UltraScale+ MPSoCs. The functionality and programming models are very similar. UltraScale+
device designs that target the RPU can be migrated to work with the Versal ACAP RPU. When
migrating to Versal ACAP, you must take into consideration the device driver changes,
multiplexed I/O (MIO) configuration, and pinouts. For more information, see the Versal ACAP
Technical Reference Manual (AM011).

I/O
IDDR and ODDR are the only primitives that are automatically migrated.

Related Information
I/O Planning

PCIe Subsystems
The Versal architecture includes several blocks for implementation of high performance,
standards-based interfaces built on PCI™-SIG technologies. In addition to the CPM, the Versal
architecture includes support for implementation of PCIe® interfaces in the PL. PL PCIe are
significantly enhanced implementations of the integrated blocks for PCIe found in previous
architectures. Two implementations of the PL PCIe exist: PL PCIE4 and PL PCIE5.

In Versal ACAPs with available PL PCIE4, the block is compliant with the PCIe Base Specification
Revision 4.0 and capable of supporting defined line rates up to the maximum of 16 GT/s. DMA/
Bridge subsystems for use with the PL PCIE4 are available through the Vivado IP catalog as
additional soft IP. PL PCIE4 does not provide CCIX support.

In Versal ACAPs with available PL PCIE5, the block is compliant with the PCIe Base Specification
Revision 5.0 and capable of supporting defined line rates up to the maximum of 32 GT/s. DMA/
Bridge subsystems for use with the PL PCIE5 are available through the Vivado IP catalog as
additional soft IP. CCIX support in PL PCIE5 complies with CCIX Base Specification Revision 1.1
and enables solutions via additional soft IP.

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=57

Previous designs that use the integrated blocks for PCIe are automatically migrated to Versal
ACAP PL PCIE4 or PL PCIE5. Therefore, most of the configuration selections and IP interfaces
are compatible, and design migration is automated.

If your design needs to be migrated from an integrated block for PCIe in a previous architecture
to a Versal architecture CPM, use the following methods:

• Configure the PCIe subsystem in the CPM using the CIPS IP core.

• Manually map the AXI4 memory-mapped (AXI4-MM) interfaces, including the AXI4-MM
bridge, Xilinx DMA memory-mapped (XDMA-MM) interface, and queue DMA memory-
mapped (QDMA-MM) interface, into the Versal ACAP NoC infrastructure. This requires
setting up various components in the design, such as the NoC, PS, address translation, and
address allocation.

• Manually map RQ/RC/CQ/CC streaming, XDMA streaming, and QDMA streaming interfaces
to Versal CPM PL interfaces. These interfaces are very similar to their respective IP
implementation from previous architectures.

Tandem PCIe configuration is different for Versal ACAP from previous architectures, because
configuration occurs through the PMC rather than through the media configuration access port
(MCAP) and internal configuration access port (ICAP). Currently, you must manually configure
these connections and settings in your design.

Xilinx recommends using the CPM, if available, as the primary PCIe interface for Versal ACAP.
This block has hardened paths to the NoC infrastructure and resources, including the PMC, PS,
and other management resources.

Tandem support for Versal ACAP devices is expected to include CPM-based Tandem PCIe, CPM-
based Tandem PROM, CPM-based DFX over PCIe, and PL-based Tandem PROM. There are no
current plans to support Tandem PCIe for PL-based PCIe controllers.

Note: Additional support is planned to assist with migration for PCIe-based Tandem and Dynamic Function
eXchange solutions.

For more information, see the following documents:

• Versal ACAP CPM CCIX Architecture Manual (AM016)

• Versal ACAP Integrated Block for PCI Express LogiCORE IP Product Guide (PG343)

• Versal ACAP PCIe PHY LogiCORE IP Product Guide (PG345)

• Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

Related Information
CPM

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 58Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_versal;v=latest;d=pg343-pcie-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_phy_versal;v=latest;d=pg345-versal-pci-express-phy.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=cpm_wrapper;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=58

Security
Security is different for Versal ACAP from previous architectures. The root of trust starts with the
PMC ROM, which authentications and/or decrypts the PLM software and can only be loaded
into and run from the platform processing unit (PPU) in the PMC. After the PLM software is
trusted, the PLM handles loading the rest of the firmware and software securely. The following
table highlights the possible secure boot configurations. For more information, see the Versal
ACAP System Software Developers Guide (UG1304) or contact Xilinx.

