
Versal ACAP Design Guide

UG1273 (v2020.2) March 26, 2021

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
03/26/2021 Version 2020.2

Chapter 3: System Planning Moved content to Versal ACAP System and Solution Planning
Methodology Guide (UG1504).

System Design Types Added new section.

Chapter 4: Design Flows Updated with information on traditional and platform-based
design flows.

02/04/2021 Version 2020.2

Application Mapping and Design Partitioning Added sections on design partitioning.

Debug Interfaces Added new section.

Design Closure Added details on design closure.

Logic Simulation Using SystemC Models Added new section.

MRMAC Added new section.

Security Updated table.

12/04/2020 Version 2020.2

NoC Added information the NPI.

Chapter 4: Design Flows Updated with information on the main design flows and
Versal™ ACAP support for each.

Vivado Tools Design Flow Updated information on the block design flow and RTL
design flow.

I/O Planning Added information on MIO and EMIO.

Power Closure Added new section.

Simulation Flows Moved to Vitis™ Environment Design Flow section.

Boot Image Generation Added commands for PDI generation.

GT Added information on block automation.

Power and Error Handling Added information on power islands.

PCIe Subsystems Updated migration information.

Boot and Configuration Moved to System Migration chapter.

Clocking Added new section.

Appendix A: Primitives Added VHDL examples.

Block RAM Primitives Added information on XPM inference.

UltraRAM Primitives Added information on XPM inference.

Coding Style and Primitive Instantiation Examples Added new section.

07/14/2020 Version 2020.1

Initial release N/A

Revision History

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 2Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..5
Introduction to Versal ACAP...5
Navigating Content by Design Process.. 6
About This Guide... 7

Chapter 2: System Architecture... 9
AI Engine.. 10
Programmable Logic.. 11
NoC..12
XPIO.. 13
DDRMC..13
CIPS... 14
GT.. 20
HSDP... 20
MRMAC... 21

Chapter 3: System Planning..22
System Design Types.. 22

Chapter 4: Design Flows..25
Traditional Design Flows.. 25
Platform-Based Design Flows..27
Vivado Tools Design Flow... 27
Vitis Environment Design Flow.. 38
Boot Image Generation..49

Chapter 5: System Migration... 50
CLB.. 51
On-Chip Memory Resources.. 52
DSP.. 52
Clocking.. 53

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=3

I/O... 54
Soft Memory Controllers.. 54
AXI Interconnect..55
GT.. 55
PCIe Subsystems... 56
MRMAC... 58
Processor and Peripherals... 58
System Debug..59
System Monitor... 60
Power and Error Handling... 60
Security... 60
Boot and Configuration..61
PL Configuration and JTAG... 62

Appendix A: Primitives.. 64
RAM Primitives...64
DSP Primitives..68
CLB Primitives.. 73
Coding Style and Primitive Instantiation Examples.. 75

Appendix B: Additional Resources and Legal Notices............................. 76
Xilinx Resources...76
Documentation Navigator and Design Hubs...76
References..76
Please Read: Important Legal Notices... 79

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=4

Chapter 1

Overview

Introduction to Versal ACAP
Versal™ adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex®-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.

Chapter 1: Overview

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=5

The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• Chapter 2: System Architecture

• Chapter 3: System Planning

• Chapter 4: Design Flows

• Chapter 5: System Migration

Note: For more information, see the Versal ACAP System and Solution Planning Methodology Guide
(UG1504).

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs. Topics in this document that apply to this design process include:

• Vitis Environment Design Flow

• Simulation Flows

Note: For more information, see the Programming the PS Host Application in the AI Engine
Documentation flow of the Vitis Unified Software Platform Documentation (UG1416).

Chapter 1: Overview

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 6Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=program_ps_host_application.html#ykt1590616160037
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=6

• AI Engine Development: Creating the AI Engine graph and kernels, library use, simulation
debugging and profiling, and algorithm development. Also includes the integration of the PL
and AI Engine kernels. Topics in this document that apply to this design process include:

• AI Engine

• Vitis Environment Design Flow

Note: For more information, see the Versal ACAP AI Engine Programming Environment User Guide
(UG1076) and Versal ACAP AI Engine Kernel Coding User Guide (UG1079).

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Vivado Tools Design Flow

• Simulation Flows

Note: For more information, see the Versal ACAP Hardware, IP, and Platform Development Methodology
Guide (UG1387).

• System Integration and Validation: Integrating and validating the system functional
performance, including timing, resource use, and power closure. Topics in this document that
apply to this design process include:

• Chapter 4: Design Flows

Note: For more information, see the Versal ACAP System Integration and Validation Methodology Guide
(UG1388).

• Board System Design: Designing a PCB through schematics and board layout. Also involves
power, thermal, and signal integrity considerations. Topics in this document that apply to this
design process include:

• Chapter 3: System Planning

Note: For more information, see the Versal ACAP Board System Design Methodology Guide (UG1506).

About This Guide
This guide provides a high-level overview of the Versal ACAP as follows:

• Chapter 2: System Architecture: Provides an overview of the Versal ACAP with a summary of
each high-level integrated block, including the purpose of each block and how blocks are
related to each other.

Chapter 1: Overview

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 7Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=yii1603912637443.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1079-ai-engine-kernel-coding.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1387-acap-hardware-ip-platform-dev-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1388-acap-system-integration-validation-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1506-acap-board-system-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=7

• Chapter 3: System Planning: Describes how each Versal device series relates to different
system design types and design flows.

• Chapter 4: Design Flows: Describes the Xilinx design tools and supported design flows
available for Versal ACAPs.

• Chapter 5: System Migration: Provides high-level system migration recommendations as well
as block-by-block migration information for designs targeting the Versal ACAP.

• Appendix A: Primitives: Provides information on Versal ACAP primitives.

Chapter 1: Overview

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=8

Chapter 2

System Architecture
The Xilinx® Versal™ ACAP is a collection of programmable resources that work together to form
a system on chip (SoC). Following are the major resource blocks:

• AI Engine

Note: AI Engine availability is device specific.

• Programmable logic (PL)

• Network on chip (NoC)

• High-speed I/O (XPIO)

• Integrated memory controllers LPDDR4 and DDR4 (DDRMC)

• Processing system (PS)

• Platform management controller (PMC)

• Integrated block for PCIe® with DMA and cache coherent interconnect (CPM)

Note: CPM availability is device specific.

• Transceivers (GT)

• High-speed debug port (HSDP)

• Multirate Ethernet MAC (MRMAC)

Versal ACAP applications can exploit the capabilities of each of these resources. To create or
migrate a design to a Versal ACAP, you must identify which resources best satisfy the different
needs of the application and partition the application across those resources.

The following figure shows the layout of the Versal ACAP.

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=9

Figure 1: Versal ACAP Layout

AI Engines or XPIO & Memory Controllers

XPIO & Memory Controllers

Serial
Transceivers

PS, PMC, CPM

Serial
Transceivers

Logic,
DSP & Memory

NoC

N
oC

N
oC

NoC

Co
nn

ec
tiv

ity
 IP

Co
nn

ec
tiv

ity
 IP

X22326-062920

The following sections provide a summary of the blocks that comprise the Versal architecture.
For detailed information on these blocks, see the Versal Architecture and Product Data Sheet:
Overview (DS950).

AI Engine
The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high
compute density to accelerate the performance of any application. Given the AI Engine's
advanced signal processing compute capability, it is well-suited for highly optimized wireless
applications such as radio, 5G, backhaul, and other high-performance DSP applications.

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=10

AI Engines are an array of very-long instruction word (VLIW) processors with single instruction
multiple data (SIMD) vector units that are highly optimized for compute-intensive applications,
specifically digital signal processing (DSP), 5G wireless applications, and artificial intelligence (AI)
technology such as machine learning (ML).

AI Engines provide multiple levels of parallelism including instruction-level and data-level
parallelism. Instruction-level parallelism includes a scalar operation, up to two moves, two vector
reads (loads), one vector write (store), and one vector instruction that can be executed—in total, a
7-way VLIW instruction per clock cycle. Data-level parallelism is achieved via vector-level
operations where multiple sets of data can be operated on a per-clock-cycle basis. Each AI
Engine contains both a vector and scalar processor, dedicated program memory, local 32 KB data
memory, access to local memory in any of three neighboring directions. It also has access to
DMA engines and AXI4 interconnect switches to communicate via streams to other AI Engines or
to the programmable logic (PL) or the DMA. Refer to the Versal ACAP AI Engine Architecture
Manual (AM009) for specific details on the AI Engine array and interfaces.

Programmable Logic
The Versal ACAP programmable logic (PL) comprises configurable logic blocks (CLBs), internal
memory, and DSP engines. Every CLB contains 64 flip-flops and 32 look-up tables (LUTs). Half of
the CLB LUTs can be configured as a 64-bit RAM, as a 32-bit shift register (SRL32), or as two 16-
bit shift registers (SRL16). In addition to the LUTs and flip-flops, the CLB contains the following:

• Carry lookahead logic for implementing arithmetic functions or wide logic functions

• Dedicated, internal connections to create fast LUT cascades without external routing

This enables a flexible carry logic structure that allows a carry chain to start at any bit in the
chain. In addition to the distributed RAM (64-bit each) capability in the CLB, there are dedicated
blocks for optimally building memory arrays in the design:

• Accelerator RAM (4 MB) (available in some Versal devices only)

• Block RAM (36 Kb each) where each port can be configured as 4Kx9, 2Kx18, 1Kx36, or
512x72 in simple dual-port mode

• UltraRAM (288 Kb each) where each port can be configured as 32Kx9, 16Kx18, 8Kx36, or
4Kx72

Versal devices also include many low-power DSP Engines, combining high speed with small size
while retaining system design flexibility. The DSP engines can be configured in various modes to
better match the application needs:

• 27×24-bit twos complement multiplier and a 58-bit accumulator

• Three element vector/INT8 dot product

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=11

• Complex 18bx18b multiplier

• Single precision floating point

For more information on PL resources, see the Versal ACAP Configurable Logic Block Architecture
Manual (AM005), Versal ACAP Memory Resources Architecture Manual (AM007), and Versal ACAP
DSP Engine Architecture Manual (AM004).

NoC
The network on chip (NoC) is a high-speed communication subsystem that transfers data
between intellectual property (IP) Endpoints in the PL, PS, and other integrated blocks, providing
unified intra-die connectivity. The NoC master and slave interfaces can be configured as AXI3,
AXI4, or AXI4-Stream. The NoC converts these AXI interfaces to a 128-bit wide NoC packet
protocol that moves data horizontally and vertically across the device via the HNoC and VNoC
respectively. The HNoC runs at the bottom and top of the Versal ACAP, close to the I/O banks
and integrated blocks (e.g., processors, memory controllers, PCIe interfaces). The number of
VNoCs (up to 8) depends on the device and the amount of DDRMCs (up to 4 DDRMCs). For
more information on the AXI protocol, see the Vivado Design Suite: AXI Reference Guide (UG1037).

The NoC must be configured or programmed from the NoC programming interface (NPI) at early
boot and before the NoC data paths are used. The NPI programs NoC registers that define the
routing table, rate modulation, and QoS configuration. Programming of the NoC from the NPI
normally requires no user intervention. Programming is fully automated and executed by the
platform management controller (PMC)-embedded NPI controller. For more information about
boot and configuration, see the Versal ACAP Technical Reference Manual (AM011).

The Versal ACAP NoC IP acts as the logical representation of the Versal ACAP NoC. The NoC
main function is to efficiently move data between the DDR controllers and the rest of the device.
The Versal ACAP NoC IP enables multiple masters to access a shared DDRMC with advanced
quality of service (QoS) settings. The AXI NoC IP is required to connect the PS or the PL to the
DDRMC. The AXI NoC IP can also be used to create additional connections between the PS and
the PL or between design modules located in the PL.

For more information on the NoC IP and performance, see the Versal ACAP Programmable
Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313).

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=12

XPIO
The XPIO in Versal ACAPs are similar to the high-speed I/O (HPIO) in the UltraScale™
architecture. However, the XPIO are located at the bottom and/or top periphery of the device,
unlike the I/O columnar layout in previous devices. The XPIO provide XPHY logic that is similar
to UltraScale device native mode. The XPHY logic encapsulates calibrated delays along with
serialization and deserialization logic for 6 single-ended I/O ports known as nibble. Each XPIO
bank contains 9 XPHY logic sites and supports up to 54 single-ended I/O ports. The XPHY logic
is used for the integrated DDRMC, soft memory controllers, and custom high-performance I/O
interfaces. For more information on the XPIO, see the Versal ACAP SelectIO Resources Architecture
Manual (AM010).

DDRMC
The DDRMC is a high-efficiency, low-latency integrated DDR memory controller for a variety of
applications, including general purpose central processing units (CPUs) as well as other traditional
field programmable gate array (FPGA) applications, such as video or network buffering.

The controller operates at half the DRAM clock frequency and supports DDR4, LPDDR4, and
LPDDR4X standards up to 4266 Mb/s. The controller can be configured as a single DDR memory
interface with data widths of 16, 32, and 64 bits, plus an extra 8 check bits when error-correction
code (ECC) is enabled. The controller can also be configured as 2 independent or interleaved
DDR interfaces of 16 or 32 data bits each. The controller supports x4, x8, and x16 DDR4 and
x32 LPDDR4 components, small outline dual in-line memory modules (SODIMMs), unbuffered
DIMMs (UDIMMs), registered DIMMs (RDIMMs), and load-reduced DIMMs (LRDIMMs). The
DDRMC is accessed through the NoC. The optimal combination of memory interfaces with
various width, type, and speed can be identified by using the Versal ACAP External Memory Pre-
Planning Tool (XTP667).

In Versal ACAP, the DDRMC is a system-wide, shared resource. It is shared between the PS and
PL via the device-wide, high-performance NoC interface. The NoC IP core can be configured to
include one or more integrated DDRMCs. If two or four DDRMCs are selected, the DDRMCs are
grouped to form a single interleaved memory. In interleaved mode, the application views the
participating DDRMCs as a single unified block of memory. The NoC supports interleaving across
two or four DDRMCs by automatically dividing AXI requests into interleaved, block-sized
subrequests and alternately sending the subrequests to each of the participating DDRMCs.

Note: You must use the NoC to connect between the PL, PS, CPM, or AI Engine and the DDRMC.

For more information on the DDRMC, see the Versal ACAP Programmable Network on Chip and
Integrated Memory Controller LogiCORE IP Product Guide (PG313).

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com/member/forms/download/design-license.html?cid=faeb9c32-f328-4db2-b467-c2292b9b1bff&filename=xtp667-versal-empp-tool.zip
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=13

Note: Versal ACAP also supports soft memory controllers in the PL fabric, similar to previous device
families.

CIPS
The PS, PMC, and CPM modules are grouped together and configured using the Control,
Interface, and Processing System (CIPS) IP core as shown in the following figure.

Note: The Versal ACAP includes multiple power domains. In the PS, the RPU is in the in the low-power
domain (LPD), and the APU is in the full-power domain (FPD). There are two implementations of the CPM
depending on the target device capability: CPM4 that is compliant with the PCIe Base Specification
Revision 4.0 and CPM5 that is compliant with the PCIe Base Specification Revision 5.0. CPM4 is fully
powered by the PL domain while CPM5 is powered by its own dedicated supply (VCCINT_CPM) as well as
the PS LPD.

