Vitis AI Library 1.3 Release Notes
This section contains information regarding the features and updates of the Vitis™ AI Library 1.3 release.
Key Features And Enhancements
This AI Library release includes the following key features and enhancements:
- New Board Support
- Versal Series: VCK190 is supported in this release.
- Xmodel Support for Edge
- For Edge, the xmodel is used, which is consistent with the xmodel used on Cloud.
- PyTorch Framework Support for Edge
- In VAI1.3, PyTorch framework is supported for Edge.
- New DPU Support
-
Enable new DPU target DPUCAHX8L designed for Alveo U50, U50LV, and U280 cards.
- New Model Libraries
- The following new model libraries are supported.
- New Model Support
-
- Added 13 new PyTorch models
- Added 17 new TensorFlow models, including five TensorFlow2 models.
- Added six new Caffe models
Changes
- xmodel is used for Edge. The elf model is no longer supported.
Compatibility
The Vitis™ AI Library 1.3 is tested with the following images.
- xilinx-zcu102-dpu-v2020.2-v1.3.0.img.gz
- xilinx-zcu104-dpu-v2020.2-v1.3.0.img.gz
Model Support
The following models are supported by this version of the Vitis™ AI Library.
No. | Neural Network | ZCU102/ZCU104 | VCK190 | U50/U50LV/U280 | U50-V3ME/U50LV-V3ME/U280-V3ME | Application |
---|---|---|---|---|---|---|
1 | inception_resnet_v2_tf | Y | Y | Y | Y | Image Classification |
2 | inception_v1_tf | Y | Y | Y | Y | |
3 | inception_v3_tf | Y | Y | Y | Y | |
4 | inception_v4_2016_09_09_tf | Y | Y | Y | Y | |
5 | mobilenet_v1_0_25_128_tf | Y | N/A | N/A | N/A | |
6 | mobilenet_v1_0_5_160_tf | Y | N/A | N/A | Y | |
7 | mobilenet_v1_1_0_224_tf | Y | N/A | N/A | Y | |
8 | mobilenet_v2_1_0_224_tf | Y | N/A | N/A | Y | |
9 | mobilenet_v2_1_4_224_tf | Y | N/A | N/A | Y | |
10 | resnet_v1_101_tf | Y | Y | Y | Y | |
11 | resnet_v1_152_tf | Y | Y | Y | Y | |
12 | resnet_v1_50_tf | Y | Y | Y | Y | |
13 | vgg_16_tf | Y | Y | Y | Y | |
14 | vgg_19_tf | Y | Y | Y | Y | |
15 | ssd_mobilenet_v1_coco_tf | Y | N/A | N/A | Y | Object Detection |
16 | ssd_mobilenet_v2_coco_tf | Y | N/A | N/A | Y | |
17 | ssd_resnet_50_fpn_coco_tf | Y | Y | Y | N/A | |
18 | yolov3_voc_tf | Y | Y | Y | N/A | |
19 | mlperf_ssd_resnet34_tf | Y | Y | Y | Y | |
20 | resnet50 | Y | Y | Y | Y | Image Classification |
21 | resnet18 | Y | Y | Y | Y | |
22 | inception_v1 | Y | Y | Y | Y | |
23 | inception_v2 | Y | Y | Y | Y | |
24 | inception_v3 | Y | Y | Y | Y | |
25 | inception_v4 | Y | Y | Y | Y | |
26 | mobilenet_v2 | Y | N/A | N/A | Y | |
27 | squeezenet | Y | Y | Y | Y | |
28 | ssd_pedestrian_pruned_0_97 | Y | Y | Y | Y | ADAS Pedestrian Detection |
29 | ssd_traffic_pruned_0_9 | Y | Y | Y | Y | Traffic Detection |
30 | ssd_adas_pruned_0_95 | Y | Y | Y | Y | ADAS Vehicle Detection |
31 | ssd_mobilenet_v2 | Y | N/A | N/A | Y | Object Detection |
32 | refinedet_pruned_0_8 | Y | Y | Y | Y | |
33 | refinedet_pruned_0_92 | Y | Y | Y | Y | |
34 | refinedet_pruned_0_96 | Y | Y | Y | Y | |
35 | vpgnet_pruned_0_99 | Y | Y | Y | Y | ADAS Lane Detection |
36 | fpn | Y | Y | Y | Y | ADAS Segmentation |
37 | sp_net | Y | Y | Y | Y | Pose Estimation |
38 | openpose_pruned_0_3 | Y | Y | Y | Y | |
39 | densebox_320_320 | Y | Y | Y | Y | Face Detection |
40 | densebox_640_360 | Y | Y | Y | Y | |
41 | face_landmark | Y | Y | Y | Y | Face Detection and Recognition |
42 | reid | Y | Y | Y | Y | Object tracking |
43 | multi_task | Y | Y | Y | Y | ADAS |
44 | yolov3_adas_pruned_0_9 | Y | Y | Y | N/A | Object Detection |
45 | yolov3_voc | Y | Y | Y | N/A | |