Table 9: Cumulative Secure Boot Operations

Boot Type

Operations
Hardware Crypto

EnginesAuthentication Decryption
Integrity

(Checksum
Verification)

Non-secure boot No No No None

Hardware root of trust Yes (Required) No No RSA/ECDSA along with
SHA3

Encrypt-only (Forces
decryption of PDI with
eFUSE black key)

No Yes (Required PLM and
Meta Header should

be encrypted with
eFUSE KEK)

No AES-GCM

Hardware root of trust
+ Encrypt-only

Yes (Required) Yes (Required) No RSA/ECDSA along with
SHA3 and AES-GCM

Authentication +
Decryption of PDI

Yes Yes (Key source can be
either from BBRAM or

eFUSE)

No RSA/ECDSA along with
SHA3 and AES-GCM

Decryption (Uses user-
selected key. The key
source can be of any
type such as BBRAM/
BHDR or even eFUSE)

No Yes No AES-GCM

Checksum Verification No No Yes SHA3

PL Configuration and JTAG
The Versal architecture differs from previous architectures for boot and configuration. The PL
configuration and JTAG primitives are not supported in Versal ACAP but similar capability exists
as follows:

• The BSCANE2 primitive is replaced by four TAP user instructions available in the CIPS IP.

• The STARTUPE3 primitive is replaced by the QSPI controllers and MIO in the PMC available in
the CIPS IP.

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 59Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=59

• The DNA and EFUSE_USR are replaced by memory mapped AXI registers that can be read to
get the device DNA or the user-programmable 32-bit eFUSE value. For more information,
including address mapping, see the Versal ACAP Technical Reference Manual (AM011).

Chapter 5: System Migration

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 60Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=60

Appendix A

Primitives
The Versal™ ACAP includes new primitives that the Vivado® synthesis tool infers.

Note: This appendix only covers the Versal ACAP primitives that differ from those in the UltraScale+™
device families.

RAM Primitives
The Versal architecture supports both block RAM and UltraRAM primitives.

Block RAM Primitives
Following are the block RAM primitives in Versal ACAP.

Primitives Supported Aspect Ratios Supported Mode
RAMB36E5 1Kx36

2Kx18
4Kx9

x72 mode when running in simple
dual-port (SDP) mode

RAMB18E5 1Kx18
2Kx9

x36 mode when running in SDP mode

In SDP mode, one address reads the RAM and the other address writes to the RAM. You can use
different clocks for the read and the write, but the address lines must be separate. The following
figure shows an example.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=61

Figure 7: Coding Style for a 512x72 Block RAM in SDP Mode

The following figure shows the schematic for a RAMB36E5.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=62

Figure 8: RAMB36E5

Resets

Following are the types of resets on the block RAM:

• Synchronous reset on the block RAM output, which uses the RESETRAMA or RESETRAMB
pin

• Asynchronous reset on the block RAM output, which uses the ARST_A or ARST_B pin

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=63

Note: If the ARST_A or ARST_B pin is used, the RESETRAMA, RESETRAMB, RSTREGA, and RSTREGB
pins are ignored.

• Synchronous reset that controls the optional output registers of the block RAM, which uses
the RSTREGA or RSTREGB pin

When using asynchronous resets:

• Both the RAM and optional output register must use the same asynchronous reset.

Note: If the optional output register does not use the same reset, it is not inferred into the block RAM.

• The output enables and SRVAL properties are ignored.

• The asynchronous reset can only reset to a 0 value.

The following figure shows the schematic for a RAM that uses an asynchronous reset.