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=14

Figure 2: System-level Interconnect Architecture

APU
Application Processing Unit

Arm Cortex-A72
and Cache Coherent Interconnect

RPU
Real-time Processing Unit

Arm Cortex-R5F
HDIO

100G MR
Ethernet

to FPD SMMU/CCI

to FPD SMMU/CCI

GTY x16

PCIe Lanes
HSDP Aurora

GTs

XPIO

DDR Memory
Controller

PS

AI Engine

NPI

LVCMOS

ACE
ACE_LITE
ACP
AXI4

AXI4

AXI4

AXI4

CFICFRAMEs

Stream

CHI

Transceivers

NoC

CPM
PCIe with DMA and Cache

Coherency Interconnect

Options: CPM4, CPM5

DSP Engine

CLB

UltraRAM
Block RAM

Clocking

PL

PL

600G DR
Ethernet

600G
Interlaken

400G
Cypto

Dedicated

OCM

CPM L2 Cache

MIO Pins

MIO Pins

Control, Interface, and
Processing System

Configured by CIPS Wizard

TCMs

PPU RAM

PMC RAM

Programming interfaces (SoC)

Programming interfaces (PL)
PL
SPD
FPD
LPD
PMC
PL or LPD

Power Domains

Device Option

XRAM
Device Option

APU L2 cacheFPD

LPD

Device Options

PL PCIe

PSM
Firmware

RAMs

128-bit

Interconnect
Initiator Target I/O

Stream

X21692-111320

PMC
Platform Management

Controller
RCU ROMCode and
PPU PLM Firmware

PS
The processing system (PS) contains the application processing unit (APU), real-time processing
unit (RPU), and peripherals. The DDRMC is shared between the PS and PL via the device-wide,
high-performance NoC interface.

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=15

APU

The application processing unit (APU) includes a dual-core Arm® Cortex®-A72 processor
attached to a 1 MB unified L2 cache. The APU is designed for system control and compute-
intensive applications that do not need real-time performance. The increased performance of
Versal ACAP requires higher performance from the memory subsystem. To help meet these
requirements, the Versal ACAP includes an increased L1 instruction cache size (32 KB to 48 KB)
as well as multiple DDRMCs and the NoC, which improve the performance of the main memory.

The following table shows the difference between the Cortex-A53 in Zynq® UltraScale+™
MPSoCs and the Cortex-A72 processors in Versal ACAPs.

Table 1: Cortex-A53 and Cortex-A72 Comparison

Cortex-A53 Cortex-A72 Versal ACAP Benefits
Armv8A architecture (64-bit and 32-bit operations) No application code changes required

EL0-EL3 exception levels

Secure/non-secure operation

Advanced SIMD NEON floating-point unit

Integrated memory manager

Power island control

Up to 1500 MHz Up to 1700 MHz Higher frequency

2.23 DMIPS per MHz 5.74 DMIPS per MHz 2 times higher raw performance (per
Arm benchmarks)

3.65 SPEC2006int 6.84 SPEC2006int

2-way super scalar 3-way super scalar More efficient instruction cycle

In-order execution Out-of-order execution Higher performance and fewer
memory stalls

Power efficient Improved power efficiency 20% lower power

8-stage pipeline 15-stage pipeline More instructions queued and
executed

Conditional branch prediction Two-level branch prediction Higher cache hits and less memory
fetches

RPU

The real-time processing unit (RPU) Arm Cortex-R5F processor has faster clocking frequencies
than the Zynq UltraScale+ MPSoC. The Versal Arm Cortex-R5F processor supports Vector
Floating-Point v3 (VFPv3) whereas the Zynq UltraScale+ MPSoC Arm Cortex-R5F processor
supports VFPv2.

Standard Peripherals

Versal ACAP standard I/O peripherals are located in the low-power domain (LPD) and in the
PMC. The NoC must be configured to provide access to the DDRMC so that the peripherals with
direct memory access (DMA) can access the DDR memory interfaces.

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=16

The following table shows the difference between the standard peripherals in Zynq UltraScale+
MPSoCs and Versal ACAPs.

Table 2: Standard Peripherals Comparison

Peripheral Zynq UltraScale+ MPSoC Versal ACAP
CAN, CAN-FD 2 controllers with standard CAN 2 controllers with controller area

network - flexible data rates (CAN-FD)

GEM 4 controllers 2 controllers with time-sensitive
networking (TSN) feature

GPIO 1 controller 2 controllers

I2C 2 controllers 2 controllers in LPD (general purpose)
1 controller in PMC (general purpose)

NAND 1 controller N/A

PCIe (Gen1, Gen2) 1 controller N/A

PCIe (Gen3, Gen4) 1 controller Varies by device

SPI 2 controllers 2 controllers

SATA 1 controller N/A

UART 2 controllers with standard UART 2 controllers with Server Base System
Architecture (SBSA)

USB (host, device, dual-role device) 2 USB 3.0/2.0 controllers 1 USB 2.0 controller

AMBA Specification Interfaces

The PS-PL Arm Advanced Microcontroller Bus Architecture (AMBA) specification interfaces in
the Versal ACAP have similar functionality to Zynq UltraScale+ MPSoCs, as shown in the
following table.

Note: Enabling and disabling the different power domains in the LPD, FPD, and PL enables and disables the
AXI connections to those domains.

IMPORTANT! Because the DDRMC is shared between the PS and PL via the device-wide, high-
performance NoC interface, there are fewer PS-PL AXI interconnects.

Table 3: AMBA Interface Comparison

PS-PL AMBA
Interface Master Coherency

Zynq UltraScale+ MPSoC Versal ACAP
Name Count Name Count

Accelerator
Coherency Port
(ACP)

PL I/O S_AXI_ACP_FPD 1 S_ACP_FPD 1

AXI Coherency
Extensions (ACE)

PL 2-way S_AXI_ACE_FPD 1 S_ACE_FPD 1

PL-to-FPD AXI PL - S_AXI_HPx_FPD 4 S_AXI_HP 1

PL-to-FPD AXI PL I/O S_AXI_HPCx_FPD 2 S_AXI_HPC 1

PL-to-LPD AXI PL - S_AXI_LPD 1 S_AXI_LPD 1

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=17

Table 3: AMBA Interface Comparison (cont'd)

PS-PL AMBA
Interface Master Coherency

Zynq UltraScale+ MPSoC Versal ACAP
Name Count Name Count

FPD-to-PL AXI FPD - M_AXI_HPMx_FPD 2 M_AXI_FPD 1

LPD-to-PL AXI LPD - M_AXI_HPM0_LPD 1 M_AXI_LPD 1

PMC
The platform management controller (PMC) subsystem includes the following functions:

• Boot and configuration management

• Dynamic Function eXchange (DFX)

• Power management

• Reliability and safety functions

• Life-cycle management, including device integrity, debug, and system monitoring

• I/O peripherals, including PMC I2C and GPIO

The PMC block executes the BootROM and platform loader and manager (PLM) to handle the
boot and configuration for the PS, CPM, PL, NoC register initialization and settings, and I/O and
interrupt configuration settings. In addition to boot and configuration, the PLM provides life-
cycle management services. The PMC bus architecture and centralized integration enables
significantly faster configuration and readback performance when compared with previous
devices. The following table shows the Zynq UltraScale+ MPSoC blocks that are comparable to
the Versal ACAP blocks.

Table 4: Block Comparison

Zynq UltraScale+ MPSoC Versal ACAP
Configuration security unit (CSU) and platform
management unit (PMU)

PMC

CSU ROM code unit (RCU)

PMU Platform processing unit (PPU)

First stage boot loader (FSBL) and PMU firmware PLM

For more information on the PMC, see the Versal ACAP Technical Reference Manual (AM011). For
more information on the PLM, see the Versal ACAP System Software Developers Guide (UG1304).

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 18Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=18

Flash Memory Controllers

The PMC includes three types of flash memory controllers, any of which can be used as a boot
device or by the application. The following table shows the difference between the flash memory
controllers in Zynq UltraScale+ MPSoCs and Versal ACAPs.

Table 5: Flash Memory Controllers Comparison

Peripheral Zynq UltraScale+ MPSoC Versal ACAP
Octal SPI (OSPI) N/A 1 controller

Quad SPI (QSPI) 1 controller 1 controller that does not support
linear address mode

SD/eMMC 2 controllers 2 controllers with the same
functionality and updated DLL

Note: Versal ACAPs can also support secondary boot modes (e.g., Ethernet, USB, etc.). For more
information, see the Versal ACAP System Software Developers Guide (UG1304).

CPM
The Versal architecture includes several blocks for implementation of high performance,
standards-based interfaces built on PCI™-SIG technologies. In Versal ACAPs that contain a CPM,
the CPM provides the primary interfaces for designs following the server system methodology.
As part of the Versal architecture integrated shell, the CPM has dedicated connections to the
NoC over which it can access DDR and other hardened IP. The CPM is configured separately
from the programmable logic, which enables the integrated shell to become operational quickly
after boot without the need to configure the PL. This separate configuration addresses a
common power-up and reset timing challenge imposed by the PCIe specification. Two
implementations of the CPM exist: CPM4 and CPM5.

In Versal ACAPs with an available CPM4, the block is compliant with the PCIe Base Specification
Revision 4.0 and capable of supporting defined line rates up to the maximum of 16 GT/s. CPM4
contains two PCIe controllers with shared access to 16 GTY transceivers, and integrates a single
direct memory access (DMA) controller functionality (either QDMA or XDMA that is user
selectable) associated with CPM PCIe Controller #0. Cache Coherent Interconnect for
Accelerators (CCIX) support in CPM4 complies with CCIX Base Specification Revision 1.0.

In Versal ACAPs with an available CPM5, the block is compliant with the PCIe Base Specification
Revision 5.0 and capable of supporting defined line rates up to the maximum of 32 GT/s. CPM5
contains two PCIe controllers with dedicated access to 16 GTYP transceivers. CPM5 integrates
two DMA controllers (both QDMA) each associated with CPM PCIe Controller #0 and CPM PCIe
Controller #1. CCIX support in CPM5 complies with CCIX Base Specification Revision 1.1.

CPM4 and CPM5 include the following additional components:

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=19

• The coherent mesh network (CMN) forms the CCIX block, which is based on the Arm
CoreLink CMN-600.

• There are two Coherent Hub Interface (CHI) PL interface (CPI) blocks. CPM4 has one L2 cache
instance, and CPM5 has two L2 cache instances. CPI blocks interface with the accelerators in
the PL and perform 512-to-256 bit data width conversion and clock domain crossing into the
internal core clock.

• The non-coherent interconnect block, which interfaces with the PS for access to the NoC and
DDRMC. The interconnect is connected to all of the other sub-blocks via an advanced
peripheral bus (APB) or AXI slave interface for configuration.

• A clock/reset block, which includes a phase-locked loop (PLL) and clock dividers.

CPM availability is device specific. For information, see the Versal Architecture and Product Data
Sheet: Overview (DS950). For more information on CPM, see the Versal ACAP CPM CCIX
Architecture Manual (AM016), Versal ACAP CPM Mode for PCI Express Product Guide (PG346), and
Versal ACAP CPM DMA and Bridge Mode for PCI Express Product Guide (PG347).

Note: Versal ACAP also supports implementation of subsystems based on PCI-SIG technologies in the PL
fabric, similar to previous device families.

GT
GTs provide several protocols for high-speed interfaces, such as Ethernet and Aurora IP. Versal
ACAP features the XPIPE mechanism to connect the PCIe block to the GT at high speed. XPIPE
and GTs are shared between PL-based IP and PS-based IP (e.g., CPM, Ethernet, Aurora link for
debug, etc.). For Versal ACAP, GT components are updated from Common/Channel to a quad
granularity. For more information on the GT, see the Versal ACAP GTY and GTYP Transceivers
Architecture Manual (AM002).

HSDP
The heterogeneous nature and performance of the Versal ACAP necessitates a system-level high-
bandwidth debug and trace solution. The high-speed debug port (HSDP) is a new feature in
Versal ACAP that provides unified, at-speed debugging and tracing of the various integrated,
fabric-based, and processor blocks in the device under test (DUT). HSDP functions are accessed
via high-speed GT-based interfaces, such as the integrated Aurora interface in the PS block.

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg347-cpm-dma-bridge.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=20

MRMAC
The Multirate Ethernet MAC (MRMAC) provides high-performance, low latency Ethernet ports
supporting a wide range of customization and statistics gathering. The MRMAC supports the
following forward error corrections (FECs) defined and required by IEEE standards: Clause 91
RS(528, 514) KR4 FEC for 25/50/100GE NRZ support, Clause 91 RS(544, 514) KP4 FEC for
50/100GE PAM4 support, and Clause 74 FEC, for 10/25/40/50GE low-latency support. The
MRMAC has a rich set of bypass modes to enable access to FEC-only mode (for custom
protocols) and FEC+PCS (for protocol testers).

Chapter 2: System Architecture

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=21

Chapter 3

System Planning
To properly plan your design, you must understand the system requirements based on your
target application or system design type. This includes identifying the appropriate Versal™ device
with the correct features (e.g., the number of DDRMC IP, AI Engines, etc.).

Note: For information on the recommended system planning methodology, see the Versal ACAP System and
Solution Planning Methodology Guide (UG1504).

System Design Types
Versal™ ACAP is a heterogeneous compute platform with multiple compute engines. A wide
range of applications can be mapped on Versal ACAP, including signal processing for wireless
systems, machine learning inference, and video processing algorithms. In addition to multiple
compute engines, Versal ACAP offers very high system bandwidth using high-speed serial I/Os,
network on chip (NoC), DDR4/LPDDR4 memory controllers, and multi-rate Ethernet Media
Access Controllers (MRMACs). Versal devices are categorized into the Versal Prime, Premium,
and AI Core series. The following figure shows the different system design types and design
flows supported for each Versal device series.

Note: The design flows for Versal Prime and Premium series are similar to the flows used with Xilinx®

FPGAs. The design flow for Versal AI Core series requires that you design for a heterogeneous compute
platform, which has special hardware configuration and software support requirements.

Chapter 3: System Planning

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 22Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=22

Figure 3: System Design Types

Versal
Devices

Versal Prime Series
Versal Premium Series

(without AI Engine)

Versal AI Core Series
(with AI Engine)

Hardware-
Only System

Embedded
System

Embedded
AI Engine
System

Traditional
(No Platform)

Platform-
Based
(Custom
Platform)

Platform-
Based
(Custom
Platform)

Traditional
(No Platform)

Device

Series

Design Type

Design Flow

X25009-032321

The following table shows the system design types and design flows supported for each Versal
device series. As shown in the table, a majority of the design flows are based on building a
platform.

Table 6: System Design Types

Design Type Device Series Design Flow Platform Source GitHub Examples
Hardware-only system Versal Prime Series

Versal Premium Series
Traditional N/A Versal Device

Architecture Tutorials

Embedded system Versal Prime Series
Versal Premium Series

Traditional N/A Versal Embedded
Design Tutorial

Platform-based Custom Versal Prime Series
VMK180 Targeted
Reference Designs

Embedded AI Engine
system

Versal AI Core series Platform-based Custom AI Engine
Development Design
Tutorials
VCK190 Base TRD

TIP: Check Xilinx GitHub for additional examples, which are updated periodically.

Following is a summary of each system design type:

• Hardware-only system: programmable logic designs. Create this system using the traditional
design flow.

• Embedded system: embedded processing system with software running on the Arm®

Cortex®-A72 and Cortex-R5F processors and hardware content in the PL. Create this system
using either the traditional or platform-based design flow.

Chapter 3: System Planning

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 23Send Feedback

https://github.com/Xilinx/Vivado-Design-Tutorials/tree/master/Device_Architecture_Tutorials/Versal
https://github.com/Xilinx/Vivado-Design-Tutorials/tree/master/Device_Architecture_Tutorials/Versal
https://github.com/Xilinx/Embedded-Design-Tutorials/blob/master/docs/Introduction/Versal-EDT/README.md
https://github.com/Xilinx/Embedded-Design-Tutorials/blob/master/docs/Introduction/Versal-EDT/README.md
https://github.com/Xilinx/vmk180-trd
https://github.com/Xilinx/vmk180-trd
https://github.com/Xilinx/vmk180-trd
https://github.com/Xilinx/Vitis-Tutorials/tree/master/AI_Engine_Development/Design_Tutorials
https://github.com/Xilinx/Vitis-Tutorials/tree/master/AI_Engine_Development/Design_Tutorials
https://github.com/Xilinx/Vitis-Tutorials/tree/master/AI_Engine_Development/Design_Tutorials
https://github.com/Xilinx/vck190-base-trd
https://github.com/Xilinx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=23

• Embedded AI Engine system: embedded processing system with software running on the Arm
Cortex-A72 and Cortex-R5F processors, hardware content in the PL, and algorithmic content
in the AI Engine. Create this system using either the traditional or platform-based design flow.