46 | yolov3_bdd | Y | Y | Y | N/A | |
47 | yolov2_voc | Y | Y | Y | N/A | |
48 | yolov2_voc_pruned_0_66 | Y | Y | Y | N/A | |
49 | yolov2_voc_pruned_0_71 | Y | Y | Y | N/A | |
50 | yolov2_voc_pruned_0_77 | Y | Y | Y | N/A | |
51 | facerec_resnet20 | Y | Y | Y | Y | Face Recognition |
52 | facerec_resnet64 | Y | Y | Y | Y | |
53 | plate_detection | Y | Y | Y | Y | Plate Recognition |
54 | plate_recognition | Y | Y | Y | N/A | |
55 | FPN_Res18_Medical_segmentation | Y | Y | Y | Y | Medical Segmentation |
56 | refinedet_baseline | Y | Y | Y | Y | Object Detection |
57 | resnet50_pt | Y | Y | Y | Y | Image Classification |
58 | squeezenet_pt | Y | Y | Y | Y | |
59 | inception_v3_pt | Y | Y | Y | Y | |
60 |
personreid-res50_pt |
Y | Y | Y | Y | Object Tracking |
61 |
facereid-large_pt |
Y | Y | Y | N/A | |
62 |
facereid-small_pt |
Y | Y | Y | Y | |
63 |
SemanticFPN_cityscapes_pt |
Y | Y | Y | Y | Segmentation |
64 |
facerec-resnet20_mixed_pt |
Y | Y | Y | Y | Face Recognition |
65 | face-quality_pt | Y | Y | Y | Y | |
66 | MT-resnet18_mixed_pt | Y | N/A | N/A | N/A | ADAS |
67 | salsanext_pt | Y | Y | Y | Y | Point Cloud |
68 | pointpillars_kitti_12000_0_pt pointpillars_kitti_12000_1_pt |
Y | N/A | N/A | N/A | |
69 | unet_chaos-CT_pt | Y | Y | Y | N/A | CT Segmentation |
70 | FPN-resnet18_covid19-seg_pt | Y | Y | Y | Y | Covid-19 Segmentation |
71 | ENet_cityscapes_pt | Y | Y | Y | Y | Segmentation |
72 | personreid-res18_pt | Y | Y | Y | N/A | Object Tracking |
73 | yolov4_leaky_spp_m | Y | Y | Y | N/A | Object Detection |
74 | hourglass-pe_mpii | Y | N/A | N/A | N/A | Pose Estimation |
75 | retinaface | Y | N/A | N/A | N/A | Face Detection |
76 | FPN-resnet18_Endov | Y | N/A | N/A | N/A | Robot Instrument Segmentation |
77 | tiny_yolov3_vmss | Y | Y | Y | N/A | Object Detection |
78 | face-quality | Y | Y | Y | Y | Face Recognition |
79 | ssdlite_mobilenet_v2_coco_tf | Y | N/A | N/A | Y | Object Detection |
80 | ssd_inception_v2_coco_tf | Y | N/A | N/A | N/A | |
81 | MLPerf_resnet50_v1.5_tf | Y | Y | Y | Y | Image Classification |
82 | mobilenet_edge_1_0_tf | Y | N/A | N/A | N/A | |
83 | mobilenet_edge_0_75_tf | Y | N/A | N/A | N/A | |
84 | refinedet_VOC_tf | Y | Y | Y | Y | Object Detection |
85 | RefineDet-Medical_EDD_tf | Y | Y | Y | Y | Medical Detection |
86 | resnet_v2_50_tf | Y | N/A | N/A | N/A | Image Classification |
87 | resnet_v2_101_tf | Y | N/A | N/A | N/A | |
88 | resnet_v2_152_tf | Y | N/A | N/A | N/A | |
89 | mobilenet_v2_cityscapes_tf | Y | N/A | N/A | N/A | Segmentation |
90 | inception_v2_tf | Y | N/A | N/A | Y | Image Classification |
91 | resnet50_tf2 | Y | Y | Y | Y | |
92 | mobilenet_1_0_224_tf2 | Y | N/A | N/A | Y | |
93 | inception_v3_tf2 | Y | Y | Y | Y | |
94 | medical_seg_cell_tf2 | Y | Y | Y | Y | Medical Segmentation |
95 | semantic_seg_citys_tf2 | Y | Y | Y | Y | Segmentation |
|
Device Support
The following platforms and evaluation boards (EVB) are supported by the Vitis™ AI Library 1.3.
Platform | EVB | Version |
---|---|---|
Zynq UltraScale+ MPSoC ZU9EG | Xilinx ZCU102 | V1.1 |
Zynq® UltraScale+™ MPSoC ZU7EV | Xilinx ZCU104 | V1.0 |
Versal AI Core series VC1902 | Xilinx VCK190 | V1.0 |
Accelerator Cards |
---|
Xilinx Alveo U50 |
Xilinx Alveo U50LV |
Xilinx Alveo U200 |
Xilinx Alveo U250 |
Xilinx Alveo U280 |
Limitations
- Some neural networks with mobilenet as the backbone are not supported on Versal VCK190 board and on the Alveo U50, U50LV, and U280 cards.
- Due to limitations of the Docker environment, Multi-task demos cannot run in the DRM mode on Cloud boards.