Figure 9: RTL View of RAM Using an Asynchronous Reset

Write Modes

The Versal ACAP block RAMs support the same write modes as UltraScale™ devices and use the
same RTL coding styles:

• WRITE_FIRST outputs the newly written data onto the output bus.

• READ_FIRST outputs the previously stored data onto the output bus.

• NO_CHANGE maintains the previous value of the output bus.

Byte Write Enables

The control ports for byte write enables are the WEA and WEB pins, which vary based on usage:

• RAMB36E5

○ In non-SDP mode, the WEA and WEB [3:0] pins control 4 bytes of either size 8 or 9.

○ In SDP mode, the WEA and WEB [7:0] pins control 8 bytes of size 8 or 9.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=64

• RAMB18E5

○ In non-SDP mode, the WEA and WEB [1:0] pins control 2 bytes of size 8 or 9.

○ In SDP mode, pins WEA and WEB [3:0] pins control 4 bytes of 8 or 9.

Note: Size 9 names 8 bits with 1 parity bit.

Currently, Vivado synthesis only infers byte write RAM if sizes of 8 or 9 are used. In addition,
Vivado synthesis only infers byte write enable RAM if the enables use one-hot state encoding.
For example, in a byte write enabled RAM that is configured as true dual port with a data width
of 36, there are 4 different bytes, but only 1 byte can be written to at a time. To infer the block
RAM, make sure the RTL adheres to these restrictions.

Asymmetric RAMs

For asymmetric block RAMs in Versal ACAPs, use the same coding styles and rules that you use
for asymmetric block RAMs in UltraScale devices. For information on setting up asymmetric
block RAMs, see the Vivado Design Suite User Guide: Synthesis (UG901).

Note: Currently, Vivado synthesis does not support asynchronous reset on asymmetric block RAMs in
Versal ACAPs.

UltraRAM Primitives
Following is the UltraRAM primitive in Versal ACAPs. To instruct Vivado synthesis to infer the
UltraRAM, you must set the RAM_STYLE = “ultra” attribute on the RAM.

Note: Like UltraScale devices, the UltraRAM for Versal ACAPs includes only one clock.

Primitive Supported Aspect Ratios Supported Mode
URAM288E5 4Kx72

8Kx36
16Kx18
32Kx9

Dual port
Single port

Extra Registers

In addition to the optional output registers, the UltraRAM supports input registers on the data
lines. As with block RAMs, you can reset the optional registers either with synchronous or
asynchronous reset signals.

RAM Initialization

You can initialize the UltraRAMs using the INIT_xx attribute on the RAM as follows:

• Verilog: Use the readmemh command.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=65

• VHDL: Set up a function to read an external file in VHDL.

For details, see the Vivado Design Suite User Guide: Synthesis (UG901).

Byte Write Enables

The UltraRAM also supports byte write enable operations. As with block RAMs, the bytes can
either be 8 bits or 9 bits using the extra parity bit. However, when using byte write with Versal
ACAPs, read operations are ignored during writing. Therefore, only the NO_CHANGE mode is
supported when describing UltraRAMs with byte write.

Asymmetric UltraRAMs

Versal ACAP UltraRAMs support asymmetric aspect ratios. However, Vivado synthesis does not
currently infer UltraRAMs in asymmetric mode.

DSP Primitives
Following are the different types of DSP primitives for Versal ACAP.

Primitive Description Usage
DSP58 Standard integer/Fixed point mode Inference or instantiation

DSPFP32 Floating point mode Instantiation only

DSPCPLX Complex multiplier Inference or instantiation

DSP58

For Versal ACAPs, the DSP58 primitive includes the same features as in UltraScale devices,
including a multiplier, adder, pre-adder, and registers to fully pipeline the primitive. However,
sizing differs and the primitives include additional features.