Following is a summary of the platform sources used for each design flow:

• Traditional design flow (no platform): When using the traditional design flow, a platform is not
needed because acceleration is not performed. The Vitis™ embedded software is used for
embedded tools, such as drivers, run time and multi-OS environments, compilers, debuggers,
and profiling tools. However, the Vitis software platform is not required.

• Platform-based design flow (custom platform): When using the platform-based design flow, a
custom platform must be used when developing accelerated applications on the PL or AI
Engine on a custom board. The Vitis software platform is required, and the XSA is built for the
specific custom board.

Chapter 3: System Planning

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=24

Chapter 4

Design Flows
There are two design flows for Versal™ ACAP: the traditional design flow and the platform-based
design flow. To use Versal ACAP resources to their full potential, it is important to choose the
correct design flow. The following table shows which design flow to use based on the design
type and targeted device series.

Table 7: Design Flows

Design Type Device Series Design Flow
Hardware-only system Versal Prime Series

Versal Premium Series
Traditional

Embedded system Versal Prime Series
Versal Premium Series

Traditional

Platform-based

Embedded AI Engine system Versal AI Core series Platform-based

Note: For more information on design types, see the Versal ACAP System and Solution Planning Methodology
Guide (UG1504).

Traditional Design Flows
Traditional Design Flow for Hardware-Only Systems
If your design consists of PL components only (RTL and IP only), you can use the Vivado® tools
to generate a programmable device image (PDI) to program the Versal device. Like previous
architectures, design sources are added to the Vivado tools and compiled through the Vivado
implementation flow. If you are using this flow, following are important considerations:

• The PMC is incorporated into the CIPS IP and must be configured for the Versal device to
boot properly. Therefore, all Versal device designs must include CIPS IP.

• The hardened DDR memory controllers are only accessible through the NoC IP. To use the
DDRMC, your design must include NoC IP.

• Hardware debug cores connect through the CIPS IP by default. JTAG is still available but no
longer the preferred flow. You must be familiar with changes to the hardware debug
connectivity and flow.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=25

Xilinx recommends using the Vivado IP integrator to instantiate, configure, and connect the CIPS
IP, the NoC/DDRMC IP, and hardware debug IP to take advantage of block design automation
when iterating through design changes. The Vivado IP integrator also provides special support
for GT IP and connectivity IP (such as MRMAC IP), which simplifies GT-based design creation and
I/O planning.

You can integrate the complete design with the Vivado IP integrator using custom packaged IP,
RTL module referenced blocks, and other IP available through the IP catalog. Alternatively, you
can use the Vivado IP integrator to configure and connect critical Versal ACAP IP (such as the
CIPS IP and the NoC/DDR IP) and then instantiate the resulting block design in the RTL design.
For more information, see this link in the Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994).

IMPORTANT! This design flow does not support programming of the AI Engine cores and is therefore only
suitable for Versal Prime and Versal Premium devices.

Related Information

System Debug

Traditional Design Flow for Embedded Systems
You can also use the traditional design flow to create designs with both PL and embedded
software components. In this case, the flow is similar to the embedded software design flow used
for Zynq® UltraScale+™ MPSoCs. The hardware team is responsible for creating, verifying, and
implementing a hardware design that is used by the software team to develop the embedded
software application. This hardware design is considered a fixed platform, because the Vivado
tools create the programmable logic on the device, and the Vitis™ tools cannot modify the PL.

Note: All recommendations for the traditional design flow for hardware-only systems apply to the
traditional design flow for embedded systems.

Following are the main steps in this flow:

1. Create and verify the hardware design using the Vivado IP integrator.

2. Implement the hardware design using the Vivado implementation tools.

3. Export the hardware design to the Vitis embedded software development flow.

4. Develop the software application on top of the fixed hardware design using the Vitis
embedded software development flow.

IMPORTANT! This design flow does not support programming of the AI Engine cores and is therefore only
suitable for Versal Prime and Versal Premium devices.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 26Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xUsingIPIntegratorInNonProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=26

Platform-Based Design Flows
In the platform-based design flow, the hardware design is conceptually divided in two distinct
elements: a platform and the processing subsystem. The platform contains essential Versal IP
blocks (including CIPS, NoC, AI Engine, and Clocking Wizard) and board interface IP blocks
(including high-speed I/Os and memory controllers). The processing subsystem contains the
application-specific part of the system and can be composed of both programmable logic and AI
Engine blocks. The platform is considered extensible, because the platform does not contain the
entirety of the programmable logic content. Instead, the platform is extended by the addition of
the processing subsystem.

Following are the main steps in this flow:

1. Create the hardware platform using the Vivado IP integrator and RTL code.

2. Create the processing subsystem using the Vitis tools.

3. Integrate the acceleration subsystem with the platform using the Vitis linker to create a fixed
hardware design that is implemented using the Vivado tools.

4. Develop the software application on top of the fixed hardware design using the Vitis
embedded software development flow.

5. When using the Versal AI Core series, develop the AI Engine program as part of the
processing subsystem.

IMPORTANT! This is the only flow that supports programming of the AI Engine cores and is therefore
required for Versal AI Core devices.

TIP: Xilinx provides off-the-shelf platforms for Versal ACAP evaluation kits, such as the VCK190.

Related Information

Vivado Tools Design Flow
Subsystem Design Flow

Vivado Tools Design Flow
The Vivado Design Suite is a key component in all Versal ACAP design flows. Following are the
primary use models for the Vivado tools based on your design flow:

• Traditional design flows

○ Creating RTL and IP designs

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=27

• Platform-based design flows

○ Creating and packaging RTL kernels for use in the Vitis environment design flow

○ Creating and generating platforms for use in the Vitis environment design flow

IMPORTANT! If you are using the platform-based design flow, Xilinx provides standard platforms as
starting points, which can be customized and regenerated by the Vivado IP integrator to better fit the
target system application. For more information, see the Vitis Embedded Platforms tab of the
Downloads page on the Xilinx website.

You can use the Vivado tools for design creation, implementation, and analysis of PL. Typical
tasks include the following:

• Logic simulation

• Constraint definition and timing analysis

• NoC compilation

• I/O and clock planning

• Logic synthesis and implementation

• Visualization of design logic

• Design rule checks (DRC) and design methodology checks

• Implementation results analysis

• Power and thermal analysis

• Programming and debugging

Creating RTL and IP Designs

The Vivado tools support the traditional RTL and IP design flow, and the Vivado IP integrator is
available to automate the assembly of your design. RTL developers must understand the new IP
available in Versal ACAP and the requirements surrounding their usage, including the following:

• All designs require the CIPS IP, which contains the PMC used to boot the device. CIPS IP is
also used to configure the PS peripherals and the SYSMON IP. For more information, see the
Control, Interface and Processing System LogiCORE IP Product Guide (PG352).

• The only way to access the DDRMCs on the device is through the NoC IP. For more
information, see the Versal ACAP Programmable Network on Chip and Integrated Memory
Controller LogiCORE IP Product Guide (PG313).

• Hardware debug flows are different from previous devices. For more information, see the
Vivado Design Suite User Guide: Programming and Debugging (UG908).

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=downloads
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg352-cips.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=28

Packaging RTL Kernels

You can use the Vivado tools to package RTL kernels for use by the Vitis linker. This option is
available in the Vivado IP packager, which packages the IP into an XO file to be linked into the
final design using the Vitis system linker. For more information about RTL kernels, including
restrictions, see RTL Kernels in the Application Acceleration Development flow of the Vitis
Unified Software Platform Documentation (UG1416).

RECOMMENDED: Xilinx recommends that RTL developers use this approach to incorporate existing logic
when using the Vitis environment design flows.

Generating Platforms

You can create an extensible hardware platform using the Vivado tools that is then extended
with a processing subsystem using the Vitis tools. The platform typically includes basic system-
level resources that are shared by all accelerators, such as the PS, NoC, DDRMCs, and primary
I/Os. For more information on hardware platform definition, see the Vitis Accelerated Software
Development Flow Documentation in the Application Acceleration Development flow of the Vitis
Unified Software Platform Documentation (UG1416).

Note: This is the only design flow that supports the use of AI Engine resources.

Xilinx recommends the following:

• Include only essential Versal ACAP blocks and board interface IP in the platform

○ Essential blocks: CIPS, NoC, AI Engine, Clock wizard, interrupt controller

○ Interface blocks: High-speed I/Os, memory controllers

• Keep application-specific blocks outside the platform as kernels in the Vitis subsystem (e.g.,
fast Fourier transform (FFT), filters, etc.)

Following are the benefits of this approach:

• Ensures the platform is highly reusable

• Promotes separation of tasks

• Improves the ability to automate the integration process

• Increases scope and opportunity for DFX

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=devrtlkernel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=kme1569523964461.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=kme1569523964461.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=29

Block Design Flow
Xilinx highly recommends using the Vivado IP integrator cockpit for designs that target Versal
ACAPs. The Vivado IP integrator is a graphical and Tcl-based tool that allows you to combine
various Xilinx® and user-packaged IP-based subsystems into the overall design. This allows you
to create complex system designs by instantiating and interconnecting IP cores from the Vivado
IP catalog onto a design canvas. The Vivado IP integrator is designed to simplify Versal ACAP
AXI-based IP connectivity. The Vivado IP integrator also provides special support for GT IP and
connectivity IP (such as MRMAC IP), which simplifies GT-based design creation and I/O planning.

For Versal devices, IP integrator facilitates the integration of designs partitioned for different
domains (PS/PL/AI Engine). For example, you can create a hardware platform in the PL domain,
which contains various blocks that perform computation and interface to the PS domain, external
memory, and I/O. This hardware platform can also be connected to an AI Engine block.

Following are the advantages of using IP integrator:

• Allows automatic configuration updates between Versal device-specific blocks.

• Allows automatic connectivity between various blocks, which prevents errors.

• Provides seamless interaction with the Vitis tools, allowing export of custom hardware
platforms.

You can use an IP integrator block design (BD) in the following ways:

• Sub-module as part of a design

• Top-level of the design hierarchy

RECOMMENDED: For design that target Versal devices, Xilinx recommends using the IP integrator BD as
the top-level of the design rather than as a sub-module within an RTL-based top-level. This flow helps in
both creation and validation of the Versal ACAP design.

The following sections provide information on significant IP that you can access from the Vivado
IP integrator to create and configure your Versal ACAP design. For usage information and general
hardware platform generation information, see the Vivado Design Suite User Guide: Designing IP
Subsystems Using IP Integrator (UG994).

CIPS IP Core

The CIPS IP allows you to configure the following:

• Device clocking to the PMC, PS, NoC, and optionally, PL

• PMC flash controllers, peripherals, and their associated multiplexed I/O (MIO)

• PS peripherals and their associated I/O

• PS-PL interrupts and cross-triggering

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 30Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=30

• CPM (the integrated block for PCIe® with DMA and cache coherent interconnect)

• PS and CPM AXI interfaces to NoC and PL

• System Monitor supply and temperature monitoring and alarms

• HSDP for high-speed debugging

AI Engine IP

To generate an extensible platform for the Vitis environment, the AI Engine IP must be
instantiated and connected to the rest of the design. Then, the Vitis environment must be used
to generate the AI Engine configuration. The AI Engine IP lets you define the number of:

• AXI4-Stream master and slave interfaces to and from the AI Engine and PL

• AXI4-Stream clock ports for the PL and NoC channels

• Memory-mapped AXI interfaces to and from the AI Engine to the NoC

• Events being triggered and monitored both from AI Engine and the PL

Note: AI Engine IP is used only for extensible platform creation.

For more information, see the AI Engine LogiCORE IP Product Guide (PG358) and Versal ACAP AI
Engine Programming Environment User Guide (UG1076).

AXI NoC IP

The NoC is configured using the AXI NoC IP. The IP acts as logical representations of the NoC.
The AXI NoC IP supports the AXI memory-mapped protocol, and the AXIS NoC IP supports the
AXI4-Stream protocol. A Versal ACAP design can include multiple instances of each type of IP.

The DDRMC is integrated into the AXI NoC IP. An instance of the AXI NoC can be configured to
include one, two, or four instances of the DDRMC. You must use the NoC IP to communicate
with the integrated DDRMC. During the validate step, the Versal NoC compiler is run on the
unified traffic specification. After validation, the NoC Viewer window allows you to review and
edit the NoC solution.

For configuration details on the NoC and related IP as well as details on the system address map,
see the Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313).

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 31Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ai_engine;v=latest;d=pg358-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=yii1603912637443.html
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=31

Transceivers Bridge

The Versal ACAP transceivers are highly configurable and tightly integrated with the PL block.
The Versal ACAP Transceiver Bridge enables Vivado IP integrator-based design entry for GT-
based IP. This allows you to generate designs that use multiple quads or designs that share quads
with multiple protocol IP. You must use the Vivado Design Suite I/O planning tools to add
physical GT locations. For more information, see the Versal ACAP Transceivers Wizard LogiCORE IP
Product Guide (PG331).

Design Address Map

The Versal ACAP uses a single, unified system address map. All memory-mapped AXI
transactions must adhere to this map. The Versal ACAP system address map defines the default
address locations of slaves in the Versal ACAP. The address map is built into the fabric
interconnect and the NoC. The Vivado IP integrator automatically resolves the base name, offset
address, and range of the address region based on the DDR4 memory options selected in the AXI
NoC IP customization. These addresses are used by the AXI master to communicate with the
DDR. You use the Vivado IP integrator Address Editor to select or automatically assign compliant
addresses for all the memory-mapped blocks within the design. For configuration details on the
NoC and related IP as well as details on the system address map, see the Versal ACAP
Programmable Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide
(PG313).

RTL Design Flow
You can use the RTL design flow to create modules, instantiate IP, or assemble the top-level
design, similar to previous architectures. However, you must follow Xilinx recommendations for
using Versal device-specific blocks in the RTL design flow, including the CIPS and NoC IP. The
CIPS IP provides access to device configuration features, and the NoC IP connects PL to one or
several DDRMC hardened IP.

Xilinx highly recommends using the Vivado IP integrator to instantiate and configure the CIPS
and NoC IP. However, you do not need to use the IP integrator for your entire design. You can
configure the CIPS and NoC in IP integrator, specify the interface to the rest of the design, and
instantiate the resulting block design in the top-level RTL. Using this approach, IP integrator
automates the CIPS and NoC configuration, allowing you apply additional changes as needed.

I/O Planning
For Versal ACAP, the I/O planning flow for high-performance I/O (XPIO) differs from previous
architectures, as described in the following sections. The I/O planning flow for low-performance
I/O, also known as high-density I/O (HD I/O), remains the same.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 32Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=gt_quad_base;v=latest;d=pg331-versal-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=32

High-Performance I/O

The high-performance I/O in Versal ACAP is known as XPIO. The XPIO are located at the bottom
periphery of the device, unlike the columnar I/O architecture found in previous devices. XPIO
ports that exist below the PS on the left side of the device and below the GTs on the right side of
the device are known as corner I/O. Corner I/O have limited use, such as for the integrated
DDRMC and limited clocking. For more information on XPIO, see the Versal ACAP SelectIO
Resources Architecture Manual (AM010). For more information on corner I/O, see the Versal ACAP
Packaging and Pinouts Architecture Manual (AM013).

The XPIO provide XPHY logic that is similar to UltraScale™ device native mode. The XPHY logic
encapsulates calibrated delays along with serialization and deserialization logic for 6 single-ended
I/O ports known as nibble. Each XPIO bank contains 9 XPHY logic sites and allows for up to 54
single-ended I/O ports. The XPHY logic is used for the integrated DDRMC, soft memory
controllers, and any high-performance I/O interfaces.

IMPORTANT! Individual component mode cells, such as IDELAY, ODELAY, ISERDES, OSERDES, IDDR,
and ODDR, are eliminated for high-performance interfaces. The ISERDES and OSERDES primitives are not
supported in the Versal architecture, but similar functionality is supported through the XPHY logic.

Uncalibrated IDELAY, ODELAY, IDDR, and ODDR, known as I/O logic (IOL), exist in both XPIO
and HD I/O banks to support legacy low-performance interfaces operating at 500 Mb/s and
below.

The I/O planning flow for high-performance interfaces is different from previous architectures
due to the use of XPHY logic. If you previously generated high-performance interfaces using the
Xilinx Memory Interface Generator, High-Speed SelectIO™ wizard, or SelectIO component mode,
you must rebuild the interfaces using Versal IP wizards.

The following table shows how the high-performance UltraScale device I/O generation maps to
the Versal device I/O generation.

Table 8: Device I/O Generation Comparison

UltraScale Device I/O Generation Versal ACAP I/O Generation
Soft memory controllers Integrated DDRMC via the Versal NoC IP

Soft memory controllers

High Speed SelectIO Wizard Versal Advanced I/O Wizard

UltraScale Component Mode
• High-performance interfaces
• Calibrated IDELAY, ODELAY, ISERDES, OSERDES, IDDR,

and ODDR

Versal Advanced I/O Wizard

UltraScale Component Mode
• Low-performance interfaces (500 Mb/s and below)
• Uncalibrated IDELAY, ODELAY, IDDR, and ODDR

I/O logic instantiated in RTL

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=33

After you regenerate the IP for the Versal ACAP, you can perform I/O planning using the
Advanced I/O Planner, which is similar to soft memory controller I/O planning flow for UltraScale
devices. The Advanced I/O Planner guides you through the process of mapping your interfaces
to the desired XPIO banks using the XPHY logic, ensuring that your high-speed interfaces are
legally mapped to the XPHY logic.

Xilinx recommends I/O planning high-speed interfaces in the following order to achieve the
maximum utilization of available XPHY logic resources:

1. Integrated DDRMC via NoC

2. Soft memory controllers

3. Advanced I/O wizard

4. I/O logic

For information, see the following documents:

• For DDR4 and LPDDR4 pinout rules, see the Versal ACAP Programmable Network on Chip and
Integrated Memory Controller LogiCORE IP Product Guide (PG313).

• For soft memory controller rules, see the Versal ACAP Soft DDR4 SDRAM Memory Controller
LogiCORE IP Product Guide (PG353) and Versal ACAP Soft RLDRAM 3 Memory Controller
LogiCORE IP Product Guide (PG354).

• For information on the Advanced I/O wizard, see the Advanced I/O Wizard LogiCORE IP
Product Guide (PG320).

High-Density I/O

The low-performance I/O in Versal ACAP are known as high-density I/O (HD I/O). The HD I/O
support a subset of the UltraScale device component mode primitives through uncalibrated
IDELAY, ODELAY, IDDR, and ODDR primitives known as I/O logic. HD I/O maintain the
columnar I/O architecture found in previous devices.

The I/O planning flow for HD I/O is unchanged from previous architectures. You can continue to
instantiate the I/O logic primitives in your HDL code. The tools support an XDC-based
constraints flow for assigning PACKAGE_PIN constraints. As with previous architectures, you can
drag and drop from the I/O Ports window onto the Package window. In addition, you can move
I/O logic primitives between HD I/O banks and XPIO banks in the Versal ACAP.

IMPORTANT! The voltage ranges between XPIO and HD I/O do not overlap. XPIO supports a lower range
of voltage than HD I/O. For the voltage limits for specific banks,see the data sheet for your device.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ddr4_pl;v=latest;d=pg353-versal-acap-soft-ddr4-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=rld3_pl;v=latest;d=pg354-versal-acap-soft-rldram3-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=advanced_io_wizard;v=latest;d=pg320-advanced-io-wizard.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=34

Multiplexed I/O

The Versal ACAP multiplexed I/O (MIO) are similar to the MIO on the Zynq UltraScale+ MPSoCs.
In Versal devices, there are 78 MIO pins, 52 signals in the PMC MIO (banks 500 and 501), and 26
signals in the LPD MIO (bank 502). For details on MIO pin planning, see this link and this link in
the Versal ACAP Technical Reference Manual (AM011). The Versal ACAP Control, Interfaces, and
Processing System (CIPS) IP is used to select the MIOs to use and specify their functionality.

Extended Multiplexed I/O

Certain PMC and LPD peripherals can be routed via the extended multiplexed I/O (EMIO)
interface through the PL to XPIO or HD I/O via I/O logic. For details on which peripherals can
access the EMIO, see this link in the Versal ACAP Technical Reference Manual (AM011). The IO
Configuration page in the CIPS IP is used to select which peripherals access the EMIO. Because
EMIO uses I/O logic, the pin planning of the EMIO is completed using the traditional drag-and-
drop pin planning in the Vivado Design Suite.

POWER TIP: When pin planning the EMIO in the XPIO or HD I/O, consider the I/O voltage requirements
of the peripheral interface in choosing the bank type. XPIO banks can support I/O voltages of 1.5V and
below while HD I/O banks can support I/O voltages of 1.8V and above. For XPIO banks, the
recommendation is to place the lower-speed I/O logic last to maximize package pin utilization, and this
might leave a limited selection of I/O standards based on previously assigned I/O. You must ensure that
your interface is feasible in the desired bank or banks. You can use the IBIS models to simulate the
interface at your required speed with the I/O standard selected for your bank.

Logic Simulation
Logic simulation tests a hardware design targeting the PL fabric and is the traditional FPGA
simulation flow. The scope of this simulation is scalable, ranging from individual hardware blocks
to the complete hardware platform. The simulated models are generally RTL, making the
abstraction cycle-accurate. Simulation speed is proportional to the size of the test design, and
larger designs take comparatively longer to simulate. To improve simulation performance, you can
replace some Versal ACAP IP blocks with SystemC transaction-level models, which simulate
faster but are no longer cycle-accurate. The purpose of this simulation is to verify and debug
detailed hardware functionality before implementing the design on the device.

Logic simulation is available through the Vivado Design Suite. For more information, see the
Vivado Design Suite User Guide: Logic Simulation (UG900).

Note: Logic simulation is possible in both the traditional design flow and the platform-based design flow.

Implementation
You must use Vivado tools for synthesis and implementation. The Versal ACAP includes new
primitives that the Vivado synthesis tool infers.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 35Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf;a=xIOPinoutConsiderations
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf;a=xMIOAtAGlanceTables
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf;a=xIOPinoutConsiderations
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=35

Design closure techniques related to the device fabric are similar to previous device families. In
addition to considerations for timing, congestion, and wirelength, the placer calls the NoC
compiler again to account for modified NoC port location constraints or for merging traffic in
Dynamic Function eXchange (DFX) mode while meeting the original QoS requirements, as shown
in the following figure.

Figure 4: NoC Compiler Flow

Design Creation

Connectivity & QoS

NoC Compiler

Performance Analysis

Synthesis

Place NoC Compiler

Route

IP Integrator

X21272-022321

Related Information

Primitives

Power Closure
To achieve power closure, run the following steps.

Apply Constraints and Implement Design

After the board design is fixed, you must ensure that the design stays within the constraints
identified for power, power delivery, timing, and pinout to ensure the design meets your
requirements. At a minimum, Xilinx recommends constraining the design for total power and
providing maximum ambient and Theta Ja for the most accurate estimation. Xilinx allows you to
constrain both the device power and the power delivery solution by combining the power
supplies that are connected to the same regulator and specifying the maximum current for the
regulator. You can use report_power to check whether any supplies are overutilized. For more
information, see the Vivado Design Suite User Guide: Power Analysis and Optimization (UG907).

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=36

Following are examples of device power constraints:

set_operating_conditions -process maximum
set_operating_conditions -ambient_temp 40
set_operating_conditions -thetaja 1.5
set_operating_conditions -design_power_budget 10.2

Report Power

Run the report_power command on an implemented design to ensure that the power
constraints applied to the design reflect the initial power estimation and thermal design. The
report_power command also shows any margin based on the constraints, ensuring the power
is kept in check. When you are generating multiple runs to close timing, Xilinx recommends
running report_power, because often the design with the most slack might not be the best
from a power perspective. However, as long as there is slack, a design can be considered to have
closed timing, and having the report power results for every run allows you to select the best
implementation for power as well.

POWER TIP: If your design exceeds the power constraints, a quick way to run a “what if” analysis is to
export the results to XPE and make adjustments to see the impact on power.

Check Whether Design is Within Budget

At this point, you must evaluate the constraints. If power is too high, try the following:

• Reduce power in the design. This approach is the least costly in terms of time. For
information, see this link in the Vivado Design Suite User Guide: Power Analysis and Optimization
(UG907).

• Improve the thermal solution within the thermal design constraints. For example, change the
heat sink composition to improve the thermal solution, such as adding heat pipes or forced air.

• Improve the board and thermal solution, if possible. However, be aware that thermal changes
might increase the power in the design.

• Reduce the complexity or features in the design. Use this approach as a last resort. For
example, you can reduce power by reducing clock frequencies, resources used, or toggle rate.
You can use XPE for “what if” analysis to quickly estimate the impact of design changes.

Design Closure
The Versal architecture introduces new hardware features that require additional considerations
to reach design closure, including timing and performance closure. Similarly to previous Xilinx
device architectures, the timing summary report is the signoff report for timing closure. Vivado
Design Suite compilation tools provide guidance via the following reports:

• Design rule checks prevent invalid hardware configurations (report_drc). Any such issue
prevents the device image file generation and must be addressed.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 37Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xSystemLevelPowerReduction
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=37

• Methodology checks improve the PL maximum operating frequency and identify common
unsafe design structures, which can lead to hardware malfunction or instability
(report_methodology, report_cdc). Critical and warning violations must be addressed
to help timing closure and hardware stability.

• Xilinx also recommends addressing critical warnings in the log files.

IMPORTANT! To reduce timing closure iterations, you must review and address the timing violations as
early as possible in the implementation flow, especially after synthesis and after placement.

Due to the heterogeneous nature of the Versal architecture, the design performance mostly
depends on the NoC QoS, DDR memory access, and software efficiency in the PS and AI Engines
in addition to the PL operating frequency and amount of pipelining. For information on timing,
system performance, and power design closure, see the Versal ACAP System Integration and
Validation Methodology Guide (UG1388).

Vitis Environment Design Flow
Versal ACAP designs are enabled by the Vitis tools, libraries, and IP. The Vitis environment lets
you program, run, and debug the different elements of a Versal ACAP application, which can
include AI Engine kernels and graphs, PL, high-level synthesis (HLS) IP, RTL IP, and PS
applications. Each domain has its own set of tools and methodologies. For more information, see
the Vitis Unified Software Platform Documentation (UG1416).

The Vitis environment includes AI Engine tools for programming, debugging, and deploying graph
algorithms, including the aiecompiler, SystemC simulator (aiesimulator), and x86 simulator
(x86simulator). The Vitis compiler (v++ --compile) allows integration of kernels to the graph
running in the PL region of the device or running alongside the graph to define additional
subsystems. The Vitis embedded software development flow (with the system software stack
including PetaLinux) provides support for the PS domain of the embedded processor. The Vitis
environment facilitates the creation and integration of subsystems for each of these domains,
providing standardized interface requirements and data handoff between the different domains.

Note: Model Composer is also available for users familiar with MATLAB® software. For more information,
see the Model Composer and System Generator User Guide (UG1483).

The Vitis tools take a platform-based approach, separating the essential services provided by the
platform from the user-specific features of the application provided through the subsystems.

Platforms

Platforms come in two halves, the hardware platform and the software platform. The hardware
platform includes the PS, NoC, DDR controllers, I/Os, AI Engine array, and any other user-
specified IP blocks. The software platform defines the domains, device tree, and OS.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 38Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1388-acap-system-integration-validation-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=38

The platform insulates application developers from the details of low-level infrastructure and lets
them focus on development of a specific subsystem function, such as software, AI Engine graph,
or PL kernel logic. It is common for application developers to start their work by targeting a
standard Xilinx platform before transitioning to a custom platform developed for a specific board
and application. Custom platforms are developed using the Vivado tools.

Subsystems

Subsystems perform well-defined functions within the application. Subsystems are designed,
debugged, and eventually integrated with other subsystems to form the top-level application.
Using this approach, a complete Versal ACAP system is built using a collection of subsystems on
a platform. This approach is similar to designing large FPGA designs.

A subsystem can include PS firmware, AI Engine graphs, and PL kernels. The subsystem is a
standalone functional entity, performing well-defined functions under the supervision and
coordination of the PS or PL. The subsystem always includes controlling software that configures
the system as well as orchestrates the execution of subsystems in the AI Engine and PL fabric. A
subsystem can interact with other subsystems via shared memory and streams.

The PL and AI Engine components of a subsystem are assembled using the Vitis compiler and
linker (v++ --compile and v++ --link), and the PS firmware is integrated with the Vitis
packager (v++ --package).

Note: Currently, the AI Engine domain can only be part of a single subsystem.

Developing independent subsystems allows the concurrent development of multiple subsystems
and integration into the platform. Custom platform development can also occur at the same time
as application development, allowing simultaneous development of the custom application and
the custom platform to deploy the application. The top-level system project comprises multiple
subsystems, whether delivered by one team working on different elements at different times or
by multiple teams working on multiple subsystems to build the system.

Subsystem Design Flow
Prior to starting development, you must choose the Versal device that is best suited for your
application and partition the design into functions targeted to the PS, AI Engine, and PL,
depending on the application requirements. At this point, you must have an understanding of the
following:

• System design considerations, such as throughput and latency

• Domain and inter-domain capabilities, including compute and bandwidth

• Dataflow and control flow throughout the entire system and the various subsystems

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=39

In addition, you must consider the type of platform to target. You must plan and design for the
peripherals and interfaces on the board and the memory resources available on your custom
board.

The following figure shows a subsystem that targets a custom hardware platform.

Figure 5: Custom Hardware Platform Subsystem

Subsystem (PL+ AI Engine Components)

AI Engine
Kernel 1

AI Engine
Kernel 2

AI Engine
Kernel 3

AI Engine
Kernel 4

PL
Kernel

PL
DMA

I/O
Controller

I/O
Controller

DDR
Controller PS

NoC

Firmware

Custom Hardware Platform Subsystem (PS Component)
X24114-070120

The Vitis design flow is an iterative process that might loop through each step multiple times,
adding layers or elements to the subsystem through subsequent iterations. Teams can iterate
through the early steps more quickly and take more time with later steps, which provide more
detailed performance data.

Following are the recommended steps for creating your design in the Vitis environment.

• Kernel and Graph Development: This step includes the development and functional
verification of application kernels. These kernels can run on the AI Engine domain or the PL
domain.

• Subsystem Assembly and Verification Using Hardware Emulation: This step includes
assembling the AI Engine and PL kernels with the platform as well as building for hardware
emulation using a Xilinx standard platform.

• Subsystem Assembly and Verification on Hardware: This step includes building the subsystem
against the Xilinx standard platform and testing in real hardware on a Xilinx standard board.

• Subsystem Integration on Custom Platform: This step includes building the subsystem against
your custom platform and testing using your custom board.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=40

The Vitis environment design flow makes a distinction between platforms and subsystems, which
insulates subsystem developers from internal platform details and allows them to build fully
functional designs independently. The first three steps of the subsystem design flow assume you
are using Xilinx-provided platforms and you are integrating the subsystem to your custom
platform in the final step. The custom platform is developed using the Vivado Design Suite and
can happen in parallel with the subsystem, which is developed using the Vitis tool flow. This
approach reduces risk and uncertainty and increases the chances of success when integrating the
subsystem with the custom platform.