Sizing

For signed logic, you can configure DSP58 as follows:

• Multiplier: 27x24

• Adder: 58-bit

• Pre-adder: 27-bit

For unsigned logic, you can configure DSP58 as follows:

• Multiplier: 26x23

• Adder: 57-bit

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 66Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=66

• Pre-adder: 26-bit

The following figures show examples for signed logic.

Figure 10: RTL for a 27x24 Multiplier with 58-Bit Adder and 27-Bit Pre-Adder

Figure 11: Elaborated View of 27x24 Multiplier with 58-Bit Adder and 27-Bit Pre-Adder

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=67

Figure 12: Post-Synthesis View of 27x24 Multiplier with 58-Bit Adder and 27-Bit Pre-
Adder

Dot Product

The DSP58 can implement a dot product, which is a multiplier that is represented as three
smaller multipliers that are added together. Dot products are often used in filters in image
processing. For more information, see the Versal ACAP DSP Engine Architecture Manual (AM004).
The following figure shows an example of a dot product with an extra adder.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=68

Note: For the dot product to infer, the RTL must use signed logic.

Figure 13: Elaborated View of a Dot Product with an Extra Adder

The following figure shows the RTL for a dot product.

Figure 14: RTL for the Dot Product

DSPFP32

DSPFP32 can perform floating point calculations. Vivado synthesis does not handle these
calculations. Instead, various IP are provided, or the DSPFP32 primitive can be instantiated.

DSPCPLX

The DSPCPLX is designed to synthesize logic needed to solve for the real and imaginary portions
of the following equation:

(a+bi)(c+di)

Each DSPCPLX occupies two DSP58 sites. The DSPCPLX can either be instantiated in the RTL or
inferred. The following figure shows the RTL for the DSPCPLX.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=69

Figure 15: RTL to Synthesize the DSPCPLX

CLB Primitives
The configurable logic blocks (CLBs) in Versal ACAPs differ from those in UltraScale devices.
Vivado synthesis sets up the CLBs to accurately map the RTL, but you must be aware of the
differences noted in the following sections.

Carry Chains

Instead of the CARRY8 primitive in UltraScale devices, Versal ACAPs include a LOOKAHEAD8
primitive. The LOOKAHEAD8 primitive does not include MUXCYs and XORCYs for arithmetic
operations. Instead, these operators must be inferred and as a result, the LUT count is slightly
higher.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=70

Figure 16: Extra LUTs Before the CARRY Chain

MUXFx Primitives

Versal ACAPs do not include MUXFx primitives. Because MUXFx primitives are often used for
address decoding in distributed RAMs, large comparators, or MUX chains, expect extra LUT
counts when using these types of structures in Versal ACAPs, as shown in the following figure.

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=71

Figure 17: Extra LUTs for Address Decoding

Appendix A: Primitives

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=72

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 73Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=73

1. Versal Architecture and Product Data Sheet: Overview (DS950)

2. Versal ACAP GTY Transceivers Architecture Manual (AM002)

3. Versal ACAP Clocking Resources Architecture Manual (AM003)

4. Versal ACAP DSP Engine Architecture Manual (AM004)

5. Versal ACAP Configurable Logic Block Architecture Manual (AM005)

6. Versal ACAP System Monitor Architecture Manual (AM006)

7. Versal ACAP Memory Resources Architecture Manual (AM007)

8. Versal ACAP AI Engine Architecture Manual (AM009)

9. Versal ACAP SelectIO Resources Architecture Manual (AM010)

10. Versal ACAP Technical Reference Manual (AM011)

11. Versal ACAP Packaging and Pinouts Architecture Manual (AM013)

12. Versal ACAP CPM CCIX Architecture Manual (AM016)

13. SmartConnect LogiCORE IP Product Guide (PG247)

14. Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313)