Kernel and Graph Development
The first step in this design flow includes the development and functional verification of the
individual components of the subsystem: AI Engine graph and PL kernels (HLS and/or RTL).
During this step, these components are typically developed and tested independently from one
another. However, it is possible to use the Vitis environment hardware emulation flow to start
testing the integration of these components.

In this step, verification focuses primarily on functional considerations. Performance information
generated for each component typically assumes ideal I/O patterns and no backpressure with
data always available. However, it is important to make note of the available performance data,
because the system performance is not likely to improve as you progress through your design. Be
sure to meet your performance objectives in each step, starting with the first step in the design
flow.

Developing the AI Engine Graph and Kernels

An AI Engine program comprises a dataflow graph specification written in C++, which consists of
nodes and edges. Nodes represent compute kernel functions, and edges represent data
connections. Kernels in the application can be compiled to run on the AI Engines or in the PL
region of the device. The AI Engine graph specification is compiled using the aiecompiler and
executed with the aiesimulator.

Xilinx recommends gradually refining and testing the graph, slowly progressing from scalar to
vectorized operations. Using scalars, you can target AI Engine tiles without having to code with
intrinsics right away. This allows you to set up your system (e.g., build scripts, functional
correctness, etc.) without having to do low-level AI Engine coding.

The graph is tested with a user-written test bench that drives and manages the graph using the
graph APIs. The test bench and graph APIs serve as the foundation for the development of PS
firmware in later steps. There are multiple methods for getting data into and out of a graph. Run-
time parameters (RTPs) are programmable registers for scalar values. GMIOs provide a direct
connection from the AI Engine to global memory. Streaming connections provide a direct
connection between AI Engine kernels and PL kernels modeled with PLIOs in the simulation. At
this stage in development, file I/O is often the simplest and most effective way to get data into
and out of your graph.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=41

Meeting performance in the aiesimulator at this early stage in the design is not a benchmark of
the final system performance, because performance data is idealistic at this point. The impact of
going out of or into the graph through the PLIOs is difficult to model, which limits the ability to
accurately estimate performance.

Developing PL Kernels with Vitis HLS

PL kernels can be developed using C/C++ code and the Vitis HLS tool. The Vitis HLS tool
simplifies the use of C/C++ functions for implementation as PL kernels in the Vitis application
acceleration development flow.

The Vitis HLS tool automates much of the code modifications required to implement and
optimize the C/C++ code in programmable logic and to achieve low latency and high throughput.
The Vitis HLS tool allows inference of required pragmas to produce the right interface for your
function arguments and to pipeline loops and functions within your code.

Note: Although HLS development is done outside of the AI Engine tool environment, it is possible to
optionally include HLS kernels in the AI Engine graph C++ specification.

The Vitis HLS design flow includes the following main steps:

1. Compile, simulate, and debug the C/C++ algorithm.

2. View reports to analyze and optimize the design.

3. Synthesize the C algorithm into an RTL design.

4. Verify the RTL implementation using the Vitis HLS co-simulation flow.

5. Compile the RTL implementation into a compiled object file (.xo), or export to an RTL IP.

For more information, see the Vitis HLS Documentation in the Application Acceleration
Development flow of the Vitis Unified Software Platform Documentation (UG1416).

Developing PL Kernels with RTL and the Vivado Design Suite

PL kernels can also be developed using RTL kernels and the Vivado Design Suite. This approach is
convenient for hardware engineers that have existing RTL IP, including Vivado IP integrator-
based designs, or prefer creating new functions by writing RTL code.

An RTL kernel is a regular design packaged as Vivado Design Suite IP, but the kernel must comply
with specific interface rules and requirements to be usable in the Vitis environment design flow.
For more information about RTL kernels, see RTL Kernels in the Application Acceleration
Development flow of the Vitis Unified Software Platform Documentation (UG1416).

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=gnq1597858079367.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=devrtlkernel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=42

Creating an RTL kernel follows traditional RTL design guidelines. Xilinx highly recommends that
you create custom test benches and use behavioral simulation to thoroughly verify the RTL code
before packaging and using the code as PL kernels in the Vitis environment design flow. After an
RTL design is fully verified and meets all the requirements for a Vitis kernel, the design can be
compiled into a Vitis kernel object (XO file) using the package_xo command.

Subsystem Assembly and Verification Using
Hardware Emulation
In the second step of this design flow, you gradually assemble subsystem components (PS, PL,
and AI Engine) on top of the target platform and use the Vitis hardware emulation flow to
simulate the integrated system. Hardware emulation is a cycle approximate simulation of the
system. The AI Engine graph runs in the SystemC simulator (aiesimulator). RTL behavioral models
of the PL run in the Vivado simulator or a supported third-party simulator. The software code
executing on the PS is simulated using the Xilinx Quick Emulator (QEMU).

The target platform contains all of the necessary hardware and software infrastructure resources
required for the project. It is possible to target a standard Xilinx platform or a custom platform for
your project. At this step in the flow, Xilinx recommends using a standard and pre-verified
platform to reduce uncertainty in the process and focus efforts on the system components (graph
and kernels).

The Vitis linker (v++ --link) is used to assemble the compiled AI Engine graph (libadf.a)
and PL kernels (.xo) with the targeted platform. The Vitis linker establishes connections between
the AI Engine ports, PL kernels, and other platform resources.

Because this design flow progresses gradually, certain elements might not exist in early iterations.
You might need to terminate unconnected signals, drive signals, or provide sinks. In this case,
unterminated streaming connections between the AI Engine graph and PL kernels (PLIOs and
AXI4-Stream) require the addition of simulation I/Os and traffic generator IP for emulation
purposes, which can be added during the linking process using v++ options.

The Vitis linker automatically inserts FIFOs on streaming interfaces as well as clock domain
converters (CDC) and data width converters (DWC) between the AI Engine and PL kernels as
needed. On the Versal ACAP, the clock on the AI Engine array can run at 1 GHz, but the clock in
the PL region runs at a different, lower frequency. This means there can be a difference between
the data throughput of the AI Engine kernels and the PL kernels based on their clock frequencies.
When linking the subsystem, the Vitis compiler can insert CDCs, DWCs, and FIFOs to match the
throughput capacities of the PL and AI Engine regions.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=43

The Vitis packager (v++ --package) is used to add the PS application and firmware and to
generate the required setup to run hardware emulation. The PS application controls the AI
Engine graph, including how it is loaded, initialized, run, and updated, and the PL kernels. To
control the AI Engine graph, you must use the graph APIs generated by the aiecompiler or the
standard Xilinx Runtime (XRT) APIs. To control the PL kernels, Xilinx recommends using the
standard XRT APIs. XRT is an open-source library that makes it easy to interact with PL kernels
and AI Engine graphs from a software application, either embedded or x86-based.

Optionally, you can build higher-level functionality on top of the graph and PL drivers. For the PS
subsystem, you write code in this step that did not fully exist in the first step. Drivers or firmware
interact directly with the kernels and a higher-level application that uses these drivers.

You can develop PS firmware, graph drivers, and PL kernels as follows:

• PS firmware: Use the test bench from the first step in the design flow, which drives and
manages the graph using graph APIs.

• Graph drivers: Use the graph APIs to test the graph and to interact with RTPs and GMIOs.

• PL kernel drivers: Use XRT APIs or UIO drivers to interact with the PL kernels.

In this step, most models are cycle accurate. However, some models are only approximate, and
other models are transaction-level models (TLM). PL kernels are simulated using the target clock,
which is not guaranteed to be met during implementation. The interactions between the AI
Engine graph and PL kernels are modeled at the cycle level, but overall accuracy depends on the
accuracy of the patterns produced by the traffic generators and other test bench modules. The
impact of other subsystems or complex I/O interactions cannot be accurately modeled. The
slower performance of the emulation environment limits the number of traffic/vectors that can
be tested.

Note: Meeting performance in hardware emulation is necessary but is not a guarantee of results. Hardware
emulation is cycle approximate with better accuracy in performance than during the first step in the design
flow. However, performance results are still not final at this stage.

Subsystem Assembly and Verification on Hardware
After hardware emulation provides a good view of the subsystem, you can proceed to the
hardware build on a Xilinx standard platform. Targeting a Xilinx standard platform helps to
eliminate some uncertainty from the test environment.

In this step, you are reusing the subsystem from the previous step but are now targeting the
hardware build. Using the Vitis linker, you take the assembled PL kernels through synthesis and
place and route. Using the Vitis packager, you package the PS and AI Engine programs to
generate the required output files to load and run the application on the Xilinx standard
development board.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=44

In the early stages of the design, this step is similar to iterating through Vivado synthesis, place
and route, and timing closure to achieve optimal results. Iterate until the performance objectives
are met, including Fmax, throughput, and resource utilization.

Like the previous two steps of this design flow, this step also allows an incremental approach in
which different components are gradually added to the subsystem and taken to hardware. This
gradual approach allows you to safely build upon previously verified components, which is a
proven strategy to manage design complexity.

From a performance standpoint, running in real hardware gives you more accurate numbers than
running in hardware emulation. Potential sources of differences between this step and the
preceding step include the following:

• Implementation results in potentially lower clock frequency

• More accurate execution profile of control code running on the PS

• More realistic I/O patterns, resulting in more realistic exercising of stalls and back pressure

• Discovery of corner cases that cannot be reached in the slower hardware emulation runs

Subsystem Integration on Custom Platform
In the final step of this flow, all the elements of the subsystem from the preceding step are
integrated and built on the custom platform, which was developed to deploy the application. This
step is similar to the previous step but uses the custom platform instead of a Xilinx platform.

The goal of this step is to meet timing and performance closure on the actual target platform. By
running through Vivado synthesis and place and route, you can address any differences in timing,
utilization, and power that occur when you switch from the Xilinx standard platform to your
custom platform.

This step also allows you to test and debug the custom platform as well as the application and
subsystem. Testing the subsystem with external I/Os means you might encounter some
differences between the previous step and this step in the hardware execution. However, if you
designed your custom platform correctly, the standardized interfaces of the platform can insulate
subsystem testing from such differences.

Simulation Flows
To address the different needs in simulation scope, abstraction, and purpose, Xilinx® provides
dedicated flows for the various components of a Versal™ ACAP design, including the AI Engine,
PS, and PL. In addition, Xilinx also provides the ability to co-simulate a complete system
comprised of PL, PS and optionally AI Engine components. The following sections provide details
on the scope and purpose of each of the simulation flows.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=45

Note: The majority of these simulation flows are available in both the traditional design flow and the
platform-based design flow. However, co-simulation of a complete system is only possible in the platform-
based design flow.

Embedded Software Simulation

Embedded software simulation tests a software design that targets only the PS. It is based on the
Quick Emulator (QEMU), which emulates the behavior of the dual-core Arm® Cortex®-A72
integrated in the Versal ACAP device. This simulation enables a fast, compact functional
validation of the platform OS. This flow includes a SystemC transaction-level model of the
system, which allows for early system exploration and verification.

Embedded software simulation is available through the Vitis unified software platform. For more
information, see this link in the Versal ACAP System Software Developers Guide (UG1304).

Note: Embedded software simulation is possible in both the traditional design flow and the platform-based
design flow.

Logic Simulation

Logic simulation tests a hardware design targeting the PL fabric and is the traditional FPGA
simulation flow. The scope of this simulation is scalable, ranging from individual hardware blocks
to the complete hardware platform. The simulated models are generally RTL, making the
abstraction cycle-accurate. Simulation speed is proportional to the size of the test design, and
larger designs take comparatively longer to simulate. To improve simulation performance, you can
replace some Versal ACAP IP blocks with SystemC transaction-level models, which simulate
faster but are no longer cycle-accurate. The purpose of this simulation is to verify and debug
detailed hardware functionality before implementing the design on the device.

Logic simulation is available through the Vivado Design Suite. For more information, see the
Vivado Design Suite User Guide: Logic Simulation (UG900).

Note: Logic simulation is possible in both the traditional design flow and the platform-based design flow.

Logic Simulation Using SystemC Models

SystemC is a C++ library that enables hardware modeling. This library provides structural
elements, such as modules, ports, and interfaces, as well as data types. In addition to cycle-
accurate simulation models, Xilinx provides fast, transaction-accurate, SystemC simulation
models for some Versal ACAP infrastructure blocks for use in Vitis hardware emulation flows.
SystemC models allow faster simulation compared to RTL models, which helps to reduce overall
simulation time.

In general, SystemC models are used for performance analysis, architecture exploration, DMA
synchronization, and address trace generation and performance modeling. However, Xilinx
recommends using RTL models when accuracy and debugging are more important, such as with
DMA transaction or timing dependent issues.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf;a=xVersalQEMU
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=46

Table 9: Supported Simulation Models for Versal ACAP Blocks

Block Cycle Accurate Performance
PS QEMU (functional only) QEMU (functional only)

NoC Behavioral SystemVerilog (cycle
approximate)

SystemC

DDRMC Behavioral SystemVerilog SystemC

PL-based soft memory controller Behavioral SystemVerilog Behavioral SystemVerilog

CPM Behavioral SecureIP Behavioral SecureIP

GT Behavioral SecureIP File I/O (for Vitis software platform
users only)

GT-based IP Behavioral SecureIP AXI verification IP
File I/O (for Vitis software platform
users only)

HLS-based IP RTL RTL

Other IP Varies by IP Varies by IP

PL Behavioral Verilog
VHDL
SystemVerilog

Behavioral Verilog
VHDL
SystemVerilog

AI Engine SystemC SystemC

HLS Simulation

HLS simulation exclusively tests HLS code and is an integral part of the HLS development
process. The scope of this simulation is a single HLS kernel. Two abstractions are supported,
untimed and RTL (cycle-accurate). These two abstractions are referred to as Csim and Cosim
respectively. In the Cosim flow, the output of RTL code generated by the HLS compiler is
automatically compared against the output of the original C code. The purpose of this flow is to
verify the functional correctness of the RTL and to validate performance in a standalone context,
independently of interactions with other functions.

HLS simulation is available through the Vitis unified software platform. For more information, see
the Vitis HLS Documentation in the Application Acceleration Development flow of the Vitis
Unified Software Platform Documentation (UG1416).

Note: HLS simulation is possible in both the traditional design flow and the platform-based design flow.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=gnq1597858079367.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=47

AI Engine Simulation

AI Engine simulation tests applications running on the Versal ACAP AI Engines. The scope of this
simulation is an arbitrary number of AI Engine graphs and kernels, and you can include PL kernels
inside the graph modeled in C++ or SystemC. Two abstractions are supported, untimed
(x86simulator) and cycle-approximate (aiesimulator), providing a trade-off between simulation
speed and accuracy. The purpose of this simulation is to verify the functional correctness of the
code and to validate performance in a standalone context, independently of interactions with
other functions. When using the cycle-approximate abstraction, you can also use simulation
results to improve the accuracy of the power estimation by more precisely calculating core
vector load and memory access.

AI Engine simulation is available through the Vitis unified software platform. For more
information, see AI Engine SystemC Simulator in the AI Engine Documentation flow of the Vitis
Unified Software Platform Documentation (UG1416).

Note: AI Engine simulation is only possible in the platform-based design flow.

Hardware Emulation

Hardware emulation simulates a complete Versal ACAP system composed of the AI Engine, PS,
and PL. Using the Vitis software platform, you can integrate blocks and functions targeting all
three compute domains. The Vitis linker automatically generates a complete co-simulation setup
involving RTL, SystemC, and QEMU models:

• Embedded software code running on the PS is emulated using QEMU.

• Code running on the AI Engines is emulated using the SystemC AI Engine simulator.

• User PL kernels are simulated as RTL code.

• IP blocks in the hardware platform are simulated either as RTL or SystemC TLM, based on the
types of models available or selected.

As a result, the abstraction of the Vitis hardware emulation is very close to but not fully cycle-
accurate. Some details of the Versal ACAP platform are abstracted with TLM models for
simulation speed purposes.

The scope of the Vitis hardware emulation also defines its purpose. Hardware emulation allows
you to simulate the entire design and test the interactions between the PL, PS, and AI Engine
prior to implementation. Because hardware emulation provides full debug visibility into all
aspects of the application, it is easier to debug complex problems in this environment than in real
hardware.

Hardware emulation is available through the Vitis unified software platform. For more
information, see the Vitis Accelerated Software Development Flow Documentation in the
Application Acceleration Development flow of the Vitis Unified Software Platform Documentation
(UG1416) and the Versal ACAP AI Engine Programming Environment User Guide (UG1076).

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=simulate_graph_application.html;a=pmy1512608736116
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=kme1569523964461.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=yii1603912637443.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=48

Note: Hardware emulation is only possible in the platform-based design flow.

Boot Image Generation
The Versal ACAP PMC uses a proprietary boot and configuration file format called the
programmable device image (PDI) to program and configure the Versal ACAP. The PDI consists of
headers, the PLM image, and design data image partitions to be loaded into the Versal ACAP. The
PDI also contains configuration data, ELF files, NoC register settings, etc. The PDI image is
programmed through the PMC block by the BootROM and PLM. For more information on the
PDI file format and generation, see the Bootgen User Guide (UG1283).

Generation of the PDI varies based on your design flow:

• Traditional design flow for hardware-only systems: Run the write_device_image
command. For more information, see this link in the Vivado Design Suite User Guide:
Programming and Debugging (UG908).

• Traditional design flow for embedded systems: Run the Bootgen tool. For more information,
see Bootgen Tool in the Embedded Software Development flow of the Vitis Unified Software
Platform Documentation (UG1416).

• Platform-based design flows: Run the v++ --package command. For more information, see
Packaging the System in the AI Engine Documentation flow of the Vitis Unified Software
Platform Documentation (UG1416).

IMPORTANT! The Vivado tools require the CIPS IP to be present in the design to create the PDI image.
For pure RTL designs, access the CIPS IP in the Vivado IP catalog and instantiate the CIPS IP using the
default configuration to enable the PDI creation.

Chapter 4: Design Flows

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=zuk1590410523631.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=integrate_ai_engine_application.html;a=ywu1601404111963
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=49

Chapter 5

System Migration
When you migrate designs to Versal™ ACAP from the UltraScale™ architecture, the Xilinx® tools
can only automatically migrate some of the PL primitives and integrated IP blocks due to the
functional and connectivity differences. Partial migration is possible but generally leads to sub-
optimal hardware and application performance. Therefore, Xilinx recommends using the
following steps instead:

• Rearchitect any high-bandwidth connections between major blocks to use the NoC instead of
the PL-based AXI Interconnect or similar IP.

• Reduce PL logic by leveraging all new integrated blocks, such as the integrated memory
controller, DMA, and AI Engine.

• Replace instantiated PL primitives from previous architectures with the equivalent RTL
descriptions or XPMs (e.g., memory blocks, DSPs, carry logic, multiplexers, etc.).

• Regenerate or recreate all IP blocks.

• Resynthesize the complete design instead of migrating netlists created for previous
architectures.

Any portion of the design that is automatically migrated must be carefully reviewed to ensure
that the application's performance, resource, and power will be met. For designs migrated from
Zynq® UltraScale+™ MPSoCs, Xilinx recommends recreating the PS functions and connectivity
by instantiating the CIPS IP in a new design instead of attempting migration via tools automation.

The following table shows the blocks and functionality for which automatic migration is available.

Table 10: Block and Functionality Migration Support

Block Automated
Configurable logic block (CLB) Yes

On-chip memory (OCM) resources (block RAM and
UltraRAM)

Most

DSP Yes

Clocking Some

I/O Some

Soft memory controllers No

AXI Interconnect No

GT No

PCIe subsystems Some

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=50

Table 10: Block and Functionality Migration Support (cont'd)

Block Automated
MRMAC No

Processor and peripherals No

System debug No

System monitor (SYSMON) No

Power and error handling No

Security No

Boot and configuration No

PL configuration and JTAG No

IMPORTANT! If your existing design contains blocks that are discontinued in Versal ACAP, you must
manually migrate these blocks to a corresponding Versal ACAP block. For details, see the appropriate
Versal ACAP architecture manual.

For designs migrating from Kintex® UltraScale™ or Virtex® UltraScale™ devices, the CIPS IP must
be added to enable essential functionality, such as device configuration and hardware debug
features, even if the PS features are not used. Other designs migrating from Zynq UltraScale+
MPSoCs are expected to already have a PS block. For more information about the CIPS IP, see
the Control, Interface and Processing System LogiCORE IP Product Guide (PG352).

CLB
CLBs in Versal ACAP have been enhanced from previous architectures. CLB resources that are no
longer supported in Versal ACAP (e.g., CARRY8, MUXF7, MUXF8, MUXF9, etc.) are
automatically migrated by inferring the appropriate Versal ACAP block. RTL instantiations are
also automatically migrated. For optimal area and timing results, Xilinx recommends that you do
not instantiate CLB UNISIMs that are no longer supported in Versal ACAP and that you re-
synthesize your RTL to infer the appropriate Versal ACAP block. For detailed architectural
differences, see the Versal ACAP Configurable Logic Block Architecture Manual (AM005).

Related Information

CLB Primitives

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 51Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg352-cips.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=51

On-Chip Memory Resources
Block RAM and UltraRAM used in designs from previous architectures are automatically migrated
by inferring the appropriate Versal ACAP block. RTL instantiations are also automatically
migrated. If certain block RAM and UltraRAM configurations are not supported in Versal ACAP, a
critical warning message is issued and the instance is converted to a black box element. The
design must be changed to adhere to the supported configurations for Versal ACAP. Xilinx
recommends that you examine the configuration settings after design migration to ensure the
correct defaults and settings were automatically selected. Xilinx recommends using Xilinx
parameterizable macros (XPMs) to infer FIFOs and other memories. Integrated FIFOs are not
supported in Versal ACAP. In the Vivado® IP integrator tool, the Embedded Memory Generator
and Embedded FIFO Generator replace the Block Memory Generator and FIFO Generator IP. The
migration for the Block Memory Generator and FIFO Generator IP is not automatic. For detailed
architectural differences, see the Versal ACAP Memory Resources Architecture Manual (AM007).

Related Information

RAM Primitives

DSP
The Versal ACAP includes the DSP58 slice, which is a superset of and backward compatible with
the UltraScale+ device DSP48E2 slice. In addition, the Versal ACAP DSP Engine supports floating
point operations in a single DSP58 slice and can combine two back-to-back DSP58 slices with
dedicated interconnect to build an 18-bit complex multiplier or complex multiply-accumulate
(MACC). The DSPFP32 mode in Versal ACAP is supported through the Floating-Point Operator
IP or the Vitis™ HLS tool. If you want to use this mode in your RTL design, update the Floating-
Point Operator IP in your migrated design.

Xilinx supports automated migration of instantiated DSP primitives to the Versal ACAP legacy
primitive (DSP48E5). To achieve higher performance and utilization, Xilinx recommends updating
your RTL to the Versal ACAP RTL templates and resynthesizing your design.

For detailed architectural differences, see the Versal ACAP DSP Engine Architecture Manual
(AM004).

IMPORTANT! To take advantage of the Versal ACAP potential for increasing performance, consider which
parts of the datapath can be ported from the PL and into the AI Engines. You can optionally use the Model
Composer and System Generator flows to compare the PL and AI Engine implementations for designs
created with MATLAB® and Simulink® software. For more information, see the Model Composer and
System Generator User Guide (UG1483).

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 52Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=52

Related Information

DSP Primitives
AI Engine

Clocking
To achieve optimal clocking results in the Versal architecture, Xilinx highly recommends the
following:

• Use the Clocking Wizard to configure the Versal ACAP clock management primitives. Relying
on the Vivado tools to migrate your clock management functions from a previous architecture
will likely result in a sub-optimal configuration. For more information, see the Clocking Wizard
for Versal ACAP LogiCORE IP Product Guide (PG321).

• Review the physical locations of clock management primitives in Versal ACAP versus your
clocking topology used in a previous architecture.

For more information about designing your clock network for your design, see the Versal ACAP
Hardware, IP, and Platform Development Methodology Guide (UG1387). For more information on
features and locations of the clock management primitives in Versal devices, see the Versal ACAP
Clocking Resources Architecture Manual (AM003).

Although Versal devices have clocking features similar to UltraScale devices, you must be aware
of the following important migration considerations.

Clock Management Functions

• The clock management functions are provided by the MMCME5, XPLL, and DPLL primitives in
Versal devices. The clock management primitives in Versal devices contain additional deskew
logic features when compared against similar primitives contained within UltraScale devices.

• The location of the clock management primitives in Versal devices are no longer in a regular
structure when compared to the columnar architecture in UltraScale devices, and the
primitives are only placed where required in Versal devices. In some scenarios, this can result
in limited placement flexibility when migrating to a Versal device, and you must carefully
review your clock structure during migration.

• The UltraScale+ device primitives migrate to Versal device primitives as follows:

○ The UltraScale+ device primitive MMCME4_ADV migrates to the MMCME5 Versal device
primitive. The MMCME5 does not support ZHOLD compensation. The MMCME5 settings
as a result of a migration from a previous architecture are likely to be sub-optimal, and
Xilinx recommends using the Clocking Wizard to directly configure the MMCME5 for
optimal performance in the Versal architecture.

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=clk_wizard;v=latest;d=pg321-clocking-wizard.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1387-acap-hardware-ip-platform-dev-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=53

○ The UltraScale+ device primitive PLLE4_ADV migrates to the XPLL Versal device primitive.
The XPLL settings as a result of a migration from a previous architecture are likely to be
sub-optimal, and Xilinx recommends using the Clocking Wizard to directly configure the
XPLL for optimal performance in the Versal architecture.

Global Clock Buffers

• Global clock buffers from previous architectures, such as BUFGCE, BUFGCE_DIV, BUFGCTRL,
BUFG_PS, and BUFG_GT, automatically migrate to the Versal architecture.

• New multi-clock buffer (MBUFG) primitives in Versal devices allow for clock division at the
leaf level to reduce clock track utilization and improve timing on synchronous clock domain
crossings.

Clock Routing Resources

• Versal devices have a clock routing structure similar to UltraScale devices, where global
clocking is used throughout the device but the loads can be placed regionally or globally.

• Versal devices do not have a columnar I/O architecture, and there are only 12 horizontal
routing tracks in clock regions without XPIO banks. Clock regions with XPIO banks have 24
horizontal routing tracks.

I/O
The IDDR/ODDR and IBUF/OBUF primitives are automatically migrated.

Related Information

I/O Planning

Soft Memory Controllers
If your previous design used soft memory controller IP, you can either use the Versal ACAP soft
memory controller IP or the integrated DDRMC. Xilinx recommends using the integrated
DDRMC rather than using the Versal ACAP soft memory controller IP. In Versal ACAP, you can
use the integrated DDRMC only via the NoC. The NoC and DDRMC have very high bandwidth
but generally have a higher latency than a standalone soft memory controller. For some I/O
banks, only the integrated DDRMC is supported. For more information on the DDRMC, see the
Versal Architecture and Product Data Sheet: Overview (DS950).

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=54

If you are using the soft memory controller IP, you must regenerate the IP for Versal ACAP. In
Versal ACAP, an I/O bank comprises nine nibbles, and each nibble has six pins. Depending on the
device and package, some I/O banks or some nibbles in an I/O bank are dedicated for the
integrated DDRMC. Soft memory controllers cannot use these dedicated pins. Pins dedicated for
the integrated DDRMC are designated as YES in the package file under the column named
DDRMC ONLY. The soft memory controllers can only use pins designated as NO. For more
information on soft memory controller IP, including detailed information on pinout, see the
following guides:

• Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313)

• Versal ACAP Soft DDR4 SDRAM Memory Controller LogiCORE IP Product Guide (PG353)

• Versal ACAP Soft RLDRAM 3 Memory Controller LogiCORE IP Product Guide (PG354)

• Versal ACAP Soft QDR-IV SRAM Memory Controller LogiCORE IP Product Guide (PG355)

AXI Interconnect
The soft IP AXI Interconnect is fully replaced by a combination of the integrated NoC resources
and SmartConnect IP. When migrating your design, first consider using NoC resources for all
memory access pathways as well as to reduce PL resource utilization and support the high-
bandwidth connections. You can then use SmartConnect to accommodate some conversions
onto the NoC or to offload traffic from a fully-utilized NoC network. When migrating your design
to NoC resources, Xilinx strongly recommends using Vivado IP integrator for the instantiation
and configuration of the NoC IP. For more information, see the Versal ACAP Programmable
Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313) and
SmartConnect LogiCORE IP Product Guide (PG247).

GT
For Versal ACAP, GT components are updated from Common/Channel to a GT Quad granularity.
To enable some of the GT sharing use cases, GT wizard flows are modified to use the Vivado IP
integrator. Use the Vivado IP integrator to build system designs that use single or multiple GT
Quads. The design entry for custom IP that connects to GT Quads is through the Bridge IP, which
instantiates, configures, and connects single or multiple GT Quad-based IP through Block
Automation. For more information, see the Versal ACAP Transceivers Wizard LogiCORE IP Product
Guide (PG331) and this link in the Versal ACAP Hardware, IP, and Platform Development
Methodology Guide (UG1387). When migrating your design, you must be aware of the full GT
Quad layout and supported configuration options. For detailed architectural differences, see the
Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002).

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ddr4_pl;v=latest;d=pg353-versal-acap-soft-ddr4-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=rld3_pl;v=latest;d=pg354-versal-acap-soft-rldram3-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=qdr4_pl;v=latest;d=pg355-versal-acap-soft-qdriv-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=gt_quad_base;v=latest;d=pg331-versal-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;ug1387-acap-hardware-ip-platform-dev-methodology.pdf;a=xCreatingADesignWithGTIP
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1387-acap-hardware-ip-platform-dev-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=55

PCIe Subsystems
The Versal architecture includes several blocks for implementation of high performance,
standards-based interfaces built on PCI™-SIG technologies. In addition to the CPM, the Versal
architecture includes support for implementation of PCIe® interfaces in the PL. PL PCIe
interfaces are significantly enhanced implementations of the integrated blocks for PCIe interfaces
found in previous architectures. Two implementations of the PL PCIe interfaces exist: PL PCIE4
and PL PCIE5.

In Versal ACAPs with available PL PCIE4, the block is compliant with the PCIe Base Specification
Revision 4.0 and capable of supporting defined line rates up to the maximum of 16 GT/s. The
core can be configured in Endpoint, Root port, or Switch mode. DMA/Bridge subsystems for use
with the PL PCIE4 are available through the Vivado ACAP IP catalog as additional soft IP. PL
PCIE4 does not provide CCIX support.

In Versal ACAPs with available PL PCIE5, the block is compliant with the PCIe Base Specification
Revision 5.0 and capable of supporting defined line rates up to the maximum of 32 GT/s. The
core can be configured in Endpoint, Root port, or Switch mode. DMA/Bridge subsystems for use
with the PL PCIE5 are available through the Vivado IP catalog as additional soft IP. CCIX support
in PL PCIE5 complies with CCIX Base Specification Revision 1.1 and enables solutions via
additional soft IP.

If your design needs to be migrated from an integrated block for PCIe in a previous architecture
to a Versal ACAP PL PCIE4 or PCIE5, consider the following:

• Only the Vivado IP integrator-based block design flow is currently supported with manual or
automatic connectivity.

• The required GT and PHY IP blocks for Versal ACAP PL PCIe interfaces are outside of the
Versal ACAP PL PCIE4 IP.

• Configure the PCIe subsystem with the required link speed, width, and features using the PL
PCIE4 core, and either run block automation or instantiate and connect Versal ACAP PHY and
GT Quad IPs manually.

• Xilinx recommends driving fundamental reset for the PCIe controller using the I/O inside the
PS, which must be configured in the CIPS IP.

• Manually map RQ/RC/CQ/CC streaming interfaces and side band signals, which are similar to
their respective IP implementation from previous architectures.