15. Advanced I/O Wizard LogiCORE IP Product Guide (PG320)

16. Versal ACAP Integrated Block for PCI Express LogiCORE IP Product Guide (PG343)

17. Versal ACAP PCIe PHY LogiCORE IP Product Guide (PG345)

18. Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

19. Vivado Design Suite User Guide: Logic Simulation (UG900)

20. Vivado Design Suite User Guide: Synthesis (UG901)

21. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

22. Vivado Design Suite: AXI Reference Guide (UG1037)

23. Versal ACAP System Software Developers Guide (UG1304)

24. Vitis Unified Software Platform Documentation: Application Acceleration Development (UG1393)

25. Vitis High-Level Synthesis User Guide (UG1399)

26. XRT Release Notes (UG1451)

27. RTL Kernels in the Application Acceleration Development flow of the Vitis Unified Software
Platform Documentation (UG1416)

28. Vitis Unified Software Development Platform Documentation

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 74Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am010-versal-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=advanced_io_wizard;v=latest;d=pg320-advanced-io-wizard.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_versal;v=latest;d=pg343-pcie-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_phy_versal;v=latest;d=pg345-versal-pci-express-phy.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=cpm_wrapper;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1399-vitis-hls.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug1451-xrt-release-notes.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.1;d=devrtlkernel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=74

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

This document contains preliminary information and is subject to change without notice.
Information provided herein relates to products and/or services not yet available for sale, and
provided solely for information purposes and are not intended, or to be construed, as an offer for
sale or an attempted commercialization of the products and/or services referred to herein.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 75Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=75

Copyright

© Copyright 2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex,
PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. PCI,
PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks
are the property of their respective owners.

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.1) July 14, 2020 www.xilinx.com
Versal ACAP Design Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.1&docPage=76

	Versal ACAP Design Guide
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction to Versal ACAP
	Navigating Content by Design Process
	About This Guide

	Ch. 2: System Architecture
	AI Engine
	Programmable Logic
	NoC
	XPIO
	DDRMC
	CIPS
	PS
	APU
	RPU
	Standard Peripherals
	AMBA Specification Interfaces

	PMC
	Flash Memory Controllers

	CPM

	GT
	HSDP

	Ch. 3: System Methodology
	System Design Methodology
	Embedded and Server System Design Considerations
	Hardware and Software Compute Acceleration Development
	Accelerator Hardware and Software Co-Design
	Architecture
	Datapath and Transport Layer
	Control Plane
	Memory Hierarchy
	Kernel Design and Verification

	Hardware Platform Design
	Design Verification
	Timing Closure

	Software Development
	Boot and OS
	Software Application Development
	Software Debug

	System Simulation Methodology
	Simulation Recommendations

	System Debug Methodology
	Debug via JTAG
	Debug via Aurora
	Debug via PL Fabric
	Debug via PCIe
	Debugging the AI Engine
	Debugging the PS

	Ch. 4: Design Flow
	Vitis Environment Design Flow
	Subsystem Methodology
	Kernel and Graph Development
	Developing the AI Engine Graph and Kernels
	Developing PL Kernels with Vitis HLS
	Developing PL Kernels with RTL and the Vivado Design Suite

	Subsystem Assembly and Verification Using Hardware Emulation
	Subsystem Assembly and Verification on Hardware
	Subsystem Integration on Custom Platform

	Vivado Tools Design Flow
	System Hardware Design Flow
	Vivado IP Integrator

	RTL Design Flow
	Vivado IP Catalog

	Implementation
	Power and Thermal
	I/O Planning
	XPIO
	High-Density I/O

	Clocking
	Design Closure

	Simulation Flows
	AI Engine Simulation
	HLS Simulation
	Embedded Software Simulation
	Logic Simulation
	Hardware Emulation

	Boot and Configuration
	Programmable Device Image

	Ch. 5: System Migration
	Soft Memory Controllers
	GT
	AXI Interconnect
	Power and Error Handling
	System Monitor
	DSP
	On-Chip Memory Resources
	CLB
	System Debug
	Processor and Peripherals
	I/O
	PCIe Subsystems
	Security
	PL Configuration and JTAG

	Appx. A: Primitives
	RAM Primitives
	Block RAM Primitives
	UltraRAM Primitives

	DSP Primitives
	CLB Primitives

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