If your design needs to be migrated from an integrated block for PCIe in a previous architecture
to a Versal architecture CPM, consider the following:

• Configure the PCIe subsystem with the required link speed, width, and features in the CPM
using the CIPS IP core.

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=56

Note: The CPM has fixed connectivity to GTs based on the CPM configuration and this cannot be
altered.

• Fundamental reset for the PCIe controller is driven by the I/O inside the PS, which must be
configured in the CIPS IP.

• Only user_clk, which can have a frequency of 62.5, 125, or 250 MHz depending on the
configured link speed and width, is available for the programmable logic.

• Manually map RQ/RC/CQ/CC streaming, sideband signals, XDMA streaming, and QDMA
streaming interfaces to Versal ACAP CPM PL interfaces. These interfaces are similar to their
respective IP implementation from previous architectures.

• Pipe mode is not supported.

• Manually map the AXI4 memory-mapped (AXI4-MM) interfaces, including the AXI4-MM
bridge, Xilinx DMA memory-mapped (XDMA-MM) interface, and queue DMA memory-
mapped (QDMA-MM) interface, into the Versal ACAP NoC infrastructure. This requires
setting up various components in the design, such as the NoC, PS, address translation, and
address allocation.

Tandem PCIe interface configuration is different for Versal ACAP from previous architectures,
because configuration occurs through the PMC rather than through the media configuration
access port (MCAP) and internal configuration access port (ICAP). Currently, you must manually
configure these connections and settings in your design.

Xilinx recommends using the CPM, if available, as the primary PCIe interface for Versal ACAP.
This block has hardened paths to the NoC infrastructure and resources, including the PMC, PS,
and other management resources.

For solutions that require PCIe Tandem and DFX over PCIe interfaces, migrate to CPM. CPM
natively supports 100 ms Endpoint boot times and has hardened connectivity to the PMC to
enable configuration and DFX programming. There are no current plans to support Tandem PCIe
interfaces for PL-based PCIe controllers.

For more information, see the following documents:

• Versal ACAP CPM CCIX Architecture Manual (AM016)

• Versal ACAP Integrated Block for PCI Express LogiCORE IP Product Guide (PG343)

• Versal ACAP DMA and Bridge Subsystem for PCI Express Product Guide (PG344)

• Versal ACAP PCIe PHY LogiCORE IP Product Guide (PG345)

• Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

• Versal ACAP CPM DMA and Bridge Mode for PCI Express Product Guide (PG347)

Related Information

CPM

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_versal;v=latest;d=pg343-pcie-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_dma_versal;v=latest;d=pg344-pcie-dma-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_phy_versal;v=latest;d=pg345-pcie-phy-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg347-cpm-dma-bridge.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=57

MRMAC
If you are migrating from UltraScale or UltraScale+ device Integrated 100G Ethernet (CMAC)
hard block or soft 10G/25G/40G or 50G Ethernet IP, consider the following:

• MRMAC provides wider customization for line rate, clocking, and user interface:

○ Supported configurations are: 1 x 100GE, 2 x 50GE, 1 x 40GE; 4 x 25GE, and 4 x 10GE.

○ MRMAC now has an integrated AXIS interface for MAC+PCS operation as opposed to
CMAC, which offered integrated 512-bit LBUS interface with optional AXIS interface.

○ Various AXIS bus widths and clocking options are available and depending on
configuration, vary from those available in UltraScale or UltraScale+ device CMAC or soft
core solutions.

○ There is a new Flex Port option for access to PCS level.

• The GT is not included as part of the MRMAC core. IP integrator block automation is used to
connect between the MRMAC and GT.

• Instead of provided statistic counter increment vectors, statistics registers are now integrated
as part of the hard block and available over AXI4-Lite.

• The MRMAC also supports a new high-precision timestamping feature to enable sub-
nanosecond accuracy on IEEE Std 1588 timestamps.

For more information on the MRMAC and details on generating the MRMAC example design,
see the Versal Devices Integrated 100G Multirate Ethernet MAC (MRMAC) LogiCORE IP Product
Guide (PG314).

Processor and Peripherals
Software stack for bare-metal applications and Linux applications on the PS in Versal ACAP are
similar to Zynq UltraScale+ MPSoCs. Versal ACAP uses the PLM for booting. Zynq UltraScale+
MPSoC designs that target the APU can be migrated to work with the Versal ACAP APU. The
Versal ACAP RPU uses the same Arm® Cortex®-R5F processor with the same GIC as Zynq
UltraScale+ MPSoCs. The functionality and programming models are very similar. UltraScale+
device designs that target the RPU can be migrated to work with the Versal ACAP RPU. When
migrating to Versal ACAP, you must take into consideration the device driver changes,
multiplexed I/O (MIO) configuration, and pinouts. For more information, see the Versal ACAP
Technical Reference Manual (AM011).

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 58Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mrmac;v=latest;d=pg314-versal-mrmac.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=58

System Debug
Debugging designs in PL fabric is similar to previous architectures, but there are several key
differences:

• All fabric debug IP cores have AXI4-Stream slave control interfaces. Previous architectures
used a proprietary interface standard.

• The AXI-Debug Hub IP core has both AXI4-Stream control interfaces (for connection to fabric
debug IP cores) and an AXI4-Memory Map slave interface for connection from the host. The
Debug Hub IP used in previous architectures relied on proprietary interfaces for connection to
the debug cores and host.

• The debug flows in the Vivado tools now support both automated and manual connectivity
between debug hub and debug cores.

• The JTAG-to-AXI soft debug IP is no longer offered as an option in the Versal ACAP
architecture. The DAP and DPC can be used to access AXI-based blocks in your design.

• The AXI4-Stream-based integrated logic analyzer (ILA) core supports both ILA and System ILA
functionality. In previous architectures, these were offered as separate IP cores.

• The AXI4-Stream-based ILA core supports selection of block RAM or UltraRAM as the trace
storage memory.

When migrating, consider the following:

• Vivado IP integrator: You must manually remove or replace previously instantiated legacy
debug cores. Replace the legacy debug cores with the new AXIS-ILA cores in the block design
using IP integrator.

• Netlist: Xilinx design constraints (XDC) commands for inserting ILA cores into the synthesized
design automatically migrate to the new AXIS-ILA debug IP.

• RTL: Due to the new interface requirements, the fabric debug cores from previous
architectures are not automatically migrated to the new AXI4-Stream-based debug IP cores. If
debug cores from previous architectures are instantiated in the design, new debug IP must be
manually recustomized, regenerated, and reinstantiated in the design.

• IBERT and soft memory controller calibration: The integrated bit error ratio test (IBERT) IP
functionality is part of the GT blocks and can be used with any design that uses the
transceivers. Memory controller calibration debug is available for both DDRMC blocks and for
fabric-based soft memory controller IP.

• Debug Hub: Due to the new interface requirements, the legacy Debug Hub is automatically
inserted into the netlist only if pl0_resetn is enabled on the CIPS. Alternatively, an AXI4
Debug Hub can be manually added. For details, see this link in the Vivado Design Suite User
Guide: Programming and Debugging (UG908).

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 59Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xPreparingAVersalDesignForInSystemDebugging
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=59

System Monitor
The Versal ACAP provides system monitoring capabilities similar to UltraScale+ devices. In
UltraScale+ device designs you instantiated the SYSMON IP on the PL side and used the System
Management wizard to set up the register configuration for instantiation in the hardware
description language (HDL). To migrate your design, you must manually remove the SYSMON IP
from the design. In Versal ACAP, you enable the system monitor features in the CIPS IP
Configuration wizard. Dynamic reconfiguration port (DRP) access is replaced by memory mapped
registers. For more information, see the Versal ACAP System Monitor Architecture Manual
(AM006).

Power and Error Handling
Zynq UltraScale+ MPSoCs have some power modes that can be mapped to the power modes in
Versal ACAP. Peripherals that are power islands are shared in the Versal ACAP. These power
islands are automatically turned off when not in use by the PLM. External power rails that supply
power domains will be supported in a future release. Zynq UltraScale+ MPSoCs had error
handling that was bound to the PS. In Versal ACAP, the PS handles its own errors but sends a
summary to the PMC if action is required by the PMC. Errors from the DDR, PL, and SYSMON
are handled by the PMC in Versal ACAP instead of the PS. For detailed architectural differences,
see the Versal ACAP Technical Reference Manual (AM011).

Security
The security architecture of Versal ACAP is significantly enhanced from previous generations.
The root of trust starts with the PMC ROM, which authenticates and optionally, decrypts the
PLM software. The PMC ROM can only be loaded into and run from the PPU in the PMC. After
the PLM software is authenticated, the PLM ensures secure loading of the remaining firmware
and software. For more information, see the Versal ACAP System Software Developers Guide
(UG1304), Versal ACAP Technical Reference Manual (AM011), or visit the Design Security Lounge
(registration required) on the Xilinx website for access to detailed security related information.
The following table highlights the possible secure boot configurations for Versal ACAP and shows
a comparison with Zynq UltraScale+ MPSoC.

Note: Although there are similarities between the Zynq UltraScale+ MPSoC Encrypt Only (EO) flow and the
Versal ACAP Symmetric Hardware Root of Trust (S-HWRoT), the two modes are significantly different in
implementation.

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 60Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=60

Table 11: Cumulative Secure Boot Operations

Boot Type

Operations Hardware Crypto Engines

Authentication Decryption
Integrity

(Checksum
Verification)

Zynq
UltraScale+

MPSoC
Versal ACAP

Non-secure No No No N/A N/A

Hardware Root-of-
Trust (HWRoT)

Yes Optional Integrity via
Authentication

RSA, SHA3 N/A

Encrypt Only (EO) Yes via GCM Yes Integrity via
Authentication

AES-GCM N/A

Asymmetric
Hardware Root-of-
Trust (A-HWRoT)

Yes Optional Integrity via
Authentication

N/A RSA/ECDSA and
SHA3

Symmetric
Hardware Root-of-
Trust (S-HWRoT)

Yes via GCM and
eFUSEs

Yes
Must use PUF KEK

Integrity via
Authentication

N/A AES-GCM/PUF

A-HWRoT + S-
HWRoT

Yes Yes
Must use PUF KEK

Integrity via
Authentication

N/A RSA/ECDSA, SHA3,
AES-GCM, PUF

Authentication +
Decryption

Yes Yes Integrity via
Authentication

RSA, SHA3, AES-
GCM

RSA/ECDSA, SHA3,
AES-GCM

Decrypt Only No Yes Yes AES-GCM AES-GCM

Checksum
Verification

No No Yes SHA3 SHA3

Boot and Configuration
If you are migrating from UltraScale+™ device families, consider the following:

• UltraScale+ device designs: These devices contain integrated configuration logic that supports
a set of configuration modes on power-up. With Versal ACAP, there are changes to the boot
and configuration flows.

• Zynq UltraScale+ MPSoC PS designs: Zynq® UltraScale+™ MPSoCs have a PMU and CSU to
manage and carry out the boot-up process. There are changes in the boot flow methodology.

Note: For more information, see this link in the Versal ACAP Technical Reference Manual (AM011), this link in
the Versal ACAP System Software Developers Guide (UG1304), and the Bootgen User Guide (UG1283).

The following table compares the primary boot and configuration modes of UltraScale+ devices
with Versal ACAP.

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 61Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf;a=xPlatformBootControlAndStatus
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf;a=xBootAndConfiguration
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=61

Table 12: Boot Mode Comparison

Mode Virtex UltraScale+ or
Kintex UltraScale+ FPGA

Zynq UltraScale+ MPSoC
or Zynq UltraScale+ RFSoC Versal ACAP

JTAG Yes Yes Yes

OSPI No No Yes

QSPI32 Yes Yes Yes

QSPI24 Yes Yes Yes

SelectMAP Yes No Yes1

eMMC1 (4.51) No Yes Yes

SD1 (3.0) No Yes Yes

SD1 (2.0) No Yes Yes

SD0 (3.0) No No Yes

SD0 (2.0) No Yes No

PJTAG_0 No No No

PJTAG_1 No Yes No

Serial Yes No No

BPI Yes No No2

NAND No Yes No2

USB (2.0) No Yes No

Notes:
1. SelectMAP mode provides hardware flow control using a BUSY signal.
2. Octal SPI and eMMC1 modes supersede the BPI and NAND modes used in previous architectures. Octal SPI and

eMMC1 modes provide similar performance while reducing pin count.

PL Configuration and JTAG
The Versal architecture differs from previous architectures for boot and configuration. The PL
configuration and JTAG standalone primitives are not supported in Versal ACAP but similar
capability exists as follows:

• The BSCANE2 primitive is replaced by four JTAG TAP user instructions available in the CIPS
IP.

• The STARTUPE3 primitive is replaced by the combination of the QSPI controller MIO and
CIPS IP (global asynchronous set/reset signal, global 3-state, end of startup (EOS) signal, PL
clocks (PL0-PL3) source configuration).

• The DNA_PORTE2 primitive is replaced by the JTAG DNA register or AXI memory mapped
accessible 32-bit registers DNA_0, DNA_1, DNA_2, and DNA_3 to read out the device DNA.

• The EFUSE_USR primitive is replaced by the AXI memory mapped EFUSE_CACHE registers.

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=62

For more information on the memory mapped registers, including address mapping, see the
Versal ACAP Technical Reference Manual (AM011) and the Versal ACAP Register Reference (AM012).

Chapter 5: System Migration

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=63

Appendix A

Primitives
The Versal™ ACAP includes new primitives that the Vivado® synthesis tool infers.

Note: This appendix only covers the Versal ACAP primitives that differ from those in the UltraScale+™
device families.

RAM Primitives
The Versal architecture supports both block RAM and UltraRAM primitives.

Block RAM Primitives
Following are the block RAM primitives in Versal ACAP.

Primitives Supported Aspect Ratios Supported Mode
RAMB36E5 1Kx36

2Kx18
4Kx9

x72 mode when running in simple
dual-port (SDP) mode

RAMB18E5 1Kx18
2Kx9

x36 mode when running in SDP mode

In SDP mode, one address reads the RAM and the other address writes to the RAM. You can use
different clocks for the read and the write, but the address lines must be separate. The following
figures show examples.

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=64

Figure 6: Verilog Coding Style for a 512x72 Block RAM in SDP Mode

Figure 7: VHDL Coding Style for a 512x72 Block RAM in SDP Mode

Resets

Following are the types of resets on the block RAM:

• Synchronous reset on the block RAM output, which uses the RESETRAMA or RESETRAMB
pin

• Asynchronous reset on the block RAM output, which uses the ARST_A or ARST_B pin

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=65

Note: If the ARST_A or ARST_B pin is used, the RESETRAMA, RESETRAMB, RSTREGA, and RSTREGB
pins are ignored.

• Synchronous reset that controls the optional output registers of the block RAM, which uses
the RSTREGA or RSTREGB pin

When using asynchronous resets:

• Both the RAM and optional output register must use the same asynchronous reset.

Note: If the optional output register does not use the same reset, it is not inferred into the block RAM.

• The output enables and SRVAL properties are ignored.

• The asynchronous reset can only reset to a 0 value.

Write Modes

The Versal ACAP block RAMs support the same write modes as UltraScale™ devices and use the
same RTL coding styles:

• WRITE_FIRST outputs the newly written data onto the output bus.

• READ_FIRST outputs the previously stored data onto the output bus.

• NO_CHANGE maintains the previous value of the output bus.

Byte Write Enables

The control ports for byte write enables are the WEA and WEB pins, which vary based on usage:

• RAMB36E5

○ In non-SDP mode, the WEA and WEB [3:0] pins control 4 bytes of either size 8 or 9.

○ In SDP mode, the WEA and WEB [7:0] pins control 8 bytes of size 8 or 9.

• RAMB18E5

○ In non-SDP mode, the WEA and WEB [1:0] pins control 2 bytes of size 8 or 9.

○ In SDP mode, pins WEA and WEB [3:0] pins control 4 bytes of 8 or 9.

Note: Size 9 names 8 bits with 1 parity bit.

Currently, Vivado synthesis only infers byte write RAM if sizes of 8 or 9 are used. In addition,
Vivado synthesis only infers byte write enable RAM if the enables use one-hot state encoding.
For example, in a byte write enabled RAM that is configured as true dual port with a data width
of 36, there are 4 different bytes, but only 1 byte can be written to at a time. To infer the block
RAM, make sure the RTL adheres to these restrictions.

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=66

Asymmetric RAMs

For asymmetric block RAMs in Versal ACAPs, use the same coding styles and rules that you use
for asymmetric block RAMs in UltraScale devices. For information on setting up asymmetric
block RAMs, see the Vivado Design Suite User Guide: Synthesis (UG901).

Note: Currently, Vivado synthesis does not support asynchronous reset on asymmetric block RAMs in
Versal ACAPs.

Using XPMs

Block RAMs can also be inferred using XPMs. The advantage of using this approach is that XPMs
always have the correct coding style for any type of RAM needed. For more information on
XPMs, see the Vivado Design Suite User Guide: System-Level Design Entry (UG895).

UltraRAM Primitives
Following is the UltraRAM primitive in Versal ACAPs. To force Vivado synthesis to infer the
UltraRAM, set the RAM_STYLE = "ultra" attribute on the RAM.

Note: Like UltraScale devices, the UltraRAM for Versal ACAPs includes only one clock.

Primitive Supported Aspect Ratios Supported Mode
URAM288E5 4Kx72

8Kx36
16Kx18
32Kx9

Dual port
Single port

Extra Registers

In addition to the optional output registers, the UltraRAM supports input registers on the data
lines. As with block RAMs, you can reset the optional registers either with synchronous or
asynchronous reset signals.

RAM Initialization

In Versal ACAPs, the UltraRAMs can be initialized to a non-zero value. Initialize the UltraRAMs
using the INIT_xx attribute on the RAM as follows:

• Verilog: Use the readmemh command.

• VHDL: Set up a function to read an external file in VHDL.

For details, see the Vivado Design Suite User Guide: Synthesis (UG901).

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 67Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=67

Byte Write Enables

The UltraRAM also supports byte write enable operations. As with block RAMs, the bytes can
either be 8 bits or 9 bits using the extra parity bit. However, when using byte write with Versal
ACAPs, read operations are ignored during writing. Therefore, only the NO_CHANGE mode is
supported when describing UltraRAMs with byte write.

Asymmetric UltraRAMs

Versal ACAP UltraRAMs support asymmetric aspect ratios. For examples on how to code
asymmetric RAMs, see this link in the Vivado Design Suite User Guide: Synthesis (UG901).

XPM Inference

UltraRAMs can also be inferred using XPMs. The advantage of using this approach is that XPMs
always have the correct coding style for any type of RAM needed. For more information on
XPMs, see the Vivado Design Suite User Guide: System-Level Design Entry (UG895).

DSP Primitives
Following are the different types of DSP primitives for Versal ACAP.

Primitive Description Usage
DSP58 Standard integer/Fixed point mode Inference or instantiation

DSPFP32 Floating point mode Instantiation only

DSPCPLX Complex multiplier Inference or instantiation

DSP58

For Versal ACAPs, the DSP58 primitive includes the same features as in UltraScale devices,
including a multiplier, adder, pre-adder, and registers to fully pipeline the primitive. However,
sizing differs and the primitives include additional features.

Sizing

For signed logic, you can configure DSP58 as follows:

• Multiplier: 27x24

• Adder: 58-bit

• Pre-adder: 27-bit

For unsigned logic, you can configure DSP58 as follows:

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf;a=xHDLCodingTechniques
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=68

• Multiplier: 26x23

• Adder: 57-bit

• Pre-adder: 26-bit

The following figures show examples for signed logic.

Figure 8: Elaborated View of 27x24 Multiplier with 58-Bit Adder and 27-Bit Pre-Adder

Figure 9: Verilog RTL for a 27x24 Multiplier with 58-Bit Adder and 27-Bit Pre-Adder

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=69

Figure 10: VHDL RTL for a 27x24 Multiplier with 58-Bit Adder and 27-Bit Pre-Adder

Dot Product

The DSP58 can implement a dot product, which is a multiplier that is represented as three
smaller multipliers that are added together. Dot products are often used in filters in image
processing. For more information, see the Versal ACAP DSP Engine Architecture Manual (AM004).
The following figure shows an example of a dot product with an extra adder.

Note: For the dot product to infer, the RTL must use signed logic.

Figure 11: Elaborated View of a Dot Product with an Extra Adder

The following figures show the RTL for a dot product.

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 70Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=70

Figure 12: Verilog RTL for the Dot Product

Figure 13: VHDL RTL for the Dot Product

DSPFP32

DSPFP32 can perform floating point calculations. Vivado synthesis does not handle these
calculations. Instead, various IP are provided, or the DSPFP32 primitive can be instantiated.

DSPCPLX

The DSPCPLX is designed to synthesize logic needed to solve for the real and imaginary portions
of the following equation:

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=71

(a+bi)(c+di)

Each DSPCPLX occupies two DSP58 sites. The DSPCPLX can either be instantiated in the RTL or
inferred. The following figures show the RTL for the DSPCPLX.

Figure 14: Verilog RTL to Synthesize the DSPCPLX

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=72

Figure 15: VHDL RTL to Synthesize the DSPCPLX

CLB Primitives
The configurable logic blocks (CLBs) in Versal ACAPs differ from those in UltraScale devices.
Vivado synthesis handles the architectural differences, but you must be aware of the differences
noted in the following sections.

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=73

Carry Chains

Instead of the CARRY8 primitive in UltraScale devices, Versal ACAPs include a LOOKAHEAD8
primitive. The LOOKAHEAD8 primitive does not include MUXCYs and XORCYs for arithmetic
operations. Instead, these operators must be inferred and as a result, the LUT count is slightly
higher.

Figure 16: Extra LUTs Before the CARRY Chain

MUXFx Primitives

Versal ACAPs do not include MUXFx primitives. Because MUXFx primitives are often used for
address decoding in distributed RAMs, large comparators, or MUX chains, expect extra LUT
counts when using these types of structures in Versal ACAPs, as shown in the following figure.

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=74

Figure 17: Extra LUTs for Address Decoding

Coding Style and Primitive Instantiation
Examples

For coding style and primitive instantiation examples, see the following resources:

• Language Templates in the Vivado IDE

• This link in the Vivado Design Suite User Guide: Synthesis (UG901)

Appendix A: Primitives

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 75Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf;a=xHDLCodingTechniques
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=75

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 76Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=76

1. Versal Architecture and Product Data Sheet: Overview (DS950)

2. Extending the Thermal Solution by Utilizing Excursion Temperatures (WP517)

3. Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002)

4. Versal ACAP Clocking Resources Architecture Manual (AM003)

5. Versal ACAP DSP Engine Architecture Manual (AM004)

6. Versal ACAP Configurable Logic Block Architecture Manual (AM005)

7. Versal ACAP System Monitor Architecture Manual (AM006)

8. Versal ACAP Memory Resources Architecture Manual (AM007)

9. Versal ACAP AI Engine Architecture Manual (AM009)

10. Versal ACAP SelectIO Resources Architecture Manual (AM010)

11. Versal ACAP Technical Reference Manual (AM011)

12. Versal ACAP Register Reference (AM012)

13. Versal ACAP Packaging and Pinouts Architecture Manual (AM013)

14. Versal ACAP CPM CCIX Architecture Manual (AM016)

15. SmartConnect LogiCORE IP Product Guide (PG247)

16. Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313)

17. Versal Devices Integrated 100G Multirate Ethernet MAC (MRMAC) LogiCORE IP Product Guide
(PG314)

18. Advanced I/O Wizard LogiCORE IP Product Guide (PG320)

19. Versal ACAP Transceivers Wizard LogiCORE IP Product Guide (PG331)

20. Versal ACAP Integrated Block for PCI Express LogiCORE IP Product Guide (PG343)

21. Versal ACAP DMA and Bridge Subsystem for PCI Express Product Guide (PG344)

22. Versal ACAP PCIe PHY LogiCORE IP Product Guide (PG345)

23. Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

24. Versal ACAP CPM DMA and Bridge Mode for PCI Express Product Guide (PG347)

25. Control, Interface and Processing System LogiCORE IP Product Guide (PG352)

26. Versal ACAP Soft DDR4 SDRAM Memory Controller LogiCORE IP Product Guide (PG353)

27. Versal ACAP Soft RLDRAM 3 Memory Controller LogiCORE IP Product Guide (PG354)

28. Versal ACAP Soft QDR-IV SRAM Memory Controller LogiCORE IP Product Guide (PG355)

29. AI Engine LogiCORE IP Product Guide (PG358)

30. Versal ACAP PCB Design User Guide (UG863)

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 77Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp517-excursion-temps.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am002-versal-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am005-versal-clb.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am006-versal-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am007-versal-memory.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am010-versal-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am013-versal-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am016-versal-cpm-ccix.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mrmac;v=latest;d=pg314-versal-mrmac.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=advanced_io_wizard;v=latest;d=pg320-advanced-io-wizard.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=gt_quad_base;v=latest;d=pg331-versal-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_versal;v=latest;d=pg343-pcie-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_dma_versal;v=latest;d=pg344-pcie-dma-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_phy_versal;v=latest;d=pg345-pcie-phy-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg347-cpm-dma-bridge.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg352-cips.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ddr4_pl;v=latest;d=pg353-versal-acap-soft-ddr4-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=rld3_pl;v=latest;d=pg354-versal-acap-soft-rldram3-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=qdr4_pl;v=latest;d=pg355-versal-acap-soft-qdriv-mem-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ai_engine;v=latest;d=pg358-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug863-versal-pcb-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=77

31. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

32. Vivado Design Suite User Guide: Logic Simulation (UG900)

33. Vivado Design Suite User Guide: Synthesis (UG901)

34. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

35. Vivado Design Suite User Guide: Programming and Debugging (UG908)

36. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

37. Vivado Design Suite: AXI Reference Guide (UG1037)

38. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

39. Versal ACAP AI Engine Kernel Coding User Guide (UG1079)

40. Xilinx Power Estimator User Guide for Versal ACAP (UG1275)

41. Bootgen User Guide (UG1283)

42. Versal ACAP System Software Developers Guide (UG1304)

43. Versal ACAP Hardware, IP, and Platform Development Methodology Guide (UG1387)

44. Versal ACAP System Integration and Validation Methodology Guide (UG1388)

45. XRT Release Notes (UG1451)

46. Model Composer and System Generator User Guide (UG1483)

47. Versal ACAP System and Solution Planning Methodology Guide (UG1504)

48. Versal ACAP Board System Design Methodology Guide (UG1506)

49. Seven Steps to an Accurate Worst-Case Power Analysis using the Xilinx Power Estimator
(XAPP1348)

50. Versal ACAP Schematic Review Checklist (XTP546)

51. Versal ACAP External Memory Pre-Planning Tool (XTP667)

52. AI Engine SystemC Simulator in the AI Engine Documentation flow of the Vitis Unified
Software Platform Documentation (UG1416)

53. Bootgen Tool in the Embedded Software Development flow of the Vitis Unified Software
Platform Documentation (UG1416)

54. Debugging the AI Engine Application in the AI Engine Documentation flow of the Vitis Unified
Software Platform Documentation (UG1416)

55. Packaging the System in the AI Engine Documentation flow of the Vitis Unified Software
Platform Documentation (UG1416)

56. Programming the PS Host Application in the AI Engine Documentation flow of the Vitis
Unified Software Platform Documentation (UG1416)

57. RTL Kernels in the Application Acceleration Development flow of the Vitis Unified Software
Platform Documentation (UG1416)

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 78Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=yii1603912637443.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1079-ai-engine-kernel-coding.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1275-xilinx-power-estimator-versal.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1304-versal-acap-ssdg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1387-acap-hardware-ip-platform-dev-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1388-acap-system-integration-validation-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1451-xrt-release-notes.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1483-model-composer-sys-gen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1504-acap-system-solution-planning-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1506-acap-board-system-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1348-power-analysis.pdf
https://www.xilinx.com/member/forms/download/design-license.html?cid=90f995d8-c517-4adc-a95c-13a8994d6618&filename=xtp546-versal-schematic-review-checklist.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=faeb9c32-f328-4db2-b467-c2292b9b1bff&filename=xtp667-versal-empp-tool.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=simulate_graph_application.html;a=pmy1512608736116
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=zuk1590410523631.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=debug_ai_engine_application.html#efm1590527983792
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=integrate_ai_engine_application.html;a=ywu1601404111963
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=program_ps_host_application.html#ykt1590616160037
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=devrtlkernel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=78

58. Vitis Accelerated Software Development Flow Documentation in the Application
Acceleration Development flow of the Vitis Unified Software Platform Documentation
(UG1416)

59. Vitis HLS Documentation in the Application Acceleration Development flow of the Vitis
Unified Software Platform Documentation (UG1416)

60. Vitis Unified Software Platform Documentation (UG1416)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 79Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=kme1569523964461.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=2020.2;d=gnq1597858079367.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=79

OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2020–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. OpenCL and
the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. PCI, PCIe, and PCI
Express are trademarks of PCI-SIG and used under license. All other trademarks are the property
of their respective owners.

Appendix B: Additional Resources and Legal Notices

UG1273 (v2020.2) March 26, 2021 www.xilinx.com
Versal ACAP Design Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1273&Title=Versal%20ACAP%20Design%20Guide&releaseVersion=2020.2&docPage=80

	Versal ACAP Design Guide
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction to Versal ACAP
	Navigating Content by Design Process
	About This Guide

	Ch. 2: System Architecture
	AI Engine
	Programmable Logic
	NoC
	XPIO
	DDRMC
	CIPS
	PS
	APU
	RPU
	Standard Peripherals
	AMBA Specification Interfaces

	PMC
	Flash Memory Controllers

	CPM

	GT
	HSDP
	MRMAC

	Ch. 3: System Planning
	System Design Types

	Ch. 4: Design Flows
	Traditional Design Flows
	Traditional Design Flow for Hardware-Only Systems
	Traditional Design Flow for Embedded Systems

	Platform-Based Design Flows
	Vivado Tools Design Flow
	Block Design Flow
	CIPS IP Core
	AI Engine IP
	AXI NoC IP
	Transceivers Bridge
	Design Address Map

	RTL Design Flow
	I/O Planning
	High-Performance I/O
	High-Density I/O
	Multiplexed I/O
	Extended Multiplexed I/O

	Logic Simulation
	Implementation
	Power Closure
	Apply Constraints and Implement Design
	Report Power
	Check Whether Design is Within Budget

	Design Closure

	Vitis Environment Design Flow
	Subsystem Design Flow
	Kernel and Graph Development
	Developing the AI Engine Graph and Kernels
	Developing PL Kernels with Vitis HLS
	Developing PL Kernels with RTL and the Vivado Design Suite

	Subsystem Assembly and Verification Using Hardware Emulation
	Subsystem Assembly and Verification on Hardware
	Subsystem Integration on Custom Platform
	Simulation Flows
	Embedded Software Simulation
	Logic Simulation
	Logic Simulation Using SystemC Models

	HLS Simulation
	AI Engine Simulation
	Hardware Emulation

	Boot Image Generation

	Ch. 5: System Migration
	CLB
	On-Chip Memory Resources
	DSP
	Clocking
	I/O
	Soft Memory Controllers
	AXI Interconnect
	GT
	PCIe Subsystems
	MRMAC
	Processor and Peripherals
	System Debug
	System Monitor
	Power and Error Handling
	Security
	Boot and Configuration
	PL Configuration and JTAG

	Appx. A: Primitives
	RAM Primitives
	Block RAM Primitives
	UltraRAM Primitives

	DSP Primitives
	CLB Primitives
	Coding Style and Primitive Instantiation Examples

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

